

ANSI C RELEASE 3

II Acorn~
1l1e choice of experience.

ii

©Copyright Acorn Computers Limited 1989

Neither the whole nor any part of the information contained in, or the product
described in, this manual may be adapted or reproduced in any material
form except with the prior written approval of Acorn Computers Limited.

The product described in this manual and products for use with it are subject
to continuous development and improvement. All information of a technical
nature and particulars of the product and its use (including the information
and particulars in this manual) are given by Acorn Computers Limited in
good faith. However, Acorn Computers Limited cannot accept any liability for
any loss or damage arising from the use of any information or particulars in
this manual.

ACORN, ARCHIMEDES, and ECONET are trademarks of Acorn Computers
Limited.
MS-DOS and Microsoft are trademarks of Microsoft Corporation.
UNIX is a registered trademark of AT&T Bell Laboratories.

Published September 1989
Release 3
ISBN 1 85250 071 9
Published by Acorn Computers Limited
Part number 0470,101

Contents

Introduction About this Guide 1

Useful references 5

Conventions used 6

Part 1 : Using the C
compiler and tools

How to install and run Introduction 9

the compiler Using the compiler 10

Installation 31
Setting up your working environment 38
Compiling and running the example programs 46

Using the Linker Linker command line format 55
Linker keywords 58

Pre-defined Linker symbols 60
Generating overlaid programs 61

Acorn source-level Overview 67

debugger About debuggers 68
Using ASD 70
Specifying source-level objects 73
Program examination commands 81
Execution control commands 87

Low-level debugging commands 92

Miscellaneous commands 97
An example ASD session 100

Command summary 114

Other utilities Acorn make utility 117

Squeeze 128

Contents iii

iv

Part 2: Language issues

Implementation details

Standard
implementation definition

Portability

ANSI library reference
section

Identifiers
Data elements
Structured data types
Pointers
Arithmetic operations
Expression evaluation
Implementation limits

Translation (A.6.3.1)
Environment (A6.3.2)
Identifiers (A6.3 .3)
Characters (A6.3.4)
Integers (A6.3.5)
Floating point (A6.3.6)
Arrays and pointers (A6.3. 7)
Registers (A6.3.8)
Structures, unions, enumerations and bitfields (A6.3.9)
Qualifiers (A.6.3.10)
Declarators (A6.3.11)
Statements (A6.3.12)
Preprocessing directives (A6.3.13)
Library functions (A6.3.14)

Introduction
General portability considerations
ANSI C vs K&R C
The toansi and topcc tools
pee compatibility mode
Environmental aspects

133
133
136
137
137
138
139

141
141
142
143
144
144
144
144
145
145
145
146
146
146

151
151
154
158
160
164

167

Contents

Part 3: Developing
software for RISC OS

How to write desktop Some general principles 213
applications inC Developing an application from scratch 215

More RISC_OSLib facilities 224
Using Draw files 232
Common application features 234
Displaying and editing text 237
Tracing desktop applications 239
Where do you go from here? 239

How to use the template Starting FormEd 241
editor Editing a template file 242

Loading sprites into templates 243
Editing RM utility templates 243
A worked example 243

RISC OS library 247
reference section

Assembly language Register names 369
interface Register usage 370

Control arrival 370
Passing arguments 371
Return link 371
Structure results 372
Storage of variables 372
Function workspace 373
Examples 373

How to write relocatable Introduction 375
modules inC Getting started 376

Constraints on modules written in C 376
Overview of modules written in C 376
Functional components of modules written in C 377

Overlays Paging vs overlays 389
When to use overlays 390

Contents v

Machine-specific features How to use the C library kernel 393
Calling other programs from C 401
The shared C library 403
#pragma directives 405
Storage management (malloc, calloc, free) 406
Handling host errors 409

Appendices

Appendix A: New Additional software 412
features of Release 3 Examples 413

Upgrades 414
New features of the Guide 414
Changes to the compiler 416
New Procedure Call Standard 416

Appendix B: Arthur Using the Arthur libraries 417
Operating System library General Arthurlib functions 419

Appendix C: Errors and Levels of errors and warnings 421
warnings Warnings 422

Non-serious errors 431
Serious errors 442
Fatal errors 461
System errors 463

Appendix D: ARM Introduction 463
procedure call standard The purpose of APCS 463

Design criteria 464
The Procedure Call Standard 465
Defined bindings of the Procedure Call Standard 473
Examples from Acorn language implementations 478

Appendix E: kernel.h 483

Appendix F: The floating FPE280 491
point emulator Using the compiler 492

Floating point requirements of applications 493

vi Contents

Indexes Index of functions

Subject index

Contents

495
505

vii

viii Contents

Introduction

About this Guide

The Acorn C compiler for the ARM processor is a full implementation of C

as defined by the December 1988 draft ANSI language standard.

This Guide is a reference manual for the Acorn C compiler for RISC OS and

covers aspects that are particular to this C product:

• special features of this implementation of the C language

• installing and working with C on your RISC OS computer

• portability issues, including the portable C compiler (pee) facility

• developing programs for the RISC OS environment:

• Desktop applications

• Relocatable modules

• Overlays

• Calling other programs from C.

The Guide is not intended as an introduction to C and does not teach C

programming, nor is it a reference manual for the ANSI C standard. Both

these needs are addressed by publications listed below.

The Guide is organised into four parts:

Part 1: Using the C compiler and tools

Part 2: Language issues

Part 3: Developing software for RISC OS

Part 4: Appendices

Introduction

Part 1 : Using the C
compiler and tools

Part 2: Language issues

This describes how to use the compiler and tools provided for program
development. It also helps you with organising the C compiler system for
your particular needs and getting the most productive use from your hardware
configuration.

The chapters are:

• How to install and run the compiler

• Using the linker

• Acorn source-level debugger

• Other utilities

This covers issues to do with the C programming language itself, in particular
those parts of the ANSI standard that are necessarily machine- or operating
system-specific. It also includes a chapter on portability to help with porting
applications inC to and from RISC OS.

The chapters are:

• Implementation details

How Acorn C implements those aspects of the language which ANSI
leaves to the discretion of the implementor.

• Standard implementation definition

How Acorn C behaves in those areas covered by Appendix A.6 of the
draft standard (which lists those aspects which the standard requires each
implementation to define).

• Portability

The chapter covers:

• portability considerations in general

• the major differences between ANSI and 'K&R' C

• using the pee compatibility mode of the Acorn compiler

• using the conversion utilities, topcc and toansi

• standard headers and libraries

• environmental aspects of portability.

2 Introduction

Part 3: Developing
software for RISC OS

• ANSI library reference section

This chapter works through the headers of the ANSI standard library,

(assert 0 h to time 0 h), outlining the contents of each one:

• function prototypes

• macro, type and structure definitions

• constant declarations.

This part of the Guide tells you how to write software in C for the RISC OS

environment. Examples in the text and on disc are used to illustrate each type

of program development.

The chapters are:

• How to write desktop applications in C

This covers the principles of designing an application to be integrated

into the RISC OS desktop environment.

• How to use the template editor

The template editor is a utility which takes much of the work out of

building components of the Wimp environment, especially windows.

• RISC OS library reference section

A list of fully commented headers for the RISC OS library. This library

provides the high-level interface to RISC OS, with all the calls needed to

program for the Wimp environment.

• Assembly language interface

How to handle procedure entry and exit in assembly language, so that

you can write programs which interface correctly with the code produced

by the C compiler.

• How to write relocatable modules in C

Relocatable modules - the building blocks of the RISC OS operating

system- are needed for device drivers and similar low-level software.

• Overlays

This chapter explains how to write an application using overlays, with a

worked example as an illustration.

Introduction 3

Part 4: Appendices

4

• Machine-specific features

This chapter contains the following sections:

• The C library kernel

• Calling other programs from C

• The shared C library

• #pragma directives

• Storage management

• Handling host errors .

Appendix A: New features of Release 3

This is the third release of the C compiler product for Acorn computers
running the RISC OS operating system. The appendix highlights all those
features that are new since the previous release (release 2).

Appendix 8: Arthur Operating System library

The Arthur library is for the old Arthur operating system, the precursor to
RISC OS. It has been included for backwards compatibility.

Appendix C: Errors and warnings

Messages produced by the compiler, of varying degrees of seriousness.

Appendix D: ARM procedure call standard

This describes the technical details of the procedure call standard that
language processors must adhere to in order to integrate into the RISC OS
system. You will need this information if you are writing a language
processor in C.

Appendix E: kernel. h

Fully-commented headers for the C library kernel. This provides the
technical details needed to support the explanatory section on the kernel in
the chapter Machine-specific features.

Introduction

Useful references

C programming

RISC OS

Reference cards

Appendix F: The fioating point emulator

This covers what you need to know about the floating point emulator in order

to use the C compiler system and write applications using it.

• Harbison, S P and Steele, G L, (1984) A C Reference Manual, (second

edition). Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-109802-0.

This is a very thorough reference guide to C, including a useful amount of

information on the draft proposed ANSI C.

Since the Acorn C compiler is an ANSI compiler, this book is

particularly relevant, but you must get the second edition for coverage of

the ANSI draft standard.

• Kernighan, B W and Ritchie, D M, (1988) The C Programming Language

(second edition). Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-

110362-8.

This is the original C 'bible', updated to cover the essentials of draft

ANSI C too.

• Koenig, A, (1989) C Traps and Pitfalls, Addison-Wesley, Reading, Mass.

ISBN 0-201-17928-8.

This book explains how to avoid the most common traps and pitfalls that

ensnare even the most experienced C programmers. It provides

informative reading at alllevefs.

• The User Guide supplied with your computer, which describes how to use

the RISC OS operating system and the applications Edit, Paint and Draw.

• The RISC OS Programmer's Reference Manual.

In a pocket inside the back cover of this Guide there are four reference cards,

summarising

• the contents of the three release discs

• an overview of the C compiler directory structure

• options for the compiler, linker and utilities.

Introduction 5

The ANSI standard

Conventions used

6

The Draft Proposed American National Standard (Programming Language C)
is available for £65 from

British Standards Institution
Foreign Sales Department
Linford Wood
Milton Keynes
MK14 6LE

Members of the BSI can order copies by telephone; non-members should
send a cheque payable to BSI.

However, you should find the coverage of ANSI C in this manual and the
books listed above adequate for all but the most demanding requirements.

Throughout this G uide, a fixed-width font is used for text that the user should
type, with an italic version representing classes of item that would be
replaced in the command by actual objects of the appropriate type. For
example:

cc options filenames

This means that you type cc exactly as shown , and replace options and
filenames by spec ific examples.

A bold version of the same font is used for text that the computer responds
with.

Introduction

Part 1- Using the C
compiler and tools

How to install and run the compiler

Introduction The Acorn C compiler system is a powerful and flexible tool for developing

software in C. The RISC OS operating system itself provides a rich working

environment, with many faci lities that you can use to aid software development.

How best to install and run the compiler, and set up your working

environment, will depend on the hardware you are using and on your purpose

in using the C compiler. This chapter therefore outlines the options available;

where specific details are given, these will use the defaults for the procedure

in question. The defaults are likely to cater for your needs unless you have

special requirements.

This chapter is divided into four sections:

• Using the compiler first leads you through compiling, linking and running a

simple example program (provided in the package). It then describes

how the compiler system works, detailing the command line options and

naming conventions.

• Installation lists the contents of the three release discs and tells you how

to install the system on a hard disc or network, and how to work with a

system with a single floppy disc drive.

• Setting up your working environment provides guidelines for getting the best

use out of your hardware system, outlining ways to exploit the faci lities of

RISC OS. It suggests some ways to economise on memory and storage

space.

• Examples works through all the example programs provided.

If you are new to RISC OS and the Acorn C compiler, read the whole of this

chapter before starting to use the C compiler system. Experienced C

programmers will find this chapter essential for reference, and may choose to

tackle the examples section first.

How to install and run the compiler 9

Using the compiler

Getting started

10

However, even if you are fully conversant with previous releases of the Acorn
C compiler and Acorn RISC OS computer systems, you must read the section
entitled The shared C library at the end of the section Setting up your working
environment.

Release 3 of the ANSI C Compiler for Acorn computers running RISC OS
comes on three discs:

• Disc 1 -The work disc

• Disc 2- The library support disc

• Disc 3 -The reference disc.

Each disc is in E format and is write-protected.

Before you do anything else, you should make working copies of each disc and
keep the originals in a safe place. The User Guide supplied with your
computer tells you how to format and make backup copies of discs.

Having backed up the three C distribution discs, insert your working copy of
Disc 1 in the drive and exit to the Command Line prompt. To do this, press
function key F12 or select* Commands from the Task Manager menu.

Select the Advanced Disc Filing System with

*adfs

2 You will need to ensure that version 3.50, or later, of the shared C library
is installed. At the * prompt, type:

*RMensure SharedClibrary 3 . 50 RMload : 0 . $. !System . modules.clib

3 To ensure that an up-to-date version of the floating point emulator is
installed, at the * prompt type:

*RMensure FPEmulator 2 . 8 RMload : 0.$. 1 System . modules . fpe

You are now ready to compile, link, and run your first example program.

4 Select$. Library on drive 0 as the library directory with

*lib : O. $. Library

How to install and run the compiler

Filing systems

5 Select$. User as the current directory with:

*DIR : 0 .$.User

6 To compile and link the example program HelloW, type

*cc c .Hell oW

7 The compiler will give you a message similar to the following:

Norcroft RISC OS ARM C 3.00 date

When this process is completed, the * prompt will return.

8 To run the program, now type:

*HelloW

and the program will print the message Hello World on the screen.

Pressing Return at the * command will return you to the desktop. (Should this
fail, refer to the section entitled Shared C library later in this chapter.)

You could incorporate steps 1 to 5 in an Obey file in order to set up your
working environment. The file ! CStart has been included on Disc 1 as an
example.

RISC OS supports several filing systems, of which these three are the most
commonly found:

• ADFS

• NetFS

• RAMFS

Advanced Disc Filing System (floppy or hard disc)

Network filing system for the Econet network

RAM filing system.

Each uses the same kind of hierarchical directory structure. For full
information on filing systems, refer to the User Guide supplied with your
computer, and the RISC OS Progmmmer's Reference Manual.

The diagram over the page illustrates schematically the organisation of
directories for the C compiler system; a copy of it appears on one of the
reference cards at the back of this Guide. References to this diagram will be
made by parenthesised numbers in the sections that follow.

How to install and run the compiler 11

12

HelloW

(source)

HelloW

(object)

(listing)

(assembler)

(9)

Hell oW

(image)

(system headers)

$ (1) roo1 directory

(2)

cc link (etc)

(15)

When you issue a command to the operating system that is not one of the
resident commands - such as *cc to invoke the compiler - RISC OS will look
in the current filing system.

Three directories are particularly important to the way the search of the filing
system works:

• the current directory (3) select~d by *Dir

This is the first place in the currently active filing system where the
operating system will search for a program.

How to install and run the compiler

Introducing the C
compiler

• the library directory (2) set by *Lib until a hard reset

This is one of the places that RISC OS will search for programs. In the
example given in the previous section, once step 4 has been carried out,
the operating system looks for the program cc (the C compiler) in

$.Library.

The library directory is the best place for commonly-used tools such as
the C compiler.

Note that this use of the term library is different from its use to refer to
extensions to a programming language, such as the ANSI C library.

• the root directory $ (1) the top of the directory tree

A specification of the full pathname of an object (file or directory) will
always start with the root directory, eg $.User . c. HelloW.

The general form of the command invoking the C compiler is

*cc options filenames

The options allow you to control the compilation (for example, by overriding
default names), and are described in detail later in this chapter. The
following description assumes the default settings used by the compiler.

The C compiler looks for source files in the subdirectory c of the current

directory (4). These are compiled into AOF (Acorn Object Format) and
placed in the subdirectory o of the current directory (5), using the same

filename as the source.

Linking is carried out by default, using $.Clib.o.Stubs (12), which

interfaces your program to the shared C library. The executable program in
Acorn Image Format (AIF) is placed in the current directory, again retaining
the source filename (9).

Consider the example given, where $.User is the current directory: when the

compiler is invoked, the source file $.User . c. Hell oW is compiled into the

object file $. User.o.HelloW, and linked with $. Clib . o . Stubs to

produce the executable image $. User. Hell oW. This is run in response to

step 8 in the sequence given earlier. To complete the picture: the
subdirectories 1 and s are used for listing (7) and Assembler (8) output

respectively, and h is used for header files (9); none of these three is used in

this example.

How to install and run the compiler 13

Introducing the libraries

Naming conventions

14

A more detailed treatment is given in the section below entitled Naming
conventions.

There are two types of library provided to support the C compiler:

• the standard ANSI library (also referred to as the C library)

This provides all the standard facilities of the language, as defined by
the ANSI draft standard document. Code using calls to the ANSI library
will be portable to other environments if an ANSI compiler is available
for that environment.

The ANSI library used with the Acorn C compiler system is called the
shared C library. It is a relocatable module, supplied on Disc 1 as
$ 0 ! System 0 modules.Ciib, and must be installed in the relocatable
module area (as described in the HelloW example). C programs are
linked with a small piece of code and data, called Stubs , which
interfaces with the shared C library. Stubs is supplied on Disc 1 as
$ 0 Clib 0 o 0 Stubs.

The idea behind the shared C library is that a number of applications
which are resident in memory at the same time can use it, thus
economising on RAM space. It also saves space on disc, benefitting users
with single floppy disc drives.

• the operating system library

This provides you with routines to harness the special facilities of the
operating system, in particular the Wimp environment. Code using calls
to this library will not port to other environments.

The operating system library used with the Acorn C compiler system is
the RISC OS library, RISC OS lib. It provides all the calls you need to
program the Wimp environment and write desktop applications.
RISC_ OS lib is supplied on Disc 2 as$ o RISC_ OS lib o o o RISC_ OS lib.

The Acorn C system, in common with many other C systems, uses naming
conventions to identify the classes of file involved in the compilation and
linking process. Many systems use conventional suffixes for this. For example,
the suffix 0 c denotes C source files on UNIX™ and MS-DOS™ systems.
This convention clashes with Acorn's use of the full-stop character in

How to install and run the compiler

pathnames. It is more natural under Acorn filing systems to use a prefix
convention, eg c. foo, where c is the directory containing C source files, and

foo is the filename.

However, portability is an increasingly important issue in the C world. To this
end, the Acorn C system recognises the 'standard' file naming conventions and
performs the appropriate transformations to construct valid RISC OS
pathnames. The following sections summarise the conventions for referring to
source, include, object and program files.

Source files

Source files will be looked for in subdirectory c. To aid portability, a file
foo. c will be looked for in @.c. foo, where @ means the current directory.
In the HelloW example, with $.User as the current directory, any of the
following commands can be used for step 6:

*cc c.HelloW
*cc HelloW.c
*cc HelloW

*cc $.User.c.HelloW

Include files

prefix
suffix

source in subdirectory c
full pathname

The way in which the compiler deals with included files is dealt with in
detail in the section entitled Controlling the preprocessor, later in this chapter.
Here we provide an overview, assuming the defaults and covering what you
will need for most purposes, namely:

• headers for the ANSI C library

• headers for the RISC OS library

• your own include files.

Include files are generally headers for libraries, and are incorporated by
issuing the #include directive - dealt with by the preprocessor - at the start
of a source file. For example:

#include <stdio.h>

in the HelloW example.

How to install and run the compiler 15

16

By convention, header files are placed in subdirectory h. This convention is
followed here ((8), (11) and (14)).

A special feature of the Acorn C system is that the standard ANSI headers
are built into the C compiler, and are used by default. By placing the
filename in angle brackets, you indicate that the include file is a 'system' file,
and thus ensure that the compiler looks first in its built-in filing system.

The non-ANSI library headers - kernel, pragmas, swis and varargs -
are not built in to the compiler. By default, they will be found by the
compiler in$. Clib .h (10)(11) .

Headers for the RISCOS library are located in $.RISC_OSlib.h (14).
You can incorporate these using the -I compiler option. For example, in the
! Balls64 example in$. DeskEgs on Disc 1:

in the source #include " wimp.h " etc

on compilation cc - c -I$.RISC OSlib balls64

This is illustrated in the Examples section at the end of this chapter. Placing
the filename in double quotes in the #include directive indicates a 'user'
file. You can use subdirectory h of the current directory for your own header
files (8), which can be incorporated with a source line like:

#include "myfile.h "

Object files

The object files created by the compiler are stored in the directory o within
the current directory. Thus the result of compiling c.sieve will be found in
o . sieve.

Program files

The result of linking the compiler versions of the source files given on the
command line with any libraries needed is an executable program file. This
is named @ • f i 1 e 1, where f i 1 e 1 is the name of the first source file given on
the command line. This convention may be overridden using the -o flag.

How to install and run the compiler

Compiler options

Compilation list files

If the -1 is t keyword is specified, a file contammg a compilation listing for

each compiled source file is created in the directory @.1 (6). Thus the

command

*cc -list c.sieve

will result in the list file l . sieve being created.

Assembly list files

If the -S flag is used, no object code is generated. Instead, an assembly
listing of the code is created in directory @. s (7). Thus

*cc -s sieve.c

will result in the file s. sieve being created.

Filename validity

The compiler does not check whether the filenames you give are acceptable -
whether they contain only valid characters and are of acceptable length - this
is done by the filing system.

You can control many aspects of the compiler's operation by appending
options to the command cc. All options are prefixed by a minus sign-.

Options come in two forms. The first are keywords. These are multiple
character options and control Acorn or RISC OS-specific aspects of the
compiler. Keywords are recognised in upper or lower case. The second form
of option is the flag. A flag is a single letter. The case of the letter is usually
unimportant to the C compiler under discussion. However, UNIX compilers
only recognise one form (either the upper- or lower-case one, depending on
the flag in question) and this one should be used in preference.

The case of flags is most important when you are considering porting 'make'
files to other systems. By using the 'universal' conventions of the cc command,
you can move your system to different environments with the minimum amount
of work.

How to install and run the compiler 17

18

The keyword options are:

-help

-arthu r

- pee

- fussy

-list

Give a description of the compiler's command syntax.

Add the (obsolescent) Arthur interface library to the list of
'standard' libraries passed to the linker. This is only valid
under the Arthur and RISC OS operating systems.

Compi le 'portable C compiler' C. This is based on the
original Kernighan and Ritchie ('K&R') definition of C, and
is the dialect used on UNIX systems such as Acorn's
RISC iX product. This changes the syntax that is acceptable
to the compiler, but the default header and library files are
still used . See the section on this option in the chapter
entitled Portability for more details.

Be extra strict about enforcing conformance to the ANSI
standard or to pee conventions. For example, -fussy turns
off the pre-definition of ARM and arm by the preprocessor in
ANSI mode.

Create a listing file. This consists of lines of source
interleaved with error and warning messages. Finer control
over the contents of this file may be obtained using the - f
flag (see below).

The flag options are listed below. Some of these are followed by an
argument. Whenever this is the case, the compiler allows white space to be
inserted between the flag letter and the argument. However, this is not always
true of other C compilers, so the syntax given lists only the form that would
be acceptable to a UNIX C compiler. Similarly, only the case of the letter
that would be accepted by a UNIX C compiler is shown.

The descriptions are divided into several sections, so that flags controlling
related aspects of the compiler's operation are grouped together.

Controlling the linker

-e Do not perform the Link step. This merely compiles the
source program(s), leaving the object file(s) in the o
directory. This is different from the - C option described
below.

How to install and run the compiler

-1 libs This specifies a library which will be used in the Link

command issued by the compiler. The library to be used
follows the flag (with optional white-space between the flag
and the list). Multiple - 1 flags may be used to specify more

than one library, or a list of library names joined by commas
may be given as an argument to one - 1 flag . The libraries

given by this option are used instead of the standard one, not
in addition to it.

This flag is not compatible with the corresponding UNIX C
compiler option, which has no direct equivalent under
RISCOS.

Controlling the preprocessor

The compiler's preprocessor handles the include files given by the
#include directives at the start of your source files . These are of the form

#include <filename>

or

#include "fil ename"

The way in which the compiler looks for included files depends on three
factors:

• whether the filename is rooted

• whether the filename in the #include directive is between angle

brackets <> or double quotes ""

• use of the- I and -j flags (including the special filename : mem).

For maximum portability, only the forms #include <name . h> and

#include "name.h" should be used. Use of h.name, though more natural

under RISC OS, is not portable.

Rooted filenames

A filename is rooted if it is

• a RISC OS filename beginning with a $ or an & • For example:

How to install and run the compiler 19

$.RISC OSlib . h . baricon
&.h.myheader

• a UNIX filename beginning with a I. For example:

/RISC OSlib/baricon.h

• an MS-DOS filename beginning with a\

\library\baricon.h

Rooted filenames are used as written (except that UNIX-style and MS-DOS
style filenames are first translated to equivalent RISC OS filenames as
described below) .

If filename is not rooted in the sense described above, then the compiler
looks for it in a sequence of places (directories) called the search path.

Search path

The order of directories in the search path is as follows:

the compiler's own in-memory filing system

2 the 'current place' (see next page)

3 arguments to the -I flag, if used

4 the system search path:

(not for " filename ")

(not for <filename>)

• the path given as an argument to the - j command line flag (see
below), or

• the value of the system variable C$Libroot if this is set and there is
no - j flag; otherwise

• $. Clib.

If - j is used, the in-memory filing system is omitted for #include
<filename>. It can be reinstated by giving the pseudo-filename :mem to
a -I flag or to the - j flag.

Include syntax

Placing the filename in the #include directive between angle brackets
indicates that the file is a 'system' file, that is, a header for the C library (eg
<kernel . h>).

20 How to install and run the compiler

Placing the filename in the #include directive between double quotes

indicates that the fi le is a 'user' file, that is, a header for the RISC OS

library, or one of your own include files.

This reflects the search path used by the compiler in each case. As shown in

the Search path section above:

• for <filename> the search path (in order) is 1, 3, 4.

• for" filename" the search path is 2, 3, 4.

In both cases, to fac ilitate the porting of code from UNIX and MS-DOS to

RISC OS, UNIX-style and MS-DOS-style filenames are translated to

equivalent RISC OS-style filenames. For example:

.. /include/defs . h is translated to ".include . h . defs

.. \cls\hash . h is translated to " . cls .h.hash

includes .h is translated to h.includes

but

system . defs is translated to system.defs

(In the same way, the lists of directory names given as arguments to the

compiler's -I and - j command-line flags (see below) are translated to

RISC OS format before being used).

The current place

The current place is the directory containing the source file (C source or

#included header) currently being processed by the compiler. Often, this will

be the current directory.

When a file is found relative to an element of the search path, the name of

the directory containing that file becomes the new current place. When the

compiler has finished processing that fi le it restores the old current place. So

at any given instant, there is a stack of current places corresponding to the

stack of nested #inc 1 u des.

For example, suppose the current

seeking the #included file

place is $.include and the compiler is

" s y s . de f s . h" (or " s y s . h . de f s ",

" sys/defs .h", etc). Now suppose this is found as

How to install and run the compiler 21

22

$.include.sys.h.defs. Then the new current place becomes
$. include . sys, and files #included by h . defs, whose names are not
rooted, will be sought relative to $. include. sys .

This is the search rule used by BSD UNIX systems. If you wish, you can
disable the stacking of current places using the compiler option -fK, to get
the search rule described originally by Kernighan and Ritchie in The C
Programming Language. Then all non-rooted user includes are sought relative
to the directory containing the source file being compiled.

In all this, the penultimate . c and . h components of the path are omitted.
These are logically part of the filename - a filename extension - not
logically part of the directory structure. However, directory names other than
c, h, o and s are not so recognised (as filename extensions) and are used 'as
is'. For example, the name sys . new . defs is exactly that: it is not translated
to sys . defs . new and, if it is found, the new part of the name does become
part of the new current path.

Use of :mem with -I and -j

You can use the - j flag to provide your own system search path, as mentioned
in item 4 of Search path, above. The compiler will then use the argument you
give to the - j flag as the system search path. You will only require this
feature if you use implementations of the C library other than those provided
with the Acorn C system.

Use of the - j option also removes the in-memory filing system from the front
of the path searched for #include <filename>. It can be reinstated by
using the pseudo-filename : mem as an argument to an -I or - j flag . If : mem
is included in the search path in this way, its position in the path is as
specified - not necessarily first - so you can take complete control over where
the compiler looks for #included files.

Use of C$Libroot

C$Libroot is an environment variable that you can use to provide your own
system search path, as shown at the end of the section entitled Search path. The
compiler will use the value of C$Libroot, if set, as the system search path. By
default, C$Libroot is not set.

How to install and run the compiler

To set the value of C$Libroot to, for example, "$. my 1 ib", at the * prompt
type:

*set C$Libroot $.my1ib

This variable is also used by the C compiler system as the library search
path, if set. With the example given, the compiler will now look for include
files in $. my 1 ib. h, and for libraries in $. my 1 ib. o.

If you do set the value for C$Libroot and you are using AMU makefiles, you
will need to alter the LIB argument in the makefile. If you have set C$Libroot
to my 1 ib, as in the example above, you should use

LIB = $.my1ib.o. stubs

in the makefile.

Preprocessor flags

-Ipath

-j dirs

-E

This adds the specified directory to the list of places which
are searched for include files (after the in-memory or source
file directory, according to the type of include file). The
directories are searched in the order in which they are given
in -I options. The path should end with the name of a
directory, with no . h ., which is added automatically.

This overrides the system include path with the list of
directories which follows the flag. The directories are
separated by commas. You can specify the memory file
system in the list by using the name : mem (in any case). An
example is myhdrs ., : mem, $.pro j. pub1 ic. hdrs.

- j is an Acorn-specific flag, and therefore non-portable.

If this flag is specified, only the preprocessor phase of the
compiler is executed. The output from the preprocessor is
sent to the standard output stream. It can be redirected to a
file using the stream redirection notations common to UNIX
and MS-DOS (eg cc -E c. something > rawc). By
default, comments are stripped from the output, but see the
next flag.

How to install and run the compiler 23

24

-c

-M

-zpmod

When used in conjunction with - E above, retains comments in
preprocessor output. It is different from the - c flag, which is

used to suppress the link operation.

If this flag is specified, only the preprocessor phase of the

compiler is executed (as with cc -E), and the only output
produced is a list of makefile dependency lines suitable for
use by the Acorn Make Utility (AMU). For example,

o .amu : c . amu
o.amu : $. clib.h . kernel

on the standard output stream. This can be redirected to a
file or concatenated to a file using standard UNIX/MS-DOS
notation. For example:

cc - M c.amu >> Makefile

This flag can be used to emulate #pragma directives. The
mod which follows it is the same sequence of characters that
would follow the directive . See the section #pragma
directives in the chapter entitled Machine-specific features for
details.

-D sym=value Define sym as a preprocessor macro, as if by a line

#define sym value

- Dsym

-U sym

at the head of the source file.

Define s ym as a preprocessor macro, as if by a line

#define sym l

at the head of the source file .

Undefine s ym, as if by a line

#undef sym

at the head of the source file. This may be used to cancel the
effect of otherwise predefined symbols, eg ARM. (A macro
ARM is predefined, and has the value 1 unless -fussy is

specified).

How to install and run the compiler

Controlling code generation

The options described in this section control the production of code by the
compiler.

-gmods

-gf

-gl

-gv

- o file

-p[x]

This flag is used to specify that debugging tables for use by
the Acorn Source-level Debugger should be generated. It is
followed by an optional set of letters which specify the level
of information required. No modifiers means 'generate all
the information possible'. However, the tables can occupy
large amounts of memory so it is sometimes useful to limit
what is included as follows:

Generate information on functions and top-level variables
(outside functions) only.

Generate information describing each line in the file.

Generate information describing all variables.

The modifiers may be specified in any combination, eg - gfv.

This flag specifies the name of a file in which the output of
the linker should be stored. It overrides the default, which is
to use the root name of the first source file mentioned on the
command line.

This flag causes the compiler to generate code to count the
number of times each function is executed. If -px is
specified, the compiler also generates code to count how
often each basic block within each function is executed. This
is called profiling.

The counts can be printed by calling _ mapstore () to print
them to stderr or by calling fmapstore (" filename ")
to print them to a named file of your choice. This should be
done just before the final statement of your program.

Profiling is not supported by the shared C library so you
must link programs to be profiled with Ansilib (supplied on
Disc 2 of this release). If you wish, you can link with both
Stubs and Ansilib, in which case only the code for
_maps tore() and fmapstore () will be included from

How to install and run the compiler 25

-s

26

Ansilib; your program will continue to use the shared C
library and will be much smaller than if linked with Ansilib
alone.

The printed counts are lists of lineno: count pairs. The
lineno value is the number of a line in your source code
and the count value is the number of times it was executed.
Note that 1 ineno is ambiguous: it may refer to a line in an

#include file. However, this is rare and usually causes no
confusion.

Provided you didn't compile your program with the -ff
option, blocks of counts will be interspersed with function
names. In the simplest case, for example, such as

cc -p c.myprog $. clib.o.ansilib

the output reduced to a list of line-pairs like

function
lineno: count

where count is the number of times function was

executed.

If you used cc -px, the lineno values within each function
relate to the start of each basic block. Sometimes, a statement
(such as a 'for' statement) may generate more than one basic
block, so there can be two different counts for the same line.

Profiled programs run slowly. For example, when
compiled -p, Dhrystone 1.1 runs at about 5/8 speed; when
compiled -px it runs at only about 3/8 speed.

There is no way, in this release of C, to relate execution
counts to the amount of proportion of time spent in each
section of code. Nor is there any tool for annotating a source
listing with profile counts. Future releases of C may address
these issues.

If this flag is specified, no object code is generated and,
naturally, no attempt is make to link it. Instead, an assembly
listing of the code produced is written to a file called
s . file, where file is the name of the source file
(stripped of any directories or suffixes).

How to install and run the compiler

Controlling warning messages

The -w option controls the suppress ion of warning messages. Usually the
compiler is very free with its warnings, as this tends to indicate potential
portability or other problems. However, too many such messages can be a
nuisance in the early stages of porting a program from old-style C, so they
may be disabled .

-Wmod

a

d

f

n

v

If no modifier letters mod are given, then all warnings are
suppressed. If one or more letters follow the flag, then only
the class of warnings controlled by those letters are
suppressed. The letters are:

Give no Use of = in a condition context warning.
This is given when the compiler encounters statements such as

if (a=b) { •..

where it is quite possible that == was intended.

Give no Deprecated declaration foo () give
arg types warning. Use of old-style function declarations
is deprecated in ANSI C, and in a future version of the
standard this feature may be removed. However, it is useful
sometimes to suppress this warning when porting old code.

Give no Inventing
may be useful when
ANSI C.

' extern int foo () ' message. This
compiling old-style C as if it were

Give no Implicit narrowing cast warning. This
warning is issued when the compiler detects an assignment of
an expression to an object of narrower width (eg long to
int, float to int). This can cause problems with loss of
precision for certain values.

Give no Implicit return in non-void context
warning. This is most often caused by a return from a function
which was assumed to return int (because no other type was
specified) but is in fact being used as a void function.

How to install and run the compiler 27

28

Controlling additional compiler features

The - f flag described in this section controls a variety of compiler features,

including certain checks more rigorous than usual. Like the previous flag it is
followed by modifier letters. At least one letter is required .

a

c

e

f

h

Check for certain types of data flow anomalies. The compiler

performs data flow analysis as part of code generation. The
checks enabled by this option can sometimes indicate when
an automatic variable has been used before it has been been
assigned a value.

Enable the 'limited pee' option. This allows characters after

#else and #endif preprocessor directives (treated as

comments), and explicit casts of integers to function pointers
(forbidden by ANSI). These 'features' are often required in
order to use pee-style include files in ANSI mode.

Check that external names used within the file are still

unique when reduced to six case-insensitive characters. Some
linkers only provide six significant characters in their symbol
tables. This can cause problems with clashes if a system uses
two names such as getExprl and getExpr2, which are only
unique in the eighth character. The check can only be made
within one compilation unit (source file) so cannot catch all
such problems. Acorn C allows external names of up to 256
characters, so this is a portability aid.

Do not embed function names in the code area. The compiler

does this to make the output produced by the stack backtrace
function (which is the default signal handler) and
_maps tore () more readable . Removing the names from the

compiler makes the code slightly smaller (typically 5%) at
the expense of less meaningful backtraces and
_maps tore () outputs.

Check that all external objects are declared in some

included header file, and that all static objects are used
within the compilation unit in which they are defined. These
checks support good modular programming practices.

How to install and run the compiler

i

j

k

m

p

u

v

w

X

In the listing file (see -list) include the lines from any
files included with directives of the form:

#include "file"

As above, but for files included by lines of the form:

#include <file>

Use K&R search rules (the 'current place' is defined by the

original source file and is not stacked; see the earlier section
Controlling the preprocessor for details).

G ive a warning for preprocessor symbols that are defined
but not used during the compilation.

Report on explicit casts of integers into pointers, eg

char *cp = (char *) aninteger ;

Implicit casts are reported anyway, unless suppressed by
the -we option.

By default, the source text as 'seen' by the compiler after
preprocessing (expansion) is listed. If -fu is specified then
the unexpanded source text, as written by the user, is listed.
Consider the line

p = NULL ;

By default, this will be listed as p= (0) ; , with - fu
specified, as p =NULL;.

Report on all unused declarations, including those from

standard headers.

Allow string literals to be writeable, as expected by some
UNIX code, by allocating them in the program's data area
rather than the notionally read-only code area.

Turn on additional warnings about:

How to install and run the compiler 29

Compiling and linking

30

• use of short integers
Shorts are slower than longs on the ARM and cause
more code to be generated. They should only be used to
save space in large arrays of data.

• use of enums
ANSI defines enum values to be integers so the use of
enums is not strictly type-checked. In some dialects of C,
enums are more strictly type-checked than this.

When wntmg high-quality production software, you are encouraged to use at
least the -fah options in the later stages of program development (the extra
diagnostics produced can be annoying in the earlier stages).

As already shown, to compile and link the simple example program shown
above you would type:

*cc HelloW

This produces the executable program HelloW. To produce a program with a
different name, you would use the - o option, eg:

*cc - o greeting HelloW.c

This time the linker would produce a program that you could run using the
command *greeting.

When writing programs that use several source files, you may want to
compile them selectively and perform the link as a separate step. For
example, if a program consists of the files el. c, e2. c and e3. c, and you
have just edited e2. c, you may want to compile this, then link the object file
with the two other files:

cc - c e2.c
link - o expr o.el o .e2 o .e 3 $.clib.o.stubs

Alternatively,

cc - o expr el.o e2.c e3.o

does the trick!

How to install and run the compiler

Installation

The release discs

See the linker chapter for more details on linking. To maintain complex,
multi-file programs, consider using the Acorn Make Utility, which is supplied
with C Release 3, and described in a later chapter of this Guide.

To compile several different source programs and link them all together into
one executable file, list all the filenames separated by spaces. The name of
the executable program is taken from the first filename given unless - o
progname is used.

For example, the command:

cc mainprog util extra

compiles the sources c .mainprog, c .util and c . extra into the object
files o .mainprog, o .util and o .extra, and then links all three object
files together with the standard library to produce the executable program
mainprog.

Note first that you might find files called ReadMe on one or more of the
Release discs. These contain any information that was not available when this
Guide was being prepared, or that has since been modified; to inspect their
contents, load them into Edit or use *Type from the Command Line* prompt.

Disc 1: Work disc

You may plan to install and run the C compiler on a hard disc or Econet
network. However, Disc 1 contains all you need to compile, link and run the
examples provided.

Of course, if you are using a single floppy disc drive, you will be using Disc 1
(or a copy of it) as your working disc all the time.

The contents of Disc 1 are:

Directories:

$.AsdDemo
$.Clib
$.DeskEgs

Acorn Source-level Debugger demonstration
Support for the C library
Desktop Application examples

How to install and run the compiler 31

$.Dhrystone

$.Library

$.!System

$. RISC OSlib

$.User

Installation utilities:

$.installHD

$. installNET

Obey file:

$. ! CStart

Source for the Dhrystone 2.1 benchmark

Library directory for the compiler and tools

Relocatable Modules

Condensed headers for the RISC OS library

Default working directory, containing examples

for installation on a hard disc

for installation on an Econet network

$

lnstaiiHD lnstaiiNET

Ubrary

amu

asd
cc

cmhg
link

squeeze
toansi
tepee

kernel Overmgr Stubs
pragmas

swis
varargs

1Balls64 !DrawEx !Life !WExample

dhry_t dhry_2

CModulehdr MakCModule

CModule
HelloW

HowToCall
Sieve
swi_list

32 How to install and run the compiler

Disc 2: Library support disc

Because of lack of space, the only library on Disc 1 with which you can both
compile and link is the shared C library. You can compile with the RISC OS
library there, but not link with it. Disc 2 provides full library support for the
other libraries.

The contents of Disc 2 are:

Directories:

$.Clib.h

$. Clib . o

$. Conversion

$.Library
$.RISC OSlib

Installation utilities:

$. installHD
$.installNET

assert

time

Condensed headers for the C library

Binaries of the standalone C library and Arthur

library; copy of Stubs for linking with RISC_OSlib

Source for the conversion utilities (toansi and

tope c)
contains a copy of the linker

Binary of the RISC OS library

for installation on a hard disc

for installation on an Econet network

$

toansi topcc

Templates

Ansilib Ansilib_A Arthlib_A Arthurlib Stubs RISC_OSiib

How to install and run the compiler 33

34

Disc 3: Reference Disc

To conserve space, the RISC OS headers on Disc 1 and the C library headers
on Disc 2 have been condensed, with all the comments stripped out. Disc 3
provides the fully commented headers as on-line reference documentation.

The contents of Disc 3 are:

Directories:

$.!Fo rmEd
$ o Clib
$oOverEx
$ oRISC OSlib

Installation utilities:

$ 0 installHD
$ oinstallNET

Arthur

time

!OvTest

Template editor utility
Fully commented C library headers
Example overlay system
Fully commented RISC OS library headers, and in
subdirectory c, sources that you may wish to
customise.

for installation on a hard disc
for installation on an Econet network

$

determ

vectorprod

Makefile

Overlays

0

dbox akbd
event
wimp xfersend
wimpt
win

xferrecv
xfersend

How to install and run the compiler

Using a single floppy
drive system

You can compile, link, and run programs on Disc 1, linking with the shared C
library.

To use the RISC OS library on a single floppy disc, you should compile on
Disc 1, transfer the object file to Disc 2 via the RAM filing system (as
described in the User Guide supplied with your computer), and then link on
Disc 2 which holds the RISC OS library binary.

Similarly, you can use the standalone C library (Ansilib) and Arthur OS
library (Arthurlib) by compiling on Disc 1 and linking on Disc 2. Both
versions (conforming to the old and the new ARM procedure call standards
respectively) are included. The versions conforming to the old standard are
identified by having the suffix _A added to their filenames.

The headers for the RISC OS library on Disc 1 and for the C library on
Disc 2 are condensed - stripped of comments - to economise on space. You
only need access to these if using the -I or - j compiler options: by default,
the compiler uses the inbuilt ANSI headers, which is why only machine
specific headers need to be included on Disc 1.

You can create more working space on Disc 1 by getting rid of the examples
and unneccessary or infrequently-used material. Make sure you have backed
up the original before doing this!

Candidates for removal include:

• The modules Clib
FPE280

60Kb
24Kb

Since you need these only once for each session using C (ie before you
start using the compiler), you could keep them on a separate disc, as part
of a ! Boot start-up to. configure your environment.

• AsdDemo

• Clib.h.Arthur

4Kb

17Kb

This could be removed if you are not linking with the Arthur library,
which has only been included for backwards compatibility, and will not
be supported in the future.

• Clib . o.overmgr 1Kb

This can be removed if you are not using overlays in your program.

• DeskEgs 63Kb

How to install and run the compiler 35

36

Using a twin floppy drive
system

Using a hard disc or
network

• Dhrystone

• InstallNET and installHD

• Library.CMhg

36Kb

16Kb

9Kb

This can be removed if you are not writing a relocatable module.

• Library.Squeeze 8Kb

You will only be squeezing image files once they have been developed,
and thus need to use squeeze only occasionally.

• User all the example material 54Kb

With a twin floppy disc drive system, there will be less need for swapping
discs. Keep your work disc in drive 0 and use drive 1 for compilation (using
Disc 1) and linking (using Disc 2) in two separate stages. You will need to
reset your library to : 1. $.User.

You have three options for installing the system on a hard disc or Econet
network:

• Run the installation utility provided on each disc.

• Modify the installation utility for your particular needs, and then run it.

• Use the copying facilities of the desktop.

Running the installation utilities

The programs installHD and installNET are provided on each floppy
disc to enable you to install C on a hard disc and Econet network respectively.
They can be run by clicking the appropriate icon from the desktop.

They install a sensible default directory structure, and prompt where
overwriting would occur to guard against inadvertently writing over an existing
object of the same name. If you choose not to overwrite an existing object, the
installation will abort at this point.

If you already have a previous release of the C compiler product installed,
you should back this up before installing the new system. Then you can
overwrite existing components with the new versions, knowing that you have
your previous system intact should you need it.

How to install and run the compiler

To remove installed directories, at the Command Line type

*wipe directory vfr

Modifying the installation utilities

You may wish to organise the material differently from the default directory
structure installed by the utilities.

You can do this by editing the installation program; instructions for this are
available as an option within the program (run the installation program and
select the Further information option from the main menu).

Using the desktop

The User Guide supplied with your computer tells you how to copy files using
the desktop.

All the facilities you will need are available, including the prov1s1on for
altering access if required. You can also set up the copy options to suit your
requirements. For example, using the Confirm option (which can be set from
the Filer menu) will allow you to choose to overwrite existing objects.

Duplications on the release discs:

Linker

Library headers

The linker is provided on Disc 2 as well as Disc 1.

Condensed library headers for the libraries have
been provided on Disc 1 to economise on space.
These are:

$.CLib.h.Arthur
$.Clib.h.kernel
$.Clib . h . pragmas
$.Clib.h.swis
$. RISC OS lib. h.

for the Arthur OS library (Arthurlib)
machine specific components of the
ANSI library (sharedClib or Ansilib)
A complete list of RISC OS SWI definitions
for the RISC OS library

Likewise, the full set of headers for the ANSI library (as well as the Clib.h
entries on Disc 1) are provided in condensed form on Disc 2. The standard
ANSl library headers are only needed if you compile with the -I or - j
options: by default, the compiler uses its own inbuilt headers for the standard
library.

How to install and run the compiler 37

38

Setting up your working
environment

Since the condensed headers have been stripped of all comments, they can be
used for compilation, but they do not provide on-line documentation. For this
reason, the fully commented headers are provided on Disc 3.

You will need to evaluate the best configuration for the libraries for your
particular system and needs. If space is not at a premium, installing the
commented headers has the advantage of offering on-line documentation.

The installation utilities provided install everything on each release disc
(apart from the utilities themselves). Thus, if you install Disc 1 first, and then
install Disc 3, you will be prompted to confirm overwriting the condensed
RISC OS library headers from Disc 1 with the fully commented headers
from Disc 3.

All the basic tools for developing software in C are provided with the Acorn
C compiler product:

• the compiler cc

• libraries shared C library clib

RISC OS library RISC OS lib

• linker link

• debugger Acorn Source Level Debugger asd

• 'make' utility for management of amu
multiple source files

These are augmented with the following specialist utilities:

• CMhg utility for packaging relocatable modules

• toansi for converting source files between pee and ANSI style C
topcc

• ! FormEd template editor for components of the desktop user interface

• squeeze image compaction utility

Use the default directories for the compiler libraries, and your library
directory for the commonly used tools. This is as provided on the release
discs, and installed on hard disc or network by the installation utilities.

How to install and run the compiler

Editors

Reference manuals

Hardware specification

FormEd is an application, and as such has all the resources for the template
editor in the ! FormEd directory. If you have a single floppy disc, your
storage space will be limited, so keep FormEd on a different disc from your
working disc and prepare the desktop components there for incorporation into
your desktop applications.

The options available to you for writing your source code are:

• Edit

• Twin

• editors produced by other software companies.

Edit is a general purpose editor supplied with your RISC OS computer, and
works as a multi-tasking application in the desktop. The User Guide supplied
with your computer describes how to use it.

Edit also provides Task windows, enabling you to run the compiler, for
example, as a task in the desktop.

Twin is a specialist editor for developing software, and is available as an
Acorn product from your dealer. Twin works from the Command Line and
will not function in the desktop; however, it offers many powerful features for
developing source code.

In addition to this manual, you will need to use the User Guide supplied with
your RISC OS computer. This provides much of the information you need to
make use of the facilities of RISC OS to aid in software development.

For serious software development, you will need the RISC OS Programmer's
Reference Manual which provides you with all the details you need to write
code which accesses RISC OS.

The key limits to your working environment are the memory size and storage
media (floppy disc, hard disc or Econet network) available to you.

The minimum specification of an Acorn RISC OS computer system is:

• RAM 1Mb

• storage 1 floppy disc drive

How to install and run the compiler 39

Hard disc

Network

40

The description that follows applies to this specification, but if you have more
memory and storage capacity, you will have more flexibility.

There are three formats available to you for floppy discs:

L 640Kb compatible with Master Compact

D 800Kb compatible with Arthur

E 800Kb

Use E format whenever possible: it has the advantage that it is not necessary
to compact the disc to reclaim space left by deleted files, and it can cope
with defects on formatting .

The limitation of a single floppy drive system is that you can't compile and
link with the RISC OS library on a single disc. Instead, you can compile on
one disc, which holds the RISC OS library headers, transfer the object using
the RAM filing system, and link on a second disc holding the RISC OS
library binary.

This is set up for you on release Disc 1 and Disc 2, and illustrated with the
desktop examples in the Examples section.

Ways of organising an economical work disc that gives you the maximum
space are explored in the Installation section. In addition, you can use the
Squeeze utility to reduce the size of executable programs (it will reduce the
size of a file by a factor of the order of 2), and this has been done for the
tools provided.

If you have two floppy disc drives, you will be able to compile and link with
the RISC OS library without needing to swap discs.

For a major software development project, a hard disc provides much more
storage capacity, and you can install everything provided on the release discs,
including the commented headers for the C and RISC OS libraries to provide
on-line reference documentation.

A workstation on an Econet network has access to mass storage which
overcomes the capacity limitation of a floppy disc system. However, since
increasing demand slows down access speed over a net, you will need to
balance this against the advantages of exceeding the storage limits of local
disc drives.

How to install and run the compiler

Using Con a RISC OS
computer

A possible strategy is to use the network medium for shared resources,

particularly if they are infrequently used, and use the local workstation

floppy drive for the individual user's private files (for example, their source,

object and image files) .

There are two ways in which you can interact with the system: in the desktop or

in Command Line mode.

By working within the desktop, you can use the desktop facilities, but these

consume memory, leaving less for the C compiler system and support tools.

Closing down the desktop and working in Command Line mode will provide

you with the maximum memory on your system for working with the C

compiler.

For software development that runs to a number of source files, use the Acorn

Make Utility to drive the compiler, rather than invoking cc directly.

Working in the desktop

You can use Edit in the desktop to develop your source code. The compiler

and tools are driven from a Command Line, and there are two ways of

reaching this from the desktop. You can leave the desktop temporarily - by

pressing F12 or selecting *Command from the Task Manager menu - or

more permanently, by selecting Exit from the same menu.

The first of these methods, as illustrated with the HelloW example at the

start of this chapter is adequate for demonstration purposes. However, this has

the disadvantage that the desktop is still using memory, though you cannot use

its facilities.

Edit task windows

Edit provides you with Edit Task windows, which give you a Command Line

within a window. Details of Edit Task windows are provided in the User Guide.

Memory permitting, you could, for example, have three windows on the screen:

• your source code in an Edit window

• the compiler driven from an Edit task window (using cc or amu) with all

the compiler messages for you to scroll through

How to install and run the compiler 41

42

• the Acorn Source-level Debugger driven from another Edit task window
with all the ASD interactions and output displays.

Further possibilities

You can drive the compiler and tools using your own Obey and Command
files, which are easy to invoke from the desktop by clicking on the
appropriate icon in a directory display .

Another easy-to-use facility is Tinydirs, which gives you instant access to a
directory or application. This is described in the User Guide supplied with
your computer.

Provided that you have the application memory available, you can use any
desktop applications to support development.

Finding more memory

Monitoring and managing memory within the desktop is made easy with the
Task manager, described in the User Guide.

The desktop environment is already highly economical in its use of RAM
resources, so there is little opportunity for saving more. If you are short of
space, install only the applications that you need when using the Acorn C
system.

Possibilities for increasing the memory available to you in the desktop
include:

• sound modules (24Kb)

• system sprite size

• font cache, RAM disc

• for ADFS

• screen size

you could *Unplug these

trim down to 0 (you don't need this)

trim down to 0 if not needed

juggle the buffering size

reduce to the minimum you require (use
Mode 0 or 11)

If you still don't have enough space, leave the desktop, and work from the
Command Line. Select the Exit option from the Task manager menu to enter
Command Line mode. From there you can return to the desktop with the
*Desktop command.

How to install and run the compiler

Any relocatable modules that are installed from disc, and are superflous to

your requirements, can be removed from the RMA area. You need only the

shared C library; it is possible to use the compiler and tools without the

floating point emulator (though you will not be able to run any programs you

write inC which do floating point operations).

At the *prompt, typing modules will list all ROM-based modules as well

as those currently resident in the RMA. The hexadecimal values given for

each ROM-based module indicate the workspace requirement, so any which

do not display a string of zeros and are superfluous to your requirements are

candidates for making economies. You can use the command *RMKill to

disable them, and then *RMTidy to make the space available. When you

switch on, the modules will be reinstated and their workspace initialised, but

you can use the *Unplug command to get rid of them on a more permanent

basis (until you reconfigure the CMOS RAM, either using *RMReinit or with

a Delete-power on, which initialises all the default settings).

A useful measure of application space available in Command Line mode can

be obtained by entering BASIC (type *BASIC at the *prompt). Since BASIC

uses about 4Kb of workspace, adding this to the number of bytes free

indicated when BASIC is initialised will give you a measure of what is

available for working with the C compiler.

A better measure is given by subtracting (32Kb + 4Kb) from the value of

BASIC's pseudo-variable HIMEM. At the BASIC prompt, type

PRINT (HIMEM- 36*&400) / &400

to get the value in Kb.

squeezes down on application workspace

4Kb BASIC workspace

HIM EM

application area

32Kb reserved for the operating system

How to install and run the compiler 43

44

You can use Twin in Command Line mode for developing your source files,
and this offers some special facilities for accommodating large files. Twin
does not work like BASIC as regards memory usage, so you cannot measure
the space available to you in the same way.

Memory vs disc space

On a 1Mb system with a hard disc, RAM is the limiting resource, while with a
2Mb system and a single floppy disc drive, it is the disc space that is the
critical resource.

In the latter case, you can use the extra memory to install the development
tools, thereby releasing space on the disc. To do this, you can load tools - such
as the compiler itself- into RAMFS and invoke them from there.

Writing desktop applications

If you are developing a desktop application, a convenient way of organising
your work is to use the application directory as your current directory.

For example, ! myapplic will contain the application components ! boot,
! run, ! runimage, sprites and templates, and in addition, directories c
for your source files, h for your headers (if required) and o for your object
files.

Starting

You can use Obey or Command files for setting up your working environment
at the start of each session when you use the compiler system. The Obey file
! Cstart is provided on Disc 1 as an example. You can read and edit Obey
files using Edit. Double-click on the Obey file in a directory display to run it.

Shared C library

The shared C library provided with Release 3 of the C compiler is version
3.50. This is backwards compatible so that existing software will run with it.
However, software compiled with the Release 3 compiler will not work with
the old shared C library.

How to install and run the compiler

C programs are linked not with the C library but with a small piece of code

and data called stubs. The stubs contain your program's copy of the

library's data and an 'entry vector' which allows your program to locate

library routines in the C library module. Use of the shared C library

• saves space on disc

• makes programs load faster

• costs practically nothing at run time (for example, the Dhrystone

benchmark runs just as quickly using the shared C library as when linked

stand-alone with Ansilib)

• typically costs less than 30Kb of memory (the shared C library plus

stubs occupy about 65Kb, whereas most C programs include about 40Kb

of Ansilib).

Without the shared C library, it would not be possible to pack so much into

this release of C.

The old shared C library

When an application is run which uses the shared C library, the application

needs to know where the library module is in memory, so that it can locate the

library routines when required. You will encounter a problem if, on first

opening your C Release 3 product, you have already installed an application

(such as Edit) and then work through the HelloW example. If you now

resume using the application, or return to the desktop, it will crash.

This is because the application installed an old version of the shared C

library (for example, look at the ! Run script of the Edit application). When

the later version was subsequently installed in the RMA, it will have

replaced the old version but the functions in it will not be installed at the

same address. As a result, Edit is left pointing at a C library that is not there

any more. This eventuality is guarded against in the ! Cstart example, which

will stop with the ! ! ! Old shared C library! ! ! error report.

If this happens, you can proceed by quitting all current applications; then get

rid of the old C library by typing (at the Command Line prompt)

RMKill SharedCLibrary

You will then be able to run ! CStart successfully.

How to install and run the compiler 45

46

Compiling and running
the example programs

Hell oW

Sieve

The long-term solution is simple: replace the old C library in your
! System .module s directory with the new one (this is where applications
look to install modules they need), and ask all users of your software that
you have written in C to do the same.

The following example programs are to be found in the directory
adfs: : C3discl . $.user, unless otherwise stated. For each program, we
give a 'recipe' for how to compile, link and run the program. If you have a
machine with a single floppy disc drive, and 1Mb of RAM, you will need to
clean up after running each example. It is assumed that you have read the
preceding parts of this chapter.

Purpose:

Source:

Compile using:

Run using:

C lean up using:

Purpose:

Source:

Compile using:

Run using:

C lean up using:

The standard most trivial C program. Try it as an
exercise in getting going.

c .Hell oW

cc HelloW

Hell oW

remove HelloW
remove o .HelloW

The Sieve of Eratosthenes is often presented as a
standard benchmark, though it is not very meaningful
in this context.

c . sieve

cc sieve

sieve

remove sieve
remove o.sieve

How to install and run the compiler

Dhrystone 2.1

SWI_Iist

Purpose:

Location:

Sources:

Makefile:

Build using:

Run using:

Dhrystone 2.1 is the standard integer benchmark. Its
results require careful interpretation (it often
overstates the real performance of machines). Try as
a first exercise in using the Acorn Make Utility
(AMU).

adfs: :C3discl.$.dhrystone

h.dhry
c.dhry 1

c.dhry2

MakeDhry

amu -f MakeDhry

dhry2
dhry2reg

Reply with any number in the range 20000 to 250000 to the prompt for
number of iterations. Try a big number such as 200000 and time the execution
with a stopwatch or sweep second hand to confirm the claimed performance.
Note how performance depends on screen mode.

Rebuild using:

Clean up using:

Purpose:

Source:

Compile using:

Run using:

amu -f MakeDhry again (try altering some of the
options in MakeDhry between rebuilds: eg compile
in -pee mode or link with Ansilib instead of stubs).

amu -f MakeDhry clean

To illustrate use of the SWI facilities in
<kernel. h>. You can also try it as an exercise in
getting going; later, you can use it to check that
$.CLib.h.swis contains a complete list of the
SWI names and numbers relevant to your machine.

c.SWI list

cc SWI list

SWI list > h.myswis

How to install and run the compiler 47

Test using:

Clean up using:

HowToCall Purpose:

Source:

Compile using:

Run using:

Clean up using:

CModule Purpose:

Sources:

Bu.ild using:

Run using:

48

see instructions embedded in the comment at the
headofc.SWI list

remove SWI list
remove o.SWI list
remove h.myswis

To illustrate how to call other programs from C.
Read the source, then experiment with the binary.
You can also use it as another exercise in getting
going. Try making your own makefile for it as an
exercise in using AMU.

c.HowToCall

cc HowToCall

HowToCall 3

HowToCall HowToCall 2
HowToCall 3 *

HowToCall 3 *etc

remove HowToCall
remove o.HowToCall

To illustrate how to implement a module in C. You
can also use it as another exercise in using AMU.

c.CModule CModuleHdr

cc -zM -c c.CModule

cmhg CModuleHdr o.CModuleHdr
Link -o cmodule -rmf o.CModule

o.CModuleHdr $.CLib.o.Stubs
or
amu -f MakCModule

cmodule

How to install and run the compiler

Example programs for
use under the desktop

Test using:

C lean up using:

help tml
help tm2
tml hell o
tm2 l 2 3 4 5
tml l 2 3
tm2 hello
(try other combinations too)
*BASIC
> SYS &88000 REM should give an error
> SYS &88001 REM should give divide by 0 error
> SYS &88002 REM no e rror , just a message
> SYS &88003 REM no e r r or , just a message
> SYS &88 00 4 REM same as &88000 ...

(now repeat some of these after issuing some invalid
*commands ...)
>*foo
> SYS &88002
etc.
>QUIT

rmkill TestCModule
remove cmodule
remove o . CModule
remove o . CModuleHdr
or
amu -f MakCModule clean

The example programs which illustrate how to write applications under the
desktop, using the RISC OS library, are to be found in the directory
adfs : : discl . $. DeskEgs. The instructions given assume that you have a
configuration of one floppy disc drive and 1Mb of RAM . In such
circumstances, it will be necessary to compile the programs on Disc 1, and
then use the RAM disc facility to transfer the example directories to Disc 2
for linking with RI SC _OS Lib. Again, you will need to clean up after each
example if you have such a configuration. It is also assumed that you have
invoked the desktop using *Desktop. If you have a hard disc, omit the RAM
transfer steps described below.

To display the contents of an application directory on the desktop, hold Shift
while clicking on the directory icon.

How to install and run the compiler 49

WExample

50

When you have explored these examples, refer to the later chapter How to
write desktop applications in C if you want to go further.

The first example below sets out the exact steps you should take. Then
follows a schema for the remaining examples.

Purpose:

Source:

Build using:

Run using:

Clean up:

To illustrate installing an icon on the icon bar, and
creating/displaying a simple window.

c.Wexample

From the command line type the following:
*dir adfs::discl.$.DeskEgs. !Wexample
cc -c Wexample -I$.RISC_OSLib

(Press Return to go back to the desktop)
Allocate at least 48Kb of RAM disc from the Task

Manager display
Click Select on the RAM icon
Drag the ! Wexample directory from the Disc 1

directory display onto the RAM directory
display

Remove Disc 1, Insert Disc 2
Click Select on the :0 icon
Drag the ! Wexample directory from the RAM

directory display to the Disc 2 directory display
Press Fl2 to return to the command line
*dir adfs : :C3disc2.$. !Wexample
*lib adfs : : C3disc2 . $.library
link - o 1 Runima ge o .Wexampl e $.RISC_OSLib . o . RISC_OSLib

$. Clib. o . Stubs

squeeze !Runimage

Press Return to go back to the desktop
Double-click Select on the ! Wexample icon from

Disc 2
Click Select on the EG icon to get a window
Press F12 to return to the command line
*dir adfs: : C3disc2.$
*wipe adfs::C3disc2.$. !Wexample -cfr
*wipe ram : $. * -cfr

How to install and run the compiler

Schema

Life

Purpose:

Source:

Build using:

Run using:

Clean up:

Purpose:

Source:

General schema for compiling, linking and running
the remaining desktop examples.

c . filename

From the command line type the following:
*dir adfs : : discl.$.DeskEgs. !fi lename
cc -c filename -I$.RI SC OSLib
(Press Return to go back to the desktop)
Allocate at least 48Kb of RAM disc from the Task

Manager display
Click Select on the RAM icon
Drag the ! filename directory from the Disc 1

directory display onto the RAM directory
display

Remove Disc 1, Insert Disc 2
Click Select on the :0 icon
Drag the ! filename directory from the RAM
directory display to the Disc 2 directory display
Press Fl2 to return to the command line
*dir adfs: : C3disc2 .$. !filename
*lib adfs : : C3disc2 . $.library
link - o !Runlmage o.filename

$. RISC OSLib.o.RISC OSLib - -
$.Clib.o.Stubs

squeeze !Runlmage

Press Return to go back to the desktop
Double-click Select on the ! filename icon from

Disc 2
Press F12 to return to the command line
*dir adfs : : C3disc2 . $
*wipe adfs: :C3disc2.$. !filename -cfr
wipe ram:$. -cfr

To illustrate use of multiple windows in an
application, using the alarm facilities of
RISC_OSLib and creating icons in a window.

c . life

How to install and run the compiler 51

52

Draw Ex

Balls64

Recompiling the
conversion tools

toansi

Build, run and clean up: see schema.

Purpose: To illustrate loading fi les by icon dragging, and

rendering draw files in a window.

Source: c . DrawEx

Build, run and clean up: see schema.

Purpose: To illustrate use of a sprite as a 'virtual display',

saving files by icon dragging, and responding to

'help' requests.

This application requires at least 320Kb of RAM to
run, so you may need to quit some applications to
make room for it.

Souoce: c.Balls64

Build, run and clean up: see schema.

In the directory adfs : : C3disc2.$.conversion.c, you will find the

sources for the conversion tools toansi and topcc. If you wish to recompile

these as a further exercise in using the Acorn C Compiler, you can follow the

instructions presented below.

Purpose:

Source:

Build using:

Run using:

To help convert programs written in pee-style C into
ANSIC

c.toansi

Copy the conversion directory from Disc 2 into a

suitably sized RAM disc area (as in the desktop
examples)
*dir ram:conversion
*cdir o
cc -c toansi
link -o toansi o.toansi $.Clib.o.Stubs

Copy the binary for your toansi onto Disc 2

toansi infile outfile

How to install and run the compiler

to pee

Clean up:

Purpose:

Source:

wipe ram : $.* -cfr

To help convert programs written in ANSI C into pee
style C

c . topcc

Build, run and clean up: As toansi, substituting topcc for toansi

throughout.

How to install and run the compiler 53

54 How to install and run the compiler

Using the Linker

Linker Command Line
format

The purpose of the Linker is to combine the contents of one or more object
files (the output of a compiler or Assembler) with selected parts of one or
more library files, to produce an executable program.

The compiler incorporates a link step by default, linking with the Stubs
interface to the shared C library. Use the -c option when invoking the

compiler to suppress the link step.

The format of the Link command is:

Link [options] files

files is a list of one or more object files and libraries; this is described

later.

Below is a list of the command line options that the Linker can take. In the
descriptions below, the important, frequently-used options are given first,
followed by the less common ones. The keywords are case-insensitive.
Minimum abbreviations are shown before the brackets.

-h[elp]
-o[utput]
-d[ebug]

-rm[f]

-ov[erlay] file

-via file
-v[erbose]

Using the Linker

Print a screen of help text

Name of the linked output file

Include debugger tables in the output image for use

by the Acorn Symbolic Debugger
Generate an rmf image
Generate a RISC OS overlaid image as directed by

commands in f i 1 e
Use file to obtain (further) input file names
Print messages indicating progress of the link

operation

55

Notes

-map

- x[ref]

- ai [f]

- ao[f]

-bi[n]

-m[odule]

-w[orkspace] n

-en[try] n
- c[ase]
-b[ase] n

-r[elocatable]
-db[ug]

Create a map of the base and size of each linker
area in the output image (especially useful with
- ov [erlay])

List references between linker areas (especially
useful with - ov [erlay])
Generate an AIF image (the default)
Generate partially linked AOF output suitable for
inclusion in a subsequent link step
Generate a plain binary image
A synonym for -rmf
Reserve n bytes of workspace for a relocatable
image
Set the image's entry point to n
Make matching of symbols case insensitive
Set base address for output file to n
Generate a relocatable output file
(obsolescent) Generate output for use with the Dbug
program. Do not confuse this option with -d [ebug] .

• The keywords -base, -workspace, and - entry are followed by
numeric arguments. You can use the prefix & or Ox to specify
hexadecimal, and the suffixes k for 210 and m for 220.

• The default base address for the output file is &8000 (32K). (If the
obsolescent -dbug is specified, the default base address is &50000, ie
320K).

• The item files above is a list of one or more filenames, separated by
spaces. This part of the command must be given. Each of the files in the
list must be in Acorn Object Format (compiled files) or Acorn Library
Format (libraries). They may contain references to external objects
(procedures and variables) which the Linker will attempt to resolve by
matching them against definitions found in other files .

• You can use wildcards in the filename list. Names using wildcards will
be expanded into the list of files matching the specification. For example,
the name o . bas* might yield o. basmain, o. basexpr, o . bascmd.

• Usually, at least one library file will be specified in the list. A library
is just a collection of AOF files stored in a single Acorn Library Format
file. You can call the procedures in the library for one language from

56 Using the Linker

Simple examples

programs written in another, as long as both languages conform to the
ARM Procedure Calling Standard and both run-time libraries use the
common run-time kernel. For example, an assembler program could use
the C print f function, as long as the C run-time system had been

initialised.

• Libraries differ from object files in the way the Linker uses them. First,
all the object files are linked together. Then for each library in tum, the
linker searches for symbol definitions which match currently unsatisfied
symbol references. When a library member is loaded, new unsatisfied
symbol references may be created, so the library is re-searched until no
more members are loaded from it. Note that each library is processed in
tum, so references between library members must be ordered. A
reference from a member of a later library to a member of an earlier
library cannot be satisfied. A fortiori, circular dependencies between
libraries are forbidden.

• Two common errors occurring during a link step are caused by unresolved
and multiple references.

• In the first case, a symbol has been referenced from a file (whose
name is given in the error message), but there is no corresponding
definition for the symbol. This is usually caused by the omission of a
required object or library file from the list, or the mis-spelling of an
external identifier in the original source program.

• The second error is caused by a clash of names. For example, a
procedure might have been defined with the same name as a library
procedure, or as a procedure in another object file.

Before we move on to describe the rest of the Link command's options, we give
some examples which illustrate the syntax described so far.

Link -OUTPUT test.sieve aof.sieve paslib
Link -o %.mybasic o.bas* lib.f77
Link -o null: o.comp*

Using the Linker 57

58

Linker keywords

output

debug

rmf

via

The -output keyword is followed by the name of the file to which the final
linked program should be written. If the keyword is omitted, the output file
defaults to the lower-case name of the output format (eg aif for AIF
format). If you just want to use Link to check object files for unresolved
references, you can specify the device null : as the output file; the final
object code will be discarded.

The -debug (or just -d) option instructs the linker to include any input
debugging areas in the output image and to append low-level debugging data
to it. This allows a program to be debugged using the Acorn Symbolic
Debugger (ASD), described in a later chapter of this Guide. Debugging
areas include debugger tables generated by high-level language compilers in
support of source-language debugging (for example using cc -g). Low-level
debugging data allows the program to be debugged at the assembly-language
level more easily, whether or not its components have been compiled
specially.

The -rmf option instructs the linker to generate a RISC OS relocatable
module as output. This can only be done if one of the input object files
contains a relocatable module header in an AOF area called
! ! ! Module$$Header. Such an object can be created using ObjAsm or, more
conveniently, using the C Module Header Generator (cmhg).

Sometimes you may want to link a large number of input files which would
be tedious to type on a command line, and whose names can't conveniently be
matched by a wildcard specification. Indeed, the length of this list may be
longer than the 256 characters allowed for a RISC OS command. To solve this
problem, you can store a list of input filenames in another file and then use
the -via keyword to give the Linker access to them. For example, suppose
you created the file bas files with the contents:

o .ma in
o.expr
o . cmd
o.stmnt

Using the Linker

verbose

case

base

o.lex
o.filing
o.tokens

If you then used the command

*link -o basic -via basfiles lib

the files listed in basfiles would be linked, together with the AOF file
lib.

If you specify -verbose on the command line, the Linker gives a report of
its progress. A message is printed as each file is opened and as each module
is being relocated. For example:

link: opening p.basic
link: opening o.basl
link: opening o.bas2
link: relocating module o.basl
link: relocating module o.bas2
link: relocating module ansi lib (fpprintf)

If you specify -case in the command line, then the Linker will not treat the
case of letters as significant in identifiers. By default, the identifiers main
and Main refer to different objects, since they are spelt differently.
However, -case causes them to be treated as the same identifier.

One occasion when you will want to use this flag is when you are linking a C
object file ~ith one from · a language such as !SO-Pascal or Fortran-77, both of
which are case insensitive. These languages plant symbols in object files in a
single case, regardless of how they are spelt in the source file.

By default, the base address of the output file of the Linker is &8000. This
corresponds to the start of application workspace on all current Acorn
computers running RISC OS. Alternatively, if the -dbug option is given, the
base address is set to &50000. This is so that the (obsolescent) debugger
program Dbug can load at &8000 as a normal application, and load the file
to be debugged above itself. (There are other changes when -dbug is given,
as described below.)

Using the Linker 59

60

relocatable

workspace

Predefined Linker
symbols

Using the -base keyword, you can set the base address of the output file to

any desired value. For example, you may want a program to have a high load
address (as with the -dbug option set), but still be directly executable
(which a dbug file in AOF format isn't).

The keyword is followed by a number given the base address desired for the
output file, eg -base &80000, -base 256k etc. When this is done, all

relocatable objects in the input files are relocated using that base instead of
the default.

Usually, when an image file is produced, it will execute correctly only at the
base address given (or the default). This is because the program will contain
references to absolute addresses within itself. However, if you specify the
relocatable option, the program image can be loaded and executed at any
address.

This feat is achieved by adding a relocation table and a small program to
perform the relocation of the image. The relocation table is a list of offsets
from the start of the program to words which need relocating. These words
are adjusted by the difference between the base address of the program and
the address where it was loaded. Once the relocation has been performed, the
program proper starts executing.

However, although this can be used to make a program statically relocatable,
it does not confer true position-independence on the program. That is, the
program cannot be moved in memory once it has started and still be expected
to work.

The -workspace keyword, when used with the -relocatable option,
specifies that the output image should execute towards the top of application
workspace, leaving n bytes above itself for stack and heap. For example,
link -r -w 64K will generate an image which, when loaded, will move
itself to within image-size + 64Kb of the top of application workspace

before executing.

There are several symbols which the Linker knows about independently of
any of its input files. These start with the string Image$$ and, along with all
other external names containing $ $, are reserved by Acorn.

Using the Linker

Generating overlaid
programs

The symbols are

Image$$RO$$Base Address of the start of the read-only (code) area
Image$ RO $Limit Address of the byte beyond the end of code area
Image$$RW$$Base Address of the start of the read/write (data) area
Image$$RW$$Limit
Image$$ZI$$Base
Image$$ZI$$Limit

Address of the byte beyond the end of the data area
Address of the start of the zero-initialised area
Address of the byte beyond the end of the zero
initialised area

Although it will often be the case, Acorn do not guarantee that the end of the
read-only area corresponds to the start of the read/write area. You should
therefore not rely on this being true.

The read/write (data) area may contain code as programs are sometimes self
modifying. Similarly, the read-only (code) area may contain read-only data
(eg string literals, floating-point constants; etc).

These symbols can be imported as relocatable addresses by assembly
language routines that might need them.

An introduction to overlays and what they are is given in the chapter entitled
Overlays. The reader new to the concept of overlays should first read that
chapter; here we describe only how to use the linker to make an overlaid
application.

A simple, 2-dimensional, static overlay scheme is supported. There is one root
segment and as many memory partitions as specified by the user (called '1_',
'2_', etc). Within each partition, some number of overlay segments (called
'1_1', '1_2', ...) share the same area area of memory. The user specifies the
contents of each overlay segment and the linker calculates the size of each
partition, allowing sufficient space for the largest segment in it. All
addresses are calculated at link time: overlaid programs are not relocatable.

A hypothetical example of the memory map for an overlaid program might
be:

Using the Linker 61

62

2 2 1
I -

1 1
I

1 2
- -1

root

2 2
I -

I
1 3 -

segment

2 3
-

I
1 4

-

h i gh
a ddre ss

low
addres s

Segments 1_1, 1_2, 1_3 and 1_ 4 share the same area of application workspace.
Only one of these segments can be in memory at any given instant; the
remainder must be on disc.

Similarly, segments 2_1, 2_2 and 2_3 share the 2 area of memory, but this is
entirely separate from the 1_ partition.

The linker assigns AOF AREAs to overlay segments under user control (see
below). Usually, a compiler produces one code AREA and one data AREA
for each source file (called C$$code and C$$data when generated by the C
compiler). The C compiler option -zo allows each separate function to be
compiled into a separate code AREA, allowing finer control of the
assignment of functions to overlay segments (but at the cost of slightly
enlarged code and enlarged object files). The user controls the overlay
structure by describing the assignment of certain AREAs to overlay segments.
For each remaining AREA in the link list, the linker will act as follows:

• If all references to the AREA are from the same overlay segment, the
AREA is included in that segment; otherwise,

• the AREA is included in the root segment.

This strategy can never make an overlaid program use more memory than if
the linker put all remaining AREAs in the root, but it can sometimes make it
smaller.

By default, only code AREAs are included in overlay segments. Data AREAs
can be forcibly included, but it is the user's responsibility to ensure that doing
so is meaningful and safe.

Using the Linker

overlay keyword

On disc, an overlaid program is organised as a RISC OS application. The
components of the application must reside in a directory the name of which
begins with ! . This name is specified to the Linker as the argument to its -o
flag and the linker warns if there is no initial ! . The linker creates the
following components in the application directory:

!Runimage

1 1

1 2

2 1

The root segment, an AIF image (which may be squeezed).
)

) Overlay segments, which are plain binary
images, linked at absolute addresses. Overlay
segments must not be squeezed.

If no ! Run file exists in the application directory, the linker creates a ! Run
file (with 'obey' file type) containing the line

Run <obey$dir> . !Runimage.

The overlay file named as argument to the - ov [erlay] option, describes the
required overlay structure. It is a sequence of 'logical lines':

• A \ immediately before the end of a physical line continues the
logical line on the next physical line.

• Any text from a ; to end of the logical line inclusive is a comment (for
documentation purposes) which is ignored by the linker.

Each logical line has the following structure:

<segment-name> <module-name> ["(" <list-of-AREA- names> ")"] <module-name> ...

For example:

1 1 edit1 edit2 editdata(C$$code , C$$data) sort

list-of-AREA-names is a comma-separated list. If omitted, all AREAs
with the CODE attribute are included.

A module-name is either the name of an object file (with all leading
pathname segments removed) or the name of a library member (again, with
all leading pathname segments removed).

Using the Linker 63

64

In the example above, sort would match the C library module of the same

name.

Note that these rules require that, within a link list, modules have unique
names. For example, it is not possible to overlay a program made up from
test . o . thing and o . thing (two modules called thing). This is a

restriction on overlaid programs only.

C library modules

For reference, the C library modules are named as follows:

kernel

clib
alloc

armsys
ctype

error
fpprint

locale
math
printf
scanf

signal
sort
stdio

stdlib
string
time

Included in all C programs - must be in root

Included in all C programs - must be in root

Implements malloc family from <stdlib . h>, but used by

kernel so must be in root
Included in all C programs - must be in root
Implements <ctype . h>

Implements <assert . h>

Implements fl oating point part of printf-like things from
<stdio . h>

Implements <locale . h>
With clib, implements <math . h>
Implements printf-like parts of <stdio . h>

Implements scanf-like parts of <stdio . h> and the

conversion functions from <stdlib . h>
Implements <signal . h>

Implements qsort () and bsearch () from <stdlib . h>

Implements the remainder of <stdio . h>

Implements the remainder of <stdlib . h>

Implements <string . h>
Implements <time. h>

In general, it would be unusual to be able to place a C library module in an
overlay segment. Sort , time and, perhaps, scanf are the most likely

candidates.

Using the Linker

xref keyword

map keyword

To help the user part1t10n between overlay segments the linker can generate a
list of inter-AREA references. This is requested by using the -xref (or - x)
option. In general, if area A references area B, for example because x in area
A calls y in area B, A and B should not share the same area of memory, or
every time x calls y or y returns to x, there will be an overlay segment swap.

The -map option requests the linker to print the base address and size of
every AREA in the output program. Although not restricted to use with
overlaid programs, -map is most useful with them, as it shows how AREAs
might be packed more efficiently into overlay segments.

Using the Linker 65

66 Using the Linker

The Acorn Source., level Debugger

Overview This chapter describes the Acorn Source-level Debugger (ASD) . ASD is an
interactive aid to debugging programs written in high-level, compiled
languages, such as C, !SO-Pascal, and Fortran-77. It can be used on any Acorn
computer running the RISC OS operating system. ASD can also be regarded
as a symbolic debugger.

The first section, About debuggers, introduces the concept of debuggers in
general, and source-level debuggers in particular. Next, Using ASD describes
how to invoke ASD. Specifying source-level objects describes the way in which
various source-level items, such as variable names, line numbers and labels
are specified in ASD commands.

The next section, Program examination commands describes the ASD commands
which are concerned with examination of the program being debugged. You
can display and modify the value of program variables or display arbitrary
expressions involving variables and constants, and examine the state of
execution of the program and the arguments of an active procedure call.

Execution control commands deals with the ASD commands which control the
running of the program being debugged. Facilities available include the
ability to start (or re-start after a breakpoint) program execution, single-step
a statement at a time, set and clear breakpoints, and to initiate the 'watching'
of a variable, or the tracing of procedure calls.

Low-level debugging describes ASD facilities which may be used to debug
programs, including high-level language programs, at assembly language
level.

Miscellaneous commands describes the ASD commands which don't fall into
any of the previous categories. These commands include those that display on
line help information, quit from the debugger, and a command allowing you
to define your own commands.

The Acorn Source-level Debugger 67

About debuggers

68

An example ASD session gives an example of how ASD might be used to
debug a rather bug-ridden sort utility.

Finally, a command summary lists all the ASD commands alphabetically,
with a brief description of each. A copy of the list also appears on one of the
reference card included with this release of C.

This section is aimed mainly at readers who haven't used a program debugger
of any sort before. However, others may find it useful reading, as it introduces
some of the terminology used in the rest of this chapter.

Anyone who has written a program more than about ten lines long has had
recourse to debugging techniques: the tracking down and removal of errors.
The form this takes depends on many things, not least the language in which
the program is written. A common technique for tracing bugs in systems which
have no explicit debugging support is the planting of 'trace' information in the
program itself. For example, in a while loop in C you might print a message:

while (i >= 0)
printf("while loop: i %d\n",i);

Such additions to the program can be useful, but are tedious to use in
compiled languages because every time you want to change the debugging
statements, the program has to be recompiled. There is also the possibility
that the debugging statements themselves have undesirable side-effects which
contribute to the ill-health of the program.

Planting tracing information in assembly language programs is even trickier.
In general, the assembly language programmer does not have access to the
rich expression evaluation and print formatting routines of high-level
languages. For example, displaying the contents of all of the Acorn RISC
Machine (ARM) registers in hexadecimal is a non-trivial code fragment in
ARM assembler.

To help assembly language programmers debug their programs, a class of
utility known as the debugger or monitor has evolved. Such programs allow
the user to examine and alter memory locations and machine registers, set
breakpoints, single step through a program and 'watch' particular memory
locations for changes.

The Acorn Source-level Debugger

Starting execution

Examining memory

Setting breakpoints

Single stepping and
tracing

Because much of the terminology used in ASD derives from such debuggers,
the next section describes typical facilities that they provide. These are then
compared with the equivalent ASD commands.

Machine code monitors usually provide a command of the form GO addr,

which starts execution from a particular instruction. The ASD equivalent is just
go, which starts execution at the first statement in the program.

As mentioned above, a machine-level debugger allows you to examine the
memory of the machine, and possibly alter its contents. A typical command
would be EXAMINE address range to display the contents of a range of

memory locations in hex, and REGISTERS to display the contents of the
machine's registers. The ASD equivalent is print. This displays the value of
an arbitrarily complex expression. Instead of using memory addresses, you
can use the names of variables.

It is useful to be able to stop the program at a certain point, so that the state
of its variables can be checked against their expected values. This is known as
setting a breakpoint. When the program reaches the instruction at which the
breakpoint has been set, execution is suspended and control returns to the
debugger. In machine code terms, breakpoints are set at particular memory
addresses. For example:

BREAK lABFC.

Under ASD, you can set breakpoints in terms of source-level addresses. That
is, you specify the source-file line number (and possibly the statement within
that line) where you want the program to stop. For example:

break ray:234

You can also set a breakpoint at the entry and exit points of a procedure. A
useful extension of breakpoints is being able to break only if some specified
condition is true.

Once a breakpoint has been encountered, you may wish to step slowly through
the program, examining changes to variables after each step. At the machine
code level, single stepping involves executing one instruction at a time. Under
ASD, single stepping works at the level of one statement at a time. You may

The Acorn Source-level Debugger 69

70

Setting watchpoints

Using ASD

C compiler debugging
options

specify whether a procedure (or function) call counts as one statement or
whether each of the statements within that procedure should be stepped
individually.

Single stepping can be quite time consuming, especially if you only want to
get an idea of the general flow of control within the program. An alternative
is to use procedure tracing. When this is enabled, a message is displayed
every time the program enters or leaves a procedure.

A common cause of incorrect operation in programs is the corruption of a
variable. The reason for this corruption can be very hard to track down,
especially if the program contains many global variables which are
accessible from a large number of procedures. ASD helps to track down
undesired assignments to variables by allowing you to place a watch on them.
When a variable is being watched, a check is made for any changes in its
value. When a change occurs, the program execution is suspended and control
returned to the debugger.

This concludes the description of common debugger concepts. Of course, only
a few of the commands provided by ASD have been mentioned so. far.
Detailed descriptions of all of them can be found in the following sections.

This section describes how the debugger is invoked, and how programs to be
debugged under it must be compiled. ASD uses special information in the
program being debugged, which provides ASD with information about the
source code that generated the program. This information is not automatically
included in the output of the compiler. (This is mainly for reasons of
efficiency: programs which contain debug information are larger, take longer
to compile, and run more slowly than those that do not.)

The generation of debug information is enabled by specifying the
appropriate option or 'switch' on the command line.

The flag for enabling debugging information is -g. This may be followed by
one or more letters indicating the level of debugging information to be
generated, as follows:

The Acorn Source-level Debugger

Linking

Invoking the debugger

f Produce information on top-level variables and functions

v Produce information on local variables
1 Produce information on line numbers

a Produce information on all of the above (ie -gfvl)

If no letter follows -g, -ga is assumed.

The term top-level variables is used here to refer to those declared outside any
function definition. Their lifetime is the period of execution of the program,
and they may be global to the program, or local to the file in which they are
declared. Local variables are those declared within the body of a function
{including function parameters). These may exist only for the duration of the
function call {automatic variables), or for the lifetime of the program (static).

Obviously the most useful option is -ga, but this is also the most space

consuming. If you are having problems with the corruption of a global
variable on which you want to place a watchpoint, you might compile the
program with just the -gf option.

Because each module of a program can be compiled with its own debugging
level, you need only specify debugging for suspect modules. Well-proven
modules in which you have complete faith can be compiled with no debugging
information, whereas newer, less reliable code can have maximum debugging
specified.

Turning on debugging options inhibits optimisation, and reduces the speed of
execution of your program, even when you are not debugging it. This of course
does not matter when you are using the debugger, but for maximum speed,
programs should be compiled without -g.

When linking a program to be debugged, you must instruct the linker to
include the debugging information generated by the compiler. To do this, use
the -debug option on the link command line.

Once you have a successfully linked the program, the debugger may be used
to control its execution. To call ASD, ensure that the program of that name is
somewhere in your run search path {typically in the directory $.Library).

Then issue the command:

*asd image_name [arguments]

The Acorn Source-level Debugger 71

Remote debugging

72

from the RISC OS Command Line prompt, where image_ name is the name
of the program you wish to debug, and arguments are any Command Line
arguments that the program would normally take when run. For example:

*asd raytrace

As with all Acorn language products, ASD responds to the -he lp option, in
this case by printing the version number, command syntax, and some other
useful information.

On starting, ASD prints a few lines of the following form :

Acorn Source-level Debugger, version number [date]
Object program file raytrace
ASD:

If the file specified in the command line could not be found, an error
message to that effect is displayed.

To see a list of the commands that ASD provides, type help. You may
recognise some of these and be tempted to start experimenting with them.
However, you are recommended to read the next section before you do.

Sometimes it may be difficult to use ASD because screen output produced by
the program you are trying to use gets confused with diagnostic output from
ASD. ASD provides a fac ility called remote debugging which allows you to use
a terminal connected to the computer's serial port to enter ASD commands
and display ASD output. To start a remote debugging session, use the
command asd - remote instead of just asd. The default baud rate and data
format are taken from the system configuration; if these are not correct you
can specify them after the -remote flag. The syntax for asd -remote is

asd - remote [baud_rate[, data_format]]

Baud_rate can be one of75, 150,300, 1200,2400,4800,9600 or 19200.

Data format can be one of

7,e,2
7,o,2
7,e,1
7,o,1
8,n,2

7 bits, even parity, 2 stop bits
7 bits, odd parity, 2 stop bits
7 bits, even parity, 1 stop bit
7 bits, odd parity, 1 stop bit
8 bits, no parity, 2 stop bits

The Acorn Source-level Debugger

Specifying source-level
objects

Variable names and
context

8,n,1
8,e,1
8,o,1

8 bits, no parity, 1 stop bit
8 bits, even parity, 1 stop bit
8 bits, odd parity, 1 stop bit.

Once ASD is running, the object program can be executed, single stepped,
have its variables examined and so on. All of these facilities are described in
the following sections. However, before you can use these commands, you have
to know how to specify certain source-level entities. For example, variable
names, line numbers and program labels all have a syntax which must be
used correctly if you are to reference the desired object.

It is clearly important that a source-level debugger allows you to refer to the
program's variables by the names they have in the original source code. A
variable is simply referenced by its name: if you want to print the value of
variable count , you would use the command

print count

When a program written in a block-structure high-level language is executing,
there exists a current context. This refers to both the textual nesting of
procedures, and the dynamic run-time nesting of procedure calls. Taking the
first aspect first, and using Pascal as an example, consider the following
definitions (an example inC is given a little later):

program raytrace(input,output);
var

count : integer;

procedure pixel(x , y integer) ;
var

i : integer;

function reflect(x , y : integer ; angle : real)

function quicks in (angle : real) : real;
begin

{ body of quicksin ** BREAKPOINT HERE **)
end ;

begin
{ body of reflect)

end;
begin

{ body of pixel)
end ;

The Acorn Source-level Debugger

integer;

73

74

begin
{ body of raytrace }

end .

Assume the program stops (because of a breakpoint, perhaps) in the body of
the function quicksin. At this point, the variables visible to the program are
angle, the parameter of the function, x and y, the parameters of reflect,
i, the local variable of pixel, and the global variable count.

Variables that are defined in the current context can be accessed from the
ASD command prompt simply by giving their names. This would include the
real parameter of quicksin called angle in the current example, but no
others.

You em refer to other variables by qualifying their names with the context
(procedure name) in which they are defined. For example, the parameters of
the function reflect would be referred to as reflect: x, reflect : y, and
reflect: angle respectively. Notice that in the last example, you can refer
to a variable which wouldn't actually be visible to the executing program.

Another example would be a reference to the global integer variable count,
defined in the main program. Here you use the module name as the qualifier.
In Pascal, the name after the program keyword is taken as the module name,
so the required identifier is raytrace : count. In analogous situations in C,
you would use the source filename as the qualifier (see the examples below
and in the example session at the end of the chapter). In Fortran-77, as with
Pascal, the PROGRAM name is used to prefix global variables.

To avoid certain ambiguous cases, where more than one procedure of a given
name exists, you can 'nest' the qualifiers before the final variable name. For
example , the local variable angle in the function reflect could be
referred to as raytrace:pixel:reflect:angle, even though the first
two components are not strictly required to access the desired object
unambiguously in the present example.

The next example, in C, illustrates the further features of specifying variables
outside the current context. C does not support the textual nesting of functions,
so variables are either defined at the top level (outside any function
definitions), or one level down, in a function definition (though see below for
further discussion). However, C obviously does support nested function calls,
and like Pascal, allows recursive calls.

The Acorn Source-level Debugger

Consider this source code fragment:

/* File >c . expr */
int val ;
int factor (char **ptr)

int val ;
/* BREAKPOINT HERE */

return val ;

int add (char **ptr)

int vl , val ;

vl = factor(ptr) ;
return vl+val ;

int logical (char **ptr)

int vl , val ;

int vl = add(ptr) ;
return vl & val ;

int expr (char **ptr)

return logical(ptr);

void main (int argc , char *argv[])

char *p ;

val expr(&p) ;

The Acorn Source-level Debugger 75

76

In this example, there is a global variable val, and several local variables.

Suppose the current context is in the body of factor, which was called by
add, called by logical, called by expr, called by main. As far as the

programmer is concerned, the only variables visible at this stage are local
integer val and the parameter ptr. Because of C's lexical scoping rules, all
the other variables which are extant are invisible from factor. The global

val would have been visible, had it not been for the local of the same name
hiding it.

Similarly, the only variables accessible directly to ASD are those defined in
the current context of factor . However, the others can still be examined

and altered by giving their defining contexts. Examples are: expr: ptr,
main: argc and add: vl.

Consider what the name expr: val would refer to. Seemingly there are two
candidates: the global variable, which qualifies because expr is the name of
the module (program) in which it is defined, and the local variable defined
in the function which is also called expr. In fact, it is the second one which
would be referenced, as ASD always accesses more local variables first.

To overcome this ambiguity, there is a special qualifier, the # character. You
can regard this as the 'parent' of all the modules in the program, so the
element following it in an identifier name is a module. In this example, you
would use #expr: val to access the global called val (and
#expr: expr: val would have the same meaning as just expr: val).

The function logical shows another example of possible ambiguity, which

can occur in C but not Pascal. In Pascal, you are not allowed to declare local
variables within begin ... end blocks; in C you are. There are two
declarations of v1 in logical, so the name logical: v1 is not precise
enough. The way around this is to qualify the name with the line number on
which it is declared as well as (or instead of) the function name. These might
be logical: 115: v1 and logical: 12 3: v1 in the present example.

ASD will give an error if a reference to a variable name is ambiguous.

Finally, there is the question of multiple activations of a particular procedure,
since both C and Pascal allow recursive function and procedure calls.
Consider the standard example:

The Acorn Source-level Debugger

Program locations

int factorial(int n)

if (n <= 1)

return 1;
else

return n*factorial(n-1);

Suppose this function is called with an initial argument of 5. The function
would recurse four times, until it was called with n==l. At this stage, asking

ASD to access variable n would yield the most recent version. By prefixing

the variable name with a backslash (\) followed by an integer, you can refer
to any of the other activations. For example, \ 1 : n refers to the earliest

invocation of factorial, where n==S. \ 2 : n refers to the next oldest, and

\5: n would refer to the active one. Negative integers can be used to work

backwards from the current activation. So in this example, \ - 1 : n and \ 4 : n

would be the same (n==2).

If the function or procedure name is required along with an activation count,
the form is factorial \ -1: n.

This section has been quite involved, but that only reflects the versatility that
is required by ASD in order to allow access to the various types of variable
instantiations possible in modern, block-structured languages. For the most
part, you will find that unqualified variable references are all that is
required, and convoluted strings such as

#raytrace:fred : jim\-1:count

are not needed.

Some ASD commands, such as break, require arguments which refer to

locations in the program. You can refer to a place in the program by
procedure entry/exit, line number, statement within a line (in the case of C

and Pascal), or label.

Refer to lines simply by giving the line number: 12 3 refers to the 123rd line

of the program. You can qualify line numbers in the same way as variables,
so prog: 87 is the 87th line in prog and #ray: 3214 is the 3214th line in the

module ray.

The Acorn Source-level Debugger 77

78

You can use the procedure name alone to set a breakpoint at the entry point
of the procedure. Alternatively, the end of a procedure (just before it returns)
may be trapped using proc : $exit.

To refer to a statement within a line, the notation line. stat is used. For
example, 100 . 3 refers to the third statement on line 100. Clearly statement
n . 1 is the same as statement n ..

It is possible that a simple line number is ambiguous. This occurs when an
include file is invoked from within a function. For example, suppose you have
the file h. ray which looks like this:

0001 #define maxx 1000
0002 #define maxy 1000
0003
0004 typedef unsigned char flag, byte;
0005

0099 / * End of h.ray * I

(The line numbers are included for clarity; they wouldn't appear in the file
itself.) Suppose further that this file is included in a C source file:

0001 main()
0002 {

0003 #include "h. ray "
0004 int x,y;
0005 real angle
0006

The resulting source as seen by the compiler, with line numbers, is:

0001 main()
0002 {

0003 #include "h.ray"
0001 #define maxx 1000
0002 #define maxy 1000
0003
0004 typedef unsigned char flag , byte;
0005

0099 /* End of ray . h */

The Acorn Source-level Debugger

Expressions

0004
0005
0006

int
real

x,y;
angle

Line reference 4 might refer to the typedef or the int declaration. To
overcome the ambiguity, it is possible to suffix the line number with the
filename: 4 (c. ray), 4 (h. ray).

The final type of program location reference is the label. C labels are just
identifiers, so these may be used 'as is' .

Several ASD commands require arbitrary expressions as arguments. The
syntax for these expressions is based on that found in C.

ASD has a rich set of operators and several levels of operator precedence.
These are summarised below.

2

3

4

5

()

[l

- >

grouping, ega* (b+c)
subscript, eg isprime [n], matrix [1] [2]
record selection, eg rec. field, a. b. c
indirect selection, eg rec->next is (* rec) . next

logical not, eg ! finished
bitwise not, eg -mask
negation, eg-a

* indirection, eg *pt r
& address, eg & v a r

* multiplication, ega *b

I division, eg c I d
% remainder, eg a%b is a-b* (a /b)

+

>>
<<

addition, eg a+ 1

subtraction, eg b-d

right shift, eg k»2
left shift, eg 2 < < n

The Acorn Source-level Debugger 79

80

6

7

8

9

10

11

12

<
>
<=

>=

!=

&

&&

I I

less than, eg a <b
greater than, eg n> 10
less than or equal to, eg c<=d
greater than or equal to, eg k>=S

equal to, eg n==O
not equal to, eg count ! =limit

bitwise and, eg i & mask

bitwise xor, eg a A b

bitwise or, eg ml OxlOO

logical and, eg a==l & & b ! =0

logical or, ega> lim I I finished

The lower the number, the higher the precedence of the operator. Note the
syntax for subscripting and record selection. The object to which subscripting
is applied must be a pointer or array name. The debugger will check both the
number of subscripts and their bounds in languages which support such
checking. A warning will be issued for out-of-bound array accesses. As in C,
the name of an array may be used without subscripting to yield the address of
the first element.

The prefix indirection operator * is used to dereference pointer values, in the
same way as Pascal's postfix operator A. Thus if pt r is a pointer type, *pt r
will yield the object it points to (like pt r A in Pascal).

To access the fields of a record through a pointer, you can either use
(* recp) . field, or the C 'shorthand' notation, recp->field.

If the lefthand operand of a right shift is a signed variable, then the shift will
be an arithmetic one (ie the sign bit is preserved). If the operand is unsigned,
the shift is a logical one, and zero is shifted into the most significant bit.

If incompatible types are used during expression evaluation, the debugger
will print a warning message, but evaluation will continue.

Constants may be decimal integers, floating point, octal integers or
hexadecimal integers. The following examples show each in turn:

The Acorn Source-level Debugger

Program examination
commands

123
12.3e10

0 1 0 0 (64 decimal)

Oxlff (511 decimal)

Character constants are also allowed, eg ' A' yields 65 (the ASCII code for

A). Note that 1 is an integer, whereas 1. is a floating point number.

This section lists and describes those commands which examine the state of

the program being debugged. In the syntax descriptions of the commands,

various items such as context are mentioned. These are explained below.

context describes an activation state of the program. Possible elements of a

context were described in the section Specifying source-level objects. Formally, it

looks like:

[[# J module : J [proc: J ••• proc [\ [-]count]

In other words, an optional module prefix, optionally prefixed by # to avoid

ambiguity with procedures of the same name, followed by a list of procedure

names, the last of which which may have optional invocation level following
the backslash. Examples are:

pixel

raytrace:pixel

procedure or module called pixel

procedure pixel defined in
raytrace

raytrace: pixel\ -1 previous invocation of pixel

$ROOT: raytrace: pixel: reflect procedure reflect defined in
raytrace

If the program is currently in a 'stopped' state, eg after a breakpoint or

watchpoint has been activated, there is an execution state context. This refers to

the context of the procedure being executed when it was suspended.

expression is an arbitrary expression using constants, variables and the

operators described in the previous section.

variable is a reference to one of the program's variables. If a simple name

is used, the variable is looked up within the current context. This may be

overridden by prefixing the variable name with a context as described above.

The Acorn Source-level Debugger 81

Print command

82

count is an unsigned decimal integer.

format is a C printf function format descriptor, or the word hex, ascii
or string. It is beyond the scope of this chapter to describe all of printf's
format strings, but the most common ones are:

Type
int

char

char

void

float

*

*

Format Description
%d signed decimal integer (default for integers)
%u unsigned integer
%x hexadecimal with lower case letters (same as hex)
%c

%s

%p

%e
%f
%g

character (same as ascii)

pointer to character (same as string)

pointer (same as o/o.8x, eg 00018abc)

exponent notation, eg 9.999999e+OO
fixed point notation, eg 9.999999
general floating point notation, eg 1.1, 1.23e+06

Note that in the print command, the first group above (int and char)
should only be used if the expression being printed yields an integer, and the
third group should only be used for floating point results. %p is safe with any
kind of pointer, but % s should only be used for expressions which yield a
pointer to a zero-terminated string.

This command can be used to examine the contents of the debugged program's
variables. You can also use it to display the result of arbitrary calculations
involving variables and constants. The syntax is:

pr[int) [/format] expression

The format string was described in the previous section. If it is omitted, then
for integer expressions, the default set by the format command is used. This
is %d by default. For floating point values, the default format string is %g.
Pointer results are treated as integers for the purposes of printing and are
printed using the format %. 8x (eg 000100e4).

Structures, unions, arrays, sets, subranges and strings are printed in formats
appropriate to their types. The format string is applied to each individual
element.

The Acorn Source-level Debugger

Format command

Let command

Note that the I marking the start of the format should follow the command
name, with no intervening spaces. Examples are:

print \ -1: a+1
print isprime[3)

print/hex isprime

print/ %10s promptstr
print/ %X listp->next

print listp
print/ %£ angle*180/3.14159

Print a+ 1 in the default format
Print the fourth element of array
isprime
Print all e lements of array
isprime in hex
Print the string promptstr
Printfield next of structure listp
(in hex)
Print all fields of structure 1 is t p
Convert angle from radians to
degrees

This command is used to set the default format string used by the print
command for integer results. It is set to %d when ASD starts up. That may not
be suitable (for example, you may want to treat integers as unsigned
quantities, or print integers in hex) so format allows you to change it. The
syntax of the command is:

form[at] [format]

The format string is exactly as described previously. Examples are:

format hex
format %u

There is nothing to stop you from using one of the floating point formats in
this command. It wouldn't be very wise, though, as integers would then not be
printed correctly at all. (Try pI % g 12 3 if you don't believe us.)

The let command enables you to change the value of a variable. It has the
syntax:

[let) variable=expression { , expression}

The variable and the expression should be compatible types, though the
debugger will perform conversions between integer and floating if necessary
(floats are rounded towards zero). Only the real parts are affected by
arithmetic on these types.

The Acorn Source-level Debugger 83

Symbols command

84

Note that although you can change the value of an array element, using a

command such as:

let isprime[2]=1

you cannot change the address of the array itself, as array names are treated
as constants. If the subscript is omitted it defaults to [0] .

If multiple expressions are specified on the righthand side, each expression is
assigned to * (& variable + N - 1) , where N is the Nth expression on the
righthand side.

Examples of let are:

let a=a+l
let rec=rec->next
let isprime[2]=1 , 1 , 0, 1, 0 , l ...

This command lists the symbols {variables) defined in the given context, or
the current context if it is omitted. Its syntax is:

sy[mbols] [context]

Each variable's name is displayed, along with its type information. An
example of the output produced might be:

ANGLE Float , local
X Signed integer, local
y Signed integer , local
I Signed integer , local

The format is name type, storage class. Other types you might see are:

Signed half- word (short)
Signed byte (character)
Unsigned integer
Unsigned half- word (short)
Unsigned byte (character)
Float
Double
Pointer to .. .
Array of .. .

The Acorn Source-level Debugger

Variable command

Arguments command

Other storage classes are:

register
automatic (local)
static
external

To see the global variables, you would quote the module name as the context.
For example, to see the external and static variables defined outside of any
function definitions in a C program, you might use:

sym testp

where testp is the name of the source file .

Note also the comment about potential problems with register variables in
the description of the watch command.

This provides type and context information about a specified variable. Its
syntax is:

v[ariable] variable

Examples of its usage and the results displayed are:

ASD : var angle
ANGLE Float , local
context: FASTSIN pascal . raytrace
ASD: var reflect:angle
ANGLE Float , local
context : REFLECT pascal.raytrace
ASD: var count
COUNT Signed integer , static
context: RAYTRACE pascal . raytrace

This command is used to show the arguments which were passed to the current
procedure, or to another active procedure. Its syntax is:

a[rgument]s [context]

If the context is omitted, the current context is used (usually the procedure
that was active when the program was suspended, unless it has been changed
by a context command). Examples are:

The Acorn Source-level Debugger 85

Context command

Out command

In command

86

args
args \ - 1
args main

For each argument, its name and current value are displayed.

This is used to set the context in which variable lookups will occur. It also
affects the default context used by commands such as symbols. When

program execution is suspended, the search context is set to the act ive
procedure. The syntax of the command is:

con[text) [context)

If you omit the argument, the context will be reset to the active procedure.
Examples are:

context
con factorial\1
con prog : expr

The next two commands, out and in, are shorthand ways of changing the
current context by one level. out, whose syntax is simply:

ou[t)

sets the context to that of the caller of the current context. For example, if the
current context were pixel: reflect: quicks in then executing an out

command would set it to pixel: reflect. You will get an error if you issue
an out command if the current context is the top level of execution.

This command performs the opposite function to out. It sets the context to the
procedure called from the current level. Continuing with the previous
example, if you execute an in , the context will be set back to

pixel :reflect :fastsin.

The syntax of the command is:

in

You may not issue an in command when the current context is that of the
executing procedure: an error is given if you try.

The Acorn Source-level Debugger

Where command

Backtrace command

Type command

Execution control
commands

Load command

This command prints the current context in terms of a procedure name, line
number in the file and filename. The syntax is simply:

wh [ere] [c ontext J

An example display from the where command is:

sortfile, line 99 of c . sort
99 if (! (lbuf = malloc(l * sizeof (char*))))

This command prints information about all the currently active procedures
(most recent first), or for a given number of levels. The syntax is:

ba[cktrace] [count]

An example of the output from this command is:

REFLECT, line
PIXEL, line

45 of
124 of

RAYTRACE, line 48 of

pascal . raytrace
pascal . raytrace
pascal.raytrace

This command types the contents of a source file (or any text file) between
specified locations. The syntax is:

t [ype] [expr1] [, [[+] expr2] [,[file]]]

The source lines between expr 1 and expr 2 are specified. expr 1 defaults to
the source line associated with the current context or the last line displayed
with the type command, -3. expr2 defaults to expr1+10. file defaults to
the filename associated with the current context. If the optional + is given
before expr2, expr 2 denotes a line count rather than the limit of a line
range.

This section describes the ASD commands which control the execution of the
object program. Facilities covered include loading programs to be debugged,
the setting of breakpoints and watchpoints, and single stepping.

This command loads or reloads an image for debugging. It syntax is:

l oad image_file [arguments]

The Acorn Source-level Debugger 87

Cmdline command

Go command

Step command

88

where image_file is the name of the program you wish to debug and

arguments are any command line arguments that the program would

normally take when run. image_file and arguments may also be

specified on the ASD command line when you invoke ASD.

This command sets up command line arguments for the debuggee. It syntax is:

cm[dline] arguments

where arguments are any command line arguments that the debuggee would

normally take when run.

This command starts execution of the program. The first time go is executed,

the program starts from its normal entry point (eg at the start of the main

function in C). Subsequent go commands resume execution from the point

where execution was suspended, eg at a breakpoint or a watchpoint.

The syntax is:

g [o] [w [hile] expr]

If the while clause is specified, expr is evaluated whenever a breakpoint

occurs, and if it evaluates as true (ie non-zero), the breakpoint is not reported
and execution is resumed.

This command steps execution through one or more statements. It can only be
issued after the program has been started: you should not use step to initiate

program execution. The syntax is:

s[tep] [in] [count I w[hile] expr]

The in keyword, if present, denotes that single stepping continues into

procedure calls. That is, each statement inside a called procedure is single
stepped. If in is absent, a procedure call counts as only one statement, and is

executed without single stepping. If the optional count is omitted, one

statement is executed, otherwise count statements are executed. If the while

clause is specified, expr is evaluated after each statement is executed, and

execution continues until expr evaluates as false (ie zero).

Examples are:

The Acorn Source-level Debugger

Break command

step 20
s in
s in 5

s w hp < sp

Execute 20 statements

Step into a procedure call

Execute five statements, stepping into any procedure calls

Step through the current procedure until hp >= sp

This command is used to set a breakpoint. Breakpoints may be specified at
procedure entry and exit, lines, statements within a line, or at program labels.
The section Specifying source-level objects, near the beginning of this chapter,
describes how program locations are specified. The syntax of break is:

[b[reak] [location [count]] [do
1

{
1 [command) {;command) 1

}
1

] [if expr]]

If you issue break with no arguments, a list of the currently set breakpoints
is displayed. For example:

#1 at FASTSIN
#2 at RAYTRACE:324
#3 at RAYTRACE:$999

Breakpoint numbers (#n) may be used in the unbreak command instead of
the location descriptor.

1 oca t ion specifies where the breakpoint is to be placed. The section
Specifying source-level object describes how program locations are specified.

The count that follows the breakpoint location indicates how many times the
statement there must be executed before the program is actually suspended.
It defaults to 1, so if the count is omitted, execution will stop the first time the
breakpoint is encountered.

Alternatively, the breakpoint may be taken conditionally upon the value of
if expr (see the example overleaf).

The do clause allows you to specify a list of commands to be executed when
the breakpoint occurs. These commands could, for example, print the value of
some variable and then continue execution with the go command. Normally
when a breakpoint occurs the program and source line are displayed. If you
specify a do clause these are not displayed, though you can display them by
placing the where command at the start of the command list.

Examples are:

The Acorn Source-level Debugger 89

Unbreak command

Watch command

90

break fasts in Break on entry to procedure fasts in
b raytrace : 324 10 Break at line 324 of module raytrace
b raytrace:$999 Break atlabel999ofmoduleraytrace
b 11 do {pr argv[i];g} if i>2

Break at line 11 if i>2, display argv [i] and
continue

Note that if you set a breakpoint at a procedure exit, using for example:

break proc : $exit

then several break points may be set, one for each possible exit. (A C
function, for example, may have multiple ret urn statements.) You may then
delete ones which you do not require us ing unbreak with a breakpoint
number, or delete them all using the same location as given in the break
command.

This command removes a breakpoint location from current list. It has the form:

unbr [eak] [location]

where location may either be a source code location, or the breakpoint
number, as displayed by the break command. If the breakpoint being
removed is not the last one, the breakpoint list is not renumbered, so once a
breakpoint number is assigned, it remains constant.

unbreak with no arguments removes a breakpoint provided there is only one
breakpoint set.

Examples are:

unbrk #1
unbrk raytrace : $999

This command is used to set a watchpoint on a variable. When the variable is
altered, program execution is suspended. The syntax of the command is:

w[atch] [variable]

If the argument is omitted, a list of current watchpoints is listed. For example:

The Acorn Source-level Debugger

Unwatch command

Return command

#1 at K

#2 at ISPRIME[4]

As with breakpoints, the watchpoint number may be used in the unwatch

command to remove a watchpoint.

Examples are:

watch k

watch isprime[4]

If there are any watchpoints set, execution becomes very slow. This is because
the values of the watched variables are checked after every machine
instruction that might change them. The best way to deal with this is to set a
breakpoint in the area of code under suspicion, and only set the watchpoint(s)
when the program stops there.

You should be aware that the C compiler produces code which can use a
register to hold more than one variable, if the 'lifetimes' of those variables
don't overlap. Thus if you ask for the value of a (register) variable at a point
beyond where the compiler 'knows' it will no longer be required, you may
actually see the value of a totally different variable. The same goes for
changing the variable's value.

This command clears a watch point. It has the syntax:

unw [atch] [variable]

As mentioned above, the variable reference may either be an actual
variable name, or a watchpoint number preceded by a # sign. unwatch with

no arguments removes a watchpoint, provided there is only one watchpoint set.

This command can be used to return to the caller of the current procedure,
passing back a result if required. It has the form:

return [expression]

For example, from a C function you could type something like return -1 to

pass a result back to the caller.

It is not possible to return compound data types (arrays and records) using
this command.

The Acorn Source-level Debugger 91

92

Ptrace command

Call command

Void command

While command

Low-level debugging
commands

This command enables and disables procedure tracing. When enabled, this
causes the name of the current procedure to be printed every time it is
entered or left. The syntax of the command is:

pt [race] [on I off]

If no argument, or on, is given, tracing is enabled. If off is specified, tracing
is disabled. Indentation is used to indicate procedure nesting. For example:

Entered main
Entered init
Left ini t

Left main

This command calls a procedure. The syntax is

call location [' (' expr] { , expr) ')']

Each expr is an argument to the procedure. If the procedure (function)
returns a value, this may be examined using the command print rO.

This command is identical to the call command above, but does not print a
result .

This command is only valid at the end of a multi-statement line. Multi
statement lines are entered by separating the statements with ; characters.
The syntax of the command is

while expr

This causes interpretation of the line to repeat until expr evaluates to false
(ie zero).

The section describes the low-level debugging facilities of ASD. These can be
used to debug high-level language programs at the machine code level, as
well as programs written in assembly language. To get the most out of this
section you will need to be familiar with assembly language programming.

The Acorn Source-level Debugger

Two types of table can be present in a debuggable image: high-level tables
produced by the compiler and low-level tables as produced by the linker
with the -debug flag. Either form of table can be present on its own or both

can be present together. However, with the current linker implementation
(version 3.00) it is not possible to include high-level tables without including
low-level tables.

High-level tables specify detailed information about the source code that
generated the image. Low-level tables simply equate symbolic names to
memory addresses.

There is no need to compile a program with debugging information if you
only wish to use the low-level debugging facilities of ASD. You only need to
link or relink it with the -debug option. For example:

cc -c c. sort Compile without debugging information
link -o sort -deb o . sort $.clib.o.ansilib

Link with debugging information

When ASD reads an image and finds high-level debugging tables it sets the
default language to one of C, Pascal or Fortran depending on which compiler
generated the debugging tables. If ASD does not find any high-level
debugging tables it sets the default language to none; this enables certain
low-level debugging facilities in ASD. If you have a program which contains
high-level debugging information and you wish to use the low-level debugging
facilities of ASD you should use the language none command as soon as
you enter ASD. You may also like to specify base 16 so that you can enter
numbers and addresses in hexadecimal.

When referring to a low-level symbol you should precede it with an @

character. This tells ASD you are referring to the low-level symbol, not the
high-level symbol. For example:

break main
break @main

Sets a breakpoint at the high-level symbol main.
Sets a breakpoint at the low-level symbol main.

These are not equivalent. The high-level symbol main refers to the address of
the code generated by the first statement in the procedure; there may be some
stack frame initialisation code before the first statement's code. The low-level
symbol refers to the call address of the procedure (ie the first instruction of
the stack frame initialisation).

The Acorn Source-level Debugger 93

Low-level symbols can be used in the watch command to set a watchpoint on
a memory word. For example

watch @arglist

This will stop execution if the word at the location a rg list changes.
However, it is only possible to watch whole words (4 bytes) using low-level
symbols since the low-level tables do not give any indication of the size of the
object.

You can use memory addresses instead of low-level symbols. For example
with the where command you can enter

where @0x80b0

If high-level tables are present and high-level debugging is enabled, this will
display the source line that generated the instruction at Ox80b0. Otherwise, it
will disassemble the instruction at location Ox80b0 and print the name of the
nearest associated low-level symbol and an offset from that symbol to
location Ox80b0 as follows:

main + Ox18
+0018 Ox0080b0: Oela06004 . ' a mov r6,r4

Low-level symbols can be used wherever an expression is expected (as in the
print command). In an expression there is no need to precede the symbol
with an @ symbol unless there is a high-level data symbol of the same name.
For example:

pr arglist
pr @arglist
pr main

Prints the value of arglist
Prints the address of arglist
Prints the address of main

Note that in the last case there is no need to precede main with the @ symbol
even though there is a high-level symbol main. This is because high-level
code symbols are not permitted in expressions, so main is unambiguous.

ASD predefines the following symbols in support of low-level debugging:

• RO, R1, R2, R3, R4, RS, R6, R7, RS, R9, R10, Rll, R12, R13, R14, R15
These refer to the ARM registers 0 to 15.

• A1, A2, A3, A4
These refer to arguments 1 to 4 in a procedure call (stored in RO to R3).

94 The Acorn Source-level Debugger

Registers command

Examine command

• Vl, V2, V3, V4, V5, V6
These refer to 6 general purpose register variables which the compiler
may allocate as it pleases (stored in R4 to R9).

• SL- the Stack Limit register (RIO)

• FP- the frame pointer (R 11)

• IP- used in procedure entry and exit and as a scratch register (R 12)

• SP - the Stack Pointer (R 13)

• LR - the Link Register (R 14)

• PC- the Program Counter (R15)

• FO, Fl, F2, F3, F4, F5, F6, F7
These refer to the floating point co-processor (or floating point emulator)
registers 0 to 7.

• FPPSW- the Floating Point Processor (or emulator) Status Word.

• The lower-case equivalents of each of the above.

You can examine any of these registers with the print command and change
them with the let command. However, when you assign to PC only bits 0 .. 25
are affected; if you wish to change all the bits assign to Rl5 instead.

These symbols are defined in the root context, so if you have a variable
called - say RO - and you wish to refer to register 0 you can use the #

character to specify this as follows:

print #rO

The registers command displays the contents of ARM registers 0 to 15
and decodes the flags contained in register 15. The syntax is simply

re[gisters]

This command allows you to examine a range of memory. The syntax is

e[xamine] [exprl] [, [[+]expr2]]

The Acorn Source-level Debugger 95

List command

Lsym command

96

The memory locations between exprl and expr2 are displayed in hex and
ASCII. exprl defaults to the memory location associated with the current
context or the last memory location examined. expr2 defaults to exprl +
128. If the variant form +expr2 is used, the range between exprl and
exprl + expr2 is examined.

The list command displays a range of memory in instruction format . The
syntax is

l[ist] [exprl] [, [[+]expr2]]

The memory locations between exprl and expr2 (or exprl and exprl +
expr2) are symbolically disassembled. exprl defaults as in the examine
command. expr2 defaults to exprl + 80.

The lsym command displays low-level symbols and their values. The syntax
is

ls [ym] [sym]

sym is a prefix for the symbols to be listed. If sym is not specified all
symbols are listed. For example ls rna might produce the following output.

malloc
main

= Ox0084a4
= Ox008098

Changing Memory

The syntax of the let command in the section Program Examination Commands
was deliberately simplified. The full syntax is

[let] expression =I: expression { , expression}

If expression is an !value (ie the name of a variable) the let command
behaves as before, changing the value of that variable. If the expression is an
rvalue (ie a constant or a true expression) it is treated as a word address;
memory at that and subsequent word locations is then assigned the values of
the expressions on the righthand side of the let command.

This allows commands of the following form:

Ox8008 : 0xfb000000 , Oxeb000053

The Acorn Source-level Debugger

PC/pc command

Miscellaneous
commands

Help command

Base command

Pes command

which sets the words at Ox8008 and Ox800c to the listed values.

This command sets all the bits of R15 (if given in upper case) or only the pc
portion, bits 0 to 25 (if given in lower case). Its syntax is:

PCipc expr

This section describes those commands that do not fall within the previous two
groupings.

This command displays a list of available commands, or help on a particular
command. Its syntax is:

help [command]

If the argument is omitted, a complete list of ASD commands is displayed. If
the argument is present, that command's syntax and a brief description is
printed. For example, help print will display:

print[/<format>] <expr> Print result of <expr> . If
<format> ... (the rest of the explanation is omitted here)

The help information uses angle brackets for items which would be shown in
italics in this manual. help on its own lists all available commands; help *
gives help about all available commands.

This command sets the numeric base to be used for numbers entered by the
user. Its syntax is

bas[e) base

base is always specified in base 10, regardless of the current base. If base
is 0, the base used to convert an input number will be 8, 10 or 16, depending
on whether the number begins with a 0, a non-zero decimal digit, or Ox
respectively (this is the same convent ion as that used in C).

This command selects the procedure call standard to be used. Its syntax is

pes [air)

The Acorn Source-level Debugger 97

Alias command

98

The RISC OS variant of the ARM procedure call standard is used by
programs compiled under Release 3 of the C compiler, unless -zkA is given

as a cc command line option. Previous releases use the obsolescent Arthur

variant.

If you are debugging a program compiled with an earlier version of the C
compiler you will need to use the command pes a before you can use ASD

to debug it.

This command defines, undefines or lists aliases. Its syntax is

alias [name [expansion]]

If no arguments are given, all currently-defined aliases are displayed.

If expansion is not specified, the specified alias is deleted. Otherwise,

expansion is assigned to the alias name. expansion may be enclosed in

quotation marks to allow the inclusion of characters which you would
otherwise not be able to include in an alias, (the alias expansion character '

and the statement separator ;).

Aliases are expanded whenever a command line is about to be executed; the
command list in a do clause is treated as a command line for this purpose.

Aliases are expanded in the fo llowing way:

Words consisting of alphanumeric characters enclosed in backquotes are
expanded. If there is no corresponding alias the word is replaced with the
null string. If the character following the closing backquote is non
alphanumeric, the closing backquote may be omitted. If the word is the first
word of a command, the opening backquote may be omitted. To use a
backquote in a command line, precede it with another backquote (ie use
double backquote for a single backquote).

The alias command allows you to define your own commands. For example,
you could define a command called cstart which would start a C program;

it would be defined as follows:

alias cstart "br main; g; unbr main"

You can put aliases like these in an Obey file and execute it whenever you
run ASD.

The Acorn Source-level Debugger

Language command

Obey command

Log command

This command is used to tell the debugger what language rules it should obey.

The syntax of the command is:

la[nguage] [language]

where language is one of f77, c, pascal or none. The default (which is
reverted to if the argument is omitted) is the language that the program's
entry module is written in. In the present implementation, f7 7, c and
pascal are equivalent. language none is used in conjunction with the low
level debugging facilities of ASD, described in the previous section.

Note that if language is set to none, loading a C program sets language
to C.

This command executes a set of debugger commands from a file, as if they
had been typed at the keyboard. It has the form:

o [bey] command_file

The commands contained in the specified command file are executed .

This command causes subsequent typed commands, and their output, to be sent
to a file as well as the screen. The format of the command is:

lo[g] [filename]

To start logging, use the form with the filename. For example:

log logfile

The file will be opened, and a couple of introductory lines sent to it.
Thereafter, all user input and command output (excluding ASD: prompts)
will be sent to the file.

To terminate logging, type log without an argument.

The log command is useful for capturing the output after - for example - a
ptrace command, enabling the flow of control to be examined at leisure
using an ed itor such as Twin or Edit.

The Acorn Source-level Debugger 99

Quit command

*command

An example ASD
session

100

This causes the debugging session to be terminated. It also closes any open
log and ob ey files. The syntax is:

q[uit]

Any command whose first non-space character is * will be sent to the
operating system for execution. This gives access to the RISC OS Command
Line interpreter. For example:

*cat c

The following example debugging session shows how ASD might be used to
fix a rather bug-ridden file-sorting utility. It is not an attempt to demonstrate
all the features of ASD.

c . sort

#include <stdio . h>
#include <stdlib.h>
#include <string . h>

#include '' kernel . h ''

#define READATTR 5
#define READFILE 16
#define WRITEFILE 0

#define FILEFOUND 1

extern int cistrcmp(char *a , char *b) ;

#ifndef NOCISTRCMP
/*

* Rewritten in assembler
*I

int cistrcmp(char *a, char *b)

int ca , cb ;
do

if ((ca
ca

if ((cb
cb

if (cb

*a++

+= ' a '
= *b++

+= ' a '
= ca -

return cb ;

- , A')

- , A';

- ' A ' I
- , A';

cb)

while (cb = ca + ' A' I;
return cb ;

< ' Z' -

< , Z ' -

' A' + 1)

' A ' + 1)

The Acorn Source-level Debugger

#endif

void fail(char *msg)

fputs(msg , stderr);

exit(l) ;

/* See Sedgewick : Algorithms 2nd edition P 108 */

static void sortstrings(char *a[], int n)

int h, i , j ;

char *v;

h = 1;

do

h h * 3 + 1 ;
while (h <= n) ;

do

h h I 3 ;
for (i = h + 1 ; i <= n ; i ++) {

v = a [i] ;

j = i;
while (j > h && cistrcmp(a[j-h] , v) > 0) {

a[j] a[j-h] ;

j - = h ;

a [j] = v;

while (h > 1) ;

void sortfile(char *f)

kernel osfile block finfo;

int size ;

char *finbuff , *foutbuff;

char *cp ;

inl 1 , linestart ;

char **lbuff;

int i ;

if (kernel osfile(READATTR , f, &finfo) ! = FILEFOUND)

fail(" File not found\n ");

size = finfo . start ;

if (! (finbuff = malloc (size + 1)) II ! (foutbuff

fail("Out of memory\n") ;

finfo . load = (in t) finbuff;

finfo . exec = 0 ;

if (kernel osfile(READFILE, f , &finfo) < 0)

fail(" Error reading file\n ");

1 = 0 ;
cp = finbuff ;

linestart = 1 ;

for (i = 0 ; i < size ; i++) {

if (linestart) {

The Acorn Source-level Debugger

malloc(size + 1)))

101

102

1++ ;

linestart 0 ;

if (! *cp I I *cp ' \n ') {
*cp ~ 0 ;

linestart 1 ;

cp++ ;

* (finbuff + size) ~ 0 ;

if (! (lbuff ~ malloc (1 * sizeof (char *))))

fail ("Out of memory\n ") ;

cp ~ finbuff ;

for (i ~ 0 ; i < 1 ; i++)

lbuff[i] ~ cp ;

cp +~ strlen(cp) ;

sortstrings (lbuff , 1) ;

cp ~ foutbuff ;

for (i ~ 0 ; i < 1 ; i++)

strcpy(cp , lbuff[i]);

cp •~ strlen (cp);

*cp++ = ' \n ';

finfo . start ~ (int) foutbuff;

finfo . end ~ (int) foutbuff + size ;

if (_kernel_osfile(WRITEFILE , f , &finfo) < 0)

fail ("Error writing file\n ") ;
free(finbuff) ;

free (foutbuff) ;

free(lbuff) ;

int main(int argc , char *argv[])

int i ;

if (argc < 2)

fail (" Usage : sort <filename>\n ");

for (i ~ 1; i < argc; i++)

sortfile(argv[i]) ;

return 0 ;

The shellsort algorithm used above may be found in Algorithms by Robert
Sedgewick, second edition pl08 (first edition p98) . The original algorithm, in
Pascal, is shown below.

procedure shellsort ;

label 0 ;

var i , j,h,v:integer ;

The Acorn Source-level Debugger

begin

h : =1 ;
repeat

h:=3*h+1
until h>N ;
repeat

h:=h div 3 ;
for i : =h+1 toN do

do begin
v : =a I i) ;

j ; =i ;
while alj-h)>v do

do begin

0 :

end ;

a I j) : =v ;
end

until h=1

end ;

alj) : =alj-h) ;
j : =j-h ;
if j<=h

then goto 0

Compile the C program with debugging information included using the
command

*cc -g -c c . sort

The compiler will give several warnings; you can ignore these .

If you are not used to assembly language programming, skip to the paragraph
on the next page that begins 'The next step is to link the program'.

If you are interested in the low-level debugging capabilities of ASD you may
like to leave out the C version of cistrcmp by using the command

*cc -g -c -DNOCISTRCMP c . sort

and use the following assembly language routine instead:

s . cistrcmp

rO RN
r1 RN
r2 RN 2
r3 RN 3
lr RN 14
pc RN 15

AREA I cistrcrnp I , CODE , COMDEF , READONLY

The Acorn Source-level Debugger 103

104

MOV r3 , rO

cistrcmpl
LDRB rO , [rl], #1

LDRB r2 , [r3], #1
SUB r2 , r2 ,#" A"

CMP r2 ,#" Z" -"A"+l

ADDCC r2 , r2 ,#" a " - " A"

SUB rO , rO ,#"A"

CMP rO , # " Z" -"A"+l
ADDCC rO , rO ,#" a " - "A"

SUBS r0 , r2 ,r 0

MOVNES pc , lr
ADD r0 , r2 ,#"A"

BNE cistrcmpl

MOVS pc , lr

END

To assemble this use the command

*objasm s . cistrcmp -to o . cistrcmp -stamp - quit

If you do not have a copy of objasm there is a pre-assembled object in the
file o . cistrcmp on Disc 1 ofC Release 3.

The next step is to link the program. To do this use the command

*link -deb -o sort o . sort $. clib . o . ansilib

if you are using the C version of cis t r cmp , or

*link -deb -o sort o . sort o.cistrcmp $. clib . o . ansilib

if you are using the assembly language version. You should now have an
executable file called sort in the current directory.

If you are using a single floppy disc system you will need to copy
$. clib . o . ansilib from Disc 2 of the release. You can do this via

RAMFS (as described in the section entitled Compiling and running the
example programs in the chapter How to install and run the compiler.
Alternatively, you can link with $.clib.o.stubs, in which case the only
difference will be that the symbolic backtrace you get when you try to run the
program will look a little different from that shown below. To do this, use:

*link -deb -o sort o . sort S . clib . o.stubs

or

*link -deb -o sort o . sort o.cistrcmp S.clib . o . stubs

The Acorn Source-level Debugger

The sort program will overwrite its input file, so you might like to retain a
copy of the original file so that you can repeat the test and make subsequent
tests on the same input data. To copy it use the command

*copy sortinput test

Now try running the program with the command

*sort test

This should produce something like the result shown below. This is called a
symbolic backtrace.

Illegal address (e . g . wildly outside array bounds)

Postmortem requested

Argl: Ox00000005 5
Function name real default_signal_handler

Arg1: Ox00000005 5
Function name raise

Arg2: OxOOOOOOOc 12
Arg1: Ox0001a420 107552

Function name sortstrings
Arg1 : Ox000186a1 100001

Function name sortfile
Arg2 : Ox00018688 99976

Arg1 : Ox00000002 2
Function name main

Arg2 : Ox0000841c 33820 -> [OxelaOcOOd Oxe92dd8f3 Oxe24cb004 Oxel5d000a]

Argl : Ox00000ad8 2776

Function name main

The first line gives a general indication of what might be wrong with your
program. In this case it's an illegal address; your program tried to access
memory which is outside the addressing range of your computer. Each line
starting with Function name represents a procedure call frame on the
stack. The first two, real default signal_handle r and r ai s e, are
just internal routines that are called when
recognisable line begins Function name
illegal address was referenced.

an exception is raised. The first
sortstrings ; this is where the

This doesn't look too promising so try running it under ASD to get more clues
as to what might be wrong. To run ASD type * asd followed by the name of
the program you wish to debug, followed by any arguments that program
might take. In this case, type the command

*asd sort test

The Acorn Source-level Debugger 105

106

which should produce the following

Acorn source-level debugger, version 3.00
Object program file sort

The program crashed in the function sortstrings. Since we want the
program to stop before making the illegal access, we want to stop at the
beginning of sort strings. To do this use the command

ASD: br sortstring s

br stands for break. Since ASD allows mmtmum abbreviations, you can use
any of the commands b, br, bre, brea or break here. The break command

places a special instruction called a breakpoint at the specified symbolic
location or context. A context is just the name of a location within a program;
in this case the start of the procedure sortstrings. The word
sortstrings in the break command is an abbreviation for the full name
#sort strings: $entry but ASD allows abbreviations provided they do
not introduce ambiguity.

As a general rule this is the best way to start a debugging session. By placing
a breakpoint just before the section of code we think is wrong (or after the
code we know to be correct) we can examine the program state to ensure it is
correct and then step through the incorrect code to find exactly where the
error is occurring.

Having set the breakpoint we now tell ASD to start executing our program
using the command go.

ASD: go
Stopped at breakpoint #1 in sortstrings, line 43 of c.sort

43 {

The program has now stopped at the beginning of sortstrings and control

is returned to us at the ASD prompt. Now we want to examine the program
state to ensure it is correct before continuing. In this case the most important
state information is the function arguments. We can examine them with the
command arguments (or arg).

ASD : arg
a 0001a420
n 12

The Acorn Source-level Debugger

There are two arguments to sortstrings. n is the number of strings to sort,

in this case 12. This is correct since there were 12 names in the input file. a is
an unbounded array of char *s (strings). Since it is unbounded, ASD has no
way of knowing its size, so ASD just prints its address instead of printing the
contents as it would with a bounded array. However, we can examine the
ind ividual elements of a, using the print command.

ASD : pr a[O)
string "Noel "
ASD : pr a[l)
0001a4ac

The first element was correct: it contained the string Noel wh ich is the first
name in the input file. However, the second element just prints a memory
address; ASD was expecting to find a string at a [1], but didn't. To find out
what it did find at a [1] use the examine command as follows:

ASD : ex a [1)

Ox0001a4ac : Ox77644500 , Ox00647261 , Ox64657246, Ox61724600 " . Edward . Fred.Fra"
Ox0001a4bc: Ox7369636e , Ox6e614900 , Ox65654c00 , Ox72614800 "ncis . Ian . Lee . Har "
Ox0001a4cc: Ox4a007972 , Ox53006d69 , Ox6c696568, Ox6£520061 "ry . Jim . Sheila . Ro "
Ox0001a4dc : Ox00726567, Ox6e6£694c , Ox4d006c65 , Ox69747261 "ger . Lionel . Marti "
Ox000la4ec : Oxe590006e , Ox3e694c3c , OxOOOOOOOO , Oxeb0034fe '' n . . e - 4 . k ''
Ox0001a4fc : Oxe59£0070 , Oxe5901000 , Oxela02004 , Oxe3a00002 "p . . e ... e . a .. c"
Ox0001a50c : Oxeb0034£9 , Oxe59£0060 , Oxe5901000 , Oxela02004 "y4 . k ' .. e ... e . a "
Ox0001a51c : Oxe3a000b5 , Oxeb0034f4 , Oxe59f0050 , Oxe5901000 "5. ct4 . kP .. e ... e"

This shows that ASD found a null string at address 0001a4ac. Here we can
easily see that the first byte po inted to is 0. Being suspicious, we wonder what
the other elements of a point to. W e could use pr a [2] ; pr a [3] ;
pr a [11] to find out. However, it is just as easy to examine the block of
memory pointed to by a.

ASD : ex a
Ox0001a420 : Ox0001a4a8 , Ox0001a4ac , Ox0001a4ac , Ox000la4ac " ($ 0 0 ' $ 0 0' $ 0 0 ' $ 0 0"
Ox0001a430 : Ox0001a4ac , Ox0001a4ac , Ox0001a4ac , Ox0001a4ac "' $0 0 ' $ 0 0 ' $ 0 0 ' $ 0 0"
Ox0001a440 : Ox0001a4ac, Ox0001a4ac , Ox0001a4ac , Ox0001a4ac " ' $ 0 0 '$ 0 0 ' $ 0 0 ' $ 0 0"
Ox0001a450: Ox3e694c3c , Ox40000048, Oxela02005 , Oxeb000807 "H . . @. a ... k "
Ox0001a460 : OxelaOOOOd, Oxe3540000 , Ox059f102c , Ox159£102c " 0 0 a .. Tc , .. . , ... "
Ox0001a470: Oxela02005, Oxeb000801 , Oxe28dl028 , Oxe3a00012 a ... k(.. b .. c "
Ox0001a480 : Oxeb000198, OxelaOlOOd, Oxe3a00018 , Oxeb000195 "0 0 . k . 0 a .. c ... k "
Ox0001a490 : Oxe95ba830 , Ox0002a2ac , Ox0002a2d4 , Ox0002a284 " 0 ([i , " . . T" ... " .. "

The Acorn Source-level Debugger 107

108

Now we can see that all elements (except the first) point to the 0 byte at
000la4ac. This means that the arguments to sortstrings were wrong; the
error therefore occurred earlier. Now try rerunning the program but setting
the breakpoint earlier. W e could quit ASD and rerun the program, but ASD
provides a load command which will load an executable image.

ASD : load sort test

Now set the breakpoint at sortfile instead of sortstrings and start
execut ion.

ASD : br sortfile
ASD : g

Stopped at breakpoint #1 in sortfile, line 66 of c . sort
66 {

Looking at the source we see that lbuff is passed as the first argument {a) to

sortstrings . lbuff is initialised in the loop just before the call to
sortstrings so we would like to stop just after the assignment to
lbuff [i). W e therefore want to set a breakpoint on the following line, but
we don't have any line numbers in the listing above. We could rush off and
get a listing with line numbers or try counting the lines from the start of the
program but ASD can do better than that. Since the variable lbuff is
initialised just before the loop in which we wish to break, by using the watch
command we can get ASD to stop the next time lbuff is changed.

ASD : wa lbuff
ASD : g
Watchpoint #1 at lbuff changed by sortfile, line 99 of c . sort

99 if {! {lbuff = malloc(l * sizeof(char *}}))

Now we know the lbuff initialisation line is 99 we can either count forward
a few lines or use ASD's type command to find the line at which we want to
break.

ASD : ty 98 ,1 05
99 if (! (lbuff = malloc(l * sizeof(char *))))

100 fail ("Out of memory\n ") ;
101 cp = finbuff ;
102 for (i = 0 ; i < 1; i++)
103 lbuff [i] = cp ;
104 cp += strlen(cp) ;
105
106 sortstrings(lbuff , 1) ;

That is line 104, so set a breakpoint there.

The Acorn Source-level Debugger

ASD : br 104
ASD : g

Stopped at breakpoint #2 in sortfile , line 104 of c . sort
104 cp += strlen (cp) ;

Find thevalueof lbuff[O] (= cp).

ASD : pr cp
string "Noel"

It 's the first name in the input file, as we expected, so try stepping over the
update of cp to see what va lue it gets next.

ASD : s
Stepped to sortfile , line 102 of c . sort

102 for (i = 0 ; i < 1 ; i++) {
ASD : pr cp
0001a4ac

The update ass ignment is wrong. After careful study of line 104 we see that
we have omitted to count in the 0 byte when updating cp. The line should read

104 cp += strlen(cp) + 1 ;

Quit ASD (with the quit command), edit the file c . sort, fix line 104,
recompile sort . c, relink and try aga in.

ASD : q
Quitting

*sort test
Illegal address (e . g . wildly outside array bounds)
Postmortem requested

Arg1 : Ox00000005 5
Function name _real_default_ signal_handler

Arg1 : Ox00000005 5
Function name raise

Arg2 : OxOOOOOOOc 12
Arg1 : Ox000la424 107556

Function name sortstrings
Arg1 : Ox000186a5 100005

Function name sortfile
Arg2 : Ox0001868c 99980
Arg1 : Ox00000002 2

Function name main
Arg2 : Ox00008420 33824 -> [Oxe1a0c00d Oxe92dd8f3 Oxe24cb004 Oxel5d000a]
Arg1 : Ox00000ad8 2776

Function name main

The problem is the same one. Start up ASD:

The Acorn Source-level Debugger 109

110

*asd sort test
ARM source-level debugger , version 1 . 00
Object program file sort

Set a breakpoint at the start of sort strings and start execution :

ASD : br sortstrings ; g
Stopped at breakpoint #1 in sortstrings , line 43 of c . sort

43 {

T ake a look at the arguments:

ASD : arg
a 0001a424
n 12

Look at the individual elements of a:

ASD : pr *a
string "Noel"
ASD : pr * (a+l)
string "Edward"
ASD : pr * (a+ll)
string "Martin"

They're O K now, so something is wrong with the sort algorithm. Try setting a
breakpoint on the inner while loop. Use the type command to find the line
number:

ASD: ty 50 , 60
50 while {h <= n) ;
51 do

h = h I 3 ;

for {i = h + 1 ; i <= n ; i++) {
v = a[i] ;
j = i ;

52

53
54
55

56
57
58

59
60

while {j > h && cistrcmp{a[j-h] , v) > 0) {
a[j] = a[j-h] ;

j -= h ;

a[j] = v ;

The breakpoint must be set on line 56.

ASD : br 56 ; g
Stopped at breakpoint #2 in sortstrings , line 56 of c . sort

56 while {j > h && cistrcmp{a[j-h] , v) > 0)

Examine a few variables:

The Acorn Source-level Debugger

ASD: pr j ; pr h

5
4

They're both right, so look at the contents of a [j-h) :

ASD: pr a [j-h]

string "Edward"

From our knowledge of the algorithm, it should be comparing against the first
string. Looking closely at the Pascal version of the algorithm we see that it
was written using 1 origin arrays, and has been rather literally transcribed
into C which uses 0 origin arrays. To fix it, we could subtract 1 from each
array index. However we just want a quick fix to see if it works, so after line
46 add the following line:

47 a--; /* Quick hack to make array 1 origin - fixme */

This may not be portable on some segmented architectures so don't try it on
your PC emulator. Fortunately the ARM is non-segmented.

Quit, edit, compile, link and test again:

*sort test

Well, there was no stack backtrace that time, but did it sort the file?

*type test

What you see now depends on whether you used the assembly language
version of cistrcmp or the C version. If you used the C version the file
should be sorted correctly, but if you used the assembly language version it
will look something like this:

Edward
Francis
Fred
Harry
Ian
Jim
Lionel
Lee
Martin
Noel
Roger
Sheila

Lionel and Lee are in the wrong order, so back to ASD yet again. But before
that we had better restore the original input file .

The Acorn Source-level Debugger 111

112

*copy sortinput test
*asd so r t test
ARM source-level debugger, version 1.00
Object program file sort

We have a fairly good idea of where the problem is since it worked with the
C version of cistrcmp and didn't work with the assembly language version.
However, suppose that we didn't know that. Given that the output is almost but
not quite sorted correctly we would naturally have suspicions about the
comparison function . We could replace cistrcmp with strc mp in the
source, recompile, relink and compare the output but there is an easier way.
We want to substitute strcmp for cistrcmp, so we set a breakpoint on the
first instruction of cistrcmp; when that breakpoint occurs we set the PC

s trcmp and continue. Fortunately this can all be done with one command.

ASD : br @cistrcmp do {p c strcmp ; g)

The do clause on the break command is executed whenever the breakpoint
occurs.

Note the use of @cistrcmp here instead of cistrcmp. @c istrc mp refers
to a low-level symbol, cis t r c mp refers to a high-level symbol. Both may be
present together. In this case there is only one cistrcmp since it was
generated by an assembly language routine but you still need to use an @

symbol before it. If both symbols existed, it would be fatal to use ci strcmp
instead of @cistrcmp. High-level procedure symbols point a few words into
the procedure (after the frame initialisation); low-level procedure symbols
point to the first instruction, which is where we want to break.

ASD: g
Program terminated normally

Well, the program finished OK, so let's look at the output:

ASD: *type test
Edward
Francis
Fred
Harry
Ian

Jim
Lee

Lionel
Martin
Noel
Roger
Sheila

The Acorn Source-level Debugger

It is sorted correctly so the problem is with our assembly language
cistrcmp. Copy the input file again and reload the image.

ASD : *copy sorti nput test
ASD : load sort test

Now we must tell ASD we want to debug an assembly language procedure.
To do this we use the language none command. We'll also se lect
hexadecimal.

ASD : lang n o ne ; base 16

Now we'll take a look at that cistrcmp routine.

ASD : l cistrcmp
cistrcmp$$Base

Ox00013a98 : Oxe1a03000 . 0 a mov r3 , r0
Ox00013a9c : Oxe4d10001 .. Qd ldrb rO , [r1], #1
Ox00013aa0 : Oxe4d32001 Sd ldrb r2 , [r3] , #1
Ox00013aa4 : Oxe2422041 A Bb sub r2,r2,#&41
Ox00013aa8 : Oxe352001a .. Rc cmp r2 , #&1a
Ox00013aac : Ox32822020 .2 addcc r2 , r2 , #&20
Ox00013ab0 : Oxe2400041 A . @b sub rO,r0 , #&41
Ox00013ab4 : Oxe350001a . . Pc cmp rO , #&la
Ox00013ab8 : Ox32800020 .. 2 addcc rO,r0 , #&20
Ox00013abc : Oxe0520000 . . R ' subs rO , r2 , rO
Ox00013ac0 : OxllbOfOOe . pO. movnes pc , r14
Ox00013ac4 : Oxe2820041 A . . b add r0 , r2 , #&41
Ox00013ac8 : Ox1afffff3 s ... bne &00013a9c (cistrcmp$$Base + Ox4)
Ox00013acc : Oxe1b0f00e . pOa movs pc , r14

RTSK$$Data
Ox00013ad0 : Ox00000028 (.. . andeq rO , rO , rS , lsr #32
Ox00013ad4: Ox00008080 andeq rS , rO , rO , lsl #1
Ox00013ad8: Ox000122dc \ " muleq r1 , r12 , r2
Ox00013adc: Ox000084a0 andeq r8 , rO , rO , lsr #9
Ox00013ae0: Ox000084a8 (... andeq r8 , rO,r8,lsr #9
Ox00013ae4: OxOOOOOOOO andeq rO , rO , rO

The problem seemed to be that it only compares the first letter correctly so
we'll set a breakpoint immediately after we find that the first letters are
equal. That is at location Ox13ac4.

ASD : br @13ac4
ASD : g

Stopped at breakpoint #1 in $ROOT
cistrcmp$$Base + Ox2c
>Ox00013ac4 : Oxe2820041 A . . b add

T ake a look at the registers:

The Acorn Source-level Debugger

r0 , r2,#&41

113

Command summary

114

ASD: r

RO OxOOOOOOOO Rl Ox0001a4c6 R2 Ox00000025 R3 Ox000la4cl
R4 Ox0001a428 RS OxOOOOOOOc R6 OxOOOOOOOl R7 Ox00000003
R8 Ox00000004 R9 Ox0001a4c5 RlO Ox00014734 Rll Ox00018448
R12 Ox00000003 Rl3 Ox0001841c R14 Ox20008178 RlS Ox60013ac4
Flags : N = 0 , z = 1 , c = 1 , v = 0

RO 0 since the first letters were equal. R2 is some letter - 'A'. So to find
out what letter we type

ASD : pr/%c r2+ ' A'
f

It 's the letter 'F', so it's comparing Fred and Francis. Let's step on:

ASD : s
Stepped to $ROOT
cistrcmp$$Base + Ox30
>Ox00013ac8 : Oxlafffff3 s ... bne

and take a look at the registers:

ASD : r

RO Ox00000066 Rl Ox0001a4c6
R4 Ox0001a428 RS OxOOOOOOOc
R8 Ox00000004 R9 Ox0001a4c5
R12 Ox00000003 R13 Ox0001841c
Flags : N = 0 , z = 1 , c = 1 , v = 0

&00013a9c (cistrcmp$$Base + Ox4)

R2 Ox00000025 R3 Ox0001a4cl
R6 OxOOOOOOOl R7 Ox00000003
RlO Ox00014734 Rll Ox00018448
R14 Ox20008178 RlS Ox60013ac8

The Z flag is set, so it's going to fall through the BNE. T his is wrong; the
routine should be looping back to compare the rest of the characters. Studying
the previous instruction (which was supposed to set the Z flag) we notice that
we have omitted the S on the ADD instruction which tells the ARM to set the
flags based on the result of the instruction. So that line should read:

ADDS r0 , r2 ,#"A"

So exit, edit, reassemble and relink. The sort program should now work .
Alternatively you can just use the C version of cistrcmp, since it is exactly
the same size (when not compiled - g) and runs just as fas t .

This section lists all the ASD commands in alphabetical order giving the
minimum abbreviation and a brief description for each .

al[ias] Define, undefine or list aliases

a[rguments] Display arguments of current procedure

The Acorn Source-level Debugger

ba[cktrace)

bas[e)

b[reak]

ca [11)

cm[dline)

co[ntext]

e[xamine)

fo[rmat)

fp[registers)

g[o)

h[elp)

i [n)

la[nguage)

le[t)

1 [ist)

loa [d)

lo[g)

o[bey)

ou[t)

PC or pc

pes

pr[int)

p[trace)

Display stack-frame history

Set the numeric base for integer constants

Set a breakpoint or display all breakpoints

Call a procedure or function

Set up arguments for debuggee

Set or reset the current context

Examine memory contents

Set default print format for integers

Display contents of floating point registers

Start or resume execution of the program

Display general or specific help information

Set context to current context's caller

Set current language name

Assign value to a variable

Disassemble memory

Load an image for debugging

Open a log file storing ASD commands and output

Execute the command lines stored in a text file

Set context to current context's caller

Set all or pc bits, respectively, ofRlS

Set procedure call standard

Display result of an arbitrary expression

Enable or disable procedure tracing

The Acorn Source-level Debugger 115

116

q[uit]

r[egisters]

ret[urn]

s[tep]

sy[mbols]

t[ype]

unb[reak]

unw[atch]

v[ariable]

void

w[atch]

wh[ere]

whi[le]

Leave the debugger, returning to the OS

Display contents of ARM registers

Return from active procedure, with optional result

Single step by one or n statements

Display variables in current context

Type portion of a text file

C lear a breakpoint

C lear a watchpoint

Display information about a variable

Call a procedure without printing a result

Set a watchpo int or display all watchpoints

Display current context

Conditionally re-execute current line

The Acorn Source-level Debugger

Other utilities

The Acorn Make Utility

This chapter describes two utilities: The Acorn Make Utility (AMU), which
assists with the management of programs made from several source and
object files, and Squeeze, which compresses runnable programs, typically to
about half their original size.

AMU assists with the management of programs, documents, applications, and
other complex, structured objects made from several components, each of
which needs to be translated or processed in some way, and which have some
consistency constraints between them. Most often, it is used to help manage
programs and the rest of this section is devoted to that application of it.

The input to AMU is a description, prepared by the user, of the system to be
managed . The description is written in a stylised way in a text file usually
called makefile. Of course, you can use any name you like, but AMU
doesn't have to be told to look for makefile and the use of this name is well
established in the programming community so if you use it too, others will
immediately understand what you are doing.

In its simplest form, a makefile consists of a sequence of entries which
describe:

• what each component of a system depends on

• what commands to execute to make an up-to-date version of that
component.

Everything else that you can express in a makefile is conceptually inessential,
designed to make the job of description easier for you.

AMU performs two functions for you. Firstly, it expands your description into
the simple form just described: a sequence of explicit rules about how to
make each component of a system. Then it decides which rules need to be

Other utilities 117

118

applied to make a completely up-to-date, consistent system. This it does by
deciding which components are older than any of the files they depend on. It
then executes the commands associated with those entries, in an appropriate
order.

An example will make all this clear, so let's look at part of the makefile for
AMU itself:

amu :

o . amu :

install :

o . amu $. 301.clx . o . clxlib
Link - o amu o . amu $. CLib.o.Stubs
squeeze amu

c . amu $. 301 . clx . o . c l xlib
cc - I$. 30l . clx c .amu

copy amu %. amu -cfq
remove amu
remove o . amu

Each entry consists of a target, followed by a colon character, followed by a
list of files on which the target depends, then followed by a list of commands
to execute to make the target up to date. Each command line begins with some
white space (if you want your makefile to be portable to UNIX systems you
should begin these lines with a Tab character) . For example, amu itself is
made from o . amu , the compiled AMU program, and a proprietary library
called $. 301 . clx . o . clxlib (on the author's computer) . If either of these
files is newer than amu , or if amu does not yet exist, then the commands
Link - o amu ... followed by Squeeze amu , should be executed.

But what if o . amu doesn't yet exist or is not itself up to date? AMU will
check this for you and will not use o . amu without first making it up to date .
To do this it will execute the command(s) associated with the o . amu entry.

Thus AMU might well execute for you:

cc - I$. 301 . clx c . amu
Link - o amu o . amu $.CLib . o . Stubs
squeeze amu

Other utilities

The AMU command

As you can see, if you do this more than once - for example, because you are
developing the program being managed by AMU - it will save you many
keystrokes! Now suppose you don't have $. 301 . clx . o . c lxlib. What then?
Well, the makefile doesn't instruct AMU how to make this so it can do no
more than tell you so. Either you must modify the makefile to say how to
make it or, more likely, obtain a copy ready-made.

Finally, observe the entry beginning install : . This doesn't appear to be
connected with any other entry. In fact, it isn't, but if you were to use the
command AMU install, AMU would try to make the 'install' thing rather
than the 'amu' thing (unless you say otherwise, AMU tries to make the first
target in the makefile). Now, install depends on nothing, so AMU
unconditionally executes the commands associated with it, which copy amu to
the library and remove the binary and the object files from the local
directory.

A precise description of a makefile is given below in the section entitled The
makefile.

The AMU command has the following syntax:

AMU options targetl target2 ...

options are as follows:

-f makefile

-i

-k

Read the system description from makefile (makefile defaults to
make file if omitted).

Ignore return codes from commands (equivalent to . IGNORE). AMU
usually stops if it encounters a bad (non-0) return code.

On encountering a bad (non-0) return code, don't give up, but continue
with each branch of the makefile that doesn't depend on the failing
command. For example, the C compiler is made from 28 separate object
files. After making a major modification which touches many files it
would be usual to use AMU -k, as each compilation is independent and

Other utilities 119

120

-n

there is probably little reason to abandon work just because one or two
fail. However, if any compilations fail, the link step must be abandoned,
as this depends on all compilations succeeding. AMU -k does just what is
required.

AMU - k and AMU - i are subtly different. AMU - k is appropriate when
commands set return codes properly and you want AMU to do as much
as possible while you get on with something else. AMU - i is strictly for
commands that don't or can't set the return code appropriately (for
example, textual difference programs traditionally set the return code to
1 to indicate successfully finding differences, and to 2 to indicate failures
such as a file not being found).

Don't execute any commands; just show on the screen what commands
would be executed, giving a reason for wanting to execute each one.

- o cmdfile

- s

-t

Don't execute commands to make the target(s) up to date; write them to
cmdfile for later execution using *Exec cmdfile or *Obey
cmdf i 1 e. For example, on the author's computer, the makefile for the
shared C library contains an 'install' entry which *RMKILLs
SharedCLibrary and re-installs the new one. However, it is a bad idea to
do this while AMU - which uses the shared C library - is running! It is
much safer to write the commands to a file and *Exec them.

Don't echo commands to be executed (equivalent to . SILENT). Usually,
AMU is reassuringly chatty. This will shut it up (but not the commands it
executes, the loquacity of which cannot be controlled by AMU).

Generate commands to make target(s) up to date by setting source time
stamps consistently (only guaranteed to succeed if all sources exist). The
*Stamp command is used to set time stamps.

targetl target2 ...

Other utilities

The makefile

A list of targets to be made or macro pre-definitions of the form
name=string. Targets are made in the order given. If no targets are
given, the first target found in make file is used.

Examples:

AMU ucc CC=ccl60a
AMU Link=Lnk6 5 0Exp
AMU install

A makefile consists of a sequence of logical lines. A logical line may be
continued over several physical lines provided each but the last line ends with
a \ . For example:

This is a comment line \
continued o n the ne x t physical line \
and on the next , but not thereafter .

Comments are ignored by AMU. A comment is introduced by a hash
character # and runs to the end of the logical line.

Otherwise there are four kinds of non-empty logical lines in a makefile:

• dependency lines

• command lines

• macro definition lines

• rule and other special lines.

Dependency lines have the form:

space - separated- list-of- targets COLON space-separated-list-of-prerequisites .

For example:

amu : o . amu $. 30l. c lx.o.clxlib
o . d35 o . d36 o . d37 : h . util

A dependency line cannot begin with white space. Spaces before the : are
optional, but some white space must follow to distinguish
and prerequisites from : as part of a RISC OS filename.

For example:

Other utilities

separating targets

121

122

adfs::4.$.library.amu: o.amu ...

(Although a space after the is not required by UNIX's make utility,
omission of it is rare in UNIX makefiles).

A line with multiple targets is shorthand for several lines, each with one
target and the same righthand side (and the same associated commands, if
any). Multiple dependency lines referring to the same target accumulate,
though only one such line may have commands associated with it (AMU
would not know in what order to execute the commands otherwise). For
example:

amu :
amu :

o .amu
$. 301 . clx . o . clxlib

is exactly equivalent to the single line form given earlier. In general, the
single line form is easier for you to write whereas the multi-line form is more
readily generated by a program (for example, cc - M c . foo will generate
a list of lines of the form o . foo : h. thing, one for each # include
thing . h in c . foo). Command lines immediately follow a dependency line
and begin with white space.

For maximum compatibility with UNIX makefiles ensure that the first
character of every command line is a Tab. Otherwise one or more spaces will
do. A semi-colon may be used instead of a new line to introduce commands.
This is often used when there are no prerequisites and only a single command
associated with a target. For example:

clean :; wipe o .* -cfq

Note that, in this case, no white space need follow the ..

Macro definition lines are lines of the form:

macro-n ame = some text to the end of the logical line

For example:

CC = nee
CFLAGS= -fah - c -I $. clib
LD Link
LIB $.CLib . o.clxlib $.CLib.o.Stubs
CLX $. 30l . clx

Other utilities

Command execution

The = can be surrounded with white space, or not, to taste. Thereafter,
wherever $ {name} or $ (name) is encountered, if name is the name of a
macro then the whole of $ {name} is replaced by its definition . A reference
to an undefined macro simply vanishes. An example which uses the above
macro definitions, and which is taken from the makefile for AMU itself, is:

amu : a rnu . o $ (CLX) . o . cl x lib
$ (LD) - o a rnu $(LFLAGS) o . arnu $(LIB}

which expands to

amu : arnu . o $. 30l . clx . o . clxlib
Li nk - o arnu o . a rnu $. CLib . o . clxlib $. CLib . o . Stubs

Note that $ { LFLAGS} expands to nothing.

Macros can also be defined on AMU's command line. For example:

* AMU " LFLAGS=- v -map - xref "

would be equivalent to a line

LFLAGS=-v - map - xref

at the beginning of the makefile (the additional quotes tell the C library's
command line processor to treat this whole argument as a single word, even
though it contains spaces).

By using macros intelligently, you can minimise the effort needed to move
makefiles from computer to computer, dealing with varying locations for
prerequisites, for example; or you can just centralise what would otherwise be
distributed through many lines of text. It is obviously much easier to add - g
to a CFLAGS= line to make a debuggable version of the compiler than it is to
add - g to 28 separate cc commands! Similarly, using $ (CC) and CC=cc,
rather than just cc , makes it very easy to use a different version of cc; just
change the definition of the macro. Whilst this may not seem very useful in a
small makefile, it is common practice when describing larger systems such as
the C compiler.

AMU executes commands by calling the C library function sy s tem, once for
each command to be executed. In turn, system issues an OS_CLI SWI to
execute the command. Before calling OS_CLI, system copies its caller to the
top end of application workspace and sets the workspace limit just below the

Other utilities 123

Advanced features

124

copied program. Any command executed by AMU therefore has less memory
to execute in than AMU had initially (the difference being the size of AMU
plus the size of AMU's working space).

When the command returns, AMU will be copied back to its original
location and will continue, unless, of course, the command set a bad (non-0)
value in the environmental variable Sys$ReturnCode (the C library
automatically sets Sys$ReturnCode to the value returned by main () or

passed to exit ()). If you have limited memory on your computer, or you are

trying to run AMU in a limited wimp slot under the desktop, and a program
(such as the C compiler) to be run by AMU needs more memory than is left,
you can instruct AMU not to execute commands directly, but to write them to
a file to be executed later (see the - o option described above). Of course, in
this case, execution is not terminated or modified (for example, AMU - i,
described above) by a non-0 return code from a command.

As noted earlier, AMU - o is also appropriate when one of the commands
would otherwise perturb the running AMU (for example, by installing a new
shared C library module in your computer).

Finally, note that there is a RISC OS command length limit of 255 characters.
This is imposed by the OS_CLI SWI and is warned of by AMU if you try to
exceed it. This limit may be found troublesome when importing makefiles
from other environments such as UNIX (where the corresponding limit is
often lOKb!). A common cause of problems here is very big link commands,
referring to many object files. To avoid this limitation, many Acorn utilities
will accept either an input pattern or an input file containing a list of
filenames. The linker, in fact, accepts both (see the chapter entitled The
Linker for further details).

File naming

To help you move MS-DOS and UNIX makefiles to RISC OS, or to develop
makefiles under RISC OS for export to MS-DOS or UNIX, both AMU and
the C compiler accept three styles of file naming:

RISC OS native:

UNIX-like:
MS-DOS-like:

$.30l.cfe.c.pp
/301 I cfe/pp . c
\301\cfe\pp.c

" .inc1ude .h. defs
.. /inc1ude/defs .h
.. \inc1ude\defs .h

Other utilities

(All three of these examples refer to the same two RISC OS files.) The
linker offers more limited support - in essence, it recognises thing 0 o and

o 0 thing as referring to the same RISC OS file (o 0 thing). In practice,

object files almost always live locally (that's the only place the RISC OS
and UNIX C compilers will put one) so this support is fairly complete.

AMU will even accept a mixture of naming styles, though good taste
demands that this practice be deprecated.

Of course, the mapping between different naming styles cannot be complete
(consider the UNIX analogue of adfs:: 0 0$0 Library or
net# 1 0 2 51 : s rc o amu). However, it is usually sufficient to take much of the
hard work out of moving reasonably portable makefiles.

VPATH

Usually, AMU looks for files relative to the current directory or in places
implicit in the filename. The example given earlier contains the line:

amu: amuoo $o30loclxoooclxlib

which refers to@ 0 o 0 amu (in@ 0 o) and$ 0 clx 0 o 0 clxlib (in$ 0 clx 0 o).

Sometimes, particularly when dealing with multiple versions of large
systems, it is convenient to have a complete set of object files locally, a few
sources locally, but most sources in a central place shared between versions.
For example, we can build different versions of the C compiler this way. If
the macro VPA TH is defined, then AMU will look in the list of places
defined in it for any files it can't find in the places implicit in their names.
For example, we might have compiler sources in somewhere 0 arm,
somewhere 0 mip, somewhere 0 cfe and put the compiler makefile in
somewhere 0 ccriscos.lt might contain the following VPATH definition:

and then dependency lines like:

Oopp:
oocg:

Other utilities

CoPP
cocg

note that UNIX VPATHs
separate path elements
with colons, not spaces

Aocfeocopp, via VPATH
Aomipococg, via VPATH

125

126

Rule patterns, . SUFFIXES,$@, $*, $<and$?

All the examples given so far have been written out longhand, with explic it
rules for making targets. In fact, AMU can make inferences if you supply the
appropriate rule patterns. These are specified using special target names
consisting of the concatenation of two suffixes from the pseudo-dependency
. SUFFIXES. This sounds very complicated, but is actually quite simple. For
example:

. SUFFIXES :
amu :
. c. 0 :;

. 0 . c
o . amu
$(CC) $(CFLAGS) -o $@c . $*

(Note the order here: . c . o makes a . o- like thing from a . c- like thing).

The rule pattern . c . o describes how to make . o- like things from . c- like
things. If, as in the above fragment, there is no explicit entry describing how to
make a . o- like thing (o . amu, in the above example) AMU will apply the
first rule it has for making .o- like things. Here, order is determined by order
in the . SUFFIXES pseudo-dependency. For example, suppose . SUFFIXES
were defined as . o . c . f and that there were two rules, . c . o : . . . and
. f . o : . . . Then AMU would choose the . c . o rule because . c precedes . f
in the .SUFFIXES dependency. In applying the . c . o rule, AMU infers a
dependence on the corresponding . c-like thing - here c . amu. So, in effect, it
infers:

o . amu : c . amu
$(CC) $ (CFLAGS) - o o . amu c.amu

Note that, in the commands, $@ is replaced by the name of the target and $ *
by the name of the target with the 'extension' deleted from it. In a similar
fashion, $< refers to the list of inferred prerequisites. So the above example
could be rewritten using the rule:

. c. 0 :; $(CC) $(CFLAGS) - o $@ $<

However, if a VP ATH were being used, this second form is obligatory.
Consider, for example, the fragment:

cc: o .pp
. c . 0 :; $(CC) $(CFLAGS) - o $@ $<

Other utilities

Miscellaneous features

There is no explicit rule for making o . pp, so AMU will apply the rule
pattern . c . o : This might expand to:

o.pp: ".cfe.c.pp
$(CC) $(CFLAGS) -o o .pp " . cfe.c.pp

which has a much more useful effect than:

$(CC) $(CFLAGS) -o o .pp c .pp

Finally, $? can be used in any command to stand for the list of prerequisites

with respect to which the target is out of date (which may be only some of the
prerequisites).

Use of ::

If you use : : to separate targets from prerequiSites, rather than : , the
righthand sides of dependencies which refer to the same targets are not
merged. Furthermore, each such dependency can have separate commands
associated with it. Consider, for example:

0. tl:: c.tl h.tl
cc -g -c c.tl # executed if o . tl is out of

date wrt c . tl or h.tl
0 . tl:: c.tl h.t2

cc -c c.tl # executed if o . tl is out of
date wrt c . tl or h.t2

The special pseudo-target . SILENT tells AMU not to echo commands to be
executed to your screen. Its effect is as if you used AMU - s.

The special pseudo-target . IGNORE tells AMU to ignore the return code
from the commands it executes. Its effect is as if you used AMU- i.

A command line, the first non-white-space character of which is @ is locally
silent; just that command is not echoed. This is only rarely useful.

A command line, the first non-white-space character of which is - has its
return code ignored when it is executed. This is extremely useful in makefiles
which use commands such as Diff (from the Software Developer's Toolbox)
which cannot set the return code conventionally.

Other utilities 127

Squeeze

Syntax

128

The special macro MFLAGS is given the value of the command line arguments
passed to AMU. This is most useful when a makefile itself contains AMU
commands (for example, when a system consists of a collection of subsystems,
each described by its own makefile). MFLAGS allows the same command line
arguments to be passed to every invocation of AMU, even the recursive ones.
For example, you might invoke AMU like this:

* AMU -k LIB=$.experiment.new . lib . grafix

and the makefile might contains entries like:

subsys 1: $(COMMON) $(HDRS1)
dir subsysl
amu $ (MFLAGS)
back

The Squeeze utility is a program compactor. It takes an AIF file (such as the
product of an execution of the Link program) and compresses it by a factor of
about two. The compressed program can be executed directly; it 'expands'
automatically when it is run. Squeezed programs can still be debugged using
ASD. The advantages of using Squeezed programs is that they occupy less
space on a floppy disc, and therefore take less time to load. This is also true
of programs loaded from a hard disc as expanding happens at about 1Mb
per second, faster than data can be loaded from a hard disc.

The exact saving in space depends on the contents of the image file. If it has
many zeros (eg a large area of initialised static data in a C program), a factor
of greater than two may be achieved. A hand-coded assembly language
program, which contains a greater diversity of instructions than one produced
by a compiler, would not achieve such a high compression ratio {3:2 being
typical).

Relocatable modules should not be squeezed.

The Squeeze command has the format:

Squeeze [-v] [-f] srce-file [dest-file]

If the -v flag is given, Squeeze will tell you a little about what is going on,
including the size of the squeezed image and how long it took to squeeze it.

Other utilities

Examples

- f instructs Squeeze to go ahead and squeeze things it thinks are already

squeezed. This is rarely useful.

The form with only one filename will reduce the given file in situ, overwriting
the original with the new compacted form. If you give both filenames , the
original is left intact, and the compressed version is stored in the second
named file.

Below are two examples of the use of Squeeze.

*squeeze - v mint
squeezing 'M INT ' to 'MINT'
encoding stats (0 , 1, 2 , 4) 9% 70 % 19% 0%
compressed size 17519 is 57 % of 30388
compression took 68csec , 44688 bytes/cpusec

squeeze mint lib . mint

Other utilities 129

130 Other utilities

Part 2 - Language issues

Implementation details

Identifiers

Data elements

This chapter gives details of those aspects of the compiler which the draft
ANSI standard identifies as implementation-defined, and some other points
of interest to programmers. They are grouped here by subject; the final
section - Implementation limits - lists the points required to be documented as
set out in appendix A.6 of the draft standard.

Identifiers can be of any length. They are truncated by the compiler to 256
characters, all of which are significant (the standard requires a minimum of
31).

The source character set expected by the compiler is 7 -bit ASCII, except that
within comments, string literals, and character constants, the full ISO 8859-1 8-
bit character set is recognised. At run time, the C library processes the full
ISO 8859-1 8-bit character set, except that the default locale is the C locale
(see the next chapter, Standard Implementation Definition). The ctype functions
therefore all return 0 when applied to codes in the range 160-255. By calling
setlocale (LC_CTYPE, "IS08859-1") you can cause the ctype functions
such as isupper () and is lower () to behave as expected over the full 8-
bit Latin alphabet, rather than just over the 7 -bit ASCII subset.

Upper and lower case characters are distinct in all identifiers, both internal
and external.

The sizes of data elements are as follows:

Type Size in bits
char 8
short 16

int 32

Implementation details 133

134

long

float
double
long double

32

32

64
64 (subject to future change)

all pointers 32

Integers are represented in two's complement form.

Data items of type char are unsigned by default, though they may be
explicitly declared as signed char or unsigned char (in -pee mode
chars are signed by default). Single-character constants are thus always
positive.

Floating point quantmes are stored in the IEEE format. In double and long
double quantities, the word containing the sign, the exponent and the most
significant part of the mantissa is stored at the lower machine address.

Limits: limits . h and float. h

The standard defines two headers, limits.h and float . h, which contain
constant declarations describing the ranges of values which can be
represented by the arithmetic types. The standard also defines minimum
values for many of these constants.

The following table sets out the values in these two headers on the ARM, and
a brief description of their significance. See the draft standard for a full
definition of their meanings.

Number of bits in smallest object that is not a bit field (ie a byte) :

CHAR BIT 8

Maximum number of bytes in a multibyte character, for any supported locale:

MB LEN MAX 1

Numeric ranges of integer types: The column on the left gives the numerical
values. The column on the right gives the bit patterns (in hexadecimal) that
would be interpreted as these values in C. When entering constants you must
be careful about the size and signed-ness of the quantity. Furthermore,
constants are interpreted differently in decimal and hexadecimal/octal. See
the ANSI standard or Harbison and Steele for more details.

Implementation details

CHAR MAX 255 Oxff
CHAR MIN 0 OxOO

SCHAR MAX 127 Ox7f
SCHAR MIN -128 Ox80 -
UCHAR MAX 255 Oxff

SHRT MAX 32767 Ox7fff
SHRT MIN -32768 Ox8000
USHRT MAX 65535 Oxffff

INT MAX 2147483647 Ox7fffffff
INT MIN -2147483648 Ox80000000 -
UINT MAX 4294967295 Oxffffffff

LONG MAX 2147483647 Ox7fffffff
LONG MIN -2147483648 Ox80000000
ULONG MAX 4294967295 Oxffffffff

Characteristics of floating point:

FLT RADIX 2 -
FLT ROUNDS 1

Ranges of floating types:

FLT MAX
DBL MAX
LDBL MAX
FLT MIN
DBL MIN
LDBL MIN

3.40282347e+38F
1.79769313486231571e+308
1.79769313486231571e+308
1.17549435e-38F
2.22507385850720138e-308
2.22507385850720138e-308

Ranges of base two exponents:

FLT MAX EXP
DBL MAX EXP
LDBL MAX EXP
FLT MIN EXP
DBL MIN EXP
LDBL MIN EXP

Implementation details

128
1024
1024

(-125)
(-1021)
(-1021)

135

Structured data types

Ranges of base ten exponents:

FLT MAX 10 EXP
DBL MAX 10 EXP
LDBL MAX 10 EXP
FLT MIN 10 EXP

- - -
DBL MIN 10 EX
LDBL MIN 10 EXP

38
308
308

(-37)
(-307)
(-307)

Decimal digits of precision:

FLT DIG
DBL DIG
LDBL DIG

6
15
15

Digits (base two) in mantissa:

FLT MANT DIG
DBL MANT DIG - -
LDBL MANT DIG

24
53
53

Smallest positive values such that (1.0 + x ! = 1.0):

FLT EPSILON
DBL EPSILON
LDBL EPSILON

1.19209290e-7F
2 . 2204460492503131e-1 6
2 . 2204460492503131e-1 6L

The draft standard leaves details of the layout of the components of
structured data types up to each implementation. The following points apply
to the Acorn C compiler:

• Structures are aligned on word boundaries.

• Structures are arranged with the first-named component at the lowest
address.

• char components are placed in adjacent bytes.

• short components are aligned at even-addressed bytes.

• All other arithmetic type components are word-aligned, as are pointers
and ints containing bitfields.

• The only valid type for bitfields is int, either signed or unsigned.

136 Implementation details

Pointers

Pointer subtraction

Arithmetic operations

• A bitfield of type int is treated as unsigned by default (signed by

default in -pee mode).

• Bitfields must be contained within the 32 bits of an int.

• Bitfields are allocated within ints so that the first field specified

occupies the least significant bits of the word.

The following remarks apply to pointer types:

• Adjacent bytes have addresses which differ by one.

• The macro NULL expands to the va lue 0.

• Casting between integers and pointers results in no change of

representation.

• The compiler faults casts between pointers to functions and pointers to

data (but not in -pee mode).

When two pointers are subtracted, the difference is obtained as if by the

expression:

((int)a- (int)b) I (int)sizeof(type pointed to)

If the pointers point to objects whose size is no greater than four bytes, word

alignment of data ensures that the division will be exact in all cases. For

longer types, such as doubles and structures, the division may not be exact

unless both pointers are to elements of the same array. Moreover the quotient

may be rounded up or down at different times, leading to potential

inconsistencies.

The compiler performs all of the 'usual arithmetic conversions' set out in the

draft standard.

The following points apply to operations on the integral types:

• All signed integer arithmetic uses a two's complement representation.

• Bitwise operations on signed integral types follow the rules which arise

naturally from two's complement representation.

• Right shifts on signed quantities are arithmetic.

Implementation details 137

• Any quantity which spec ifies the amount of a shift is treated as an
unsigned 8-bit value.

• Any value to be shifted is treated as a 32-bit value.

• Left shifts of more than 31 give a result of zero.

• Right shifts of more than 31 give a result of zero from an unsigned or
positive signed value, -1 from a negative signed value.

• The remainder on integer division has the same sign as the divisor.

• If a value of integral type is truncated to a shorter signed integral type,
the result is obtained by masking the original value to the length of the
destination and then sign extending.

• Conversions between integral types never cause exceptions to be raised.

• Integer overflow does not cause an exception to be raised .

• Integer division by zero causes an exception to be raised.

The following points apply to operations on floating types:

• The ARM's floating point registers are wider than stored floating point
numbers, so that some values may be computed to a slightly higher
precision than the stated limits imply.

• When a double or long double is converted to a fl oat , rounding is
to the nearest representable value.

• Conversions from floating to integral types cause exceptions to be raised
only if the value cannot be represented in a long int (or unsigned
long int in the case of conversion to an unsigned int) .

• Floating point underflow is not detected; any operation which underflows
returns zero.

• Floating point overflow causes an exception to be raised.

• Floating point divide by zero causes an exception to be raised .

138 Implementation details

Expression evaluation

Implementation limits

The compiler performs the 'usual arithmetic conversions' (promotions) set out
in the draft standard before evaluating any expression.

• The compiler may re-order expressions involving only associative and
commutative operators, even in the presence of parentheses.

• Between sequence points, the compiler may evaluate expressions in any
order, regardless of parentheses. Thus the side effects of expressions
between sequence points may occur in any order.

• Similarly, the compiler may evaluate function arguments m any order;
moreover, this order may change from release to release .

The draft standard sets out certain mtmmum 'translation limits' which a
conforming compiler must cope with; you should be aware of these if you are
porting applications to other compilers. A summary is given here . The 'mem'
limit indicates that no limit is imposed other than that of available memory.

Description Requirement Acorn C

Nesting levels of compound statements and
iteration/selection control structures 15 mem

Nesting levels of conditional compilation 6 mem
Declarators modifying a basic type 12 mem
Expressions nested by parentheses 127 mem
Significant characters

in internal identifiers and macro names 31 256
in external identifiers 6 256

External identifiers in one source file 511 mem
Identifiers with block scope in one block 127 mem
Macro identifiers in one source file 1024 mem
Parameters in one function definition/call 31 mem
Parameters in one macro definition/invocation 31 mem
Characters in one logical source line 509 no limit
Characters in a string literal 509 mem
Bytes in a single object 32767 mem
Nesting levels for #included files 8 mem
Case labels in a switch statement 255 mem
ate xi t -registered functions 32 33

Implementation details 139

140 Implementation details

Standard implementation definition

Translation (A.6.3.1)

Environment (A.6.3.2)

This chapter discusses aspects of the compiler which are not defined by the
ANSI draft standard, but are implementation-defined and must be
documented.

Appendix A.6 of the December 1988 draft standard collects together
information about portability issues; section A.6.3 lists those points which are
implementation defined, and directs that each implementation shall document
its behaviour in each of the areas listed. This chapter corresponds to appendix
A.6.3, answering the points listed in the appendix, under the same headings
and in the same order.

• Diagnostic messages produced by the compiler are of the form

" source-fi le ", line #: severity : explanation

where severity is one of

• warning: not a diagnostic in the ANSI sense, but an attempt by the
compiler to be helpful to you.

• error: a violation of the ANSI specification from which the compiler
was able to recover by guessing your intentions.

• serious error: a violation of the ANSI specification from which no
recovery was possible because the compiler could not reliably guess
what you intended.

• too many errors/fatal error: (for example, 'not enough memory')
these are not really diagnostics but indicates that the compiler limits
have been exceeded.

• The arguments given to main () are the words of the Command Line (not

including I/0 redirections, covered in the next point), delimited by white
spaces, except where the white space characters are contained in double

Standard implementation definition 141

Identifiers (A.6.3.3)

quotes. A white space character is any one of: space, form-feed, newline,
carriage return, tab or vertical tab (note that the RISC OS Command Line
interpreter filters out some of these).

A double quote or backs lash character (\) inside double quotes must be
preceded by a backslash character. An I/0 redirection will not be
recognised inside double quotes.

• The term 'interactive device' denotes either the keyboard or the screen
(: t t). No buffering is done on any stream connected to : t t unless l/0
redirection has taken place. If l/0 redirection other than to : t t has taken
place, full buffering is used except where both stdout and stderr
have been redirected to the same file, in which case line buffering is used .

• The standard input, output and error streams, stdin, stdout, and
stderr can be redirected at runtime in the following way. For example,
if copy is a compiled and linked program which simply copies the
standard input to the standard output, the fo llowing line:

*copy <infile >outfile 2>errfile

runs the program, redirecting stdin to the file infile, stdout to the
file out file and stderr to the file errfile.

The following table shows all allowed redirections:

O<filename

<filename

!>filename

>filename

2>filename

>&filename

1>&2
2>&1

read stdin from filename

read stdin from filename

write stdout to filename

write stdout to filename

write stderr to filename

write both stdout and stderr to filename
write stdout to wherever stderr is currently going
write stderr to wherever stdout is currently going

• 256 characters are significant in identifiers without external linkage.
(Allowed characters are letters, digits, and underscores.)

• 256 characters are significant in identifiers with external linkage.
(Allowed characters are letters, digits, and underscores.)

• Case distinctions are significant in identifiers with external linkage.

142 Standard implementation definition

Characters (A.6.3.4) • The characters in the source character set are ISO 8859-1 (Latin
Alphabet), a superset of the ASCII character set. The printable
characters are those in the range 32 to 126 and 160 to 255. All printable
characters may appear in string or character constants, and in comments.

• There are no locales implemented for which a multibyte character shift
state exists.

• The execution character set is identical to the source character set.

• There are four chars in an int. The bytes are ordered from least
significant at the lowest address to most significant at the highest address.

• There are eight bits in a character in the execution character set.

• All integer character constants that contain a character or escape sequence
are represented in the source and execution character set.

• Characters of the source character set in string literals and character
constants map identically into characters in the execution character set.

• No locale is used to convert multibyte characters into the corresponding
wide characters (codes) for a wide character constant.

• A character constant containing more than one character has the type int.
Up to four characters of the constant are represented in the integer value.
The first character contained in the constant occupies the lowest-addressed
byte of the integer value; up to three following characters are placed at
ascending addresses. Unused bytes are filled with the NULL (or "/0")
character. This is not portable.

• A 'plain' char is treated as unsigned (signed in -pee mode).

• Escape codes are:

Escape sequence Char value Description
\a 7 Attention (bell)

\b 8 Backspace
\f 12 Form feed
\n 10 Newline
\r 13 Carriage return
\t 9 Tab
\v 11 Vertical tab

\xnn nn ASCII code in hexadecimal
\nnn nnn ASCII code in octal

Standard implementation defi nition 143

Integers (A.6.3.5)

Floating point (A.6.3.6)

Arrays and pointers
(A.6.3.7)

Registers (A.6.3.8)

144

The representations and sets of values of the integral types are set out in the
previous chapter, in the section Data elements. Note also that:

• The result of converting an integer to a shorter signed integer, if the value
cannot be represented, is as if the bits in the original value which cannot
be represented in the final value were masked out, and the resulting
integer sign-extended. The same applies when you convert an unsigned
integer to a signed integer of equal length.

• Bitwise operations on signed integers yield the expected result given two's
complement representation. No sign extension takes place.

• The sign of the remainder on integer division is the same as defined for
the function di v () .

• Right shift operations on signed integral types are arithmetic.

The representations and ranges of values of the floating point types have been
given above in Implementation details, Data elements. Note also that:

• When a floating point number is converted to a shorter floating point one,
it is rounded to the nearest representable number.

• The properties of floating point arithmetic accord with IEEE 754.

The ANSI draft standard specifies three areas in which the behaviour of
arrays and pointers must be documented. The points to note are:

• The type size_t is defined as unsigned int.

• Casting pointers to integers and vice versa involves no change of
representation. Thus any integer obtained by casting from a pointer will
be positive.

• The type ptrdiff tis defined as (signed) int.

In the Acorn C compiler, you can declare up to six objects as having the
storage class register. There are six available registers, so declaring more
than six objects with register storage class will result in at least one of them
not being held in a register. It is advisable to declare no more than four. The
valid types are:

Standard implementation definition

Structures, unions,
enumerations and
bitfields (A.6.3.9)

Qualifiers (A.6.3.1 0)

Declarators (A.6.3.11)

•
•
•

any integer type

any pointer type

any structure type which contains only bitfields and which is no more than
one word long.

Note that other variables, not declared as register, may be held in

registers for extended periods, and that register variables may be held in
memory for some periods.

The Acorn C compiler handles structures in the following way:

• When a member of a union is accessed using a member of a different
type, the resulting value can be predicted from the representation of the
original type. No error is given.

• Structures are aligned on word boundaries. Characters are aligned in
bytes, shorts on even numbered byte boundaries and all other types,
except bitfields, are aligned on word boundaries. Bitfields are parts of
ints, themselves aligned on word boundaries.

• A 'plain' bitfield (declared as int) is treated as unsigned int
(signed int in -pee mode).

• A bitfield which does not fit into the space remaining in an int is placed
in the next int.

• The order of allocation of bitfields within ints is such that the first field
specified occupies the least significant bits of the word.

• Bitfields do not straddle storage unit (int) boundaries.

• The integer type chosen to represent the values of an enumeration type is
int (signed int).

A read or write constitutes an access to an object that has volatile-qualified
type.

The number of declarators that may modify an arithmetic, structure or union
type is limited only by available memory.

Standard implementation definition 145

Statements (A.6.3.12)

Preprocessing
directives (A.6.3.13)

Library functions
(A.6.3.14)

146

The number of case values in a switch statement is limited only by
memory.

• A single-character constant in a preprocessor directive cannot have a
negative value.

• The standard header files are contained within the compiler itself. The
mechanism for translating the standard suffix notation to an Acorn
filename is described in the chapter How to install and run the compiler.

• Quoted names for includable source files are supported. The rules for
directory searching are given in How to install and run the compiler.

• The recognized #pragrna directives and their meaning are described in
the section #pragma directives, in the chapter entitled Machine-specific
features.

• The date and time of translation are always available, so
TIME always give respectively the date and time.

DATE_ and

When using library functions in the Acorn C compiler, note the following
points:

• The macro NULL expands to the integer constant 0.

• If a program redefines a reserved external identifier, then an error may
occur when the program is linked with the standard libraries. If it is not
linked with standard libraries, no error will be detected.

• The assert () function prints the following message:

*** assertion failed: expression, file filename, line,
line-number

and then calls the function abo rt ().

Standard implementation definition

• The functions:

isalnum ()
isalpha ()
iscntrl ()
is lower ()
isprint ()
isupper ()
ispunct ()

usually test only for characters whose values are in the range 0 to 12 7
(inclusive). Characters with values greater than 127 return a result of 0 for
all of these functions, except iscntrl () which returns non-zero for 0 to
31, and 128 to 255.

After the call set locale (LC_CTYPE, " IS08859-1") the following
statements also apply for characters:

0 to 31 are control characters
128 to 159 are control characters
192 to 223 except 215 are upper case
224 to 255 except 247 are lower case
160 to 191, and 215 and 24 7 are punctuation

The results returned by the functions reflect this.

• The mathematical functions return the following values on domain errors:

Function Condition Returned value
1og(x) X <= 0 -HUGE VAL
log10(x) X <= 0 -HUGE VAL
sqrt(x) X < 0 -HUGE VAL
atan2(x , y) X = y = 0 -HUGE VAL
asin(x) abs (x) > 1 -HUGE VAL
acos(x) abs(x) > 1 -HUGE VAL

Where -HUGE VAL is written above, a number is returned which is
defined in the header h . math . Consult the errno variable for the error
number.

• The mathematical functions set errno to ERANGE on underflow range
errors.

• A domain error occurs if the second argument of fmod is zero, and
-HUGE VAL returned.

Standard implementation definition 147

• The set of signals for the signal () function is as follows:

SIGABRT Abort

SIGFPE
SIGILL

SIGINT
SIGSEGV

SIGTERM
SIGSTAK

Arithmetic exception
Illegal instruction

Attention request from user
Bad memory access

Termination request
Stack overflow

• The default handling of all the signals recognised is the printing of a
suitable message followed by a stack backtrace. This default behaviour
applies at program start-up.

• When a signal occurs, if func points to a function, the equivalent of
signal (sig, SIG_DFL) ; is first executed.

• If the S I GILL signal is received by a handler specified to the signal
function, the default handling is reset.

• The last line of a text stream does not require a terminating newline
character.

• Space characters written out to a text stream immediately before a
newline character do appear when read in.

• No null characters are appended to a binary output stream.

• The file position indicator of an append mode stream is initially placed
at the end of the file.

• A write to a text stream does not cause the associated file to be truncated
beyond that point.

• The characteristics of file buffering are as intended in the draft standard
(section 4.9.3).

• A zero-length file (on which no characters have been written by an output
stream) does exist.

• The validity of filenames is defined by the host computer's filing system.

• The same fi le can be opened many times for reading, and once for
writing or updating. A file cannot however be open for reading on one
stream and for writing or updating on another.

148 Standard implementation definition

• Local time zones and Daylight Saving Time are not implemented. The
values returned will always indicate that the information is not available.

• Note also the following points about library functions:

remove ()

rename ()

fprintf ()

fscanf ()

fscanf ()

ftell () and
fgetpos ()

perror ()

Error:

0
EDOM
ERANGE
ESIGNUM
others

calloc (),
malloc () and
realloc ()

abort ()

exit ()

getenv ()

Cannot remove an open file.

The effect of calling the rename () function when the
new name already exists is dependent on the host filing
system. Not all renames are valid: examples of invalid
renames include ("net :fi lel " , " net:$.file2")

and (" net: filel ", " adfs: file2").

Prints %p arguments in hexadecimal format (lower case)

as if a precision of 8 had been specified. If the variant
form (% #p) is selected, the number is preceded by the

character @.

Treats %p arguments identically to %x arguments.

Always treats the character - in a % [argument as a
literal character.

Set errno to the value of EDOM on failure.

Generates the following messages:

Message:
No error (errno = 0)

EDOM -function argument out of range
ERANGE- function result not representable
ESIGNUM- illegal signal number to signal() or raise()
Error code number has no associated message

If size of area requested is zero, NULL is returned.

C loses all open files, and deletes all temporary files.

The status returned by exit is the same value that was
passed to tt. For a definition of EXIT SUCCESS and

EXIT FAILURE refer to the header file stdlib . h.

Returns the value of the named RISC OS Environmental
variable, or NULL if the variable had no value.

Standard implementation definition 149

system ()

eg root = getenv (" C$libroot ");

if (root ==NULL) root = " $. arm . clib";

Used either to CHAIN to another application or built-in
command or to CALL one as a sub-program. When a
program is chained, all trace of the original program is
removed from memory and the chained program invoked.
If a program is called (which is the default if no
CHAIN : or CALL : precedes the program name - a
change from Release 2), the calling program and data
are moved in memory to somewhere safe and the callee
loaded and started up. The return value from the
system () call is - 2 (indicating a failure to invoke the
program) or the value of Sys$ReturnCode set by the
called program (0 indicates success).

strerror () The error messages given by this function are identical to
those given by the perror () function .

clock () Returns the time taken by the program since its
invocation, as indicated by the host's operating system.

150 Standard implementation definition

Portability

Introduction

General portability
considerations

The C programming language has gained a reputation for being portable
across machines, while still providing capabilities at a machine-specific level.
The fact that a program is written in C by no means indicates the effort
required to port software from one machine to another, or indeed from one
compiler to another. Obviously the most time-consuming task is porting
between two entirely different hardware environments, running different
operating systems with different compilers. Since many users of the Acorn C
compiler will find themselves in this situation, this chapter deals with a
number of issues you should be aware of when porting software to or from
our environment. The chapter covers the following:

• general portability considerations

• major differences between ANSI C and the well-known 'K&R' C as
defined in the book The C Programming Language, (first edition) by
Kernighan and Ritchie

• the toansi and topcc tools

• using the Acorn C compiler in 'pee' compatibility mode

• environmental aspects of portability.

If you intend your code to be used on a variety of different systems, there are
certain aspects which you should bear in mind in order to make porting an
easy and relatively error-free process. It is essential to single out items which
may make software system-specific, and to employ techniques to avoid non
portable use of such items. In this section, we describe general portability
issues for C programs.

Portability 151

Fundamental data types

Byte ordering

152

The size of fundamental data types such as char, int, long int, short
int and float will depend mainly on the underlying architecture of the
machine on which the C program is to run. Compiler writers usually
implement these types in a manner which best fits the architectures of
machines for which their compilers are targetted. For example, Release 5 of
the Microsoft C Compiler has int, short int and long int occupying 2,
2 and 4 bytes respectively, where the Acorn C Compiler uses 4, 2 and 4 bytes.
Certain relations are guaranteed by the ANSI C Standard (such as the fact
that the size of long int is at least that of short int), but code which
makes any assumptions regarding implementation-defined issues such as
whether int and long int are the same size will not be maximally
portable.

A common non-portable assumption is embedded in the use of hexadecimal
constant values. For example:

int i ;

i ~ i & Oxfffffff8 ; /* set bottom 3 bits to zero , assuming 32-bit int */

Such non-portability can be avoided by using:

int i ;
i ~ i & -Ox07; /* set bottom 3 bits to zero , whatever sizeof(int) */

If you find that some size assumptions are inevitable, then at least use a series
of assert calls when the program starts up, to indicate any conditions under
which successful operation is not guaranteed. Alternatively, write macros for
frequently-used operations so that size assumptions are localised and can be
altered locally.

A highly non-portable feature of many C programs is the implicit or explicit
exploitation of byte ordering within a word of store. Such assumptions tend to
arise when copying objects word by word (rather than byte by byte), when
inputting and outputting binary values, and when extracting bytes from or
inserting bytes into words using a mix of shift-and-mask and byte addressing.
A contrived example is the following code which copies individual bytes from
an int variable w into an int variable pointed to by p, until a null byte is
encountered. The code assumes that w does contain a null byte.

int a;
char *p = (char *)&a;
int w = AN ARBITRARY VALUE ; - -

Portability

Store alignment

Pointers and pointer
arithmetic

for (; ;)
{

if ((*p++

w >>= 8;
w) 0) break;

This code will only work on a machine with even (or little-endian) byte-sex,
and so is not portable. The best solution to such problems is either to write
code which does not rely on byte-sex, or to have different code to deal
appropriately with different byte-sex and to compile the correct variant
conditionally, depending on your target machine architecture.

The only guarantee given in the ANSI C Standard regarding alignment of
members of a s t ru ct, is that a 'hole' (caused by padding) cannot exist at the

beginning of the st ruct. The values of 'holes' created by alignment

restrictions are undefined, and you should not make assumptions about these
values. In particular, two structures with identical members, each having
identical values, will only be considered equal if field-by-field comparison
is used; a byte-by-byte, or word-by-word comparison may not indicate equality.

This may also have implications on the size requirements of large arrays of
st ructs. Given the following declarations:

#define ARRSIZE 10000
typedef struct

int i ;
short s;

) ELEM;
ELEM arr[ARRSIZE);

this may require significantly different amounts of store under, say, a
compiler which aligns ints on even boundaries, as opposed to one which

aligns them on word boundaries.

A deficiency of the original definition of C, and of its subsequent use, has
been the relatively unrestrained interchanging between pointers to different
data types and integers or longs. Much existing code makes the assumption

Portability 153

Function argument
evaluation

System-specific code

ANSI C vs K&R C

154

that a pointer can safely be held in either a long int or int variable.
While such an assumption may indeed be true in many implementations on
many machines, it is a highly non-portable feature on which to rely.

This problem is further compounded when taking the difference of two
pointers by performing a subtraction. When the difference is large, this
approach is full of possible errors. For this purpose, ANSI C defines a type
pt rdi f f _ t, which is capable of reliably storing the result of subtracting two
pointer values of the same type; a typical use of this mechanism would be to
apply it to pointers into the same array.

Whilst the evaluation of operands to such operators as & & and I I is defined
to be strictly left-to-right (including all side-effects), the same does not apply
to function argument evaluation. For example, in the fuction call f (i,
i ++) ; , the issue of whether the post-increment of i is performed after the
first use of i is implementation-dependent. In any case, this is an unwise form
of statement, since it may be decided later to implement f as a macro,
instead of a function.

The direct use of operating system calls is, as you would expect, non-portable.
If you use code which is obviously targetted for a particular environment, then
it should be clearly documented as such, and should preferably be isolated
into a system-specific module, which needs to be modified when porting to a
new machine or operating system. Pathnames of system files should be
#defined and not hard-coded into the program, and, as far as possible, all
processing of filenames should be made easy to modify. Many file
operations can be written in terms of the ANSI input/output library functions,
which will make an application more portable. Obviously, binary data files
are inherently non-portable, and the only solution to this problem may be the
use of some portable external representation.

The ANSI C Standard has succeeded in tightening up many of the vague areas
of K&R C. This results in a much clearer definition of a 'correct' C program.
However, if programs have been written to exploit particular vague features
of K&R C, then their authors may find surprises when porting to an ANSI C
environment. In the following sections, we present a list of what we consider
to be the major differences between ANSI and K&R C. These differences

Portability

Lexical elements

are at the language level, and we defer discussion of library differences until
a later section. The order in which this list is presented follows
approximately relevant parts of the ANSI C Standard Document.

The ordering of phases of translation is well defined. Of special note is the
preprocessor which is conceptually token-based (which does not yield the
same results as might naively be expected from pure text manipulation) .

A number of new keywords have been introduced with the following meanings:

• The type qualifier volatile which means that the object may be

modified in ways unknown to the implementation, or have other unknown
side effects. Examples of objects correctly described as vola t i 1 e

include device registers, semaphores and flags shared with asynchronous
signal handlers. In general, expressions involving volatile objects

cannot be optimised by the compiler.

• The type qualifier const which indicates that a variable's value should

not be changed.

• The type specifier void to indicate a 'non-existent' value for an

expression.

• The type specifier void * , which is a generic pointer to or from which

pointer variables can be assigned, without loss of information .

• The signed type qualifier, to sign any integral types explicitly.

• structs and unions have their own distinct name spaces.

• There is a new floating-point type long double .

• The K&R C practice of using long fl oat to denote double is now

outlawed in ANSI C.

• Suffixes U and L (or u and 1), can be used to explicitly denote
unsigned and long constants (eg. 32L, 64U, 1024UL etc).

• The use of 'octal' constants 8 and 9 (previously defined to be octal 10 and
11 respectively) is no longer supported.

• Literal strings are to be considered as read-only, and identical strings
may be stored as one shared version (as indeed they are, in the Acorn C
Compiler). For example, given:

Portability 155

Conversions

156

char *pl
char *p2

"hello";
"hello";

pl and p2 will point at the same store location, where the string hell o

is held. Programs should not therefore modify literal strings.

• Variadic functions (ie. those which take a variable number of arguments)
are declared explicitly using an ellipsis (...). For example, int
printf(const char *fmt, ...);

• Empty comments /**/ are replaced by a single space (use the
preprocessor directive ## to do token-pasting if you previously used /**/
to do this).

ANSI C uses value-preserving rules for arithmetic conversions (whereas K&R
C implementations tend to use unsigned-preserving rules). Thus, for example:

int f(int x , unsigned char y)
{

return (x+y)/2;

does signed division, where unsigned-preserving implementations would do
unsigned division.

Aside from value-preserving rules, arithmetic conversions follow those of
K&R C, with additional rules for long double and unsigned long
int. It is now also possible to perform float arithmetic without widening to
double. Floating-point values truncate towards zero when they are converted
to integral types.

It is illegal to attempt to assign function pointers to data pointers and vice
versa (even using explicit casts). The only exception to this is the value 0, as in:

int (*pfi) ();
pfi = 0;

Assignment compatibility between structs and unions is now stricter. For
example, consider the following:

Portability

Expressions

Declarations

Statements

struct {char a; int b;} vl;
struct {char a; int b;} v2;
vl = v2; /* illegal because vl and v2

strictly have different types*/

• structs and unions may be passed by value as arguments to functions.

• Given a pointer to function declared as, say, int (*pf i) () ; , then the
function to which it points can be called either by pfi () ; or (*pfi) () ; .

• Due to the use of distinct name spaces for st ruct and union members
absolute machine addresses must be explicitly cast before being used as
struct and union pointers. For example:

((struct io space *)OxOOff)->io buf;

Perhaps the greatest impact on C of the ANSI Standard has been the
adoption of function prototypes. A function prototype declares the return type
and argument types of a function. For example, int f (int, float) ;

declares a function returning int with one int and one float argument.
This means that a function's argument types are part of the type of that
function, thus giving the advantage of stricter argument type-checking,
especially across source files. A function definition (which is also a
prototype) is similar except that identifiers must be given for the arguments.
For example, int f (int i, float f);. It is still possible to use 'old

style' function declarations and definitions, but you are advised to convert to
the 'new style'. It is also possible to mix old and new styles of function
declaration. If the function declaration which is in scope is an old style one,
normal integral promotions are performed for integral arguments, and
floats are converted to double. If the function declaration which is in scope
is a new style one, arguments are converted as in normal assignment
statements.

Empty declarations are now illegal.

Arrays cannot be defined to have zero or negative size.

• ANSI has defined the minimum attributes of control statements (eg. the
minimum number of case limbs which must be supported by a compiler).
These values are almost invariably greater than those supported by PCCs,
and so should not present a problem.

Portability 157

Preprocessor

The topcc and toansi
tools

158

• A value returned from main () is guaranteed to be used as the program's
exit code.

• Values used in the controlling statement and labels of a switch can be
of any integral type.

• Preprocessor directives cannot be redefined.

• There is a new## directive for token-pasting.

• There is a 'stringise' directive # which produces a string literal from its
following characters. This is useful for cases where you want replacement
of macro arguments in strings.

• The order of phases of translation is well defined and is as follows for
the preprocessing phases:

Map source file characters to the source character set (this includes
replacing trigraphs).

2 Delete all newline characters which are immediately preceded by \.

3 Divide the source file into preprocessing tokens and sequences of
white space characters (comments are replaced by a single space).

4 Execute preprocessing directives and expand macros.

Any #include files are passed through steps 1-4 recursively.

The macro _STDC_ is #defined to 1 in ANSI-conforming compilers.

The programs topcc and toansi help you to translate C programs and
headers between the ANSI and PCC dialects of C. Only limited syntactic
translation is performed as described below; other differences must be
addressed in the source before or after translation. These programs enable
you to write (with care) programs which can be translated directly between
the PCC and ANSI dialects.

The command format is:

toansi [infile [outfile))

topcc [infile [outfile))

infile and out tile default to stdin and stdout respectively.

Portability

topcc

toansi

Function declarations of the form

type foo(args);

are rewritten as

type foo(/* args */);

Any comment tokens/* or *I in args are removed.

Function definitions of the form

type foo (type al, type a2) { ... }

are rewritten as

type foo(al, a2)
type al;
type a2;

A ... in the function definition is interpreted as int va alist. Full
translation of variadic functions is not performed.

type foo(void)

is rewritten as

type foo ()

Type void * is converted to VoidStar which can be typedef'd to
something suitable (eg char *).

unsigned and unsigned long
(unsigned) and (unsigned

(unsigned long) 300L).

constants are rewritten using the typecasts
long). (For example, 300ul becomes

Function declarations with embedded comments are rewritten without the
comment tokens. This reverses the action of topcc with regard to function

declarations (see above).

Function definitions of the form

Portability 159

pee compatibility mode

Language and
preprocessor compatibility

160

type foo(al, a2)
type al;
type a2;
{ ... }

are rewritten as

type foo(type al , type a2)

Ava alist in the function definition is translated to

type foo () is rewritten as type foo (void).

This section discusses the differences apparent when the compiler is used in
'PCC' mode. When given the -pee command line flag, the C compiler will
accept (Berkeley) UNIX-compatible C, as defined by the implementation of
the Portable C Compiler and subject to the restrictions which are noted below.

In essence, PCC-style C is K&R C, as defined by B Kernighan and 0 Ritchie
in their book The C Programming Language, with a small number of extensions
and clarifications of language features that the book leaves undefined.

In -pee mode, the Acorn C compiler accepts K&R C, but it does not accept
many of the old-style compatibility features, the use of which has been
deprecated and warned against for many years. Differences are listed briefly
below:

• Compound assignment operators where the sign comes first are
accepted (with a warning) by some PCCs. An example is =+ instead of
+=.Acorn C does not allow this ordering of the characters in the token.

• The = sign before a static initialiser was not required by some very
old C compilers. Acorn C does not support this syntax.

• The following very peculiar usage is found in some UNIX tools pre
dating UNIX Version 7:

struct { int a, b;};
double d;

d . a
d . b

0;
Ox ..•• ;

Portability

This is accepted by some UNIX PCCs and may cause problems when

porting old (and badly written) code.

• enums are less strongly typed than is usual under PCCs. e num is a non

K&R extension to C which has been standardised by ANSI somewhat

differently from the usual PCC implementation.

• chars are signed by default in -pee mode.

• In -pee mode, the compiler permits the use of the ANSI ' ' notation

which signifies that a variable number of formal arguments follow.

• In order to cater for PCC-style use of variadic functions, a version of the

PCC header file varargs. his supplied with the release.

• With the exception of enums, the compiler's type checking is generally
stricter than PCC's - much more akin to lint's, in fact. In writing the Acorn

C compiler, we have attempted to strike a balance between generating too

many warnings when compiling known, working code, and warning of poor
or non-portable programming practices. Many PCCs silently compile

code which has no chance of executing in just a slightly different

environment. We have tried to be helpful to those who need to port C

among machines in which the following varies:

• the order of bytes within a word (eg little-endian ARM, VAX, Intel
versus big-endian Motorola, IBM370)

• the default size of int (four bytes versus two bytes in many PC

implementations)

• the default size of pointers (not always the same as int)

• whether values of type char default to signed or unsigned c h a r

• the default handling of undefined and implementation-defined

aspects of the C language.

If the verbosity of cc -pee is found undesirable, all warnings can be

turned off by using the -w command line flag.

• The compiler's preprocessor is believed to be equivalent to UNIX's cpp,

except for the points listed below. Unfortunately, cpp is only defined by

its implementation, and although equivalence has been tested over a large

Portability 161

Standard headers and
libraries

ctype.h

errno.h

162

body of UNIX source code, completely identical behaviour cannot be
guaranteed. Some of the points listed below only apply when the - E

option is used with the cc command.

• There is a different treatment of whitespace sequences (benign).

• <nl> is processed by cc -E, but passed by cpp (making lines longer
than expected; cc -E only).

• Cpp breaks long lines at a token boundary; cc -E doesn't (this may
break line-size constraints when the source is later consumed by
another program cc - E only).

• The handling of unrecognised # directives is different (this is mostly
benign).

Use of the compiler in - pee mode precludes neither the use of the standard
ANSI headers built in to the compiler nor the use of the run-time library
supplied with the C compiler. Of course, the ANSI library does not contain
the whole of the UNIX C library, but it does contain almost all the
commonly used functions. However, look out for functions with different
names, or a slightly different definition, or those in different 'standard'
places. Unless the user directs otherwise using - j, the C compiler will
attempt to satisfy references to, say, <stdio . h> from its in-store filing
system.

Listed below are a number of differences between the ANSI C Library, and
the BSD UNIX library. They are placed under headings corresponding to the
ANSI header files:

There are no isascii () and toascii () functions, since ANSI C is not
character-set specific.

On BSD systems there are sys_nerr and sys_errlist () defined to give
error messages corresponding to error numbers. ANSI C does not have these,
but provides similar functionality via perror (const char *s), which
displays the string pointed to by s followed by a system error message
corresponding to the current value of errno.

Portability

math.h

signal.h

stdio .h

string.h

There is also char *strerror (int errnum) which, when given a

purported value of errno, returns its textual equivalent.

The #defined value HUGE, found in BSD libraries, is called HUGE VAL in

ANSI C. ANSI C does not have a sinh (), acosh (),a tanh ().

In ANSI C the signal () function's prototype is:

extern void (*signal(int, void(*func) (int))) (int);

signal () therefore expects its second argument to be a pointer to a function

returning void with one int argument. In BSD-style programs it is common

to use a function returning int as a signal handler. The PCC-style function

definitions shown below will therefore produce a compiler warning about an

implicit cast between different function pointers (since f () defaults to int

f ()). This is just a warning, and correct code will be generated anyway.

f(signo)
int signo;
{

main()
{

extern f();
signal(SIGINT, f);
}

sprintf () now returns the number of characters 'printed' (following UNIX

System V), whereas the BSD sprintf () returns a pointer to the start of the

character buffer.

The BSD functions ecvt (), fcvt () and gcvt () are not included in ANSI

C, since their functionality is provided by sprintf ().

On BSD systems, string manipulation functions are found m strings .h,

whereas ANSI C places them in <string. h>. The Acorn C Compiler also

has strings. h for PCC-compatibility.

Portability 163

stdlib . h

float . h

limits . h

locale . h

Environmental aspects

164

The BSD functions index () and rindex () are replaced by the ANSI
functions strchr () and strrchr () respectively.

Functions which refer to string lengths (and other sizes) now use the ANSI
type size_t , which in our implementation is unsigned int.

malloc() retums void *,ratherthanthechar *oftheBSD malloc().

A new header added by ANSI giving details of floating point precision etc.

A new header added by ANSI to give maximum and minimum limit values
for data types.

A new header added by ANSI to provide local environment-specific features.

When porting an application, the most extensive changes will probably need
to be made at the operating system interface level. The following is a brief
description of aspects of RISC OS and Acorn C which differ from systems
such as UNIX and MS-DOS.

The most apparent interface between a C program and its environment is via
the arguments to main () . The ANSI Standard declares that main () is a
function defined as the program entry point with either no arguments or two
arguments (one giving a count of command line arguments, commonly called
int argc, the other an array of pointers to the text of the arguments
themselves, after removal of input/output redirection, commonly called char
* argv []). As discussed in the Environment section of the Standard
Implementation Definition chapter, Acorn C supports the style of input/output
redirection used by UNIX BSD4.3, but does not support filename
wildcarding. Further parameters to main () are not supported.

Under UNIX and MS-DOS, it is common to use a third parameter, normally
called char *environ [] under UNIX and char *envp [] under
Microsoft C for MS-DOS, to give access to environment variables. The same
effect can be achieved in our system by using getenv () to request system
variable values explicitly; the names of these variables are as they appear
from a RISC OS *Show command. The string pointed at by argv [0] is the

Portability

program name (similar to UNIX and MS-DOS, except the name is exactly

that typed on invocation, so if a full pathname is used to invoke the program,

this is what appears in argv [0)).

File naming is one of the least portable aspects in any programming

environment. RISC OS uses ' . ' as a separator in pathnames and does not

support filename extensions (nor does UNIX, but existing UNIX tools make

assumptions about file naming conventions). The best way to simulate

extensions is to create a directory whose name corresponds to the required

extension (in a manner similar to the use of c and h directories for C source

and header files). RISC OS filename components are limited to 10 characters.

The Acorn C compiler has support for making Software Interrupt (SWI)

calls to RISC OS routines, which can be used to replace any system calls

which you make under UNIX or MS-DOS. The include file kernel. h has

function prototypes and appropriate t ypede fs for issuing SWis. Briefly, the

type kernel_swi_regs allows values to be placed in registers RO-R9,

and ke roe l_ sw i () can then be used to issue the SWI; a list of SWI

numbers can be found in the include file swis. h. File information, for

example, can be obtained in a way similar to stat () under UNIX, by

making an OS_GBPB SWI with RO set to the reason code 11 (full file

information). Most of the UNIX/MS-DOS low-level I/0 can be simulated in

this way, but the ANSI C run-time library provides sufficient support for

most applications to be written in a portable style. If the application is

running under the desktop, then limited piping facilities can be achieved by

using the calls wimp_transferblock and wimp_sendmessage to

synchronise the data transfer.

RISC OS does not support different memory models as in MS-DOS, so

programs which have been written to exploit this will need modification; this

should only require the removal of Microsoft C keywords such as near, far

and huge, if the program has otherwise been written with portability in mind.

Portability 165

166 Portability

ANSI library reference section

assert.h

ctype.h

The assert macro puts diagnostics into programs. When it is executed, if its
argument expression is false, it writes information about the call that failed
(including the text of the argument, the name of the source file, and the source
line number, the last two of these being, respectively, the values of the
preprocessing macros FILE and LINE) on the standard error
stream. It then calls the abort function. If its argument expression is true, the
assert macro returns no value.

If NDEBUG is #defined prior to inclusion of assert 0 h, calls to assert

expand to null statements. This provides a simple way to tum off the
generation of diagnostics selectively.

Note that <assert 0 h> may be included more than once in a program with
different settings of NDEBUG.

ctype 0 h declares several functions useful for testing and mapping
characters. In all cases the argument is an int, the value of which is
representable as an unsigned char or equal to the value of the macro EOF. If
the argument has any other value, the behaviour is undefined.

int isalnum(int c)

int isalph(int c)

int iscntrl(int c)

int isdigit(int c)

ANSI library reference section

Returns true if c is alphabetic or numeric

Returns true if c is alphabetic

Returns true if c is a control character (in
the ASCII locale)

Returns true if c is a decimal digit

167

errno.h

EDOM

168

int isgraph(int c)

int islower (int c)

int isprint (int c)

int ispunct(int c)

int isspace(int c)

int isupper(int c)

int isxdigit(int c)

int tolower(int c)

int toupper(int c)

Returns true if c is any printable character
other than space

Returns true if c is a lower-case letter

Returns true if c is a printable character (in

the ASCII locale this means Ox20 (space)~
Ox7E (tilde) inclusive).

Returns true if c is a printable character
other than a space or alphanumeric character

Returns true if c is a white space character
viz: space, newline, return, linefeed, tab or
vertical tab

Returns true if c is an upper-case letter

Returns true if c is a hexadecimal digit, ie in
0 ... 9, a ... f, or A ... F

Forces c to lower case if it is an upper-case
letter, otherwise returns the original value

Forces c to upper case if it is a lower-case
letter, otherwise returns the original value

This file contains the definition of the macro errno, which is of type
volatile int. It contains three macro constants defining the error
conditions listed below.

If a domain error occurs (an input argument is outside the domain over which
the mathematical function is defined) the integer expression errno acquires
the value of the macro EDOM and HUGE VAL is returned. EDOM may be used
by non-mathematical functions .

ANSI library reference section

ERANGE

ESIGNUM

float.h

limits.h

A range error occurs if the result of a function cannot be represented as a
double value. If the result overflows (the magnitude of the result is so large
that it cannot be represented in an object of the specified type), the function
returns the value of the macro HUGE_ VAL, with the same sign as the correct

value of the function; the integer expression errno acquires the value of the
macro ERANGE. If the result underflows (the magnitude of the result is so

small that it cannot be represented in an object of the specified type), the
function returns zero; the integer expression errno acquires the value of the
macro ERANGE. ERANGE may be used by non-mathematical functions.

If an unrecognised signal is caught by the default signal handler, errno is

set to ESIGNUM.

This file contains a set of macro constants which define the limits of
computation on floating point numbers. These are discussed in the chapter
entitled Implementation details.

This set of macro constants determines the upper and lower value limits for
integral objects of various types, as follows:

Object type Minimum value Maximum value
Byte (number of bits) 0 8
Signed char -1 28 127

Unsigned char 0 255

Char 0 255
Multibyte character (number 0 1

of bytes)
Short int -0 x8000 Ox7fff

Unsigned short int 0 65535

Int (-Ox7 fffffff) Ox7fffffff

Unsigned int 0 Oxffffffff
Long int (-Ox7 fffffff) Ox7fffffff

Unsigned long int 0 Oxffffffff

See also the chapter entitled Implementation details.

ANSI library reference section 169

locale.h

setlocale

lconv

170

This file handles national characteristics such as the diffe rent orderings
'month-day-year' (USA) vs 'day-month-year' (UK) .

char *setlocale(int category , const char *locale)

Selects the appropriate part of the program's locale as specified by the
category and locale arguments. The setlocale function may be used to
change or query the program's entire current locale or portions thereof. Locale
information is divided into the following types:

LC COLLATE
LC CTYPE
LC- MONETARY
LC NUMERIC
LC TIME
LC ALL

string collation
character type

monetary formatting
numeric string formatting
time formatting
entire locale

The locale string specifies which locale set of information is to be used. For
example,

setlocale(LC_MONETARY ," uk ")

would insert monetary information into the lconv structure. T o query the
current locale information , set the locale string to null and read the string
returned.

struct lconv *localeconv (void)

Sets the components of an object with type struct lconv with values
appropriate for the formatting of numeric quantit ies (monetary and otherwise)
according to the rules of the current locale. The members of the structure with
type char * are strings, any of which (except decimal_point) can point to
"" , to indicate that the value is not available in the current locale or is of zero
length. The members with type char are nonnegative numbers, any of which
can be CHAR MAX to indicate that the value is not available in the current
locale. The members included are described above.

ANSI library reference section

math.h

localeconv returns a pointer to the filled in object. The structure pointed to

by the return value will not be modified by the program, but may be
overwritten by a subsequent call to the localeconv function. In addition,

calls to the setlocale function with categories LC_ALL, LC_MONETARY, or
LC _NUMERIC may overwrite the contents of the structure.

This file contains the prototypes for 22 mathematical functions. All return the
type double.

Function

double acos(double x)

double asin(double x)

double atan(double x)

double atan2(double x ,

double cos(double x)

double sin(double x)

double tan(double x)

double cosh(double x)

double sinh(double x)

double tanh(double x)

double exp (double x)

double frexp (double x ,

Returns

arc cosine of x. A domain error
occurs for arguments not in the
range -1 to 1

arc sine of x. A domain error occurs

for arguments not in the range -1 to 1

arc tangent of x

double y) arctangentofy/ x

cosine of x (measured in radians)

sine of x (measured in radians)

tangent of x (measured in radians)

hyperbolic cosine of x

hyperbolic sine of x

hyperbolic tangent of x

exponential function of x

int *exp) the value x, such that x is a

double with magnitude in the
interval 0.5 to 1.0 or zero, and value
equals x times 2 raised to the power
*exp

double ldexp(double x , int exp) x times 2 raised to the

double log(double x)

double loglO(double x)

ANSI library reference section

power of exp

natural logarithm of x

log to the base 10 of x

171

setjmp.h

setjmp

longjmp

172

double modf (double x, double * iptr) signed fractional part of x.

double pow(double x, double

double sqrt (double x)

double ceil(double x)

double fabs(double x)

double floor(double x)

Stores integer part of x in object
pointed to by iptr.

y) x raised to the power of y

positive square root of x

smallest integer not less than x (ie

rounding up)

absolute value of x

largest integer not greater than x

(ie rounding down)

double fmod (double x, double y) floating-point remainder of x/y

This file declares two functions, and one type, for bypassing the normal
function call and return discipline (useful for dealing with unusual conditions
encountered in a low-level function of a program). It also defines the
jmp _ bu f structure type required by these routines.

int setjmp(jmp_buf env)

The calling environment is saved in env, for later use by the longjmp
function. If the return is from a direct invocation, the set jmp function returns
the value zero. If the return is from a call to the long jmp function, the
set jmp function returns a non-zero value.

void longjmp(jmp_buf env, int val)

The environment saved in env by the most recent call to set jmp is restored.

If there has been no such call, or if the function containing the call to
set jmp has terminated execution (eg with a return statement) in the interim,
the behaviour is undefined. All accessible objects have values as at the time
longjmp was called, except that the values of objects of automatic storage
duration that do not have volatile type and that have been changed between
the set jmp and longjmp calls are indeterminate.

ANSI library reference section

signal.h

As it bypasses the usual function call and return mechanism, the long jmp

function executes correctly in contexts of interrupts, signals and any of their

associated functions. However, if the longjmp function is invoked from a

nested signal handler (that is, from a function invoked as a result of a signal

raised during the handling of another signal), the behaviour is undefined.

After longjmp is completed, program execution continues as if the

corresponding call to set jmp had just returned the value specified by val.

The longjmp function cannot cause set jmp to return the value 0; if val is 0,

set jmp returns the value 1.

Signaldeclaresatype(sig_atomic t) andtwofunctions.

It also defines several macros for handling various signals (conditions that

may be reported during program execution). These are SIG_DFL (default

routine), SIG_IGN (ignore signal routine) and SIG ERR (dummy routine

used to flag error return from signal).

void (* signal (int sig, void (*func) (int))) (int)

Think of this as

typedef void Handler(int);
Handler *signal(int, Handler*);

Chooses one of three ways in which receipt of the signal number sig is to be

subsequently handled. If the value of func is S I G _ DFL, default handling for

that signal will occur. If the value of func is SIG IGN, the signal will be

ignored. Otherwise func points to a function to be called when that signal

occurs.

When a signal occurs, if func points to a function, first the equivalent of

signal (sig, SIG_DFL) is executed. (If the value of sig is SIGILL,

whether the reset to SIG_DFL occurs is implementation-defined (under

RISC OS and Arthur the reset does occur)). Next, the equivalent of

(*func) (sig); is executed. The function may terminate by calling the

abort, exit or long jmp function. If func executes a return statement and

ANSI library reference section 173

raise

stdarg.h

va_list

174

the value of sig was SIGFPE or any other implementation-defined value
corresponding to a computational exception, the behaviour is undefined.
Otherwise, the program will resume execution at the point it was interrupted.

If the signal occurs other than as a result of calling the abort or raise
function, the behaviour is undefined if the signal handler calls any function in
the standard library other than the signal function itself or refers to any
object with static storage duration other than by assigning a value to a volatile
static variable of type sig_atomic_t. At program startup, the equivalent of
signal (sig, SIG IGN) may be executed for some stgnals selected in an
implementation-defined manner (under RISC OS and Arthur this does not
occur); the equivalent of signal (sig , SIG_DFL) is executed for all other
signals defined by the implementation.

lf the request can be honoured, the signal function returns the value of
func for most recent call to signal for the specified signal sig. Otherwise,
a value of SIG ERR is returned and the integer expression errno is set to

indicate the error.

int raise(int /*sig*/)

Sends the signal sig to the executing program. Returns zero if successful, non
zero if unsuccessful.

This file declares a type and defines three macros, for advancing through a
list of arguments whose number and types are not known to the called
function when it is translated. A function may be called with a variable
number of arguments of differing types. Its parameter list contains one or
more parameters, the rightmost of which plays a special role in the access
mechanism, and will be called parmN in this description.

stdio . h is required to declare vfprintf () without defining va list.
Clearly the type _va list there must keep in step.

char *va_list[l]

An array type suitable for holding information needed by the macro va arg
and the function va _ end. The called function declares a variable (referred to
as ap) having type va list. The variable ap may be passed as an argument

ANSI library reference section

va_start

va_arg

va_end

to another functton. v a list is an array type so that when an object of that
type is passed as an argument it gets passed by reference, but this is not
required by the draft ANSI specification and cannot be relied on.

The va start macro will be executed before any access to the unnamed
arguments. The parameter a p points to an object that has type v a list. The

va_start macro initialises ap for subsequent use by va_arg and va_end.

The parameter parmN is the identifier of the rightmost parameter in the
variable parameter list in the function definition (the one just before the ,

0 0 0). If the parameter parmN is declared with the register storage class the
behaviour is undefined.

Returns: no value.

The va_arg macro expands to an expression that has the type and value of
the next argument in the call. The parameter ap is the same as the va list
ap initialised by va start. Each invocation of va arg modifies ap so that

successive arguments are returned in turn. The parameter type is a type name
such that the type of a pointer to an object that has the specified type can be
obtained simply by postfixing a * to type. If type disagrees with the type
of the actual next argument (as promoted according to the default argument
promotions), the behaviour is undefined.

Returns: The first invocation of the va _ arg macro after that of the
va start macro returns the value of the argument after that specified by

parmN. Successive invocations
succession. Care is taken
va_arg(ap , char) - whkh
caught. va arg (ap, float)
macro level.

return the values of the remaining arguments in

in va_arg so that illegal things like
may seem natural but are in fact illegal - are
is wrong but cannot be patched up at the C

#define va end(ap) ((void) (*(ap) =(char *)-256))

The va end macro facilitates a normal return from the function whose
variable argument list was referenced by the expansion of va start that
initialised the va list ap. If the va end macro is not invoked before the
return, the behaviour is undefined.

ANSI library reference section 175

stddef.h

stdio.h

176

This file contains a macro for calculating the offset of fields within a
structure. It also defines the pointer constant NULL and three types.

ptrdiff t(here int) the signed integral type of the result of
subtracting two pointers

size t (here unsigned int) the unsigned integral type
of the resu It of the s i z eo f operator

wchar_t(Dere int) also in stdlib . h. An integral type whose
range of va lues can represent distinct codes
for all members of the largest extended
character set specified among the supported
locales; the null character has the code value
zero and each member of the basic character
set has a code value when used as the lone
character in an integer character constant.

size t offsetof (type, member) Expands to an integral
constant expression that has type size_ t,
the value of which is the offset in bytes from
the beginning of a structure designated by
type, of the member designated by
member (if the specified member is a bit
field, the behaviour is undefined).

stdio declares two types, several macros, and many functions for performing
input and output. For a discussion on Streams and Files refer to sections 4.9.2
and 4.9.3 in the ANSI draft, or to one of the other references given in the
Introduction to this Guide.

fpos t

FILE

fpos _ t is an object capable of recording all information
needed to specify uniquely every position within a file.

is an object capable of recording all information needed to
control a stream, such as its file position indicator, a pointer
to its associated buffer, an error indicator that records
whether a read/write error has occurred and an end-of-file
indicator that records whether the end-of-file has been

ANSI library reference section

stdio functions

remove

rename

tmpfile

tmpnam

reached. The objects contained in the #if de f

system_io clause are for system use only, and cannot be

relied on between releases of C.

int remove(const char* filename)

Causes the file whose name is the string pointed to by filename to be

removed. Subsequent attempts to open the file will fail, unless it is created

anew. If the file is open, the behaviour of the remove function is

implementation-defined (under RISC OS and Arthur the operation fai ls).

Returns: zero if the operation succeeds, nonzero if it fails.

int rename(const char* old , const char* new)

Causes the file whose name is the string pointed to by old to be henceforth

known by the name given by the string pointed to by new. The file named

old is effectively removed. If a file named by the string pointed to by new

exists prior to the call of the rename function, the behaviour is

implementation-defined (under RISC OS and Arthur, the operation fai ls).

Returns: zero if the operation succeeds, nonzero if it fails, in which case if the

file existed previously it is still known by its original name.

FILE *tmpfile(void)

Creates a temporary binary file that will be automatically removed when it is

closed or at program termination. The file is opened for update.

Returns: a pointer to the stream of the file that it created. If the file cannot be

created, a null pointer is returned.

char *tmpnam(char * s)

Generates a string that is not the same as the name of an existing file . The

tmpnam function generates a different string each time it is called, up to

TMP _MAX times. If it is called more than TMP _MAX times, the behaviour is

implementation-defined (under RISC OS and Arthur the algorithm for the

ANSI library reference section 177

fclose

fflush

to pen

178

name generation works just as well after tmpnam has been called more than
TMP MAX times as before; a name clash is impossible in any single half year
period).

Returns: If the argument is a null pointer, the tmpnam function leaves its
result in an internal static object and returns a pointer to that object.
Subsequent calls to the tmpnam function may modify the same object. If the
argument is not a null pointer, it is assumed to point to an array of at least
L tmpnam characters; the tmpnam function writes its result in that array and
returns the argument as its value.

int fclose(FILE * stream)

Causes the stream pointed to by stream to be flushed and the associated
file to be closed. Any unwritten buffered data for the stream are delivered to
the host environment to be written to the file; any unread buffered data are
discarded. The stream is disassociated from the file. If the associated buffer
was automatically allocated, it is deallocated.

Returns: zero if the stream was succesfully closed, or EOF if any errors were
detected or if the stream was already closed.

int fflush(FILE * stream)

If the stream points to an output or update stream in which the most recent
operation was output, the fflush function causes any unwritten data for that
stream to be delivered to the host environment to be written to the file. If the
stream points to an input or update stream, the fflush function undoes the
effect of any preceding ungetc operation on the stream.

Returns: EOF if a write error occurs.

FILE *fopen(const char* filename, const char* mode)

Opens the file whose name is the string pointed to by filename, and
associates a stream with it. The argument mode points to a string beginning
with one of the following sequences:

r

w

a

open text file for reading
create text file for writing, or truncate to zero length
append; open text file or create for writing at eof

ANSI library reference section

rb

wb

ab

r+

w+

a+

r+b or rb+

w+b or wb+

a+b or ab+

open binary file for reading
create binary file for writing, or truncate to zero length
append; open binary file or create for writing at eof
open text file for update (reading and writing)
create text file for update, or truncate to zero length
append; open text file or create for update, writing at eof
open binary file for update (reading and writing)
create binary file for update, or truncate to zero length
append; open binary file or create for update, writing at
eof

• Opening a file with read mode (r as the first character in the mode
argument) fails if the file does not exist or cannot be read.

• Opening a file with append mode (a as the first character in the mode
argument) causes all subsequent writes to be forced to the current end of
file, regardless of intervening calls to the fseek function.

• In some implementations, opening a binary file with append mode (b as
the second or third character in the mode argument) may initially position
the file position indicator beyond the last data written, because of null
padding (but not under RISC OS or Arthur).

• When a file is opened with update mode (+ as the second or third
character in the mode argument), both input and output may be
performed on the associated stream. However, output may not be directly
followed by input without an intervening call to the fflush fuction or to
a file positioning function (f seek, fsetpos, or rewind), nor may input
be directly followed by output without an intervening call to the fflush
fuction or to a file positioning function, unless the input operation
encounters end-of-file.

• Opening a file with update mode may open or create a binary stream in
some implementations (but not under RISC OS or Arthur) . When
opened, a stream is fully buffered if and only if it does not refer to an
interactive device. The error and end-of-file indicators for the stream arc
cleared.

Returns: a pointer to the object controlling the stream. If the open operation
fails, f open returns a null pointer.

ANSI library reference section 179

freopen

setbuf

setvbuf

180

FILE *freopen(const char* filename, const char* mode,

FILE * stream)

Opens the file whose name is the string pointed to by filename and

associates the stream pointed to by stream with it. The mode argument is

used just as in the fopen function. The freopen function first attempts to

close any file that is associated with the specified stream. Failure to close the

file successfully is ignored. The error and end-of-file indicators for the
stream are cleared.

Returns: a null pointer if the operation fails. Otherwise, f reopen returns the

value of the stream.

void setbuf(FILE * stream, char * buf)

Except that it returns no value, the setbuf function is equivalent to the

setvbuf function invoked with the values _IOFBF for mode and BUFSIZ for

size, or if bu f is a null pointer, with the value _IONBF for mode.

Returns: no value.

int setvbuf (FILE * stream, char * buf, int mode, size t
size)

This may be used after the stream pointed to by stream has been associated

with an open file but before it is read or written. The argument mode

determines how stream will be buffered, as follows:

• _IOFBF causes input/output to be fully buffered.

• _IOLBF causes output to be line buffered (the buffer will be flushed
when a newline character is written, when the buffer is full, or when
interactive input is requested).

• _IONBF causes input/output to be completely unbuffered.

If buf is not the null pointer, the array it points to may be used instead of an

automatically allocated buffer (the buffer must have a lifetime at least as
great as the open stream, so the stream should be closed before a buffer that
has automatic storage duration is deallocated upon block exit). The argument
size specifies the size of the array. The contents of the array at any time are

indeterminate.

ANSI library reference section

fprintf

Returns: zero on success, or nonzero if an invalid value is given for mode or
size, or if the request cannot be honoured.

int fprintf (FILE * stream, const char * format, ...)

writes output to the stream pointed to by stream, under control of the string

pointed to by format that specifies how subsequent arguments are converted
for output. If there are insufficient arguments for the format, the behaviour is
undefined. If the format is exhausted while arguments remain, the excess
arguments are evaluated but otherwise ignored. The fpr int f function returns

when the end of the format string is reached. The format must be a multibyte
character sequence, beginning and ending in its initial shift state (in all
locales supported under RISC OS this is the same as a plain character
string). The format is composed of zero or more directives: ordinary multibyte
characters (not %), which are copied unchanged to the output stream; and
conversion specifiers, each of which results in fetching zero or more
subsequent arguments. Each convers ion specification is introduced by the
character %. For a complete description of the available conversion specifiers
refer to section 4.9.6.1 in the ANSI draft or to one of the other references in
the Introduction to this Guide. The minimum value for the maximum number of
characters that can be produced by any single conversion is at least 509.

A brief and incomplete description of conversion specifications is:

[flags] [field width] [.precision] specifier-char

flags is most commonly -, indicating left justification of the output item
within the field. If omitted, the item will be right justified.

fie 1 d width is the minimum width of field to use. If the formatted item is
longer, a bigger field will be used; otherwise, the item will be right (left)
justified in the field.

precision is the minimum number of digits to print for a d, i, o, u, x or X
conversion, the number of digits to appear after the decimal digit for e, E and
f conversions, the maximum number of significant digits for g and G
conversions, or the maximum number of characters to be written from strings
in an s conversion.

Either of both of field width and precision may be *, indicating that
the value is an argument to print f.

ANSI library reference section 181

printf

sprintf

fscanf

182

Thespecifier charsare:

d, i

o, u,

f

e, E

g, G

c
s

p

%

x, X

int printed as signed decimal
unsigned int value printed as unsigned octal, decimal or
hexadecimal
double value printed in the style [-] ddd. ddd
double value printed in the style [-] d. ddd ... e dd
double printed in for e format, whichever is more
appropriate
int value printed as unsigned char
char * value printed as a string of characters
void * argument printed as a hexadecimal address
write a literal %

Returns: the number of characters transmitted, or a negative value if an output
error occurred.

int printf (const char * format, ...)

Equivalent to fprintf with the argument stdout interposed before the
arguments to print f.

Returns: the number of characters transmitted, or a negative value if an output
error occurred.

int sprintf (char * s, const char * format, ...)

Equivalent to fprintf, except that the argument s specifies an array into
which the generated output is to be written, rather than to a stream. A null
character is written at the end of the characters written; it is not counted as
part of the returned sum.

Returns: the number of characters written to the array, not counting the
terminating null character.

int fscanf (FILE * stream , const char * format, ...)

Reads input from the stream pointed to by stream, under control of the
string pointed to by format that specifies the admissible input sequences
and how they are to be converted for assignment, using subsequent arguments
as pointers to ·the objects to receive the converted input. If there are

ANSI library reference section

scant

insufficient arguments for the format, the behaviour is undefined. If the
format is exhausted while arguments remain, the excess arguments are
evaluated but otherwise ignored. The format is composed of zero or more
directives, one or more white-space characters, an ordinary character (not %),
or a conversion specification. Each conversion specification is introduced by the
character %. For a description of the avai lable conversion specifiers refer to

section 4.9.6.2 in the ANSI draft, or to any of the references listed in the
Introduction to this Guide. A brief list is given above, under the entry for
fprintf.

If end-of-file is encountered during input, conversion is terminated. If end-of
file occurs before any characters matching the current directive have been
read (other than leading white space, where permitted), execution of the
current directive terminates with an input failure; otherwise, unless execution
of the current directive is terminated with a matching failure, execution of the
following directive (if any) is terminated with an input failure.

If conversions terminate on a conflicting input character, the offending input
character is left unread in the input strem. Trailing white space (including
newline characters) is left unread unless matched by a directive. The success
of literal matches and suppressed assignments is not directly determinable
other than via the o/on directive.

Returns: the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the fscanf function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of
an early conflict between an input character and the format.

int scanf (const char * format , ...)

Equivalent to fscanf with the argument stdin interposed before the
arguments to scan f.

Returns: the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the scanf function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of
an early matching failure.

ANSI library reference section 183

sscanf

vprintf

vfprintf

vsprintf

184

int sscanf (const char * s, const char * format, ...)

Equivalent to fscanf except that the argument s specifies a string from

which the input is to be obtained, rather than from a stream. Reaching the end
of the string is equivalent to encountering end-of-file for the f scan f function.

Returns: the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the scanf function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of
an early matching failure.

int vprintf(const char * format, va list arg)

Equivalent to printf, with the variable argument list replaced by arg, which

has been initialised by the va start macro (and possibly subsequent
va arg calls). The vprintf functton does not invoke the va end functton.

Returns: the number of characters transmitted, or a negative value if an output
error occurred.

int vfprintf(FILE * stream,const char * format, va list
arg)

Equivalent to fprintf, with the variable argument list replaced by arg,

which has been inittalised by the va start macro (and posstbly subsequent
va arg calls). The vfprintf function does not invoke the va_end function.

Returns: the number of characters transmitted, or a negative value if an output
error occurred.

int vsprintf(char * s, const char * format, va list arg)

Equivalent to sprintf, with the variable argument list replaced by arg,

which has been initialised by the va start macro (and posstbly subsequent
va arg calls). The vsprintf function does not invoke the va end function.

Returns: the number of characters written in the array, not counting the
terminating null character.

ANSI library reference section

fgetc

fgets

fputc

fpLJtS

int fgetc(FILE * stream)

Obtains the next character (if present) as an unsigned char converted to an int,
from the input stream pointed to by stream, and advances the associated file

position indicator (if defined).

Returns: the next character from the input stream pointed to by st r eam. If

the stream is at end-of-file, the end-of-file indicator is set and fgetc returns

EOF. If a read error occurs, the error indicator is set and fge tc returns EOF.

char *fgets(char * s, int n, FILE* stream)

Reads at most one less than the number of characters specified by n from the
stream pointed to by stream into the array pointed to by s . No additional
characters are read after a newline character (which is retained) or after end
of-file. A null character is written immediately after the last character read
into the array.

Returns: s if successful. If end-of-file is encountered and no characters have
been read into the array, the contents of the array remain unchanged and a
null pointer is returned. If a read error occurs during the operation, the array
contents are indeterminate and a null pointer is returned.

int fputc(int c, FILE * stream)

Writes the character specified by c (converted to an unsigned char) to the
output stream pointed to by stream, at the position indicated by the
asociated file position indicator (if defined), and advances the indicator
appropriately. If the file cannot support positioning requests, or if the stream
was opened with append mode, the character is appended to the output
stream.

Returns: the character written. If a write error occurs, the error indicator is set
and fputc returns EOF.

int fputs(const char* s, FILE* stream)

Writes the string pointed to by s to the stream pointed to by stream. The

terminating null character is not written.

Returns: EOF if a write error occurs; otherwise it returns a nonnegative value.

ANSI library reference section 185

getc

getchar

gets

putc

186

int getc(FILE * stream)

Equivalent to fgetc except that it may be (and is under RISC OS and
Arthur) implemented as a macro. stream may be evaluated more than once,
so the argument should never be an expression with side effects.

Returns: the next character from the input stream pointed to by stream. If
the stream is at end-of-file, the end-of-file indicator is set and getc returns
EOF. If a read error occurs, the error indicator is set and getc returns EOF.

int getchar(void)

Equivalent to getc with the argument stdin.

Returns: the next character from the input stream pointed to by stdin. If the
stream is at end-of-file, the end-of-file indicator is set and get char returns
EOF. If a read error occurs, the error indicator is set and get char returns
EOF.

char *gets(char * s)

Reads characters from the input stream pointed to by stdin into the array
pointed to by s, until end-of-file is encountered or a newline character is
read. Any newline character is discarded, and a null character is written
immediately after the last character read into the array.

Returns: s if successful. If end-of-file is encountered and no characters have
been read into the array, the contents of the array remain unchanged and a
null pointer is returned. If a read error occurs during the operation, the array
contents are indeterminate and a null pointer is returned.

int putc(int c, FILE * stream)

Equivalent to fputc except that it may be (and is under RISC OS and
Arthur) implemented as a macro. stream may be evaluated more than once,
so the argument should never be an expression with side effects.

Returns: the character written. If a write error occurs, the error indicator is set
and putc returns EOF.

ANSI library reference section

putchar

puts

ungetc

int putchar(int c)

Equivalent to putc with the second argument stdout.

Returns: the character written. If a write error occurs, the error indicator is set
and putc returns EOF.

int puts(const char* s)

Writes the string pointed to by s to the stream pointed to by stdout, and
appends a newline character to the output. The terminating null character is
not written.

Returns: EOF if a write error occurs; otherwise it returns a nonnegative value.

int ungetc(int c, FILE * stream)

Pushes the character specified by c (converted to an unsigned char) back onto
the input stream pointed to by stream. The character will be returned by the
next read on that stream. An intervening call to the f f 1 us h function or to a
file positioning function (fseek, fsetpos, rewind) discards any pushed

back characters. The external storage corresponding to the stream is
unchanged. One character pushback is guaranteed. If the unget function is

called too many times on the same stream without an intervening read or file
positioning operation on that stream, the operation may fail. If the value of c
equals that of the macro EOF, the operation fails and the input stream is
unchanged.

A successful call to the unget c function clears the end-of-file indicator. The
value of the file position indicator after reading or discarding all pushed
back characters will be the same as it was before the characters were pushed
back. For a text stream, the value of the fi le position indicator after a
successful call to the ungetc function is unspecified until all pushed-back

characters are read or discarded. For a binary stream, the file position
indicator is decremented by each successful call to the ungetc function; if its
value was zero before a ca ll, it is indeterminate after the call.

Returns: the character pushed back after conversion, or EOF if the operation
fails.

ANSI library reference section 187

fread

fwrite

fgetpos

188

size t fread (void * ptr , size_t size ,
size t nmemb , FILE * stream)

Reads into the array pointed to by ptr, up to nmemb members whose size is
specified by size, from the stream pointed to by stream. The file position
indicator (if defined) is advanced by the number of characters successfully
read. If an error occurs, the resulting value of the file position indicator is
indeterminate. If a partial member is read, its value is indeterminate. The
ferror or feof function shall be used to distinguish between a read error
and end-of-file .

Returns: the number of members successfully read, which may be less than
nmemb if a read error or end-of-fil e is encountered. If size or nmemb is
zero, f read returns zero and the contents of the array and the state of the
stream remain unchanged.

size t fwrite (const void* ptr,
size t size , size_t nmemb , FILE * stream)

Writes , from the array pointed to by ptr up to nmemb members whose size
is specified by size, to the stream pointed to by stream. The file pos ition
indicator (if defined) is advanced by the number of characters successfully
written. If an error occurs, the resulting value of the fil e position indicator is
indeterminate.

Returns: the number of members successfully written, which will be less than
nmemb only if a write error is encountered .

int fgetpos (F I LE *stream, fpos_t *pas)

Stores the current value of the file position indicator for the stream pointed to
by stream in the object pointed to by pas. The value stored contains
unspecified information usable by the fsetpos function for repositioning the
stream to its position at the time of the call to the f getpos function.

Returns: zero, if successful. Otherwise nonzero is returned and the integer
expression errno is set to an implementation-defined nonzero value (under
RISC OS or Arthur f getpos cannot fai l).

ANSI library reference section

fseek

fsetpos

ftell

int fseek(FILE * stream, long int offset, int whence)

Sets the file position indicator for the stream pointed to by stream. For a

binary stream, the new position is at the signed number of characters
specified by offset away from the point specified by whence. The

specified point ts the begmning of the ftle for SEEK SET, the current posltlon

in the file for SEEK_ CUR, or end-of-file for SEEK_ END. A binary stream

need not meaningfully support fseek calls with a whence value of

SEEK_ END, though the Acorn implementation does. For a text stream,

offset is either zero or a value returned by an earlier call to the ftell

function on the same stream; whence is then SEEK SET. The Acorn

implementation also allows a text stream to be positioned in exactly the same
manner as a binary stream, but this is not portable. The fseek function clears

the end-of-file indicator and undoes any effects of the unget c function on the

same stream. After an f seek call, the next operation on an update stream

may be either input or output.

Returns: non-zero only for a request that cannot be satisfied.

int fsetpos(FILE * stream , const fpos t *pas)

Sets the file position indicator for the stream pointed to by stream according

to the value of the object pointed to by pos, which is a value returned by an

earlier call to the fgetpos function on the same stream. The fsetpos

function clears the end-of-file indicator and undoes any effects of the unget c

function on the same stream. After an fsetpos call, the next operation on an

update stream may be either input or output.

Returns: zero, if successful. Otherwise nonzero is returned and the integer
expression errno is set to an implementation-defined nonzero value (under

RISC OS and Arthur the value is that ofEDOM in math. h).

long int ftell(FILE *stream)

Obtains the current value of the file position indicator for the stream pointed
to by stream. For a binary stream, the value is the number of characters

from the beginning of the file. For a text stream, the file position indicator
contains unspecified information, usable by the f seek function for returning

the fi le position indicator to its position at the time of the ft e 11 call; the

difference between two such return values is not necessarily a meaningful

ANSllibrary reference section 189

rewind

clearerr

feof

terror

perror

190

measure of the number of characters written or read. However, for the Acorn
implementation, the value returned is merely the byte offset into the file,
whether the stream is text or binary.

Returns: if successful, the current value of the file pos1t1on indicator. O n
failure, the ftell function returns - lL and sets the integer express ion errno
to an implementation-defined nonzero value (under RISC OS or Arthur
ftell cannot fail) .

void rewind (FILE * stream)

Sets the fil e position indicator for the stream pointed to by stream to the
beginning of the file. It is equivalent to (void) fseek (stream , OL ,
SEEK SET) except that the error indicator for the stream is also cleared.

Returns: no value.

void clearerr (FILE * stream)

C lears the end-of-file and error indicators for the stream pointed to by
stream. These indicators are cleared only when the file is opened or by an
explicit call to the clearerr function or to the rewind function .

Returns: no value.

int feof (FILE * stream)

T ests the end-of-file indicator for the stream pointed to by stream.

Returns: nonzero iff the end-of-file indicator is set for stream.

int ferror (FILE * stream)

T ests the error indicator for the stream pointed to by stream.

Returns: nonzero iff the error indicator is set for stream.

void perror (const char * s)

Maps the error number in the integer express ion errno to an error message.
It writes a sequence of characters to the standard error stream thus: first (if s
is not a null pointer and the character pointed to by s is not the null

ANSI library reference section

stdlib.h

at of

atoi

atol

strtod

character), the string pointed to by s followed by a colon and a space; then an
appropriate error message string followed by a newline character. The
contents of the error message strings are the same as those returned by the
st rerror function with argument errno, which are implementat ion-defined.

Returns: no value.

stdlib . h declares four types, several general purpose functions, and
defines several macros.

double atof (const char * nptr)

Converts the initial part of the string pointed to by nptr to double *
representation.

Returns: the converted value.

int atoi(const char* nptr)

Converts the initial part of the string pointed to by npt r to int representat ion.

Returns: the converted value.

long int atol (const char* nptr)

Converts the initial part of the string pointed to by npt r to long int
representation.

Returns: the converted value.

double strtod (const char * nptr, char ** endptr)

Converts the initial part of the string pointed to by nptr to double
representation. First it decomposes the input string into three parts: an initial,
possibly empty, sequence of white-space characters (as specified by the
is space function), a subject sequence resembling a floating point constant,
and a final string of one or more unrecognised characters, including the
terminating null character of the input string. It then attempts to convert the

ANSI library reference section 191

strtol

192

subject sequence to a floating point number, and returns the result. A pointer
to the final string is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

Returns: the converted value if any. If no conversion could be performed, zero
is returned. If the correct value is outside the range of representable values,
plus or minus HUGE_ VAL is returned (according to the sign of the value), and
the value of the macro ERANGE is stored in errno. If the correct value would

cause underflow, zero is returned and the value of the macro ERANGE is
stored in errno.

long int strtol(const char* nptr, char **endptr, int
base)

Converts the initial part of the string pointed to by nptr to long int
representation. First it decomposes the input string into three parts: an initial,
possibly empty, sequence of white-space characters (as specified by the
is space function), a subject sequence resembling an integer represented in
some radix determined by the value of base, and a final string of one or more
unrecognised characters, including the terminating null character of the input
string.

It then attempts to convert the subject sequence to an integer, and returns the
result. If the value of base is 0, the expected form of the subject sequence is
that of an integer constant (described precisely in the ANSI Draft, section
3.1.3.2), optionally preceeded by a + or - sign, but not including an integer
suffix. If the value of base is between 2 and 36, the expected form of the
subject sequence is a sequence of letters and digits representing an integer
with the radix specified by base, optionally preceeded by a plus or minus
sign, but not including an integer suffix. The letters from a (or A) through z
(or Z) are ascribed the values 10 to 35; only letters whose ascribed values are
less than that of the base are permitted. If the value of base is 16, the
characters Ox or OX may optionally precede the sequence of letters and digits
following the sign if present. A pointer to the final string is stored in the
object pointed to by endptr, provided that endptr is not a null pointer.

Returns: the converted value if any. If no conversion could be performed, zero
is returned. If the correct value is outside the range of representable values,
LONG_ MAX or LONG_ MIN is returned (according to the sign of the value), and
the value of the macro ERANGE is stored in errno.

ANSI library reference section

strtoul

rand

unsigned long int strtoul(const char* nptr, char**
endptr, int base)

Converts the initial part of the string pointed to by nptr to unsigned long int

representation. First it decomposes the input string into three parts: an initial,
possibly empty, sequence of white space characters (as determined by the
isspace function), a subject sequence resembling an unsigned integer
represented in some radix determined by the value of base, and a final

string of one or more unrecognised characters, including the terminating null
character of the input string.

It then attempts to convert the subject sequence to an unsigned integer, and
returns the result. lf the value of base is zero, the expected form of the
subject sequence is that of an integer constant (described precisely in the
ANSI Draft, section 3.1.3.2), optionally preceeded by a + or - sign, but not

including an integer suffix. If the value of base is between 2 and 36, the
expected form of the subject sequence is a sequence of letters and digits
representing an integer with the radix specified by base, optionally
preceeded by a + or - sign, but not including an integer suffix. The letters
from a (or A) through z (or Z) stand for the values 10 to 35; only letters
whose ascribed values are less than that of the base are permitted. If the
value of base is 16, the characters Ox or OX may optionally precede the
sequence of letters and digits following the sign, if present. A pointer to the
final string is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

Returns: the converted value if any. If no conversion could be performed, zero
is returned. If the correct value is outside the range of representable values,
ULONG MAX is returned, and the value of the * macro ERANGE is stored in
errno.

int rand(void)

Computes a sequence of pseudo-random integers in the range 0 to RAND_ MAX,

where RAND MAX = 0x7 fffffff.

Returns: a pseudo-random integer.

ANSI library reference section 193

srand

calloc

free

malloc

realloc

194

void srand (unsigned int seed)

Uses its argument as a seed for a new sequence of pseudo-random numbers to
be returned by subsequent calls to rand. If srand is then called with the
same seed value, the sequence of pseudo-random numbers will be repeated .
If rand is called before any calls to srand have been made, the same
sequence is generated as when s rand is first called with a seed value of 1.

void *calloc (size_t nmemb , size t size)

Allocates space for an array of nmemb objects, each of whose size is size.
The space is initialised to all bits zero.

Returns: either a null pointer or a pointer to the allocated space.

void free(void * ptr)

Causes the space pointed to by pt r to be deallocated (made available for
further allocation) . If ptr is a null pointer, no action occurs. O therwise, if
ptr does not match a pointer earlier returned by calloc, malloc or
realloc or if the space has been deallocated by a call to free or
realloc, the behaviour is undefined.

void *malloc (size_t size)

A llocates space for an object whose size is spec ified by size and whose
value is indeterminate.

Returns: either a null pointer or a pointer to the allocated space.

void *realloc (void * ptr , size t size)

C hanges the size of the object pointed to by ptr to the size spec ified by
size. The contents of the object is unchanged up to the lesser of the new and
old sizes. If the new size is larger, the value of the newly allocated portion of
the object is indeterminate. If ptr is a null pointer, the realloc function
behaves like a call to malloc for the spec ified size. O therwise, if ptr does
not match a pointer earlier returned by calloc, malloc or realloc , or if
the space has been deallocated by a call to free or realloc, the behav iour

ANSI library reference section

abort

atexit

exit

is undefined. If the space cannot be allocated, the object pointed to by pt r is

unchanged. If size is zero and pt r is not a null pointer, the object it points to
is freed.

Returns: either a null pointer or a pointer to the possibly moved allocated
space.

void abort(void)

Causes abnormal program termination to occur, unless the signal SIGABRT is
being caught and the signal handler does not return. Whether open output
streams are flushed or open streams are closed or temporary files removed is
implementation-defined (under RISC OS all these occur). An
implementation-defined form of the status 'unsuccessful termination' (1 under
RISC OS) is returned to the host environment by means of a call to
raise (SIGABRT).

int atexi t (void (* fun c) (void))

Registers the function pointed to by func, to be called without its arguments
at normal program termination. It is possible to register at least 32 functions .

Returns: zero if the registration succeeds, nonzero if it fails.

void exit(int status)

Causes normal program termination to occur. If more than one call to the
exit function is executed by a program (for example, by a function
registered with a texi t), the behaviour is undefined. First, all functions
registered by the atexi t function are called, in the reverse order of their
registration. Next, all open output streams are flushed, all open streams are
closed, and all files created by the tmpfile function are removed. Finally,

control is returned to the host environment. If the value of status is zero or
EXIT_SUCCESS, an implementation-defined form of the status 'successful
termination' (0 under RISC OS) is returned. If the value of status is
EXIT FAILURE, an implementation-defined form of the status 'unsuccessful
termination' (1 under RISC OS) is returned. Otherwise the status returned is
implementation-defined (the value of status is returned under RISC OS).

ANSI library reference section 195

getenv

system

bsearch

196

char *getenv(const char * name)

Searches the environment list, provided by the host environment, for a string
that matches the string pointed to by name. The set of environment names and
the method for altering the environment list are implementation-defined.

Returns: a pointer to a string associated with the matched list member. The
array pointed to is not modified by the program, but may be overwritten by a
subsequent call to the getenv function. If the specified name cannot be
found, a null pointer is returned.

int system(const char * string)

Passes the string pointed to by string to the host environment to be executed
by a command processor in an implementation-defined manner. A null
pointer may be used for string, to inquire whether a command processor
exists. Under RISC OS and Arthur, care must be taken, when executing a
command, that the command does not overwrite the calling program. To
control this, the string chain : or call : may immediately precede the
actual command. The effect of call : is the same as if call : were not
present. When a command is called, the ca ller is first moved to a safe place
in application workspace. When the callee terminates, the caller is restored.
This requires enough memory to hold caller and callee simultaneously. When
a command is chained, the caller may be overwritten. If the caller is not
overwritten, the caller exits when the caller terminates. Thus a transfer of
control is effected and memory requirements are minimised.

Returns: If the argument is a null pointer, the system function returns non
zero only if a command processor is avai lable. If the argument is not a null
pointer, it returns an implementation-defined value (under RISC OS 0 is
returned for success and -2 for failure to invoke the command; any other value
is the return code from the executed command).

void *bsearch(const void *key , const void* base ,
size t nmemb, size t size, int (* compar)
(const void* , const void*))

Searches an array of nmemb objects, the initial member of which is pointed to
by base, for a member that matches the object pointed to by key. The size of
each member of the array is specified by size. The contents of the array
must be in ascending sorted order according to a comparison function pointed

ANSI library reference section

qsort

abs

div

to by compar, which is called with two arguments that point to the key object
and to an array member, in that order. The function returns an integer less
than, equal to, or greater than zero if the key object is considered,
respectively, to be less than, to match, or to be greater than the array member.

Returns: a pointer to a matching member of the array, or a null pointer if no
match is found. If two members compare as equal, which member is matched
is unspecified.

void qsort(void *base, size t nmemb, size t size ,

int (* compar) (const void *, const void *))

Sorts an array of nmemb objects, the initial member of which is pointed to by
base. The size of each object is specified by size. The contents of the array
are sorted in ascending order according to a comparison function pointed to

by compar, which is called with two arguments that point to the objects being
compared. The function returns an integer less than, equal to, or greater than
zero if the first argument is considered to be respectively less than, equal to,
or greater than the second. If two members compare as equal, their order in
the sorted array is unspecified.

int abs (int j)

Computes the absolute value of an integer j. If the result cannot be
represented, the behaviour is undefined.

Returns: the absolute value.

div t div(int numer, int denom)

Computes the quotient and remainder of the division of the numerator numer

by the denominator denom. If the division is inexact, the resulting quotient is
the integer of lesser magnitude that is the nearest to the algebraic quotient. If
the result cannot be represented, the behaviour is undefined; otherwise, quot

* denom + rem equals numer.

Returns: a structure of type di v _ t, comprising both the quotient and the
remainder. The structure contains the following members: int quot; int
rem. You may not rely on their order.

ANSI library reference section 197

labs

ldiv

mblen

198

long int labs(long int j)

Computes the absolute value of an long integer j. If the result cannot be
represented, the behaviour is undefined.

Returns: the absolute value.

ldiv t ldiv(long int numer , long int denom)

Computes the quotient and remainder of the division of the numerator numer
by the denominator denom. If the division is inexact, the sign of the resulting
quotient is that of the algebraic quotient, and the magnitude of the resulting
quotient is the largest integer less than the magnitude of the algebraic
quotient. If the result cannot be represented, the behaviour is undefined;
otherwise, quot * denom + rem equals numer.

Returns: a structure of type 1 di v _ t , comprising both the quotient and the
remainder. The structure contains the following members: long int quot ;
long int rem. You may not rely on their order.

Multibyte character functions

The behaviour of the multibyte character functions is affected by the
LC _ CTYPE category of the current locale. For a state-dependent encoding,
each function is placed into its initial state by a call for which its character
pointer argument, s, is a null pointer. Subsequent calls with s as other than a
null pointer cause the internal state of the function to be altered as necessary.
A call with s as a null pointer causes these functions to return a nonzero value
if encodings have state dependency, and a zero otherwise. After the
LC CTYPE category is changed, the shift state of these functions is
indeterminate.

int mblen(const char * s, size_t n)

If s is not a null pointer, the mblen function determines the number of bytes
comprising the multibyte character pointed to by s. Except that the shift state
of the mbtowc funct ion is not affected, it is equivalent to
mbtowc ((wchar_t *) 0 , s , n).

ANSI library reference section

mbtowc

wctomb

Returns: If s is a null pointer, the mblen function returns a nonzero or zero
value, if multibyte character encodings, respectively do or do not have state
dependent encodings. If s is not a null pointer, the mblen function either
returns a 0 (if s points to a null character), or returns the number of bytes
that comprise the multi byte character (if the next n of fewer bytes form a
valid multibyte character), or returns -1 (if they do not form a valid
multibyte character).

int mbt owc(wchar t * pwc, const char * s, size_t n)

If s is not a null pointer, the mbtowc function determines the number of
bytes that comprise the multibyte character pointed to by s . It then
determines the code for value of type wchar _ t that corresponds to that
multibyte character. (The value of the code corresponding to the null
character is zero). If the multibyte character is valid and pwc is not a null
pointer, the mbtowc function stores the code in the object pointed to by pwc .
At most n bytes of the array pointed to by swill be examined.

Returns: If s is a null pointer, the mbtowc function returns a nonzero or zero
value, if multibyte character encodings, respectively do or do not have state
dependent encodings. If s is not a null pointer, the mbt o wc function either
returns a 0 (if s points to a null character), or returns the number of bytes
that comprise the converted multibyte character (if the next n of fewer bytes
form a valid multibyte character), or returns -1 (if they do not form a valid
multibyte character).

int wctomb(char * s, wchar t wchar)

Determines the number of bytes need to represent the multibyte character
corresponding to the code whose value is wchar (including any change in shift
state). It stores the multibyte character representation in the array object
pointed to by s (if s is not a null pointer). At most MB CUR_ MAX characters
are stored. If the value of wchar is zero, the wct omb function is left in the
initial shift state).

Returns: If s is a null pointer, the wctomb function returns a nonzero or zero
value, if multibyte character encodings, respectively do or do not have state
dependent encodings. If s is not a null pointer, the wct omb function returns

ANSI library reference section 199

mbstowcs

wcstombs

string.h

200

a -1 if the va lue of wchar does not correspond to a valid multibyte character,
or returns the number of bytes that comprise the multibyte character
corresponding to the value of wchar.

Multibyte string functions

The behaviour of the multibyte string functions is affected by the LC CTYPE
category of the current locale.

size t mbstowcs(wchar_t * pwcs , const char* s , size_t n)

Converts a sequence of multibyte characters that begins in the initial shift
state from the array pointed to by s into a sequence of corresponding codes
and stores not more than n codes into the array pointed to by pwcs. No
multi byte character that follow a null character (which is converted into a
coJe with value zero) will be examined or converted. Each multibyte
character is converted as if by a call to the mbtowc function . If an invalid
multibyte caharacter is found, mbstowcs returns (size_ t) - 1. Otherwise,
the mbstowcs function returns the number of array elements mod ified, not
including a terminating zero code, if any.

size t wcstombs(char * s , canst wchar t * pwcs, size t n)

Converts a sequence of codes that correspond to multibyte characters from the
array pointed to by pwcs into a sequence of multibyte characters that begins
in the initial shift state and stores these multibyte characters into the array
pointed to by s, stopping if a multibyte character would exceed the limit of n
total bytes or if a null character is stored. Each code is converted as if by a
call to the wctomb function, except that the shift state of the wctomb function
is not affected. If a code is encountered wbich does not correspond to any
valid multibyte character, the wcstombs function returns (size_t) - 1.

Otherwise, the wcstombs function returns the number of bytes modified, not
including a terminating null character, if any.

string . h declares one type and several fu nctions, and defines one macro
useful for manipulating character arrays and other objects treated as
character arrays. Various methods are used for determining the lengths of the

ANSI library reference section

memcpy

memmove

strcpy

strncpy

arrays, but in all cases a char * or void * argument points to the initial

(lowest addresses) character of the array. If an array is written beyond the

end of an object, the behaviour is undefined.

void *memcpy(void * s1 , const void* s2 , size t n)

Copies n characters from the object pointed to by s2 into the object pointed

to by s 1. If copying takes place between objects that overlap, the behaviour is

undefined.

Returns: the value of s 1.

void *memmove(void * s1 , const void* s2 , size t n)

Copies n characters from the object pointed to by s2 into the object pointed

to by s1. Copying takes place as if the n characters from the object pointed to

by s2 are first copied into a temporary array of n characters that does not

overlap the objects pointed to by s 1 and s2, and then the n characters from

the temporary array are copied into the object pointed to by s 1.

Returns: the value of s 1.

char *strcpy(char * s1 , const char * s2)

Copies the string pointed to by s2 (including the terminating null character)

into the array pointed to by s 1. If copying takes place between objects that

overlap, the behaviour is undefined.

Returns: the value of s 1.

char *strncpy (char * s1 , const char* s2 , size t n)

Copies not more than n characters (characters that follow a null character are

not copied) from the array pointed to by s2 into the array pointed to by s1.

If copying takes place between objects that overlap, the behaviour is

undefined. If terminating nul has not been copied in chars, no term nul is

placed in s2.

Returns: the value of s 1.

ANSI library reference section 201

strcat

strncat

memcmp

strcmp

202

char *strcat(char * s1 , canst char* s2)

Appends a copy of the string pointed to by s2 (including the terminating null
character) to the end of the string pointed to by s1. The initial character of s2
overwrites the null character at the end of s 1.

Returns: the value of s 1.

char *strncat(char * s1, canst char* s2, size t n)

Appends not more than n characters (a null character and characters that
follow it are not appended) from the array pointed to by s2 to the end of the
string pointed to by s1. The initial character of s2 overwrites the null
character at the end of s 1. A terminating null character is always appended
to the result.

Returns: the value of s 1.

The sign of a nonzero value returned by the comparison functions is
determined by the sign of the difference between the values of the first pair
of characters (both interpreted as unsigned char) that differ in the objects
being compared.

int memcmp(const void * s1 , canst void * s2 , size_t n)

Compares the first n characters of the object pointed to by s 1 to the first n
characters of the object pointed to by s2.

Returns: an integer greater than, equal to, or less than zero, depending on
whether the object pointed to by s 1 is greater than, equal to, or less than the
object pointed to by s2.

int strcmp (const char * s1 , canst char * s2)

Compares the string pointed to by sl to the string pointed to by s2.

Returns: an integer greater than, equal to, or less than zero, depending on
whether the string pointed to by s 1 is greater than, equal to, or less than the
string pointed to by s2.

ANSI library reference section

strncmp

strcoll

strxfrm

memchr

int strncmp (const char * s1, const char * s2 , size_t n)

Compares not more than n characters (characters that follow a null character
are not compared) from the array pointed to by s 1 to the array pointed to by
s2.

Returns: an integer greater than, equal to, or less than zero, depending on
whether the string pointed to by s 1 is greater than, equal to, or less than the
string pointed to by s2.

int strcoll (const char* s1, const char* s2)

Compares the string pointed to by s1 to the string pointed to by s2, both
mterpreted as appropriate to the LC COLLATE category of the current locale.

Returns: an integer greater than, equal to, or less than zero, depending on
whether the string pointed to by s 1 is greater than, equal to, or less than the
string pointed to by s2 when both are interpreted as appropriate to the
current locale.

size_t strxfrm (char * s1 , const char * s2, size t n)

Transforms the string pointed to by s2 and places the resulting string into the
array pointed to by s1. The transformation function is such that if the strcmp
function is applied to two transformed strings, it returns a value greater than,
equal to or less than zero, corresponding to the result of the strcoll
function applied to the same two original strings. No more than n characters
are placed into the resulting array pointed to by s1, including the terminating
null character. If n is zero, s 1 is permitted to be a null pointer. If copying
takes place between objects that overlap, the behaviour is undefined.

Returns: The length of the transformed string is returned (not including the
terminating null character). If the value returned is n or more, the contents of
the array pointed to by s 1 are indeterminate.

void *memchr(const void* s, int c , size t n)

Locates the first occurrence of c (converted to an unsigned char) in the initial
n characters (each interpreted as unsigned char) of the object pointed to by s.

ANSI library reference section 203

strchr

strcspn

strpbrk

strrchr

strspn

204

Returns: a pointer to the located character, or a null pointer if the character
does not occur in the object.

char *strchr(const char * s , int c)

Locates the first occurrence of c (converted to a char) in the string pointed to

by s (including the terminating null character). The BSD UNIX name for this

function is index () .

Returns: a pointer to the located character, or a null pointer if the character
does not occur in the string.

size t strcspn(const char * s1 , const char * s2)

Computes the length of the initial segment of the string pointed to by s 1

which consists entirely of characters not from the string pointed to by s2. The

terminating null character is not considered part of s2.

Returns: the length of the segment.

char *strpbrk(const char* s1 , const char* s2)

Locates the first occurrence in the string pointed to by s1 of any character

from the string pointed to by s2.

Returns: returns a pointer to the character, or a null pointer if no character
form s2 occurs in s1.

char *strrchr(const char * s , int c)

Locates the last occurrence of c (converted to a char) in the string pointed to

by s. The terminating null character is considered part of the string. The BSD

UNIX name for this function is rindex () .

Returns: returns a pointer to the character, or a null pointer if c does not occur

in the string.

size_t strspn(const char * s1 , const char * s2)

Computes the length of the initial segment of the string pointed to by s 1

which consists entirely of characters from the string pointed to by s2.

ANSI library reference section

strstr

strtok

memset

Returns: the length of the segment.

char *strstr(const char * s1, const char * s2)

Locates the first occurrence in the string pointed to by s 1 of the sequence of

characters (excluding the terminating null character) in the string pointed to
by s2.

Returns: a pointer to the located string, or a null pointer if the string is not
found.

char *strtok(char * s1, const char* s2)

A sequence of calls to the strtok function breaks the string pointed to by s1

into a sequence of tokens, each of which is delimited by a character from the
string pointed to by s2. The first call in the sequence has s1 as its first
argument, and is followed by calls with a null pointer as their first argument.
The separator string pointed to by s2 may be different from call to call. The

first call in the sequence searches for the first character that is not contained
in the current separator string s2. If no such character is found, then there are
no tokens in s1 and the strtok function returns a null pointer. If such a

character is found, it is the start of the first token. The strtok function then
searches from there for a character that is contained in the current separator
string. If no such character is found, the current token extends to the end of the
string pointed to by s 1, and subsequent searches for a token will fail. If such
a character is found, it is overwritten by a null character, which terminates the
current token. The strtok function saves a pointer to the following character,
from which the next search for a token will start. Each subsequent call, with a
null pointer as the value for the first argument, starts searching from the
saved pointer and behaves as described above.

Returns: pointer to the first character of a token, or a null pointer if there is
no token.

void *memset(void * s, int c, size t n)

Copies the value of c (converted to an unsigned char) into each of the first n

characters of the object pointed to by s.

Returns: the value of s.

ANSI library reference section 205

strerror

strlen

time.h

struct tm

206

char *strerror (int errnum)

Maps the error number in errnum to an error message string.

Returns: a pointer to the string, the contents of which are implementation
defined. Under RISC OS and Arthur the strings for the given errnums are as
follows:

• 0

• EDOM

• ERANGE

• ESIGNUM

• others

No error (errno = 0)

EDOM- function argument out of range

ERANGE - function result not representable

ESIGNUM - illegal signal number to signal () or
raise ()

Error code (errno) has no associated message) .

The array pointed to may not be modified by the program, but may be
overwritten by a subsequent call to the strerror function.

size t strlen (const char* s)

Computes the length of the string pointed to by s.

Returns: the number of characters that precede the terminating null character.

time . h declares two macros, four types and several functions for
manipulating time. Many functions deal with a calendar time that represents
the current date (according to the Gregorian calendar) and time. Some
functions deal with local time, which is the calendar time expressed for some
specific time zone, and with Daylight Saving Time, which is a temporary
change in the algorithm for determining local time.

st r u ct t m holds the components of a calendar time called the broken-down
time. The value of tm_isdst is positive if Daylight Saving Time is in effect ,
zero if Daylight Saving Time is not in effect, and negative if the information is
not available (as is the case under RISC OS).

ANSI library reference section

clock

difftime

mktime

struct tm {

int tm sec; /* seconds after the minute, 0 to 60
(0-60 allows for the occasional leap
second) *I

int tm min /* minutes after the hour, 0 to 59 *I
int tm hour /* hours since midnight, 0 to 23 */
int tm_mday /* day of the month, 0 to 31 *I
int tm mon /* months since January, 0 to 11 *I -
int tm_year /* years since 1900 *I
int tm_wday /* days since Sunday , 0 to 6 *I
int tm_yday /* days since January 1' 0 to 365 *I
int tm isdst /* Daylight Saving Time flag *I

} ;

clock t clock(void)

Determines the processor time used.

Returns: the implementation's best approximation to the processor time used
by the program since program invocation. The time in seconds is the value
returned, divided by the value of the macro CLOCKS _PER_ SEC. The value
(clock t) -1 is returned if the processor time used is not available. In the

desktop, clock () returns all processor time, not just that of the program.

double difftime(time_t timel, timet timeD)

Computes the difference between two calendar times: timel
Returns: the difference expressed in seconds as a double.

timet mktime(struct tm * timeptr)

timeD.

Converts the broken-down time, expressed as local time, in the structure
pointed to by t imept r into a calendar time value with the same encoding as
that of the values returned by the time function. The original values of the

tm _ wday and tm _yday components of the structure are ignored, and the
original values of the other components are not restricted to the ranges
indicated above. On successful completion, the values of the tm _ wday and
tm _yday structure components are set appropriately, and the other

ANSI library reference section 207

time

asctime

ctime

gmtime

208

components are set to represent the specified calendar time, but with their
values forced to the ranges indicated above; the final value of tm _ mday is not
set until tm _ mon and tm _year are determined.

Returns: the specified calendar time encoded as a value of type time_ t. If
the calendar time cannot be represented, the function returns the value
(time_t) -1.

time_t time(time t * timer)

Determines the current calendar time. The encoding of the value is
unspecified.

Returns: the implementation's best approximation to the current calendar
time. The value (time t) -1 is returned if the calendar time is not
available. If timer is not a null pointer, the return value is also assigned to
the object it points to.

char *asctime(const struct tm * timeptr)

Converts the broken-down time in the structure pointed to by timeptr into a
stringinthestyleSun Sep 16 01 :0 3 : 52 1973\n\0.

Returns: a pointer to the string containing the date and time.

char *ctime(const timet * timer)

Converts the calendar time pointed to by timer to local time in the form of a
string. It is equivalent to asctime (local time (timer)).

Returns: the pointer returned by the asct ime function with that broken-down
time as argument.

struct tm *gmtime(const time_t * timer)

Converts the calendar time pointed to by timer into a broken-down time,
expressed as Greenwich Mean Time (GMT) .

Returns: a pointer to that object or a null pointer if GMT is not available (it
is not available under RISC OS).

ANSI library reference section

localtime

strftime

struct tm *localtime(const timet * timer)

Converts the calendar time pointed to by timer into a broken-down time,
expressed a local time.

Returns: a pointer to that object.

size t strftime(char * s, size t maxsize, const char *
format, const struct tm * timeptr)

Places characters into the array pointed to by s as controlled by the string

pointed to by format. The format string consists of zero or more directives

and ordinary characters. A directive consists of a % character followed by a
character that determines the directive's behaviour. All ordinary characters
(including the terminating null character) are copied unchanged into the array.
No more than maxs i ze characters are placed into the array. Each directive is
replaced by appropriate characters as described in the following list. The
appropriate characters are determined by the LC TIME category of the
current locale and by the values contained in the structure pointed to by
timeptr.

Directive

%a
%A

%b

%B

%c
%d

%H

%I

%j
%m
%M

%p

%S
%U

%w

Replaced by

the locale's abbreviated weekday name
the locale's full weekday name
the locale's abbreviated month name
the locale's full month name
the locale's appropriate date and time representation

the day of the month as a decimal number (01-31)
the hour (24-hour clock) as a decimal number (00-23)
the hour (12-hour clock) as a decimal number (01-12)
the day of the year as a decimal number (001-366)
the month as a decimal number (01-12)

the minute as a decimal number (00-61)
the locale's equivalent of either AM or PM designation

associated with a 12-hour clock
the second as a decimal number (00-61)
the week number of the year (Sunday as the first day of

week 1) as a decimal number (00-53)
the weekday as a decimal number (O(Sunday) -6)

ANSI library reference section 209

210

%W

%x
%X

%y
%Y

%Z

%%

the week number of the year (Monday as the first day of
week 1) as a decimal number (00- 53)

the locale's appropriate date representation
the locale's appropriate time representation
the year without century as a decimal number (00-99)
the year with century as a decimal number
the time zone name or abbreviation, or by no character

if no time zone is determinable
%

If a directive is not one of the above, the behaviour is undefined.

Returns: If the total number of resulting characters including the terminating
null character is not more than maxsize, the strftime function returns the
number of characters placed into the array pointed to by s not including the
terminating null character. Otherwise, zero is returned and the contents of the
array are indeterminate.

ANSI library reference section

Part 3: Developing software
for RISC OS

How to write desktop applications in C

Some general principles

Event handling

In this chapter, you will learn how to construct desktop applications in C,
using the facilities provided by the RISC OS library (RISC_OSlib). You
will probably find it useful to scan through the contents of the library before
reading the chapter. Some familiarity with the Window Manager part of the
RISC OS Programmer's Reference Manual is also assumed. The description of
RISC_OSlib here is not exhaustive: it is intended to introduce some common
programming techniques used in desktop appl ications.

You are also advised to read the Application notes section of the Window
Manager chapter. This describes certain standards to which all desktop
applications must conform in order to have an appearance which is consistent
with the applications supplied by Acorn. Following these guidelines will
make your own applications look and feel like part of the same environment,
which makes them easier to learn and use.

The diagram over the page shows approximately how the various parts of the
RISC OS library fit together. The diagram is reproduced on one of the
reference cards; you may find it useful to refer to it as you work through this
chapter.

If you have read the Window Manager chapter in the RISC OS Programmer's
Reference Manual, you may be familiar with the idea of Wimp polling, as the
means whereby an application finds out what the window manager requires it
to do. In this method, an application uses a single polling loop, which must
work out which of its windows each request from the Wimp is associated with,
and take the appropriate action. RISC_OS!ib makes available an alternative
means of communicating with the Wimp, using functions called event handlers .
An application may register event handlers (in the form of C functions) for
windows, menus, icon bar icons, etc. It then calls a function in RISC_OSlib

How to write desktop applications in C 213

214

which processes events (ie polls the Wimp), and directs each event in turn to
the relevant event handler. Event handlers may be added and removed whilst
the application is running. This approach makes it easier to keep track of
which window, menu, or whatever, is associated with a window manager event.

Dialogue boxes
dbox

dboxlile
dboxquery
dboxtcol
file icon

'-------·-

Main WIMP functions
w1mp
wimp!

I
event

I

Standard menus and dialogue boxes
colourmenu

magnify

Loading and saving
xferrecv
xlersend
saveas L__ _____ _j

Low level operating system functions
OS

swi

I

I
I

Additional WIMP functions
bancon

L
menu

werr

coords
pointer

Operating system functions
spnte
font
akbd

bbc
colourtran
drawmod

typdat

I

II
Application resources

res

resspr l template

Draw files
drawfdiag
drawferror

drawfobj
drawttypes

Text editing
txt

txt edit
txtwin rellaneouJ trace

alarm
visdelay

msgs

When a call to register an event handler is made, an extra piece of data may
be registered with it. This value (or handle) is then passed as an argument to
the event handler when it is called by RISC_OSlib. It is sometimes
convenient to use this as a way of allowing an event handler to retain private
data. For example, you could use the same event handler for several windows,
the handle being a pointer to the data structure associated with the window.

How to write desktop applications in C

Windows and templates

Application resources

Developing an
application from scratch

The event handler would then be able to locate the data structure for the
window immediately, rather than having to work it out from the window
handle passed into the event handler.

In order to define the windows and dialogue boxes used by your program,
you can either set up data structures which correspond to those used by the
window manager SW!s, or you can use templates created by the template
editor, FormEd. The template editor is an application which allows you to
define windows on the screen, and save the definitions in a file ready for
loading by your application. This is the approach used in Acorn's own
applications, and you will find it makes the process of creating windows for
your applications much easier. FormEd is described in the next chapter.

Most desktop applications make use of a number of resource files. These
should be considered as an integral part of your application. You can find a
full list of the resource files typically used by an application in the
Application Notes section of the RISC OS Programmer's Reference Manual; the
following are usually present:

• !Boot *Run when the application directory is first
displayed

• !Run *Run to start the application

• !Runimage the executable code for the application

• !Sprites used for application and file icon sprites

• Sprites containing other sprites used by the application

• Templates containing window and dialogue box templates.

This section contains an example of how to develop an application from
scratch. You can use the description and the code given as a starting point for
writing your own applications. The example application is called
! WExample. It can be found on Disc 1 as $.Des kEgs.! WExample (the

source code is there too).

The application is very simple. When started, it places an icon on the icon
bar. The icon has a menu consisting of Info, which leads to a dialogue box
containing information about the program, and Quit which closes the program

How to write desktop applications in C 215

General form of a
desktop application

216

down. Clicking Select on the icon opens a window, which may be resized,
moved, closed, and so on, in the normal way. If the window is already open,
an error is reported. In itself, this is not a very useful program, but it
illustrates the basic principles of writing a program which uses the RISC OS
library.

The source code of the program is to be found on Disc as
$.Des kEgs 0 ! WExample 0 c 0 WExample. Fragments of the code are given in
this chapter to illustrate the points being described. You may also find it
useful to have a listing of the whole program available to see how it all fits
together.

The program illustrates the following:

• the general form of a desktop application

• how to initialise a desktop application

• how to create windows, icons and menus

• how to open a window, and respond to Wimp requests for it

• how to respond to user choices from a menu

• how to report errors to the user.

A Wimp application normally consists of initialisation of both the RISC OS
library and the application itself, followed by an event processing loop.
main () in c 0 WExample is an example. You will see from this that the final
step of the main function is to enter an infinite loop of calls to
event_process (). The application will be closed down as a result of a
call to the ANSI library function exit () elsewhere in the program. If you
don't like this approach, an alternative is to define a global flag and test it in
the event processing loop, for example:

/* --- global closedown flag --- */
BOOL all done ~ FALSE ;

I* --- the main event loop --- */

while (' all_done) event_process();

Note also that event_process () can automatically close down the
application. To do this, it keeps an active count. The active count is initally
zero; if it is zero again when event_process () is called, the application is
closed down. You can change the active count by calling the functions

How to write desktop applications in C

Initialising a desktop
application

Creating windows, icons
and menus

win activeinc () to increment it and win activedec () to decrement it.

Typically, you would call the first of these on opening a window, and the
second on closing it. When you call bar icon () to place an icon on the icon
bar, win activeinc () is called for you. If your application does not place
an icon on the icon bar, you must make sure you call win_a c tive in c ()

yourself before entering the event processing loop. See the description of the
win functions in the later chapter, RISC OS library reference section for more

details.

The initialisation of WExample occurs in example initialise(). The

first few lines initialise various parts of the RISC OS library:

I * RISC_OSlib i n itialisation * /
wimpt_i nit (" RISC_OSlib example "); / * Main Wimp initialisation */
res_init (" WExample "); I * Resources */
resspr_ i n it (); /* Application sprites */

template_init (); /* Templates */

dbox_i n it (); / * Dialog ue boxes * /

Most applications will start with something similar, although there may be
more or fewer parts of the library which need initialising. One point to note is
the use of the arguments to wimpt init() and r e s init().
wimpt _ ini t () uses its argument in any circumstances where the application
is to be referred to by name, for example in the task display, or in error
boxes. res_ in it () uses its argument to locate the application resources; in
this case they will be expected to be in a directory whose name can be found
from the system variable WExample$Dir. This variable must therefore be
set up in the ! Run file for the application, for example by:

*set WExample$Dir <Obey$Dir>

The remainder of example initialise() creates the window which will
be used in the program, sets up a menu to go with the icon, and places the icon
on the icon bar. We will consider these one by one.

Creating the window is very straightforward. A pointer to a window definition
read from the templates file is passed to wimp_ create_ wind(). An event
handler is then registered for the window. Here is the code to do it, from
example_initialise():

How to write desktop applications in C 217

218

/* Create the main window, and declare its event handler */
if (!example_ create_window (" MainWindow ", &example_win_handle))

return FALSE ; /* Window creation failed */
wi n_register_event_handler (example_win_handle , e xample_event_handler , 0);

The code for creating the window is in a separate function, so that we could
use it for creating other windows in a more complex program. It is as follows:

static BOOL example_create_window (char *name , wimp_w *handle)

wimp_wind *window ; /* Pointer to window definition */

/* Find t emplate for the win dow */
window= template_syshandle(name) ;
if (window == 0) return FALSE ;

/* Create the window , dealing with errors */
return (wimpt complain (wimp_create_wind (window , handle)) 0) ;

example_create_window() illustrates the value of using templates: all
the work needed to set up the window definition in the program is avoided .
The event handler will not be called unless the window is open; we will come
back to this later.

The next step is to create the menu. If possible, you should create all menus
during the initialisation. That way, when the user activates a menu, you can be
sure that it exists and can be displayed. This may not be possible in some
applications, because the menus have to change with circumstances, but you
will nearly always be able to create at least part of the menu tree . In
addition, clicking with Adjust when menus are created dynamically may fail,
for subtle reasons connected with when the window manager calls the menu
maker code.

The code to create the menu in the example is:

/* Create the menu tree */

if (example_menu = menu new("Example ", ">Info , Quit ") , example_menu)
return FALSE ; /* Menu create failed */

NULL)

Example is the name which appears in the title bar of the menu. menu . h
explains the syntax of the second argument to menu_ new () in detail. In this
case, >Info means that the menu entry for Info is to be marked as leading to
a submenu consisting of a dialogue box.

How to write desktop applications in C

Opening and maintaining
a window

If you want to check the menu before it is displayed, perhaps because you
want to tick or shade items in it, then instead of calling
event_attachmenu (), you can call event_attachmenumaker () with
the name of a function to be called just before the menu is displayed. See the
description of the file event. h in the RISC OS library reference section
chapter for details.

Finally, the icon is placed on the icon bar, and event hand lers registered for
it. There are two event handlers here: example iconclick (), which is
called when Select is clicked on the icon, and example_ menuproc () which
is called when a choice is made from the menu. The work of displaying the
menu is handled by RISC_OSlib . Here is the code:

/* Set up the icon on the icon bar , and register its event handlers */
bar icon(" !WExample", (int) resspr_area (), example_iconclick) ;
if (!event_attachmenu(win_ICONBAR , example_menu, example_menuproc, 0))

return FALSE ; /* Unable to attach menu •/

There are two points to note here. First, the sprite used for the icon will be
loaded from the 'Sprites' file in the application directory. The function
resspr area () returns a pomter to the sprite area Into which this file is
loaded. Second, event_attachmenu () is used to associate a menu with a
window by specifying the window handle. The value win_ ICONBAR is a
special window handle which is used to represent the icon bar.

The window is to be opened when the user clicks Select on the icon. As we
saw above, clicking Select calls the function example iconclick (), which
is as follows:

static vo1d example_iconclick(wimp_i icon)

icon= icon; / *We don ' t need the handle : this stops compiler warning*/

I* Open the window - only one allowed */
if (example_ window_open)

werr(FALSE, " Only one window may be opened ");
else

wimp_wstate state ;

/* Get the state of the window */
if (wimpt_complain (w imp_get_wind_state (example_win_handle , &sta te)) ~~ 0)

state.o . behind ~ -1 ; /* Make sure window is opened in front */

wimpt_noerr(wimp_open_window (&state.o));
example_window_open ~ TRUE ;

How to write desktop applications in C 219

220

You can ignore the lines of this up to the 'else' part for now: they just report
an error if the window is already open. When we open the window, we want
to make sure it is in front of any others on the screen. To do this, we read the
current state of the window with wimp_ get wind_s t ate (), and then
ensure that our window is behind the window with handl e -1 , ie in front of
all others. The window is actually opened with wimp_ open_ wi nd ().

Once the window is open, the event handler which we registered earlier will
be called by event _process () when the window manager generates events

for the window. The code for the event handler is:

static void example_event_handler(wimp_eventstr *e , void *handle)

handle= handle ; / * We don ' t need the handle : this stops compiler warning */

I* Deal with event * /
switch (e->e)

case wimp_EREDRAW:

example_redraw_ window (e->data . o . w);

break ;

case wimp_EOPE N:
example_open_window (&e->data . o);

brea k;

case wimp_ECLOSE : / * Pass on close request */

wimpt_noerr (w imp_close_wind (e - >data . o . w)) ;

example_window_open = FALSE ;

break ;

default :
break ;

/ * Ignore any other event */

In this case, the event handler is very simple. Redraw and open requests are
handled as described in the Window Manager chapter of the RISC OS
Programmer's Reference Manual: see c. wexample for the full details of the
functions. On a close request (generated by the user clicking the close icon of
the window), we simply call wimp_ close_wind (). After this, the event
handler will not be called again, unless the window is re-opened. In an
editor, some checks would normally be made before passing on the close

How to write desktop applications in C

Responding to user
choices from a menu

request to the window manager: for example, ensuring that the contents of the
window had been saved, and either warning the user or rejecting the close
window request if they had not.

All events other than redraw, open and close requests are simply ignored. A
way of improving the efficiency of the program would be to call
event setmask (). This indicates to the window manager that some events

are never to be returned to the program. It must be used with care, since it
masks the events to all windows. Thus, although the main window of the
program has no menu, we could not mask out menu events, since they are used
by the icon bar event handler. However, we could safely mask out 'pointer
entering window' and 'pointer leaving window' events. Some suitable code for
doing this would be:

e v e n t s etmask(wimp_EPTRENTER wimp EPTRLEAVE);

The menu is displayed when Menu is pressed over the icon: no special action
is needed by the application for this. When the user makes a choice from the
menu, the menu event handler we registered earlier is called:

/* Menu items */

#define Example_menu info l

#define Example_menu_quit 2

static void example_menuproc(void *handle , char *hit)

handle~ handle ; / * We don ' t need the handle : this stops compiler warning */

/* Find which men u item was hit and take action as appropriate */

switch (hit[O])

case Example_menu info :

example_info_about_program() ;

break ;

case Example_rnenu_quit :
/* Exit from the program . The Wimp gets rid of the window and icon */

exit (0);

handle is the fourth argument which was given to even t at tachmenu ():

we make no use of it in this example. hit is a string in which each entry

corresponds to a selection from the menu tree: the first character is the

How to write desktop applications in C 221

222

number of the selection from the top level menu, the second from the first
submenu chosen, and so on. In this example, only a single, top-level menu was
set up, so we are only interested in hit [0] .

Handling Quit is easy: the program just exits. A hit on Info occurs when
either the user chooses it by clicking, or when he follows the submenu arrow
leading from it. In this case, we call the following funct ion to display a
dialogue box containing information about the application:

static void example_info_about_program(void)

dbox d ; /* Dialogue box handle */

/* Create the dialogue box */
if (d ~ dbox_new(" Proginfo ") , d ! ~NULL)

/* Fill in the version number * /

dbox_setf>eld(d , Example_>nfo field , example_Version_String) ;

/* Show the dialogue box */
dbox_show (d);

/* Keep it on the screen as long as needed */
dbox_fillin (d);

/* Dispose of the dialogue box */
dbox dispose(&d);

First, the dialogue box is created from the template named P r og Info; (this
name is case-sensitive). Most of the fields are also taken from the template,
but we want to fill in one field with the current version of the program, from
the string example_Version String. When this has been done, using
dbox set field (),the dialogue box is displayed with dbox s h ow ().

The call to dbox fill in () needs some explanation. It will not return until
the window manager detects that the dialogue box has been finished with. For
example, in this case a click elsewhere on the screen (and which therefore
removes the menu tree) would cause dbox_fillin () to return . However, in
the intervening time, other event handlers for the program may still be called.
When the dialogue box is finished with, dbox fill in () removes it from
the screen and returns. The event handler then calls dbox_ dispose () which
deletes any internal data that was set up by the call to dbox new () .

How to write desktop applications in C

Reporting errors The example application shows three different ways of dealing with errors.
In each case, the error is reported in a standard error box, and the application
waits until OK has been clicked. You will probably have seen this format
from the desktop and the applications suite.

First, there are errors generated by the application itself. These are reported
with, for example:

werr(FALSE , "Only one window may be opened");

(in the function example iconclick ()). The first parameter indicates
whether this error is fatal: in this case it is not. A fatal error causes the
application to exit. You can specify a number of parameters to we rr, using
the second one as a format string in the same way as for the ANSI library
function print f.

When an error is returned by a RISC_OSlib function, we can report it in one
of two further ways. The first is illustrated by the following line from
example redraw_ window ():

wimpt noerr(wimp redraw_wind(&r, &more)) ;

This reports the error in a dialogue box and halts the application.

An alternative is wimpt complain (). This is similar to wimpt n oerr (),
except that it also returns a pointer to the error, allowing the application to
detect the error and take further action, as well as reporting it. A returned
value of 0 indicates no error. For example (this is from
example iconclick ()):

if (wimpt_comp l ai n(wimp_get_wind_state (example_wln_ha ndle , &state)) 0)
{

actions if there is no error ...

With one exception, it is strongly recommended that you report errors using
wimpt noerr () or wimpt complain () on all calls to RISC_OSlib
functions that return an error. This will help you find errors as soon as they
occur. If an error does occur and you discard it, the effects of the errors may
cause confusion at later stages in the program.

The one exception is reporting errors during redraw, using
wimpt complain (). Here you must take some care. If the error box lies
over your window, when it is removed a new redraw will be issued, which can

How to write desktop applications in C 223

More RISC_OSiib
facilities

Memory management

224

lead to the same error again. A possible solution is to keep a flag to avoid
this happening, resetting the flag when the contents of the window have been
mended.

In this section, we will examine some more of the facilities provided by the
RISC OS library. There is no complete example program to illustrate all of
them, bu~ fragments of code are given as illustrations.

The topics covered are:

•
•
•

memory management

responding to idle and unknown events

loading and saving .

All of these require some practice to get right.

RISC_OSlib includes two sets of functions for memory management: see
flex . h and heap . h. The functions are an alternative to the ANSI C library
functions such as mall oc () and free (). The problem with using the
standard funct ions is that they are limited to the memory initially allocated to
the application by *WimpSlot. If all of this memory becomes used up (or if
it becomes so badly fragmented a free area of the right size cannot be found),
the application has no way of claiming any more. The flex and heap
functions, on the other hand, are able to request more memory from the
operating system as necessary, and they cope well with fragmentation. Flex is
a little tricky to use, but its advantages far outweight this. Heap is the simpler
of the two modules. We will deal with it first.

The following diagram may help clarify the areas of memory used by an
application when it is running:

.------------------------------------. .---------------------
Memory allocated by *Wimpslot:

fixed in size
Memory allocated dynamically:
can increase in size as needed

II Application image II Static data II Malloc pool , stack II II Heap pool ' Flex pool

How to write desktop applications in C

Heap allocation is similar to ma ll oc () in that a pointer to the block

allocated is returned to the caller: the routine to do this is called
he a p alloc () . Memory may be released wtth heap f r e e (). Before you
use heap, you must call he a p ini t (). This must be done after flex has
been initialised with fl ex i nit (), and before any calls to flex functions.
The reasons for this are discussed below.

Flex is the more general of the two. The basic difference between flex
storage allocation and heap allocation is that blocks allocated with f l ex may

be moved in order to make the best use of the available memory, without the
application being informed directly. This would cause problems if the
application simply kept pointers to blocks of allocated memory: when
RISC_OSlib moves blocks around, the pointers would cease to point to the
right place. The approach that is used instead is to tell f l ex the address of
the pointer to the block, which it will note in its own internal tables. If the
block is moved, flex can then change the pointer. Thus, instead of writing
code such as:

char *pointer ;
pointer= malloc(size) ;

you would write:

char *pointer ;

/* Allocate memory , passing in the address of ' pointer ' */

flex_alloc ((flex_ptr) &pointer , size);

The value &po inter is called the anchor of the flex block.

This may sound a little awkward if you are used to using malloc and free ,
but you will soon find that it becomes easy to use.

There is a restriction which you must be aware of if you use fl ex. The anchor
of each flex block allocated must not itself move. This means that you cannot
have flex pointers within blocks of memory allocated by f lex . The following
program fragments shows why this will not work. (You can skip this
explanation if you like - the important point to remember is not to place flex
pointers in areas of memory allocated by flex.)

#define MemSize 100

struct s control block - -

char *data ;
other fields

int size ;

How to write desktop applications in C 225

226

} *pointer;

/* Allocate a control block * /

flex_alloc ((flex_ptr) &pointer , sizeof(struct s_control_block)) ;

/* Allocate the data block itself */

/ * The next line is wrong!!! *I
flex_alloc((flex_ptr) &(pointer->data), MemSize);

Suppose that flex moves the control block we allocated at pointer, and
then tries to move the data block referenced by pointer->data. When the
memory was allocated, flex made a note of the anchors &pointer and
& (pointer- >data). Now suppose it moves the control block, and changes

the value of the variable pointer. It then moves the data block and attempts
to change its anchor. But the anchor it noted was an address within the control
block at its original location, and the control block is no longer there.
Consequently, pointer->data, with pointer having its new value, is not
changed, rendering the pointer to the data block no longer valid. Not only
that, but flex will have changed the location which originally contained
pointer- >data and which may by now be part of some other block.

A second restriction is that you must not make a copy of the pointer to a block
allocated by flex. The reason here is simply that flex only knows of one
anchor for each block. If the location of the block changes, the original pointer
will be changed, but not any copies of it. A place where this can easily cause
problems is in passing a pointer to a flex block as an argument to a function.
Thus, the following example would not work:

void some_function(char *data)

printf(" %s\n ", data) ;

char *pointer ;
flex_alloc((flex_ptr) &pointer , 256) ;

/* The next call can go wrong!!! *I
some_function(pointer);

A safe alternative is to introduce an extra level of indirection:

void some_function(char **data)

printf (" %s\n" , *data) ;

How to write desktop applications in C

Responding to idle and
unknown events

char *pointer ;

flex_alloc ((flex_ptr) &pointer , 256);

/* Pass pointer to reference - this is OK */

some_function (&pointer);

You must call flex init () before attempting to use f lex . There are

functions for allocating and freeing memory, and for changing the size of an

allocated block of memory both by adding or removing memory from the end

of the block, and adding or removing memory from part way through the

block.

A flex block will only ever move as the result of other calls to fl ex. You

can also rely on the first block that was allocated using fle x never moving.

We can now conclude the discussion of how heap works. Internally, heap

keeps its allocated memory in a flex block. If you call h eap_ i ni t ()

immediately after flex_ ini t (), then the heap block will be the first flex

block allocated, and consequently it will never move. Note that the heap

block need not be the first flex block allocated, if you choose otherwise. In

this case, if the flex block used for heap moves, then h e ap al l oc () will

return an error.

There are two special types of event, which are only passed to your

application if you specifically claim them.

Idle events

Idle events are generated by the window manager when nothing else is

happening: they correspond to the Null_Reason_Co de generated by the

SWI Wimp_Poll. Applications should only claim idle events if they want to

do some activity which continually needs processor time; an example is

dragging the se lection box in Draw. When you claim idle events, they are

directed to the event handler for the window you specify, as an event of type

wimp_ ENULL. Idle events should be released as soon as they are no longer

needed by the application. To claim and release idle events, use the function

win claim idle_ events ().See win . h for more details.

How to write desktop applications in C 227

228

Unknown events

Unknown events are events which are not assoc iated with a specific window.
The following events are considered to be unknown:

• user drag events: wimp EUSERDRAG

• menueven~:wimp_EMENU

• losing and gaining
wimp_EGAINCARET

the caret: wimp ELOSECARET and

• user message send events, wimp ESEND and wimp ESENDWANTACK, for
any except the following message types: wimp_ MCLOSEDOWN,
wimp_MDATASAVE,wimp_MDATALOAD,wimp_MHELPREQUEST

• user message acknowledge events: wimp_ EACK.

To claim unknown events, register one or more unknown event processors, and
optionally an unknown event handler. When an unknown event occurs, it is
offered to each of the unknown event processors in turn, until either one deals
with the event, or they have all been tried. If none of them deals with the
unknown event, it is then passed on to the unknown event handler, if any, or
discarded if there isn't one.

To register an unknown event processor, call win add unknown
event_processor (),giving it the name of the unknown event handler, and
a handle for any extra data you wish to be passed to the processor (as for
window event handlers). The processors are called in the reverse of the order
in which you register them, ie the most recently registered one is called first .
See the type win_unknown_event_processor() in win.h for the type
used for unknown event processors. Each unknown event processor must return
a value indicating whether it has handled the event or not. Unknown event
processors may be cancelled by calling win remove unknown
event_processor().

To register an unknown event handler, call win claim_unknown
events () , specifying a window handle. Unknown events are then directed to
the normal event handler for that window. You can cancel the unknown event
handler by calling the same function with an argument of -1.

How to write desktop applications in C

Loading and saving There are functions in the RISC OS library for loading and saving data, using

the same style as Acorn's own applications. The functions implement the data

transfer protocol, as described under Wi mp_ Se nd Me ssage in the Window

Manager chapter of the RISC OS Programmer's Reference Manual. They may

be used for loading from and saving to files, and for transfers from and to

other app lications via RAM.

Loading

To load data, use the functions in xfe rrecv. Loading a file is initiated when

the user drags a file to either a window opened by the application or its icon

bar entry. A message is then sent to the corresponding event handler. In the

event hand ler, you should have something like:

.. . other event cases ...

case wimp_ESEND :
case wimp_ESENDWANTACK :

switch (e->data . msg . hdr . action)

case wimp_MDATASAVE :
load_ram() ;
break ;

case wimp_MDATALOAD :
case wimp_MDATAOPEN :

load_file () ;
break ;

/* import data */

/* insert data * /

.. . other message cases .. .

For a load via RAM, the code is as follows (in outline):

static char *data ;
void load_ram(void)

i nt estsize ; /* Estimate size of file */

/ * Get the t ype of the file being l oaded , and a n estimate of its size */

int filetype ~ xferrecv_checkimport(&estsize)

if (filetype • ~ - 1)
(

int final size ;

any necessary pre- load checks , e . g . valid filetype

allocate a block 'estsize ' long , at ' data ' ...

/* Initiate the load */

How to write desktop applications in C 229

230

if (final_size = xferrecv_do_import (data , estsize , buffer_processor) ,
final size >~ 0)

load was ok

else

error during loading ...

else /* Filetype of - 1 indicates we should try to load via a file */

load_file();

Here we check that the load really is via RAM transfer, and if not try to load
from a file instead. If we decide to go ahead with the load, a call to

x f e r r e c v _ do_ import () is made. If the data being loaded fills up the
buffer, then b u ffer_ proce sso r () is called. This function is not defined
here: what it must do is either to empty the buffer, or to extend it. For a more
precise specification, see the definition of xfe r recv buffer
p rocesso r () in xferrecv. h .

The code for loading from a file is:

void load_file (void)

char *filename ;

/ * Fetch the type and name of the file * /
int filetype = xferrecv_checkinsert(&filenarne);

any necessary pre - load checks , e . g . valid filetype

load file ...

/* Indicate load is completed * /
xferrecv_insertfileok ();

The work of loading the file here can be done using the standard methods for
reading files, such as os_file (), or the ANSI C file functions. The file size
is usually read first, so that the entire buffer can be allocated before loading
starts.

How to write desktop applications in C

In this function, a pointer to the name of the file being loaded is placed in
filename by xferrecv checkinsert (). This pointer does not remain

valid permanently, and if you want to preserve it (for example, to use in a
window title), you should copy it to a buffer of your own. The call
x f e rrecv file is safe () maybeusedtocheckthevalidityofthename.

In both cases, it is good practice to turn the hourglass on during the load.
Suitable ca lls for turning it on and off are:

/* Turn hourglass on */

visdelay_begin();

/* Turn hourglass off */

visdelay_end () ;

Saving

There are two levels to the functions for saving. The bulk of the work is
handled by the functions in xfersend, which are used for transferring data

from the application to the destination of the save operation. The functions in
saveas are used to display a save dialogue box and respond to dragging the

icon from it. It is better to use saveas, since this makes the user interface for

saving consistent with Acorn's applications. However, even if you are using
saveas , you will sti ll call some of the functions in x f erse.n d , as described

in this section.

A save operation is typically initiated by the user choosing something like
Save as from a menu. In this case, you would start the operation with code
such as:

int filetype . .. , /* Type of file * I
char *name ... , /* File name to be placed in dialogue box *I
int estsize . . . , /* Estimated size of file * I
char *data ... , /* Data to be saved * I
saveas (filetyp e , name , estsize , saver_proc , sender_proc , print_proc ,

(void *) data);

The three functions are used for:

• saving the file directly (xfersend_savepro c)

• transferring it via RAM a buffer-full at a time (xfersend_sendproc)

• printing the file (xfersend_printproc).

How to write desktop applications in C 231

Using Draw files

232

The last parameter to saveas () is an arbitrary handle which is passed to

these functions . It is a convenient way of indicating the source of the data to be
saved. The functions are called when the user has dragged the file icon to its
destination, or specified the name of the file to be saved.

saveas () requires the presence of a template called xfer send in the
application's resources: it contains the save dialogue box.

Outlines of functions for saver _proc () and sender _proc () are:

/* saver_proc : type is the same as xfersend_saveproc */
BOOL saver_proc(char *filename , void *handle)
{

any checks , eg valid file name
save file , using any conventional method

I* sender_proc : type is the same as xfersend_sendproc */

BOOL sender_proc (void *handle , int *maxbuf)
{

char *data

int length
/* Location of the data being sent ,

/* Size of the block being sent */
initially from handle */

here there would be some sort of loop , getting chunks of data up to
*rnaxbuf in length , and sending them with code something like: */

while { . . .)

/* The data save itself */

if (1xfersend_sendbuf(data , length) I return FALSE;
else

/* Advance to next block */
data +~ length ; /* For example */

As with loading, you may want to turn on the hourglass during the save
operation.

Note that you can specify the send and print functions as being NULL.

You can use the RISC OS library to display files in the the format used by
Draw in your own applications. The format of Draw files is described in the
RISC OS Programmer's Reference Manual; Acorn intends that this should be
treated as a standard for graphical data in RISC OS. There are two interfaces

How to write desktop applications in C

to the code for displaying Draw files. You can either draw entire files: the
header for this is drawfdiag. h. Alternatively, you can draw files object by
object; see drawfob j . h. The object- level interface also includes functions

for adding and deleting objects. In both cases, it is possible to define your
own object types, by specifying a function to handle unknown object types thus
allowing you to extend the Draw file format.

Draw files use their own coordinate system. When rendering a Draw file, the
origin of the file (ie coordinate (0,0)) is mapped to work area coordinate
(0,0). The function draw shift diag () may be used to shift all the

coordinates in a Draw file. In addition, the coordinates used in Draw objects
are not the same as those used for work area and screen coordinates. There
are macros and functions which convert between the two systems. These just
multiply the coordinates by the relevant factor: they take no account of where
the Draw file origin is. Note also that the Draw file headers refer to the work
area and screen coordinates collectively as 'screen units'. This refers purely to
their size: you are responsible for applying any further origin shifts to convert
them to the coordinate system of the work area or the screen as a whole.

An application which illustrates many of the points described in the
preceding sections can be found on Disc 1 as $.Des kEgs. ! DrawEx. It does
not set itself up on the icon bar when it is started; instead, it simply opens a
window. Draw files dragged to the window are displayed in it. There is a
window menu, with the usual Info and Quit entries, plus an entry to save the
contents of the window: this entry is shaded when there is no file loaded. The
application is closed down either by choosing Quit, or by closing the window.

The source code is not described here: it is left as an exercise for the reader
to see how it works. You may also like to look at the ! Run file, which shows
how to make sure the necessary modules are loaded. Overlooking this is a
common source of apparently serious errors in desktop applications.

The programming techniques illustrated by the application include:

• loading and saving files

• using flex

• using the active window count to handle closedown

• rendering Draw files.

How to write desktop applications in C 233

Common application
features

Coordinate conversion

Colour translation

234

One thing you may find it useful to look at in detail is the method used to
extend flex blocks during a load via RAM. The code to do this is quite
simple, but it is easy to get wrong. See the functions drawex l o ad_ ram ()
and drawex ram loader ().

There are a number of functions in the RISC OS library which are intended
to help you produce applications with a similar appearance to those written
by Acorn. Some of these have already been examined. This section briefly
describes some of the others. As usual, for full details, look at the relevant
parts of the chapter entitled RISC OS library reference section.

You will often need to convert between the work area coordinates and screen.
This is not difficult: the Window Manager chapter in the RISC OS
Programmer's Reference Manual describes how to do it. However, you may find
it convenient to use the functions in coord. h to do the conversion. Using these
functions may make it clearer exactly what is happening in the source of your
program. There are functions for converting x and y coordinates, points and
boxes to either work area or screen coordinates, together with some extra
functions used to move boxes, and determine if boxes overlap, and if a line
intersects with a box. The conversion functions take a pointer to a
coords_cvtstr object as a parameter. This consists of a box and two scroll

values. You can obtain a suitable value for this parameter from the data
structures returned by a number of Wimp functions. For example, the 'box',
'x' and 'y' fields of a wimp openstr, or the 'box', 'sex' and 'scy' ftelds of a
wimp_ redrawstr are both suitable. Thus a typical fragment which might
appear in a redraw loop is:

wimp_redr a wstr r ;

int screen_x , worka rea x ;

screen x = coords_x_toscreen (workarea x , (coords_cvtstr *) &r . box);

You can always obtain the box and scroll values for the current window by
finding the wmdow state with wimp get wind_ state ().

Some of the RISC OS graphics primitives such as the draw module and sprite
plotting allow colours to be specified as full RGB (red/green/blue) values.
RGB colours are usually referred to as 'true' colours. At any instant the
desktop will only be able to display approximations to the true colours,

How to write desktop applications in C

Colour menus

Dialogue boxes

specified using 'Gcol' values. The functions in colourtran. h are used to

convert between these two ways of referring to colours. You can find further

details in the ColourTrans Module chapter of the RISC OS Programmer's
Reference Manual. One point to note about using these functions is that they

require the ColourTrans module to be loaded. If you use them, the

application's !Run file should include (something like) the following:

if '' <SystemSPath> '' = '''' then Error 0 System resources can not be found

RMEnsure Co1ourTra ns 0 . 51 RMLoad System :Modules . Co1ours

RME nsure ColourTra ns 0 . 51 Error You need Co 1ourTrans 0 . 51 or later

There are separate sets of functions for setting colours to be used in ordinary

graphics operations, and for use with anti-aliased fonts.

The function colourmenu _make () constructs a menu of the current desktop

colours. You can see an example of this kind of menu in Edit, where it is used

for the Foreground and Background entries of the Display submenu. Menus

of this form are used when you want to select one of the standard desktop

colours, rather than a true colour.

If you do want the user to be able to select a true colour, you can call the

function dboxtco l, which allows the red, green and blue levels of a colour

to be set using sliders, or by specifying numerical values.

There are a number of functions for handling dialogue boxes. Some of these

have already been introduced; here we look at some more of them. You may

also find it instructive to look at some dialogue boxes in the templates files

of standard applications, using the template editor: this will give you some

idea of how they are constructed and what button types you use for the various

sorts of field. You can use dialogue boxes both as part of the menu trees, as

already described, or on their own. The only difference between these is how

you display the dialogue box: for a menu tree, use dbox s h o w () and for a

'standalone' one, use dbo x showstati c ().

As described in the RISC OS Programmer's Reference Manual, the fields of a

dialogue box consist of icons. You can change the contents of the fie lds using

the routine dbox_ setfield(). dbox_ setnumeric() can be used to place

a number in a field. Values from the fields may be read back with

How to write desktop applications in C 235

236

dbox get field () and dbox getnumeric () . Ftelds may be faded, as
for menu items, with dbox fadefield () and dbox _ unfadefield (), to
cancel the effect.

To recognise when an action has occurred in a dialogue box, you can either
call dbox fill in (), which enters a Wimp pollmg loop until a fteld has
been activated, or register your own event handler for the dialogue box with
dbox_eventhandler (). The first of these is simpler and usually provides
all the flexibility you need. When dbox fillin () returns, you should call
dbox_persist (). This will tell you whether the dialogue box is to be
removed from the screen or not. A typical use of these functions is:

dbox dialogue ;
BOOL filling ~ TRUE ; /* TRUE until the dbox is to be removed *I

/* Create dialogue box */
if ((dialogue ~ dbox_new (<name of the dbox>)) 0)

... error

... fill in initial values for fields with dbox_setfield , etc

I* Display the dbox . This is for a dbox in a menu tree *I
dbox_show(dialogue);

I* Fill in the dialogue box *I
while (filling)
{

switch (dbox_fillin(dialogue))

/* Clauses for each field that has an effect */
case <field number> :

... get field contents with dbox_getfield , etc.

I*
Use the following line on (for example) OK and Cancel buttons

*I
filling dbox_persist() ;
break ;

... more similar clauses

/ * Use the next clause if the dbox has a close icon */
case dbox CLOSE :

filling ~ FALSE;
break ;

I* Clauses for uninteresting fields */
default : /* Do nothing */
break;

How to write desktop applications in C

Magnifier

Displaying and editing
text

/* Get rid of t he dialogue box */

dbox_dispose(&dialogue);

Some special properties of dialogue boxes are worth noting. If there are
writeable fields in the dialogue box, the dbox code interprets the up and
down arrows to move the caret between them, in field order. Pressing Return
advances the caret to the next writeable field . Field 0 may be used in a
special way here. If you press Return on the last writeable field, field 0 will
be activated, and db ox fill in () will hence return 0 to the caller. If your

dialogue box contains an OK button, it should normally be field 0, so that
repeatedly pressing Return will eventually activate it.

Besides the functions in dbox . h, there are also three subsidiary dialogue box

functions. dboxtcol has already been described. dboxfi le is a function for

handling file dialogue boxes, similar to those used by xfersend.

dboxquery. h is used to handle dialogue boxes that consist simply of a

message to the user with YES and NO buttons, as used by Edit and Draw to
ask whether unsaved data is to be discarded or not when a window is closed.
See the header files for more details of these functions.

Finally, don't forget to call template ini t () and dbox in it () during

the initialisation of your application, in order to load the templates from the
application's resources.

The magnifier is used for operations such as Zoom in Draw. The function
magnify select () can be used to read a magnification factor from a zoom

dialogue box. To use this function, you must have a template called
magnifier in your application's template file.

There are a large number of functions for displaying and editing text in a
window, in a similar way to Edit. See txt. h, txtedit. h and txt win . h for

full details. The conceptual model used is as follows.

Text is kept as a linear array of characters, known as a 'txt'. All character
codes are allowed. There is a pointer into this called the 'dot', which marks
the current editing position, and some other pointers known as markers, which
are used (for example) for selecting blocks of text.

How to write desktop applications in C 237

Alarm functions

238

The characters are displayed in a window, with a newline for each '\ n'
character in the buffer. Screen updates happen for each text operation, but the
result is only sure to be good when redraws can happen too. When a txt is
displayed, the dot is constrained to be visible and the text will be scrolled in
order to achieve this.

You can insert and delete characters at the dot, during which the markers will
continue to point at the character that they pointed at before. There are
functions for moving the dot and querying its position.

You can indicate a part of the buffer as being selected. Characters in the
selection are displayed highlighted. No other special meaning is given to the
selection. The selection and the dot need not coincide. There are functions to
create, delete, move and query markers.

A txt is implemented using a single buffer contammg the text, with a gap at
the dot. Moving the dot involves a block move of the intervening text, but
insertions and deletions are fast. The text buffer is expanded if necessary (it
is held in a flex block).

The basic text editing functions are defined in txt. h. There are also higher
level functions, which are intended for building complete text editors, in
txtedi t. h. txt win. h adds further functions for displaying the same text
in multiple windows.

The functions are based on the code in Edit, and you may find it useful to
compare them with the way you can see Edit working.

If your application needs to do some activity after a fixed length of time (for
example, periodically updating a window), there are two ways in which it can
do this. The first is to claim idle events and repeatedly examine the time. The
second, and preferable, · way is to use the functions defined in alarm . h.
These allow you to set one or more alarms, specifying the time when they will
occur. When the alarm is triggered an event handler is called. You may have
more than one alarm set simultaneously. See alarm . h for details of the
functions.

How to write desktop applications in C

Tracing desktop
applications

Where do you go from
here?

During the development of your program, you will probably want to trace
what is happening. One way of doing this is with we r r, but this is often
inconvenient, since it requires acknowledgement by clicking in the OK box,
and because it obscures part of the screen, which will cause problems if it is
used in a redraw loop.

An alternative is to use the functions defined in trace. h. They display their
results directly onto the screen using print£. This is rather messy, since the
trace output does not appear in a window and may thus be overwritten by the
output from other application, though it will never interfere with the
application. One trick that is sometimes useful is to spool the output to a file,
using *Spool so that the trace output can be examined later. In this case, all
the other graphics output will also be sent to the file, and you may find it
useful to include some sort of distinctive text in your trace output which you
can search for using a text editor; for example:

tracefO (" >>> This is some trace\n ");

In order to use tracing, you will have to define TRACE, either using a line in
your program such as

#define TRACE

or using the -0 command line parameter to the C compiler. When trace is not
set, the trace functions are treated as macros which convert into empty
statements. Thus, the call to the trace function may be left in your program
even when you no longer need the trace. This is often useful for generating
debugging and production versions of the program from the same source.
Tracing may also be turned on and off dynamically, with trace on () and
trace off (),when trace has been compiled in.

There is a general trace function which takes an arbitrary number of
parameters (like print£), and five functions which take a fixed number of
parameters. The general trace function cannot be omitted by leaving TRACE
undefined, because of the properties of C macro expansion. The functions with
a fixed number of parameters are therefore generally preferable.

The next step is to try writing a desktop application of your own. You might
like to take one of the example programs and extend it. For example, you
could add multiple windows to DrawEx, or allow it to display text and sprite

How to write desktop appl ications in C 239

Example programs

files as well as Draw files, or to display an animated sequence of pictures.
Don't try to use all of RISC_OSlib in one go! It is better to become familiar
with it gradually, using the functions as you need them. You may also find it
useful to glance at the RISC_OSlib header files which have not been
mentioned here. They all correspond more or less exactly to sections in the
RISC OS Programmer's Reference Manual.

Writing desktop applications takes a little getting used to. In particular, the
flow of control through the program is driven primarily by events from the
window manager. This makes the programming a little harder, but it leads to
applications which respond better to user actions. Using RISC_OSlib, you
should find that programming in this style soon comes naturally.

The following example desktop applications are supplied on Disc 1 in the
directory $. DeskEgs:

• !Wexample and !DrawEx, as described above.

• !Balls64, which displays coloured balls in a window.

• !Life, which runs Conway's game of life in several windows
simultaneously. This is coded as a demonstration of RISC_OSlib, not for
speed or as a high-quality animation of Life.

240 How to write desktop applications in C

How to use the template editor

Starting FormEd

The template editor - FormEd - is an application which allows you to define
windows on the screen, and save the definitions in a file ready for loading by
your application. This is the approach used in Acorn's own applications, and
you will find it makes the process of creating windows for your applications
much easier.

FormEd is supplied along with Release 3 of the C compiler. To use it, you
first need to understand the program interface of the window system, as
described in the RlSC OS Programmer's Reference Manual. Refer, in
particular, to the descriptions of the SWls Wimp_CreateWindow and
Wimp_Createlcon, in the Window manager chapter. The account that follows
also assumes an understanding of template files; these are described in the
same chapter.

Start FormEd in the same way as any other RISC OS application, by double
clicking on the FormEd application icon in a directory display, or on a
template file. Provided either that FormEd has been 'seen' by the system, or
that the run path has been set, the template file will be loaded along with
FormEd. If a template file does not appear to load properly, give more
memory to FormEd before it starts, using the Task Manager.

If you start FormEd without an existing template file, you can open a new
template by clicking on the FormEd icon on the icon bar.

A loaded copy of FormEd can edit only one template file; if you want to edit
more than one at once, load a second copy of FormEd. However, you will
probably find this very confusing, as a window does not necessarily identify
itself as belonging to one application rather than another.

How to use the template editor 241

Editing a template file When you load an application's template file into FormEd, all the windows
used by that application are displayed on the screen. Most of the window
areas can be regarded as 'pictures' of the real window you will see when
running the application; for example, try loading the template file for the
Configure application (make a copy before you do this!). The main Configure
window will appear, but you will not be able to use it to, for example, set the
mouse speed.

While most most parts of the template frame (Title bar, scroll bars, Back
icon, etc) have their normal effect, the C lose icon is used to delete a template
from the file. Be particularly careful, therefore, that you do not delete a
template and then save the template file with the same filename (unless, of
course, that's what you want to do).

Clicking Menu on a template produces a top-level menu: the upper half
relates to icon properties, and the bottom half to window properties. Which
of these features are selectable depends on exactly where the pointer was
when you clicked Menu: if it was on an icon, you will be able to amend or
renumber the icon as well as the window itself. If the pointer was not on an
icon, you will still be able to create a new icon.

Each of the window and icon properties in the menu and its submenus maps
directly onto bitfields listed in the Wimp_CreateWindow and
Wimp_Createlcon descriptions in the RISC OS Programmer's Reference
Manual. However, you should also note the following points:

• Each window within a template file must have a name or identifier which
is unique to that template fi le. The identifier is used when the window
definition is loaded by a call to SWI Wimp_LoadTemplate. To assign
an identifier to a window, select Identifier from the top- level menu.

• The icons you add to a window are numbered in sequence, starting at 0. If
two icons are placed so that they overlap, the window manager uses the
numbering to determine which should obscure the other: higher numbers
are displayed obscuring lower numbers. You may therefore need to
change the number allocated to an icon; this is done by swapping over two
icon numbers. C lick Menu over the icon you wish to renumber and select
Renumber. Type in the number of the icon you want to swap with the
currently selected icon, and the two will switch numbers.

• To add a new window to a template file, click on the FormEd icon on the
icon bar; the new window will appear on the screen.

242 How to use the template editor

Loading sprites into
templates

Editing ROM utility
templates

A worked example

• Because of the way the icon flag bitfield is organised, you cannot use anti
aliased text within a filled icon. Setting the Anti-aliased option in the
Icon flags menu will make the background and foreground colour
unselectable.

• The V centred (vertically centred) option applies only to sprites, not to
text.

A template file is often constructed with reference to a specific set of sprites.
To display the sprites within the templates, drag the sprite icon from its
directory display onto the FormEd icon on the icon bar. You can move sprite
icons within templates, and delete them, but to ed it a sprite, use the Paint
application.

It's also possible to update the template files used by ROM utilities. These
reside in the deskfs : filing system in the ROM. They are accessed via the
environment variable Wimp$Path, so by updating this to search a directory of
your own first where your updated template files reside, you can replace the
window templates used by the utilities in the ROM.

This example uses the template file for the Palette utility, which
demonstrates some of the points described above.

First, make a copy of the template file from the ROM by typing the
following at the Command Line prompt:

*adfs
*dir
*cdir templates
*copy deskfs : templates.palette templates.palette

Add the following to the !Boot file for your machine:

*set Wimp$Path adfs: :4.$.,deskfs:

This assumes that you have a hard disc. If you don't, amend the line above as
appropriate, depending on the location of your templates file .

How to use the template editor 243

Now return to the desktop and double-click on your copy of the templates
file. Two dialogue boxes will appear: the palette's main tool window and the
save box.

The main tool window is covered in cross-hatching: this indicates that the
application (in this case, the palette utility code) is involved in redrawing the
window.

You can move the window around the screen by dragging on its title bar in the
normal way. Move the window to another position, then save the template file
using the save box on the menu that appears when you press Menu over the
FormEd icon bar icon. Now reset the machine. You will find that the palette
utility appears in the new position - where you dragged its window in the
template file.

Double-click on the template file again, to re-enter FormEd. Press Menu over
the palette template window.

The menu that appears is divided into two parts. The upper half effects
whatever icon you were pointing at when you pressed Menu; the lower half
affects the window as a whole. By entering the Window flags, Colours, and
Work area submenus, you can see which bits within the window description
are set and which are clear: compare this with the Wimp_CreateWindow
section in the RISC OS Progmmmer's Reference Manual. By clicking or typing
on entries within these submenus you can affect such things as the title text
and the colours of the window.

Some changes you might make will prevent the code from working properly,
as they actually change the behaviour of the window in the program that
operates it. Others, such as colour changes, are reasonable ways of setting
your own choices for how the palette utility should appear.

Each of the sixteen colour selection buttons is an icon. Point at the black one
and press Menu. You can see that it is icon number 16 in this window. By
working through the Amend icon #16 submenu, you can inspect and change
every aspect of this icon in exactly the same way as with the whole window.

To move or resize an icon, take the following steps:

Ensure that its button type (within the Amend submenu) is set to
Click/drag, so that it responds to dragging events.

2 Drag the icon with Select to move it.

244 How to use the template editor

3 Drag the icon with Adjust to change its size.

You can move the icon a pixel at a time using the Move icon submenu. Using

other top-level submenus, you can make a copy of an icon, or renumber it.

How to use the template editor 245

246 How to use the template editor

RISC OS library reference section

akbd

akbd_pollsh

akbd _pollctl

akbd_pollkey

This chapter presents brief summaries of all the functions in the RISC OS
library, grouped alphabetically by header. You should also refer to the
RISC OS Programmer's Reference Manual for related information.

These functions provide access to the keyboard under the Wimp.

Checks if Shift is depressed.

Syntax: int akbd_pollsh (void)

Returns: 1 if Shift is depressed, 0 otherwise.

Checks if Control is depressed.

Syntax: int akbd_pollctl(void)

Returns: 1 if Control is depressed, 0 otherwise.

Checks if user has typed ahead.

Syntax:
Parameters:
Returns:

Other Information:

int akbd_pollkey(int *keycode)

int *key code- value of key pressed
1 if user has typed ahead. Also passes value of key
back through keycode.

Function keys appear as values > 256 (produced by
Wimp)

RISC OS library reference section 247

alarm

alarm_init

alarm_timenow

alarm_timedifference

alarm_set

248

These functions provide alarm facilities for Wimp programs, using non-busy
waiting.

Initialises the alarm system.

Syntax:

Parameters:
Returns:

Other Information:

void alarm init(void)

v o id.
vo id.

If this call is made more than once, any pending
alarms are cancelled.

Reports the current monotonic time.

Syntax:
Parameters:
Returns:
Other Information:
therefore be relied
months.

int alarm_timenow(void)

v o id.

the current monotonic time.
This timer cannot be set by programs, and can

on to increment every centisecond. It wraps every few

Returns the difference between two times.

Syntax:
Parameters:

Returns:

Other Information:

int alarm_timedifference (int tl , int t2)

in t t 1 - the earlier time
int t 2 - the later time.
difference between t1 and t2.

Times are as in SWI OS ReadMo n o t oni c Time .
Deals with wrap-round of timer.

Sets an alarm at the given time.

Syntax:
Parameters:

Returns:

void alarm_set (int at , alarm_handler proc , void *handle)

int at- time at which alarm should occur
a larm_ handler proc- function to be called at
alarm time
void *handle- caller-supplied handle to be
passed to function.
void.

RISC OS library reference section

alarm_remove

alarm_removeall

alarm_anypending

alarm_ next

Other Information: The supplied function is called before passing the
event on to any idle event claimer windows. at is in terms of the monotonic
centisecond timer. The supplied function is passed the time at which it was
called. If you have enabled idle events, these are still returned to you;
otherwise, RISC_OSlib uses idle events internally to implement alarm calls
(using non-busy waiting via wimp _poll idle ()).

Removes an alarm which was set for a given time with a given handle.

Syntax:
Parameters:

Returns:

Other Information:

v oid alarm_remove (int at , void *handle)

int at- the time at which the alarm was to be

made
void *handle- the given handle.
void.

If no such alarm exists, this call has no effect.

Removes all alarms which have a given handle.

Syntax:
Parameters:
Returns:

void alarm_removeall (void *handle)

void *handle- the handle to search for.
void.

Informs the caller whether an alarm with a given handle is pending.

Syntax:
Parameters:
Returns:

BOOL ala r rn_a nype nding (void *handle)

void *handle- the handle.
True if there are any pending alarms for this handle.

Informs the caller whether an alarm is pending and, if so, for when it is.

Syntax: BOOL a larrn_ne x t (int * result)

Parameters: in t *result - time for which alarm is pending
Returns: True if an alarm is pending.

Other Information: This should be used by polling loops (if you use the
standard while (TRUE) event_ process (); loop, this is done for you). If
a polling loop finds that an alarm is set it should use wimp_ p o llidle (with
earliest time set to *result of alarm_next ())rather than wimp_ p o ll to

RISC OS library reference section 249

alarm_callnext

baricon

baricon_newsprite

250

do its polling. If you handle idle events yourself, your handler should use
call next to call the next alarm function upon receiving an idle event (ie
wimp _ENULL).

Calls the next alarm handler function.

Syntax:
Parameters:
Returns:

void alarm_callnext(void)

void.
void.

Other Information: This is done for you if you use event _process ()
to do your polling (or even if you reach down as far as using wimpt for
polling).

Installs the named sprite as an icon on the icon bar and registers a function to
be called when Select is clicked.
Syntax:

Parameters:

Returns:

Other Information:

wimp_i baricon (char *spritename, int spritearea ,
baricon_clickproc p)

char * spri tename- name of sprite to be used
int spr i tea rea- area where sprite is
baricon_clickproc p- pointer to function to be
called on click of Select

the icon number of the installed icon (of type
wimp_ i). This will be passed to function p on click
of Select.

For details of installing a menu handler for this icon
see event attachmenu ().

Changes the sprite used on the icon bar.
Syntax: wirnp_i baricon_newsprite (char *newsprite)

Parameters:

Returns:

Other information:

char *newspri te- name of new sprite to be used

the icon number of the installed icon sprite.
newsprite must be held in the same area as the
sprite used in bar icon () .

RISC OS library reference section

bbc

bbc: text output
functions

bbc_vdu

bbc_vduw

bbc_vduq

bbc_stringprint

bbc_cls

bbc_colour

bbc_pos

bbc_vpos

bbc_tab

txt: graphics output
functions

bbc_plot

bbc_mode

These functions provide BBC-style graphics and mouse/keyboard control.

The following functions prov ide BBC-style text output functions. They are
retained to allow 'old-style' operations; you are recommended to use SWI
calls via ke rne l . h in the C library.

Outputs a single character.
Syntax: os error *bbc_vdu(int)

O utputs a double character.
Syntax: os error *bbc vduw(int)

Outputs multiple characters. Ctl is a control character. The number of further
parameters is appropriate to Ctl (v duq knows how many to expect, and
assumes the correct parameters have been passed) .
Syntax: os_error *bbc_vduq(int ctl , . . .)

Displays a null-terminated string.
Syntax: os error *bbc_stringprint (char *)

C lears text window.
Syntax: os error *bbc_cls(void)

Sets text colour.
Syntax: os_error *bbc_colour (int)

Returns X coordinate of text cursor.
Syntax: os_error *bbc_pos (void)

Returns Y coordinate of text cursor.
Syntax: os_error *bbc_vpos (void)

Positions text cursor at given coordinates.
Syntax: os error *bbc_tab(int , int)

Carries out a given plot operation.
Syntax: os error *bbc_plot (int plotnumber , int x , int y)

Sets the screen mode.
Syntax: os error *bbc _mode (int)

RISC OS library reference section 251

bbc_move

bbc_moveby

bbc_draw

bbc_drawby

bbc_rectangle

bbc_rectanglefill

bbc_circle

bbc_circlefill

bbc_origin

bbc_gwindow

bbc_clg

bbc_fill

bbc_gcol

bbc_tint

252

Moves the graphics cursor to the absolute coordinates given.
Syntax: os_error *bbc_move(int , int)

Moves the graphics cursor to a position relative to its current text cursor
position.
Syntax: os_error *bbc_moveby(int, int)

Draws a line to the given absolute coordinates.
Syntax: os_error *bbc_draw(int, int)

Draws a line to a position relative to the current graphics cursor.
Syntax: os_error *bbc_drawby(int, int)

Plots a rectangle, given LeftX, Bottom Y, Width, and Height.
Syntax: os_error *bbc_rectangle(int,int,int,int)

Plots a solid rectangle, given LeftX, Bottm Y, Width, and Height.
Syntax: os_error *bbc_rectanglefill(int,int,int,int)

Draws a circle, given Xcoord, Ycoord, and Radius.
Syntax: os_error *bbc_circle(int, int , int)

Draws a solid circle, given Xcoord, Y coord, and Radius.
Syntax: os_error *bbc_circlefill(int, int, int)

Moves the graphics origin to the given absolute coordinates.
Syntax: os_error *bbc_origin (int , int)

Sets up a graphics window, given BottomLeftX, BottomLeftY, TopRightX, and
TopRightY.
Syntax: os_error *bbc_gwindow(int , int , int , int)

Clears the graphics window.
Syntax: os error *bbc clg(vo1d)

Flood-fills area X,Y, filling from X,Y until either a non-background colour
or the edge of the screen is reached.
Syntax: os_error *bbc_fill(int, int)

Sets a graphics colour to the given value.
Syntax: os_error *bbc_gcol(int, int)

Sets the grey level of a colour: use tint 0-3, as it gets shifted for you.
Syntax: os error *bbc_tint(int,int)

RISC OS library reference section

bbc_palette

bbc_point

bbc_vduvar

bbc_vduvars

bbc_modevar

bbc: other calls

bbc_get

bbc_cursor

bbc_adval

bbc_getbeat

bbc_getbeats

bbc_gettempo

bbc_inkey

bbc_rnd

Physical to logical colour definition: Logical colour, Physical colour, Red
level, Green level, Blue level.
Syntax: os_error *bbc_palette (int , int , int , int , int)

Finds the logical colour of a pixel at the indicated coordinates x, y.
Syntax: int bbc_point (int , int)

Reads a single VDU or mode variable value, for the current screen mode.
Syntax: int bbc_vduvar (int varno)

Reads several VDU or mode variable values. vars points to a sequence of
ints, terminated by -1. Each is a VDU or mode variable number, and the
corresponding values will be replaced by the value of that variable .
Syntax: os_error *bbc_vduvars (int *vars /*in*/ , int *values /*out*/)

Reads a single mode variable, for the given screen mode.
Syntax: int bbc_modevar(int mode , int varno)

Returns a character from the input stream. Oxlxx is returned if an escape
condition exists.
Syntax: int bbc_get(void)

Alters cursor appearance. Argument takes values 0 to 3.
Syntax: os_error *bbc_cursor(int)

Reads data from analogue ports or gives buffer data.
Syntax: int bbc_adval (int)

Returns current beat value.
Syntax: int bbc_getbeat(void)

Reads beat counter cycle length.
Syntax: int bbc_getbeats(void)

Reads rate at which beat counter counts.
Syntax: int bbc_gettempo(void)

Returns character code from an input stream or the keyboard.
Syntax: int bbc_inkey(int)

Returns a random number.
Syntax: unsigned bbc rnd (unsigned)

RISC OS library reference section 253

bbc_beats

bbc_settempo

bbc_sound

bbc_soundoff

bbc_soundon

bbc_stereo

bbc_voices

colourmenu

colourmenu_make

254

Sets beat counter cycle length.
Syntax: os_error *bbc_beats (int)

Sets rate at which beat counter counts.
Syntax: os_e r ror *bbc_settempo (int)

Makes or schedules a sound. Parameters: Channel, Amplitude, Pitch,
Duration, and Future Time.
Syntax: os_error *bbc_sound(int , int , int , int , int)

Deactivates the sound system.
Syntax: os error *bbc soundoff (void)

Activates the sound system.
Syntax: os error *bbc soundon (void)

Sets the stereo position for the specified channel.
Syntax: os_error *bbc_stereo (int , int)

Sets the number of sound channels.
Syntax: os error *bbc_voices (int)

Creates a Wimp colour setting menu.

Creates a menu containing the sixteen Wimp colours, with an optional No ne
entry. Text in colour is written in black or white, depending on the background.

Syntax: me nu colourmenu_ma ke (cha r *title , BOOL includeNone)

Parameters:

Returns:

Other Information:

char *title- null-terminated string for menu
title
BOOL i n c l udeNone- whether to include 'None'
entry

On successful completion, pointer to created menu
structure, otherwise null.

Hits on this menu start from 1 as for other menus
(see menu module for details).

RISC OS library reference section

colourtran

colourtran_select_table

colourtran _select_
GCOLtable

C interface to the ColourTrans SWls.

Sets up a translation table in a buffer, given a source mode and palette, and a
destination mode and palette.

Syntax: os error *colourtran_select_table (int source_mode ,
wimp_paletteword *source_palette , int dest_mode ,
wimp_paletteword *dest_palette , void *buffer)

Parameters:

Returns:

int source mode- source mode
wimp _pale ttewo rd * source_p alette - source
palette
int dest mode- destination mode
wimp_ palettewo rd *dest_ palett e
destination palette
void *buffer- pointer to store for the table.

possible error condition.

Sets up a list of GCOLs in a buffer, given a source mode and palette, and a
destination mode and palette.

Syntax:

Parameters:

Returns:

os error *colourtran_select_GCOLtable (int source_mode ,
wimp_paletteword *source_palette , int dest_mode ,
wimp_paletteword *dest_ palette , void *buffer)

int s ource mode- source mode
wimp _paletteword *source _ palette - source
palette
int dest mode- destination mode
wimp_paletteword *dest_ palette
destination palette
v o id *buffer- pointer to store for the list of
GCOLs.

possible error condition.

RISC OS library reference section 255

colourtran_returnGCOL

colourtran_setGCOL

colourtran _return_
colournumber

colourtran_return_
GCOLformode

256

Informs the caller of the closest GCOL in the current mode to a given palette
entry.

Syntax:

Parameters:

Returns:

os_error *colourtran_returnGCOL (wimp_paletteword entry ,

int *gcol)

wimp _palettewo rd entry- the palette entry

int *gcol- returned GCOL value.
possible error condition.

Informs the caller of the closest GCOL in the current mode to a given palette
entry, and also sets the GCOL.

Syntax:

Parameters:

Returns:

os error *colourtran_setGCOL (wimp_pale t teword entry , int

fo r e_back , int gcol_in , i n t *gcol_out)

wimp_ paletteword entry- the palette entry
int fore_ bac k- set to 0 for foreground, set to
128 for background
int gcol in- GCOL action
int *gcol out- returned closest GCOL.

possible error condition.

Informs the caller of the closest colour number to a given palette entry, in the
current mode and palette.

Syntax:

Parameters:

Returns:

os error *colourtran return colournumber - - -
(w i mp_paletteword entry , int *col)

wimp _palet teword- the palette entry
int *col- returned colour number.

possible error condition.

Informs the caller of the closest GCOL to a given palette entry, destination
mode and destination palette.

Syntax: os error *colourtran_return_GCOLformode (wimp_paletteword
e ntry, int dest_mode , wimp_paletteword *dest_palette , int
*gcol)

Parameters: wimp _paletteword entry- the palette entry
int dest mode- destination mode
wimp_paletteword *dest_palet te

destination palette
int *gcol- returned closest GCOL.

RISC OS library reference section

colourtran_return_
co lou rformode

colourtran_return_
OppGCOL

colourtran_setOppGCOL

colourtran_return_
Oppcolournumber

Returns: possible error condition.

Informs the caller of the closest colour number to a given palette entry,
destination mode and destination palette.

Syntax: os error *colourtran return colourformode

Parameters:

Returns:

(wimp_paletteword entry , i nt dest_mode , wimp_paletteword
*dest_palette , int *col)

wimp _ palet teword entry- the palette entry
int dest mode- destination mode
wimp_ paletteword *dest_ pal e t te

destination palette
int *col- returned closest colour number.

possible error condition.

Informs the caller of the furthest GCOL in the current mode from a given
palette entry.

Syntax:

Parameters:

Returns:

os_error *colourtran_return_OppGCOL (wimp_ paletteword

entry , int *gcol)

wimp _ paletteword entry- the palette entry
int *gcol- returned GCOL value.

possible error condition.

Informs the caller of the furthest GCOL in the current mode from a given
palette entry, and also sets the GCOL.

Syntax:

Parameters:

Returns:

os_error *colourtran_setOppGCOL (wimp_paletteword entry ,

int fore_back , int gcol_in , int *gcol_out)

wimp _ paletteword entry- the palette entry
int fore_ back- set to 0 for foreground, set to
128 for background
int gcol_ in- GCOL action
int *gcol out- returned furthest GCOL.

possible error condition.

Informs the caller of the furthest colour number from a given palette entry, in
the current mode and palette.

Syntax: os error * co l ourtra n_return_Oppcolournumber

(wimp_paletteword entry , int *col)

RISC OS library reference section 257

colourtran_return_
OppGCOLformode

colourtran _return_
Oppcolourformode

colourtran_GCOL_
tocolournumber

colourtran
colournumbertoGCOL

258

Parameters:

Returns:

wimp _ pa 1 et t ewo rd- the palette entry
int *col- returned colour number.

possible error condition.

Informs the caller of the furthest GCOL from a given palette entry,
destination mode and destination palette.

Syntax: os_error *colourtran_return_OppGCOLformode

Parameters:

Returns:

(wimp_paletteword e ntry , int dest_mode , wimp_paletteword
*dest_palette , int *gcol

wimp _ palet tewo rd entry- the palette entry
int dest mode- destination mode
wimp_palettewo rd *dest_ palette
destination palette
int *gco l- returned furthest GCOL.

possible error condition.

Informs the caller of the furthest colour number from a given palette entry,
destination mode and destination palette.

Syntax: os_error *colourtran return_Oppcolourformode
(wimp_paletteword entry int dest_mode , wimp_paletteword
*dest_p alette , int *col)

Parameters:

Returns:

wimp_paletteword entry- the palette entry
int dest mode- destination mode
wimp_paletteword *dest_ palette
destination palette
in t *co 1 - returned furthest colour number.

possible error condition.

Translates a GCOL to a colournumber (assuming 256-colour mode).
Syntax:

Parameters:

Returns:

os_error *colourtran_GCOL_tocolournumber (int gcol , int
*col)

int gcol- the GCOL
int *col- returned colour number.

possible error condition.

Translates a colour number to a GCOL (assuming 256-colour mode).

Syntax: os error *colourtra n colournumbe r toGCOL (int col , i n t
*gcol)

RISC OS library reference section

colourtran_
returnfontcolours

colourtran
setfontcolours

Parameters:

Returns:

int col- the colour number

int *gcol- the returned GCOL.

possible error condition.

Informs the caller of the font colours to match the given colours .

Syntax: os_error *colourtran_returnfontcolours (font *handle ,

wimp_paletteword *backgnd ,wimp_paletteword *foregnd , int

*max_offset)

Parameters: font *handle- the font's handle

wimp _paletteword *backgnd - background

palette entry
wimp _ paletteword * foregnd - foreground

palette entry
int *max o ffset

Returns: possible error condition.

Other Information: Closest approximations to fore/background colours

will be set, and as many intermediate colours as possible (up to a maximum

of *max_offs et). Values are returned through the parameters.

Informs the caller of the font colours to match the given colours, and calls

font setfontcolour () to set them.

Syntax: os error *colourtra n set f ontcolours (font

*handle ,w imp_pa l etteword *backgnd , wimp_paletteword

*foregnd , int *max_offset)

Parameters: font *handle- the font's handle

wimp_paletteword *backgnd- background

palette entry
wimp _paletteword * f o regnd- foreground

palette entry
int *max offset

Returns: possible error condition.

Other Information: C losest approximations to fore/background colours

will be set, and as many intermediate colours as possible (up to a maximum

of *max_offset). Values are returned through the parameters.

Font set font colours () is then called with these as parameters.

RISC OS library reference section 259

colourtran_invalidate_
cache

coords

coords _ x _toscreen/
coords_y_toscreen

coords_x_toworkarea/
coords _y _toworkarea

coords_box_toscreen

260

To be called when the palette has changed since a call was last made to a
function in this module, or a Draw object was rendered .
Syntax: os error *colourtran invalidate cache (void)

Parameters: void

Returns: possible error condition

This file contains functions for working in the window coordinate system.
Functions are provided to convert between screen and work area coordinates,
and perform other simple operations on points, lines, or 'boxes'.

It is conventional to think of the point (0,0) as appearing at the top lefthand
comer of a document.

Converts x/y work area coordinates into x/y absolute screen coordinates.
Syntax:

Parameters:

Returns:

int coords_x_toscreen (int x , coords_cvtstr *r)

int coords_y_toscreen(int y , coords_cvtstr *r)

int x or int y- x or y coordinate in work area
coordinates
coords_cvtstr *r -conversion box (screen
coordinates and scroll offsets).

x or y screen coordinates.

Converts x/y screen coordinates into x/y work area coordinates.
Syntax: int coords_x_toworkarea (int x , coords cvtstr *r)

int coords y toworkarea(int y, coords_cvtstr *r)

Parameters:

Returns:

int x or int y- x or y coordinate in screen
coordinates
coords _ cvtstr * r- conversion box (screen
coordinates and scroll offsets).

x or y work area coordinates.

Converts a 'box' of workarea coordinates into a 'box' of screen coord inates.
Syntax:

Parameters:

void coords_box_toscreen{wimp_box *b, coords_cvtstr *r)

wimp_ box *b- workarea box to be converted
coords _ cvt st r * r- conversion box (screen
coordinates and scroll offsets).

RISC OS library reference section

coords _box _toworkarea

coords_point_toscreen

coords_point_toworkarea

Returns:

Other Information:

void.

b is converted 'in situ' into screen coordinates (ie its

contents change).

Converts a 'box' of screen coordinates into a 'box' of workarea coordinates.

Syntax:

Parameters:

Returns:

Other Information:

void coords_box_toworkarea (w imp_box *b, coords_cvtstr *r)

wimp_ b o x *b- screen box to be converted

coords_cvtstr *r- conversion box (screen

coordinates and scroll offsets).

void.

b is converted 'in situ' into workarea coordinates (ie

its contents are changed).

Converts a point (x,y) from workarea coordinates to screen coordinates.

Syntax: void coords_point_toscreen (coords_pointstr *point ,

coords_cvtstr *r)

Parameters:

Returns:

Other Information:

coords _pointstr *point- the point in

workarea coordinates
coords _ cvtstr * r- conversion box (screen

coordinates and scroll offsets).

void.

point is converted 'in situ' into screen coordinates

(ie its contents are changed).

Converts a point (x,y) from screen coordinates to workarea coordinates.

Syntax: void coords_point_toworkarea(coords_pointstr *point ,

coords_cvtstr *r)

Parameters:

Returns:

Other Information:

coords _point st r *point- the point in screen

coordinates
coords_cvtstr *r- conversion box (screen

coordinates and scroll offsets).

void.

point is converted 'in situ' into workarea

coordinates (ie its contents are changed).

RISC OS library reference section 261

coords_withinbox

coords _ offsetbox

coords _intersects

coords _ boxesoverlap

262

Informs the caller if a point (x,y) lies within a 'box'.
Syntax:

Parameters:

Returns:

BOOL coords_withinbox (coords_pointstr *point, wimp_ box
*box)

coords _pointstr *point- the point
wimp_ box *box- the box.

True if point lies within the box.

Offset a 'box' by a given x and y displacement.
Syntax:

Parameters:

Returns:

Other Information:

void coords_offsetbox (w imp_box *source , int byx , int byy ,
wimp_box *result)

wimp_ box *source- the box to be moved
int byx- x displacement
int byy- y displacement
wimp_ box *result- box when offset.

void.

source and result are permitted to point at the
same box.

Informs the caller whether a line intersects a given 'box' .
Syntax: BOOL coords_intersects(wimp_box *line, wimp_box *rect ,

int widen)

Parameters:

Returns:

wimp_box *line- theline
wimp_ box * rect -the box
int widen- width of line (same units as line and
rect) .

True if line intersects box.

Informs the caller whether two 'boxes' cover any common area.
Syntax: BOOL coords_boxesoverlap(wimp_box *boxl, wimp_ box *box2)

Parameters:

Returns:

wimp_box *boxl-one box
wimp_ box *box2- the other box.

True if boxes overlap.

RISC OS library reference section

dbox

dbox: creation and
deletion functions

dbox_new

dbox_dispose

This file contains functions concerned with the creation, deletion and
manipulation of dialogue boxes. It is important to note that the structure of
your dialogue templates is an integral part of your program. Always use
symbolic names for templates and for fields and action buttons within them.
Templates for the dialogue boxes can be loaded using the template module
in this library. See the chapter entitled How to use the Template Editor for how
to use the RISC OS Template Editor in conjunction with this interface. A dbox
is an abstract dialogue box handle.

Builds a dialogue box from a named template. Template editor (FormEd)
may have been used to create this template in the Template s file for the

application.

Syntax:

Parameters:

Returns:

dbox dbox_ new(char *name)

char *name- template name (from templates
previOusly read in by template init), from whtch

to construct dialogue box. name is as given when
using FormEd to create template.

On successful completion, pointer to a dialogue box
structure, otherwise null (eg when not enough space).

Other Information: This only creates a structure; it doesn't display
anything! However, it does register the dialogue box as an active window with
the window manager.

Disposes of a dialogue box structure.

Syntax: void dbox_dispose (dbox*)

Parameters:

Returns:

dbox*- pointer to pointer to a dialogue box
structure

void.

Other Information: This also has the side-effect of hiding the dialogue
box, so that it no longer appears on the screen. It also 'un-registers' it as an
active window with the window manager and event processor.

RISC OS library reference section 263

dbox_show

db ox_ showstatic

dbox_hide

dbox fields

Displays the given dialogue box on the screen.

Syntax:

Parameters:

Returns:

void db o x_s h ow(db ox)

db ox -dialogue box to be displayed (typically
created by dbo x_new)

void.

Other Information: Typically used when dialogue box is from a
submenu so that it disappears when the menu is closed. If called when this
dialogue box is showing, it has no effect. The show will occur near the last
menu selection or the last caret setting (whichever is most recent) .

Displays the given dialogue box on the screen, and leaves it there, until
explicitly closed.

Syntax:

Parameters:

Returns:

void dbox showstatic (dbo x)

dbox- dialogue box to be displayed (typically
created by dbox_new)

v o id.

Other Information: This is typically not used from menu selection, as it
will persist longer than the menu (otherwise, it is the same as dbox_ s h o w).

Hides a previously displayed dialogue box.

Syntax:

Parameters:

Returns:

void dbox_hide (dbox)

dbox -dialogue box to be hidden

vo id.

Other Information: This does not release any storage; it just hides the
dialogue box. If called when the dialogue box is already hidden, it has no
effect.

A dialogue box has a number of fields, labelled from 0. There are the
following distinct field types:

• action fields. Mouse clicks here are communicated to the client. The
fields are usually labelled g o , quit, etc. Set/GetField apply to the
label on the field, although this is usually set up in the template.

• output fields . These display a message to the user, using SetField. Mouse
clicks etc. have no effect.

264 RISC OS library reference section

dbox_field/dbox_fieldtype

dbox_setfield

db ox _getfield

• input fields. The user can type into these, and simple local editing is
provided. Set/GetField can be used on the textual value, or
Set/GetNumeric if the user should type in numeric values.

• on/off fields. The user can click on these to display their on/off status.
They are always 'off when the dialogue box is first created. The
template editor can set up mutually exclusive sets of these at will.
Set/GetField apply to the label on this field, Set/GetNumeric set/get 1
(on) and 0 (off) values.

The function keys can be used instead of the mouse to 'click' action and on/off
fields . In addition, if a letter key is pressed, an attempt will be made to

match the first capital letter found in any action field, and 'click' on that
field. For example, 'y' will match Yes, and 'd' will match reDo.

type dbox_field values are field numbers within a dialogue box. They
indicate what sort a field is (ie action, output, input, on/off).

Sets the given field, within the given dialogue box, to the given text value.

Syntax:

Parameters:

Returns:

void dbox_setfield(dbox , dbox_field, char*)

dbox- the chosen dialogue box
db ox field- chosen field number
char*- text to be displayed in field.

void.

Other Information: If the function is applied to a non-text field, it has no
effect. If the field is an indirected text icon, the text length is limited by the
size value used when setting up the template in the template editor. Any
longer text will be truncated to this length. Otherwise, text is truncated to 12
characters (11 text + 1 null). If the dialogue box is currently showing, the
change is immediately visible. This function is really only useful will indirect
icons.

Puts the current contents of the chosen text field into a buffer, whose size is
given as the third parameter.

Syntax: void dbox_getfield (dbox , dbox_field , char *buffer , int
size)

RISC OS library reference section 265

dbox_setnumeric

dbox_getnumeric

db ox _fadefield

266

Parameters:

Returns:

dbox -the chosen dialogue box
dbox field- the chosen field number
char *buffer- buffer to be used
int size- size of buffer.

void.

Other Information: If the function is applied to a non-text field, the null
string is put in the buffer. If the length of the chosen field (plus null
terminator) is larger than the buffer, the result will be truncated.

Sets the given field, in the given dialogue box, to the given integer value.

Syntax: void dbox_setnumeric(dbox , dbox_field , int)

Parameters:

Returns:

dbox- the chosen dialogue box
dbox field- the chosen field number
int- field's contents will be set to this value.

void.

Other Information: If the field is of type input/output, the integer
value is converted to a string and displayed in the field . If the field is of type
act ion or on I off, a non-zero integer value selects this field; zero deselects
it.

Gets the integer value held in the chosen field of the chosen dialogue box.

Syntax:

Parameters:

Returns:

Other Information:

int dbox_getnumeric(dbox, dbox_field)

dbox - the chosen dialogue box
dbox field- the chosen field number.

integer value held in chosen field .

If the field is of type on I off then return value of 0
means off, 1 means on . Otherwise, the return value is the integer equivalent
of the field contents.

Makes a field unselectable (ie faded by Wimp).

Syntax:

Parameters:

Returns:

void dbox_fadefield(dbox d , dbox_field f)

dbox d- the dialogue box in which field resides
dbox field f- the field to be faded.

void.

RISC OS library reference section

db ox_ u nfadefield

dbox: events from
dialogue boxes

dbox_get

dbox_eventhandler

Other Information: Fading an already faded field has no effect.

Makes a field selectable (ie 'unfades' it).

Syntax:

Parameters:

Returns:

Other Information:

void dbox_unfadefield (dbox d , dbox_field f)

dbox d- the dialogue box in which fie ld resides

db ox field f- the field to be unfaded.

void.

Unfading an already selectable fie ld has no effect.

A dialogue box acts as an input device: a stream of characters comes from it
as if it were a keyboard, and an up-call can be arranged when input is
waiting. dialogue boxes may have a close button that is separate from their

action buttons, usually in the header of the window. If this is pressed, CLOSE

is returned: this should lead to the dialogue box being invisible. If the
dialogue box represents a particular pending operation, the operation should
be cancelled.

Tells caller which action field has been activated in the chosen dialogue box.

Syntax:

Parameters:

Returns:

Other Information:

dbox_field dbox_get(dbox d)

dbox - the chosen dialogue box.

field number of activated field.

This should only be called from an event handler
(since this is the only situation where it makes sense).

Registers an event handler function for the given dialogue box.

Syntax: void dbox_eventhandler(dbox , dbox_handler_proc , void*

handle)

Parameters:

Returns:

dbox- the chosen dialogue box

db ox_ handler _proc- name of handler function

void *handle- user-defined handle.

void.

Other Information: When a field of the given dialogue box has been
activated, the user-supplied handler function is called. The handler should be
defined in the form: void foo (dbox d , void *handle). When

ca lled, the function f oo will be passed the relevant dialogue box, and its

RISC OS library reference section 267

dbox raweventhandler

dbox: pending
operations

dbox_fillin

dbox_popup

268

user-defined handle. A typical action in foo would be to call dbox _get to
determine which field was activated. If handler==O then no function is
installed as a handler (and any existing handler is 'un-registered').

Registers a 'raw' event handler for the given dialogue box.
Syntax: void dbox_raw_eventhandler(dbox , dbox_raw_ handl er_proc ,

void *handle)

Parameters:

Returns:

dbox - the given dialogue box
dbox raw handler _proc- handler function for
event
void *handle- user-defined handle .

void.

Other Information: This registers a function which will be passed
'unvetted' window events. Under the window manager in RISC OS, the event
wtll be a wimp eventstr* (see Wimp module). The supplied handler
function should return True if it processed the event; if it returns False, the
event will be passed on to any event handler defined using
dbox _event handler () as above. The form of the handler's function
headeris: BOOL func (dbox d, void *event , void *handle).

Dialogue boxes are often used to fill in the details of a pending operation. In
this case a down-call driven interface to the entire interaction is often
convenient. The following facilities aid this form of use.

Process events until a field in the given dialogue box has been activated.
Syntax:

Parameters:

Returns:

Other Information:

dbox_field dbox_fillin(dbox d)

dbox d- the given dialogue box

field number of activated field.

Handling of harmful events, like db ox _ popup
(below).

Build a dialogue box, from a named template, assign message to field 1, do a
dbox_fillin, destroy the dialogue box, and return the number of the
activated field.

Syntax: dbox field dbox_popup(char *name , char *message)

RISC OS library reference section

dbox_persist

dbox_syshandle

dbox_init

Parameters: char *name- template name for dialogue box

char *message- message to be displayed in

field 1.

Returns: field number of activated field .

Other Information: 'Harmful' events are those which could cause the

dialogue to fail (eg keystrokes, mouse clicks) . These events will cause the

dialogue box to receive a CLOSE event.

When dbox_fillin has returned an action event, this function returns True

if the user wishes the action to be performed, but the dialogue box to remain.

Syntax: BOOL dbox_persist(void)

Parameters: void.

Returns: BOOL- does the user want the dialogue box to

remain on screen?

Other Information: The current implementation returns True when the

user has clicked Adjust. The caller should continue round the fill-in loop if

the return value is True (ie don't destroy the dialogue box).

Allows the caller to get a handle on the window associated with the given

dialogue box.

Syntax:

Parameters:

Returns:

int dbox_syshandle(dbox)

dbox -the given dialogue box

window handle of dialogue box (this is a wimp_ w

under the RISC OS window manager).

Other Information: This could be used to hang a menu off a dialogue

box, or to 'customise' the dialogue box in some way. db ox_ dispose will

also dispose of any such attached menus.

Prepare for use of dialogue boxes from templates.

Syntax:

Parameters:

Returns:

void dbox_init(void)

void

void

Other Information: This function must be called once before any

dialogue box functions are used . You should call template init () before

this funct;ion.

RISC OS library reference section 269

dboxfile

dboxquery

270

Displays dialogue box with message, input field, and OK field and allows
input of filename.

Syntax:

Parameters:

Returns:

void dboxfile (char *message , unsigned filetype , char *a ,
int bufsize)

char *message- informative message to be
displayed in dialogue box
unsigned filetype- OS-dependent type offile
char *a- default filename (initially) and also
used for user-typed filename
int bufsiz-sizeofa.

void.

Other Information: The template for the dialogue box must be called
dboxf i le db. Parameters correspond to the template's icon numbers as
follows:

icon#()
icon #l
icon #2

OK button
message
filename

The template should have the following icons:
icon#()

icon #l

icon #2

a text icon containing text OK with button type menu
icon
an indirected text icon (possibly with a default
message) with button type never
an indirected text icon with button type wri teable.
See the dboxfile_db template used by Edit for an
example.

The maximum length of message is 20. The char array pointed to by a will
contain the typed-in file name of maximum length bu f size (if longer,
truncated).

Displays a dialogue box, with YES and NO buttons, and a question, and gets
reply.

Syntax:

Parameters:

Returns:

dboxquery_REPLY dboxquery(char *question)

char *question- the question to be asked

reply by user.

RISC OS library reference section

dboxtcol

Other Information: Question can be up to 120 chars long, 3 lines of 40
characters. Return will reply yes ; Escape or CLOSE event will reply

cancel. A call of db ox query (0) , will reserve space for the dialogue box

and return with no display. This will mean that space is always available for
important things like asking to quit! The template for the dialogue box should
have the following attributes:

window flags

icon #l

icon#O

icon #2

moveable, auto-redraw. It is also advisable to have a title
icon containing the name of your program (or other
suitable text).

the message icon: should have indirected text flag set,
with button type never and validation string L40.

the YES icon: should be text icon with text string set to
YES; button type should be menu icon ..

the NO icon: should be text icon with text string set to
NO; button type should be menu icon. See the query

dialogue box in Edit for an example.

Displays a dialogue box to allow the editing of a true colour value.

Syntax:

Parameters:

BOOL dboxtcol(dboxtcol_colour *colour /*inout*/ , BOOL
allow_transparent , char *name, dboxtcol_colourhandler
proc, void *handle)

dboxtcol colour *colour- colour to be edited

BOOL allow_transparent- enables selection of
a 'see-through' colour
char *name- title to put in dialogue box.
dboxtcol colourhandler proc- function to
act on the colour change
void *handle- the handle passed to proc.

Returns: True if colour edited, user clicks OK.

Other Information: The dialogue box to be used should be the same as
that used by Paint to edit the palette. If the user clicks Select on OK, the proc
is called and the dialogue box is closed. If the user clicks Adjust on OK, the
proc is called and the dialogue box stays on the screen. This allows the
client of this function to use proc to, say, change a sprite's palette to reflect

the edited colour value and then to cause a redraw of the sprite.

RISC OS library reference section 271

drawfdiag

Data types

272

This file contains functions concerned with the processing of Draw format
files (diagram level interface). It defines the interface to the simplest version
of the DrawFile module. It can read in files to diagrams and render them.
There is no checking of whether the end of the diagram has been overrun.

To read in Draw files, it is expected that the caller will do the work of the
I/0 itself. To dispose of a diagram, the caller can just throw it away: the
module does not keep any hidden information about what diagrams it has
seen.

Some calls return an offset to the bad data on an error. This is not necessarily
the start of an object: it may be bad data part way through it. The offset is
relative to the start of the diagram.

The module cannot handle rectangle or ellipse objects: you should use a path
instead.

Diagram: a pointer to the data and a length field. The length must be an
exact number of words, and is the amount of space used in the diagram, not
the size of the memory allocated to it.

Abstract handle for an object: The object handle is an offset from the start
of the diagram to the object data. You may use it to set a pointer directly to
an object, when using the object level interface

Error types: Where a routine can produce an error, the actual value returned
is a BOOL, which is True if the routine succeeded. The error itself is returned
in a block passed by the user; if NULL, then the details of the error are not
passed back.

The error block may contain either an operating system error or an internal
error. In the latter case, it consists of a code and possibly a pointer to the
location in the file where the error occurred (if NULL, the location is not
known or not specified). By convention, this should be reported by the caller
in the form message (locati on &xx in file). For a list of codes and
standard errors, see h. DrawfErrors. The location is relative to the start of
the data block in the diagram.

RISC OS library reference section

draw_verify_diag

draw_append_diag

draw_render_diag

Verifies a diagram which has been read in from a file.
Syntax:

Parameters:

Returns:

Other Information:

BOOL draw_verify_diag(draw_diag *diag, draw_error *error)

draw diag *diag- the diagram to be verified
draw error *error- the first error encountered
(if any).

True if diagram is correct.

Each object in the file is checked and the first error
encountered causes return (with error set
appropriately).

Merges two diagrams into one.
Syntax:

Parameters:

BOOL draw_append_diag (draw_diag *diagl , draw_diag *diag2 ,
dra w_error *e rror)

draw_ diag *diagl- diagram to which to append
diag2
draw_ diag *diag2- diagram to be appended to
diagl
draw error *error- possible error condition.

Returns: True if merge was successful.
Other Information: Both diagrams should have been processed by
draw_verify_diag(). Diagl's data block must be at least
diagl . length + diag2 . length. Diagl .length will be updated to its
new appropriate value. Diagl 's bounding box will be set to the union of the
bounding boxes of the two diagrams. Offsets of objects in Diagl may change
due to a change in font table size (if Diag2 has fonts). Errors referring to
specific locations, refer to D i ag2.

Renders a diagram with a given scale factor, in a given Wimp redraw
rectangle.

Syntax:

Parameters:

Returns:

BOOL draw_render_d1ag(draw_d1ag *diag , draw_redrawstr *r ,
double scale , draw_error *error)

draw_diag *diag- the diagram to be rendered
draw_redrawstr *r- the Wimp redraw
rectangle
double scale- scale factor
draw_ error *error- possible error condition.

True if render was successful.

RISC OS library reference section 273

draw: memory
allocation functions

draw_
registerMemoryFunctions

Other Information: The diagram must have been processed by
draw verify diag (). draw redrawstr is the same as
wimp_ redrawstr, which may be cast to it. Very small and negative scale
factors will result in a run-time error (safe > 0.00009). The caller should do
range checking on the scale factor. Following the normal convention for
coordinate mapping, the part of the diagram rendered is found by mapping
the top left of the diagram, in draw coord space onto a point: (r - >box . xO -

r->scx, r->box. yl - r->scy) in screen coordinates.

Registers three functions to be used to allocate, extend and free memory,
when rendering text objects.
Syntax:

Parameters:

Returns:

void draw_reglsterMemoryFunctlons(draw_allocate alloc ,
draw extend extend , draw_free free)

draw_ allocate alloc- pointer to function to be
used for memory allocation
draw_ extend extend- pointer to function to be
used for memory extension
draw_ free free - pointer to function to be used
for memory freeing.

void.

Other Information: These three functions will be used only when
rendering text area objects. Any memory allocated during rendering will be
freed (using the supplied function) after rendering. If draw
registerMemoryFunctions () is never called, or if memory allocation
fails, then an attempt to render a text area will produce no effect. The three
functions should operate as follows:

• int alloc (void **anchor,
set *anchor to point to them.
otherwise non-zero.

in t n) : allocate n bytes of store and
Return 0 if store can't be allocated,

• int extend (void **anchor, int n): extend the block of
memory which starts at *anchor to a total size of n bytes. n will always
be positive, and the new memory should be appended to the extstmg
block (which may be moved by the operation). Return 0 if the memory
can't be allocated, otherwise non-zero.

274 RISC OS library reference section

draw_shift_diag

draw_querybox

draw_convertBox

• void free (void **anchor): free the block of memory which starts
at *anchor, and set* anchor to 0.

The specification for these three functions is the same as that for
flex alloc, flex_extend and flex_free (in the flex module), so these
can be used as the three required functions.

Shifts a diagram by a given distance.

Syntax:

Parameters:

Returns:

Other Information:

void draw shift_diag(draw_diag *diag , int xMove, int
yMove)

draw diag *diag- the diagram to be shifted
int xMove- distance to shift in x direction
int yMove - distance to shift in y direction.

void.

All coordinates in the diagram are moved by the
given distance.

Finds the bounding box of a diagram.

Syntax:

Parameters:

Returns:

Other Information:

void draw_queryBox(draw_d1ag *d1ag , draw_box *box , BOOL
screenUnits)

draw_diag *diag-thediagram
draw_ box *box- the returned bounding box
BOOL screenUnits- indication whether the box is
to be specified in draw or screen units.

void.

The bounding box of diag is returned in box. If
screenUni ts is true, box is in screen units, otherwise, it is in draw units.

Converts a box to/from screen coordinates.

Syntax: void draw_convertBox(draw_box *from , draw_box *to, BOOL
toScreen)

Parameters: draw box *from- box to be converted
draw box *to -converted box
BOOL toScreen- should set to True if conversion
is to be from draw coordinates to screen
coordinates. False makes conversion from screen
coordinates to draw coordinates.

RISC OS library reference section 275

draw_rebind_diag

draw: unknown object
handling

draw_set_unknown_
object_ handler

276

Returns: void.

Other Information: fr om and to may point to the same box.

Force the header of a diagram's bounding box to be exactly the union of the
objects in it.

Syntax: void draw_rebind_diag (draw_diag *diag)

Parameters: draw_diag *diag- thediagram.

Returns: void.

Other Information: The diagram should have been processed by
draw_verify_diag ()first.

New types of object can be added by registering an unknown object handler.
The handler is called whenever an attempt is made to render an object whose
tag is not one of the standard ones known to DrawFile. It is passed a pointer
to the object to be rendered (cast to a void *), and a pointer to a block into
which to write any error status. The object pointer may be cast to one of the
standard Draw types (defined in the object level interface), or to a client
defined type. If an error occurs, the handler must return False and set up the
error block; otherwise it must return True. Unknown objects must conform to
the standard convention for object headers, ie one-word object tag; one-word
object size; four-word bounding box. The unknown object handler is only
called if the object is visible, ie if there is an overlap between its bounding
box and the region of the diagram being rendered . The object size field must
be correct, otherwise catastrophes will probably result.

Registers a function to be called when an attempt is made to render an object
with an object tag which is not known.

Syntax: draw unknown_object_handler
draw_ set_unknown_object_handler
(draw_unknown_object_handler handler , void *handle)

Parameters:

Returns:

Other Information:

draw_unknown_object_handler handler
the handler function
void *handle- arbitrary handle to pass to
function.

The previous handler.

The handler can be removed by call ing with 0 as a
parameter.

RISC OS library reference section

drawferror Definition of error codes and standard messages for the Drawfile rendering
functions. For each error, a code and the standard message are listed. See
drawfdiag , above, for how to use the errors.

BadObject 1 Bad object
BadObjectHandle 2

TooManyFonts 3

BBoxWrong 101

BadCharacter 102

ObjectTooSmall103

Object T oolarge 104
ObjectNotMult4 105
ObjectOverrun 106

ManyFontTables 107

LateFontTable 108

BadTextStyle 109

MoveMissing 110

Bad Path Tag 111

NoPathElements 112

PathExtraData 113

BadSpriteSize 114

BadTextColumnEnd 115

ColumnsMismatch 116

NonZeroReserved 117

NotDrawFile 118

VersionTooHigh 119

BadObjectType 120
CorruptTextArea 121

TextAreaVersion 121

MissingNewline 122

RISC OS library reference section

Bad object handle

Too many font definitions

Bounding box coordinates are in the wrong
order

Bad character in string

Object size is too small

Object size is too large
Object size is not a multiple of 4
Object data is larger than specified size
There is more than one font table
The font table appears after text object(s)
Bad text style word

Path must start with a move

Path contains an invalid tag

Path does not contain any line or curve
elements

There is extra data present at the end of a
path object

The sprite definition size is inconsistent with
the object size

Missing end marker in text columns
Actual number of columns in a text area
object does not match specified number of
columns

Non-zero reserved words in a text area
object

This is not a Draw file

Version number too high
Unknown object type
Corrupted text area (must start with'\!")
Text area version number is wrong or missing
Text area must end with a newline character

277

drawfobj

draw_create_diag

278

BadAlign 123

BadT erminator 124

ManyDCommands 125

BadFontNumber 126 ·

UnexpectedCharacter 127

BadFontWidth 128

BadFontSize 129

NonDigitV 130

BadEscape 131

FewColumns 133

T extColMemory 134

Text area: bad \A code (must beL, R, C or
D)
Text area: bad number or missing terminator

Text area: more than one \ D command

Text area: bad font number

Text area: unexpected character in \ F
command

Text area: bad or missing font width in \ F
command

Text area: bad or missing font size in \ F
command

Text area: non-digit in \ V command

Text area: bad escape sequence

Text area must have at least one column

Out of memory when building text area
(location field is always 0 for this error).

This file handles the processing of Draw format files (object level interface),
and supplements the diagram level interface with routines for dealing with
individual objects.

Creates an empty diagram (ie just the file header), with a given bounding box.
Syntax:

Parameters:

Returns:

void draw_create_diag(draw_diag *diag , char *creator,
draw_box bbox)

draw diag *diag- pointer to store to hold
diagram
char *creator- pointer to character string
holding creator's name
draw box bbox- the bounding box (in Draw
units).

void.

Other Information: diag must point at sufficient memory to hold the
diagram. The first 12 chars of creator are stored in the file header.
diag .length is set appropriately by this function.

RISC OS library reference section

draw_doObjects

draw _setFontT able

draw_ verifyObject

Renders a specified range of objects from a diagram.
Syntax: BOOL draw_doObJects(draw_diag *diag , draw_object start ,

Parameters:

draw_object end , draw_redrawstr *r, double scale ,
draw_error *error)

draw_ diag *diag- the diagram
draw_ object start -start of range of objects to
be rendered
draw_object end -end of range of objects to be
rendered
draw_ redrawstr * r- Wimp-style redraw
rectangle
d ouble scale- the scale factor for rendering
draw_ error *error- possible error condition.

Returns: True if render was successful.
Other Information: Parameters (except range) are used as in
draw_ render_ diag, in diagram level module. The diagram must be
verified before a call to this function If the range of objects indues text with
anti-aliasing fonts, you must call draw set Font Table first . Very small
(<0.00009) or negative scale factors will cause run-time errors.

Scans a diagram for a font table object and records it for a subsequent call of
draw_doObjects.

Syntax:

Parameters:

Returns:

Other Information:

void draw_setFontTable(draw_diag *diag)

draw_ diag *diag- the diagram to be scanned.

void.

This function must be called for draw_doObjects
to work on a sequence of objects that includes text objects using anti-aliasing
fonts, but no font table object. The font table remains valid until either a
different one is encountered during a call to draw_doObjects, or until
draw_ render diag is called, or until a different diagram is rendered .

Verifies the data for an existing object in a diagram.
Syntax: BOOL draw_verifyObject (draw_diag *diag, draw_object

object , int *size , draw error *error)

RISC OS library reference section 279

draw_createObject

280

Parameters: draw_ di ag * di ag - the diagram
draw object object - the object to be verified
in t *size - gets set to the amount of memory
occupied by the object
draw_ error *error- possible error condition.

Returns: True if object found and verified.

Other Information: Verifying an object ensures that its bounding box is
consistent with the data in it; if not, no error is reported, but the box is made
consistent. On an error, the location is relative to the start of the diagram. The
object's size is returned only if size is a non-null pointer.

Creates an object after a specified object in a given diagram.
Syntax: BOOL draw_createObject (dra w_ d iag *diag , draw_objectType

ne wObjec t , dra w_ob j ect a f ter , BOOL rebind , draw_object
* o bject , dra w_e rro r *er r o r)

Parameters: draw_diag *diag-thediagram
draw_objectType newObject- the created
object
draw_object after- the object after which the
new object should be created
BOOL rebind- if True, the bounding box of the
diagram is updated to the union of its existing value
and that of the new object
draw object *object- new object's handle
draw_ error *error- possible error condition.

Returns: True if object was created OK.

Other Information: All data after the insertion point is moved down.
after may be set to draw_FirstObject/draw_LastObject for
inserting at the start/end of the diagram. The diagram must be large enough
for the new data; its length field is updated. On an error, the location is not
meaningful. The handle of the new object is returned in object. If this
function is used to create a font table, after is ignored, and the object
merged with the existing one (if such exists) or inserted at the start of the
diagram otherwise. This can cause the font reference numbers to change; if a
call to this function is followed by a draw_translateText (), the font
change will be applied (this is only needed when anti-aliased fonts are used
in text objects).

RlSC OS library reference section

draw_ deleteObjects

draw_ extractObject

draw _translate Text

Deletes the specified range of objects from a diagram.

Syntax:

Parameters:

Returns:

Other Information:

BOOL draw_deleteObjects (draw_diag *diag , draw_ object
start , draw_object end , BOOL rebind , draw_ error *error)

draw_ di ag * di ag - the diagram

draw_ object start- start of range of objects to
be deleted
draw_ object end -endofrangeofobjectstobe
deleted
BOOL rebind- if set to True, then the diagram's

bounding box will be set to the union of those
remaining objects
draw_ error *error- possible error condition.

True if objects deleted successfully.

diagram length is updated appropriately.

Extracts an object from a diagram into a supplied buffer.

Syntax: BOOL draw_e xtractObject (draw_diag *diag , draw_object
object , draw_objectType result , draw_error *error)

Parameters: draw_ diag *diag- the diagram

draw_ object object- the object to be extracted
draw_ object Type result - pointer to the buffer
draw_ error *error- possible error division

Returns: True if the object was extracted successfully.

Other Information: The buffer for the result must be large enough to
hold the extracted object (an object's size can be ascertained by call ing
draw_ verifyObject ()).

Updates all font reference numbers for text objects following creation of a
font table.

Syntax:

Parameters:

Returns:

Other Information:

void draw_tra nslateText (dra w_diag *diag)

draw_ diag *diag- the diagram.

void.

If the font table has not been changed, this function
does nothing.

RISC OS library reference section 281

drawftypes

drawmod

drawmod_fill

drawmod_stroke

282

This file contains declarations of all the data types needed for manipulating
Draw objects at a low level, enabling you to examine or change their
individual properties. For full details, refer to the header file on Disc 3:
$.RISC_OSlib.h.drawftypes .

This file provides a C interface to the Draw module (not to be confused with
the Draw application). It defines a number of types used for PostScript-like
operations, with enhancements (for full details, refer to the header file on
Disc 3: $. RISC_OSlib .h. drawmo d). The enhancements consist mainly of
choice of fill style (fill including/excluding boundary etc), extra winding
numbers, differing leading/trailing line caps and triangular line caps. It calls
the Draw SWis.

Emulates the Postscript 'fill ' operator - ie closes open subpaths, flattens a
path, transforms it to standard coordinates and fills the result.
Syntax: os_error *drawmod_fill (drawmod_pathelemptr path_seq ,

drawmod_filltype fill_style , drawmod_transmat *matrix ,
int flatness)

Parameters:

Returns:

drawmod_ pathelemptr path seq- sequence of
path elements
drawmo d_ filltype fill style- style offill
drawmo d transmat *matrix- transformation
matrix (0 for the identity matrix)
int flatness- flatness in user coordinates (0
means default).

possible error condition

Emulates PostScript 'stroke' operator.

Syntax: os_error *drawmod_stroke (drawmod_pathelemptr path_seq ,

Parameters:

dra wmod_filltype fill_style , drawmod_transmat *matrix ,
dra wmod_line *line_style)

drawmod _ pathelemptr path_ seq- sequence of
path elements
drawmod_filltype fill style- style offill
drawmod transmat *matrix- transformation
matrix (0 means identity matrix)
drawmo d _line *line style- (see typedef in
header file for details).

RISC OS library reference section

drawmod _do_ strokepath

draw mod _ask_ strokepath

drawmod _do _flatten path

Returns: possible error condition.

Puts a path through all stages of drawmod _ stro ke except the final fill. The
resulting path is placed in the buffer.

Syntax:

Parameters:

Returns:

os_error *drawmod_do_strokepath(drawmod_pathelemptr
path_seq , drawmod_transmat *matrix , drawmod_line
*line_style , drawmod_buffer *buffer)

drawmod _pathelemptr path seq - sequence of
path elements
drawmod transmat *matrix- transformation
matrix
drawmod _line *line s t y le - see typedef in
header file
drawmod buffer *buffer- buffer to hold
stroked path.

possible error condition.

Puts a path through all stages of drawmod_str o ke, except the fill, and
returns the size of buffer needed to hold such a path.

Syntax:

Parameters:

Returns:

os_error *drawmod_ask_strokepath(drawmod_pathelemptr
pat h_seq , d r a wmod_transmat *matrix , drawmod line
*line_style , int *buflen

drawmod _pathelemptr path s eq - sequence of

path elements
drawmod transmat *matrix - transformation
matrix
drawmod_llne *line styl e -(seetypedefm
header for details)
int *buflen- returned length of required buffer.

possible error condition.

Flattens the given path, and puts it into the supplied buffer.

Syntax: os_error *dra wmod_d o_flattenpath (drawmod_pathelemptr
path_seq , drawmod_buffer *buffer , int flatness)

RISC OS library reference section 283

drawmod_ask_flattenpath

drawmod_buf_
transform path

drawmod_insitu_
transform path

284

Parameters:

Returns:

dra wmod _ pathel e mptr p ath seq - sequence of
path elements
drawmod buffer *bu ffer- buffer to hold
flattened path
in t fl a tness - required flatness.

possible error condition.

Puts the given path through the stages of drawmod_flat tenpat h and
returns the size of buffer needed to hold the resulting path.
Syntax:

Parameters:

Returns:

os_error *drawmod_ask_flattenpath(drawmod_pathelemptr
path_seq , int flatness , int *buflen)

drawmo d_ pathel e mptr path seq -sequenceof
path elements
int f latne s s- required flatness
int *bu f len- returned length of required buffer.
possible error condition.

Puts a path through a transformation matrix and puts the result in the
supplied buffer.

Syntax:

Parameters:

Returns:

os_error *drawmod_buf_transformpath(drawmod_pathelemptr
path_seq , drawmod_buffer *buffer , drawmod_transmat
*matrix)

drawmod _pathelemptr path_ seq - sequence of
path elements
drawmod buffer *buffer- buffer to hold
transformed path
drawmod transmat *mat r i x - the
transformation matrix.

possible error condition.

Puts a path through a transformation matrix by modifying the supplied path
itself.

Syntax: os error
*drawmod_insitu_transformpath (drawmod_pathelemptr
path_seq , dra wmod t r ansmat *matrix)

RISC OS library reference section

drawmod_processpath

Parameters:

Returns:

drawmod _pathelemptr path s eq- sequence of

path elements
drawmod transmat *matri x -the

transformation matrix.

possible error condition.

Puts a path through a set of processes used when doing Stroke and Fill.

Syntax:

Parameters:

Returns:

Other Information:

drawmod insitu

os_error *drawmod_p roce sspath (drawmod_pathelemptr

path_seq , drawmod_f illtype fill_style , drawmod_transmat

*matrix , drawmod_line *line_style , drawmod_options
*options , int *bu f len)

drawmod_pathelemptr path_seq- sequence of
path elements
drawmod_filltype fill s tyle- style offill

drawmod transmat *matrix- the

transformation matrix
drawmod _line *line_ style- (see typedef in

header for details)
drawmod_ options *options- this can have the

values detailed below. Note: pass in address of a
draw_ opt ions struct
int *buflen - returned length of required buffer

(only used when options - >tagt ype ==

tag fill && options - >data . opts

opti o n countsize).

possible error condition.

Possible values for options:

output to the input path (only if path size

wouldn't change)

drawmod fillnormal fill path normally

drawmod_fillsubpath

OR an address

fill path, subpath by subpath

output bounding box of path to the word
aligned address, and three next words, with
word-order lowX, lowY, highX, highY

OR a buffer to hold the processed path.

RISC OS library reference section 285

event

event_process

event_anywindows

event_attachmenu

286

This file handles system-independent central processing for window system
events.

Processes one event.

Syntax:

Parameters:

Returns:

void event_process (void)

void.

void.

Other Information: If the number of current active windows is 0, the
program exits. One event is polled and processed (with the exception of some
complex menu handling, this really means passing the event on to the win
module). Unless an application window is claiming idle events, this function
waits when the processor is idle. Typically this should be called in a loop in
the main function of the application.

Informs the caller if there are any windows active that can process events.
Syntax: BOOL event_anywindows (void)

Parameters: void.

Returns: True if there are any active windows.

Attaches a menu and its associated handler function to the given window.
Syntax: BOOL event_attachmenu(event_w, menu , event_menu_proc ,

void *handle)

Parameters: event w- the window to which menu should be
attached
menu- the menu structure
event_ menu _proc- the handler for the menu
void *handle- caller-defined handle.

Returns: True if able to attach menu.
Other Information: The menu should have been created by a call to
menu_ new or something similar. When the user invokes a menu from the
given window, this menu will be activated. The handler function will be
called when the user selects a menu entry. The handler's parameter hit is a
string containing a character for each level of nesting in a hierarchical menu
structure, terminated by a 0 character. A call with menu 0 removes the
attachment. To catch menu events on the icon bar, attach a menu to
win ICONBAR (defined in the win module).

RISC OS library reference section

event_attachmenumaker

event_clear_current_menu

event_is_menu_being_
recreated

event: masking off
events

event_setmask

Attaches to the given window a function which makes a menu when the user
invokes a menu.

Syntax:

Parameters:

BOOL event_attachmenumaker (event_w , event_menu_maker,
event_menu_proc , void *handle)

event w- the window to which the menu maker
should be attached
event menu maker- the menu maker function - -
event_menu_proc- handler for the menu
void *handle- caller-defined hand le

Returns: True if able to attach menu maker
Other Information: This works similarly to event at tachmenu,
except that it allows you to make last minute changes to flags in the menu
(such as ticks or fades), before displaying it . A call with
event menu maker==O removes the attachment.

Clears the current menu tree.

Syntax: void event clear_current_menu(void)

Parameters:

Returns:

Other Information:

void.

void.

To be used to force all menus to be cleared from the
screen.

Informs the caller if a menu is being recreated.
Syntax:

Parameters:

Returns:

Other Information:

BOOL event_~s_menu_be~ng recreated(void)

void.

void.

Useful for when RISC_OSlib is recreating a menu
in response to a click on Adjust (call it in a menu
maker) .

Sets the mask used by wimp_poll and wimpt_poll when polling the
Wimp.

Syntax: void event setmask(wimp_emask mask)

Parameters: wimp emask mask- the desired mask.

RISC OS library reference section 287

event_getmask

fileicon

flex

flex_alloc

288

Returns: void.

Other Information: Bits of the mask are set if you want the
corresponding events ignored (as in the wimp_po ll SWI). For example,
event setmask (wimp_ EN ULL wimp_ EPTRENTER) will ignore nulls
and pointer entering window events. The default mask is to ignore null events
only .

Informs the caller of the current mask being used to poll the Wimp.
Syntax: wimp_emask event_ getmask(void)

Parameters: v o id.

Returns: The mask currently used.

Displays an icon representing a file, in a given window.
Syntax: void fileicon (w imp_w , wimp_i , int filetype)

Parameters:

Returns:

wimp_ w- the given window's handle
wimp i-an existmg icon
int filetype- RISC OS file type (eg OxOffe)

v o id.

Other Information: If you want a file icon in a dialogue box then pass
that dialogue box's window handle through first parameter, eg
f ileico n ((wimp_w) dbo x syshandle (d), ...). The second parameter
is the icon number of the required icon, within the template set up using
FormEd. For an example see the file Info template for Edit.

These functions provide memory allocation for interactive programs requiring
large chunks of store.

Allocates n bytes of store, obtained from the Wimp.

Syntax:

Parameters:

Returns:

int flex_alloc (flex_ptr anchor , int n)

f lex _pt r anch o r- to be used to access allocated
store
int n- number of bytes to be allocated.

0 == failure, 1 ==success

RISC OS library reference section

flex_free

flex_size

flex_extend

flex_midextend

flex_init

Other Information: You should pass the & of a pointer variable as the
first parameter. The allocated store must then be accessed indirectly, through
this, ie (*anchor) [0] 0 0 (*anchor) [n]. This is important because the
allocated store may later be moved. If there isn't enough store, returns zero
leaving anchor unchanged.

Frees the previously allocated store.

Syntax: void flex free (flex _ptr anchor)

Parameters:

Returns:

Other Information :

f 1 ex _pt r anchor- pointer to allocated store.

void.

*anchor will be set to 0.

Informs the caller of the number of bytes allocated.

Syntax:

Parameters:

Returns:

int flex_size(flex_ptr)

f 1 ex _pt r - pointer to allocated store

number of allocated bytes.

Extend or truncate the store area to have a new size.
Syntax:

Parameters:

Returns:

i n t flex_extend (flex_ptr , int newsize)

flex _ ptr- pointer to allocated store
int new s i ze- new size of store

0 ==failure, 1 ==success.

Extend or truncate store, at any offset.

Syntax: int flex_midextend (flex_plr , 1nt at , 1nt by)

Parameters: flex _ptr- pointer to allocated store
int at- offset within the allocated store
int by- extent.

Returns: 0 ==failure, 1 ==success.
Other Information: If by is +ve, store is extended, and locations above
at are copied up by by. If by is -ve, store is reduced, and any bytes beyond
at are copied down to at+by.

Initialise store allocation module.

Syntax: void flex init (void)

RISC OS library reference section 289

font

font_cacheaddress

font_find

font_lose

290

Parameters:

Returns:

Other Information:

void.

void.

Must be called before any other functions in this
module.

These functions provide access to RISC OS font facilities .

Informs the caller of font cache used and font cache size.
Syntax:

Parameters:

Returns:

Other Information:

os_error * font_cacheaddress(int *vers i on , int
*cacheused , int *cachesize)

int *version- version number
int *ca c heused- amount offont cache used (in
bytes)
int *c a c hesize- total size offont cache (in
bytes).

Possible error condition

Version number is *100, so v.l.07 would be returned
as 107.

Gives the caller a handle to font, given its name.
Syntax: 1 os_error * fo nt_find (char * name , int xsize , int ysize ,

Parameters:

Returns:

int xres , int yres , font *)

char *name- the font name
int xsize , ysize-x/ypointsize (in 16thsofa
point)
int xres, yres- x/y resolution in dots per inch
font* -the returned font handle

Possible error condition.

Informs the font manager that a font is no longer needed.
Syntax: os_e rror • font_lose (font f)

Parameters:

Returns:

font f- the font.

possible error condition.

RISC OS library reference section

font_readdef

font_readinfo

Gets details about a font, given its handle.

Syntax:

Parameters:

Returns:

os error* font readdef (font , font_def*)

font- the font handle

font_ def*- pointer to buffer to hold returned
details.

possible error condition.

Other Information:
supplied buffer (a
as follows:

This function fills in details about a font into
variable of type font de f). The fields of this buffer

the
are

name

xsize , ysize
xres , yres
usage

age

font name

x/y point size* 16
x/y resolution (dots per inch)
number of times Font FindFont has found the
font minus number of times Font LoseFont has
been used on it
number of font accesses made since this one was last
accessed.

Informs the caller of the minimal area covering any character in the font
bounding box.

Syntax:

Parameters:

Returns:

Other Information:
(vanable of type font

minx
maxx
miny
maxy

os_error * font_readinfo (font , font_info*)

font- the font handle
font_ info*- pointer to buffer to hold returned
details.

possible error condition.

Fills in details of the font in the supplied
info). The fields of this buffer are as follows:

minx coord in pixels (inclusive)
max x coord in pixels (inclusive)
min y coord in pixels (exclusive)
max y coord in pixels (exclusive) .

RISC OS library reference section

buffer

291

font_strwidth

font_paint

font_caret

292

Determines the width of a string.

Syntax: os error* font_strwidth(font_string *fs)

Parameters:

Returns:

Other Information:

s
X

y

split

term

font string * fs- the string, wtth fields:
s - string itself
x - max x offset before termination
y - max y offset before termination
split- string split character
term- index of char to terminate by

possible error condition.

On exit fs fields hold:

unchanged
x offset after printing string
y offset after printing string
number of split characters found; number of
printable characters if split was -1
index into string at which terminated.

Paints the given string at coordinates x,y.
Syntax: os error* font _ paint (char* , int options , int x , int y)

Parameters:

Returns:

char- the string
int options- set using 'paint options' defined in
the header file
int x, y- coordinates (either OS or 1/72000 inch)

possible error condition.

Sets the colour, size and position of the caret.
Syntax: os_error *font_caret (int colour , int height , int flags ,

int x , int y)

Parameters:

Returns:

int colour- EORed onto screen
int height- in OS coordinates
int flags- bit 4 set==> OS coordinates,
otherwise 1/72000 inch
in t x, y - x/y coordinates.

possible error condition.

RISC OS library reference section

font_convertoos

font_ converttopoi nts

font_setfont

font_ current

font_ future

Converts coordinates in 1/72000 inch to OS units.

Syntax:

Parameters:

Returns:

os_error *font_converttoos (int x_inch , int y_inch , int
*x_os , int *y_os)

int x _inch, y inch- x/y coordinates m
1/72000 inch
int *x os, *y os -x/ycoordinatesinOSunits.

possible error condition.

Converts OS units to 1/72000 inch.

Syntax:

Parameters:

Returns:

os error * font converttopo1nts (1nt x_os , 1nt y_os , int
*x_inch , int *y_inch)

int x o s, y os - x/y coordinates in OS units
int *x_ inch, *y inch-x/ycoordinatesin
1/72000 inch.

possible error condition.

Sets up the font used for subsequent painting or size-requests.

Syntax: os_error * font_setfont (font)

Parameters:

Returns:

font- the font handle

possible error condition.

Informs the caller of the current font state.

Syntax: os _error *font_ current (font state * f)

Parameters:

Returns:

Other Information:

font f
int back colour
int fore colour
int offset

font state * f - pointer to buffer to hold font
state

possible error condition.

returned buffer(into variable of type f o n t s tate):

handle of current font
current background colour
current foreground colour
foreground colour offset.

Informs the caller of font characteristics after a future f o nt _ paint.

Syntax: os_error *font_future (font_state *f)

Parameters: font state * f- pointer to buffer to hold font
state.

RISC OS library reference section 293

font_findcaret

font_ charbbox

font_readscalefactor

294

Returns:

Other Information :

possible error condition.

buffer contents:
font f- handle offont which would be selected
int back colour- future background colour
int fore_ colour- future foreground colour
int offset- foreground colour offset.

Informs the caller of the nearest point in a string to the caret position.
Syntax: os_error *font_findcaret(font_string *fs)

Parameters:

Returns:

Other Information:

font string *fs-thestring
fields: char * s- the string itself

int x , y- x/y coordinates of caret

possible error condition.

returned fields offs as in font strwidth.

Informs the caller of the bounding box of a character in a given font .
Syntax: os_error * font_charbbox(font , char , int options,

font_info*)

Parameters: font- the font handle
char- the ASCII character
int options- only relevant option if
font OSCOORDS
font info*- pointer to buffer to hold font
information.

Returns: possible error condition.
Other Information: if OS coordinates are used and font has been scaled,
box may be surrounded by area of blank pixels.

Informs the caller of the x and y scale factors used by the font. manager for
converting between OS coordinates and 1/72000 inch.
Syntax:

Parameters:

Returns:

os_error *font_readscalefactor(int *x , int *y)

in t * x , * y - returned scale factors.

possible error condition.

RISC OS library reference section

font_ setscalefactor

font_list

font_setcolour

font_setpalette

Sets the scale factors used by the font manager.

Syntax: os_error *font_setscalefactor(int x , int y)

Parameters: in t x , y - the new scale factors

Returns: possible error condition.
Other Information: scale factors may have been changed by another
application; well-behaved applications save and restore scale factors.

Gives the name of an available font.

Syntax: os error* font_list (char* , int*)

Parameters:

Returns:

Other Informat ion:

char*- pointer to buffer to hold font name
int * -count of fonts found (0 on first call).

possible error condition.

count is -1 if no more names. Typically used in loop
until count== -1.

Sets the current font (optionally), changes foreground and background
colours, and offset for that font .

Syntax: os error * font_setcolour(font , int background , int
foreground , int offset)

Parameters:

Returns:

Sets the anti-alias palette.

font- the font handle (0 for current font)
int background , foreground
back/foreground colours
int o ffset- foreground offset colour (-14 to
+ 14).

possible error condition.

Syntax: os_error *font_setpalette(int background , int foreground ,
int offset , int physical_back , int physical_fore)

Parameters:

Returns:

int background- logical background colour
int foreground - logical foreground colour
int offset - foreground colour offset
int physical_ back- physical background colour
int physical fore- physical foreground colour

possible error condition.

RISC OS library reference section 295

font_readthresholds

font_setthresholds

font_findcaretj

font_stringbbox

296

Other Information: physical_back and physical f o re are of the
form OxBBGGRROO.

Reads the list of threshold values that the font manager uses when painting
characters.

Syntax:

Parameters:

Returns:

os_error *font_ r ead thresholds (font_threshold *th)

f o nt thre s hold *th- pointer to result buffer.

possible error condition.

Sets up threshold values for painting colours.

Syntax:

Parameters:

Returns:

os_error * font_setthresholds (font_threshold *th)

font threshold *th- pointer to a threshold
table.

possible error condition.

Finds the nearest point where the caret can go (using justification offsets).
Syntax:

Parameters:

Returns:

Other Information:

os_error * font_ f indcaretj (font_string * fs , int offset_x ,
int offset_y l

font string *fs-thestrmg(setupasin
font findcaret)
int o ffset x , o ffset-y- the justification
offsets.

possible error condition.

If the offsets are both zero, the function is the same
~font findcaret.

Measures the size of a string (without printing it).
Syntax: os_error *font_stringbbox (char *s , font_info *fi)

Parameters:

Returns:

Other Information:

minx , miny
maxx, maxy

char * s -the string
font info * f i - pointer to buffer to hold font
information.

possible error condition.

fields returned in f i are:

bounding box min x/y
bounding box min x/y.

RISC OS library reference section

heap

heap_init

heap_alloc

heap_free

magnify

magnify _select

These functions provide mall oc-style heap allocation in a flex block.

Initialises the heap allocation system.

Syntax: void heap_init(BOOL heap_shrink)

Parameters:

Returns:

Other Information:

BOOL heap_ s hrink- if True, the flex block will

be shrunk (when possible) after heap_ free () .

v o id.

You must call f 1 ex in it before calling th LS

routine.

Allocates a block of storage from the heap.

Syntax:

Parameters:

Returns:

Other Information:

void *heap_alloc (unsigned int size)

un s igne d int s iz e - size of block to be
allocated.

pointer to allocated block (or 0 iffailed).

This uses the flex module to allocate Wimp-
supplied heap space. If the heap moves as the result of an extension or flex
can't extend the heap, 0 is returned.

Frees a previously allocated block of heap storage.

Syntax:

Parameters:

Returns:

void heap_free (void *heapptr)

vo i d *heapptr- pointer to block to be freed .

possible error condition.

This function allows the display and entry of magnification factors.

Displays a dialogue box to set magnification factors.

Syntax:

Parameters:

Returns:

void magnif y_select (int *rnul , int *div , int maxmul , int
rnaxdi v , void (*proc) (void *) , void *phandle)

int *mul, *di v- multiplication/division factors

int maxmul , maxdi v- maximum mult/div factors
void (*proc) (void *) -caller-supplied function
v o id *phandle- handle passed to user function .

void.

RISC OS library reference section 297

menu

298

Other Information: Displays a template called 'magnifier' (which must
be one of your loaded templates) . mul and div are the initial values on the
left and right of the : in the ratio shown in the dialogue box. They are
modified according to user mouse clicks on the arrow icons. proc (if non
null) is called each time the magnification factor changes.

The template should have the following attributes:

• window flags - moveable, auto-redraw. It is advisable to have a title icon
with the text magnifier or similar.

• icon #() - the multiplication factor icon. This should have an indirected
text flag set with text something like 9 9 9 and a maximum length of 4. It
is also advisable to have a validation string a0-9 (allowing numeric
input) . The button type should be 'writeable'.

• icon # l -the division factor icon (same as icon#())

• icon #2 - the increase multiplication factor icon should have its text flag
set and contain the 1l character (like the arrow used in scroll bars). The
button type should be 'auto-repeat' .

• icon #} - the decrease multiplication factor icon (same as icon #2, but
using the !t char).

• icon #4- the increase division factor icon (same as icon #2).

• icon #5- the decrease division factor icon (same as icon#}) .

• icon #6 - (optional but advisable) a text icon placed between icons #()
and #l as a separator eg :

These icons can be arranged in the window however you wish, but a
recommended layout is that of the Magnifier dialogue box in Draw or Paint.

These functions deal with the creation, deletion and manipulation of menus.

A menu description string defines a sequence of entries, with the following
syntax (curly brackets mean 0 or more, square brackets mean 0 or 1):

opt : : = ! or - or > or space
sep :: = , or I
11 : : = any char but opt or sep

RISC OS library reference section

menu_new

menu_dispose

menu_extend

12 :: = any char but sep
name : : = 11 { 12}
entry {opt} name
descr : := entry {sep entry}

Each entry defines a single entry in the menu. I as a separator means that
there should be a gap or line between these menu components.

opt ! means 'put a tick by it'
opt - means 'make it non-selectable'
opt > means 'has a dialogue box as 'submenu"
space has no effect as an opt.

Creates a new menu structure from the given textual description (arranged as
above).

Syntax:

Parameters:

Returns:

menu menu_new(char *name, char *description)

char *name- name to appear in title of menu
char *description- textual description of menu

pointer to menu structure created
Other Information: Creates a menu structure, with entries as given in the
textual description. Entries are indexed from 1. For example:
m=menu_new("Edit ", " >Info Create Quit")
Handler needs to be attached using event attachmenu.

Disposes of a menu structure.

Syntax: void menu_dispose(menu*, int recursive)

Parameters:

Returns:

menu* -the menu to be disposed of
int recursive- non-zero ==recursively dispose
of submenus.

void.

Adds entries to the end of a menu.
Syntax: void menu_extend (menu, char *description)

Parameters:

Returns:

menu- the menu to which extension is being made
char *description- textual description of
extension.

void.

RISC OS library reference section 299

menu_setflags

menu_submenu

menu make_writeable

300

Other Information: extension has the format:
[sep] entry {sep entry}

A menu which is already a submenu of another menu cannot be extended.

Sets or changes flags on an already existing menu entry.
Syntax: void menu_setflags(menu , int entry , int tick , int fade)

Parameters:

Returns:

menu- the menu
int entry - index into menu entries (from 1)
int tick- non-zero== tick this entry
int fade- non-zero == fade this entry (ie make it
unselectable).

void.

Attaches a menu as a submenu of another at a given entry in the parent menu .
Syntax: void menu_submenu (menu , int entry , menu submenu)

Parameters:

Returns:

menu- the menu
int entry - entry at which to attach submenu
menu submenu- pointer to the submenu.

void.

Other Information: This replaces any previous submenu at this entry.
Use 0 for submenu to remove an existing entry. Only a strict hierarchy is
allowed. When attached as a submenu, a menu can't be extended or
explicitly deleted.

Makes a menu entry writeable.
Syntax: void menu_make_writeable(rnenu m, int entry , char *buffer,

int bufferlength , char *validstring)

Parameters:

Returns:

Other Information:

menu m- the menu
int entry- the entry to make writeable
char *buffer- pointer to buffer to hold text of
entry
int buffer length- size of buffer
char *validstring- pointer to validation string

void.

The lifetimes of buffer and validstring must
be long enough .

RISC OS library reference section

menu_make_sprite

menu_syshandle

msgs

msgs_init

Makes a menu entry into a sprite.

Syntax: void menu_ma ke_sprite (menu m, int entry , char *spritename)

Parameters:

Returns:

menu m- the menu
int entry- entry to be made into sprite
char * spr i ten arne- name of the sprite.

void.

Other Information: Entry which is initially a non-indirected text entry is
changed to an indirected sprite, with sprite area given by resspr area (),
and name given by spri tename.

Gives low-level handle to a menu.
Syntax: void *me nu s y s handle (me nu)

Parameters: menu- the menu

Returns: pointer to underlying Wimp menu structure.
Other Information: Allows the massaging of a menu by means other than
those provided in this module. The returned pointer is in fact a pointer to a
wimp_menustr (ie wimp_menuhdr followed by zero or more
wimp_ menui terns).

These functions provide support for the messages resource file. Use them to
make your applications easily convertible to other natural languages. A
messages file for RISC_OSlib error messages is provided; it is not needed if
you just want English messages, since these are the defaults .

Reads in the messages fi le, and initial ise message system.
Syntax: v oid msgs_init (voi d)

Parameters:

Returns:

void

void.

Other Information: The messages file is a resource of your application
and should be named messages. Each line of this fi le is a message with the
following format:

<tag><colon><message text><newline>

The tag is an alphanumeric identifier for the message, which will be used to
search for the message, when using msgs lookup ().

RISC OS library reference section 301

msgs_lookup

OS

os_swi

os_swix

302

Finds the text message associated with a given tag.

Syntax: char *msgs_lookup(char *tag_and_default)

Parameters: char *tag and_default- thetagofthe
message, and an optional default message (to be
used if tagged message not found) .

Returns: pointer to the message text (if all is well).
Other Information: If the caller just supplies a tag, he will receive a
pointer to its associated message (if found) . A default message can be given
after the tag (separated by a colon). A typical use would be:

werr (1 , msgs lookup ("errorl "))
or
werr(l, msgs lookup("erro rl:Not enough memory ").

This file is provided as an alternative to kernel. h. It provides low-level
access to RISC OS. os error functions return a pointer to an error if one
has occurred, otherwise return NULL (0).

Performs the given SWI instruction, with the given registers loaded . An error
results in a RISC OS error being raised. A NULL reg set pointer means
that no inout parameters are used .
Syntax: void os swl(lnt swlcode , os_regset *regs)

Performs the given SWI instruction, with the given registers loaded. Calls
returning os error* use the X form of the relevant SWI. If an error is
returned then the os_error should be copied before further system calls
are made. If no error occurs then NULL is returned.
Syntax: os_error *os_swix(int swicode , os_regset *regs)

If swicode does not have the X bit set, os swi is called and these functions
return NULL (regardless of whether an error was raised). You should
therefore use X bit set swicodes to save confusion.

SWis with varying numbers of arguments and results:
NULL result pointers mean that the result from that register is not required .
The swi codes can be of the X form if required, as specified by swicode .

RISC OS library reference section

os_byte

os_word

os_gbpb

os_file

os_args

os_find

os_cli

OS - error *os - swiO(int swicode); I* zero arguments and results *I
OS error *os swil (int swicode , int rO) -
OS error *os swi2 (int swicode , int rO , int rl) -
OS error *os swi3 (int swicode , int rO , int rl , int r2 1
OS error *os swi4 (int swicode , int rO , int rl , i nt r2 , int r3)
OS error *os swi6 (int swicode , int rO , int rl , int r2 , int r3 , int r4 , int
OS error *os swilr(int swicode , int rOin , int *rOout)

os_error *os swi2r(i n t s wicode , int rOin , int rlin , int *rOout , int *rlout)

os error *os s wi3r (int s wicode , int , int , int , int* , int* , int*)
os_error *os_swi4r (int s wicode , int , int , int , int , int* , int* , int* , int*)
os_error *os s wi6r (int swicode ,

int rO , int rl , int r2 , int r3 , int r4 , int rS ,

int *rOout , int *rlout , int *r2out , int *r3out , int *r4out , int *rSout)

rS)

Performs an OS Byte SWix, with x and y passed in register r l and r2
respectively.

Syntax: os_error *os_byte (int a , int *x /*inout*/ , int *y
/*inout * /)

Performs an OS Wo rd SWix, with operation number given in wo r dcode
and p pointing at necessary parameters to be passed in r 1 .

Syntax: os error *os_word(int wordcode , void *p)

Performs an OS GBPB SWI. os_ gbpbs t r should be used like an
os_regset.

Syntax: os error *os_gbpb (os_gbpbstr*)

Performs an OS FILE SWI.

Syntax: os error *os file (os filestr*)

Performs an OS_ Args SWI.

Syntax: os error *os_args (os_regset*)

Performs an OS Find SWI.

Syntax: os error *os flnd (os regset*)

Performs an OS CLI SWI.

Syntax: os error *os_cli (char *cmd)

RISC OS library reference section 303

os_read_var_val

pointer
pointer_set_shape

pointer _reset_ shape

res

res_init

304

Reads a named environment variable into a given buffer (of size bufsize).
If the variable doesn't exist, buf points at a null string.

os_read_var_val(char *name, char *buf /*out*/ , int bufsize)

These functions deal with setting the pointer shape.

Sets pointer shape 2, to sprite, from sprite area.

Syntax: os_ error *po1nter set shape(spr l te_area *, spr1te 1d *
int , int)

Parameters: sprite area*- area where sprite is to be found
sprite id* -identityofthesprite
int , int- active point for pointer.

Returns: possible error condition.

Other Information: A typical use is to change pointer shape on entering
or leaving application window (appropriate events are returned from
wimp _poll).

Resets pointer shape to shape 1.

Syntax: void pointer_reset_shape (vold)

Parameters:

Returns:

Other Information:

void.

void.

Typically should be called when leaving an
application window.

These functions provide access to resources.

Initialises, ready for calling other res functions.

Syntax: void res_init (const char *progname)

Parameters:

Returns:

Other Information:

const char *a- your program name.

void.

Call this before using any res or resspr functions.

RISC OS library reference section

res_findname

res_openfile

resspr

resspr_init

resspr_area

C reates a full pathname for a res name file .

Syntax:

Parameters:

Returns:

Other Information:

int res_findname(const char *resname, char *buf /*out*/)

const char *resname- nameof oneofyour
resource files
char *buf- buffer to put full pathname in.

True (always).

the full pathname is constructed as:
<ProgramName$Dir> . resname where
P rogramName has been set using res ini t.

Opens a named resource file, in a given ANSI-style mode.
Syntax: FILE *res_openfile(const char *resname, canst char *mode)

Parameters:

Returns:

Other Information:

const char *resname-nameofthe resourcefile
const char *mode- usual ANSI open mode (r,
w, etc)

ANSI FILE pointer for opened file .
resname should be a 'leafname' (a call to
res findname is made for you).

These functions provide access to sprite resources.

Initialises, ready for calls to resspr functions .

Syntax: void resspr_init (void)

Parameters:

Returns:

void

void.

Other Information: call before using any resspr functions and before
using template ini t (), if your templates have sprites. This function reads
in your sprites.

Returns a pointer to the sprite area being used.
Syntax: sprite_area *resspr_area(void)

Parameters: void

Returns: pointer to sprite area being used.

RISC OS library reference section 305

saveas

save as

306

Other Information: Useful for passing parameters to functions like
bar icon which expect to be told sprite area to use.

These functions handle the export of data by dragging the icon from the
dialogue box.

Displays a dialogue box to enable the user to export application data.
Syntax:

Parameters:

Returns:

Other Information:

BOOL saveas(int filetype, char *name, int estsize ,
xfersend_saveproc , xfersend_sendproc, xfersend_printproc ,
void *handle)

int filetype- type offile to save to
char *name -suggested file name
in t est size - estimated size of the file
xfersend _ saveproc- caller-supplied function
for saving application data to a file
x fer send_ sendproc- caller-supplied function
for RAM data transfer (if application is able to do
this)
xfersend_printproc- caller-supplied function
for printing application data, if Save icon is dragged
onto printer icon
void *handle- handle to be passed to handler
functions .

True if data exported successfully.

This function displays a dialogue box with the
following fields:

• a sprite icon appropriate to the given file type

• the suggested filename

• an OK button.

A template called xfer_send must be in the application's templates file to
use this function, set up as in the Edit, Draw and Paint applications).
xfer_send deals with the complexities of message-passing protocols to
achieve the data transfer. Refer to the typedefs in x fer send . h for an
explanation of what the three caller-supplied functions should do. If you pass
0 as the xfersend_sendproc, no in-core data transfer will be attempted. If

RlSC OS library reference section

save as _read _ leafname _
during_ send

sprite

sprite: simple
operations

sprite_screensave

sprite_screenload

sprite: operations on
system/user area

sprite_area_initialise

sprite_area_readinfo

you pass 0 as the xfersend_printproc, the file format for printing is
assumed to be the same as for saving. The estimated file size is not essential,
but may improve performance.

Gets the 'leaf' of the filename in the filename field of the x fer- send
dialogue box.

Syntax:

Parameters:

Returns:

void saveas_read_leafname_during_send(char *name , int
length)

cha r *name -buffer to put filename in
int length- size in bytes of supplied buffer.

void.

These functions provide access to RISC OS sprite facilities. Only a brief
description is given for each call. More details can be found in the RISC OS
Programmer's Reference Manual, in the chapter entitled Sprites .

Saves the current graphics window as a sprite file, with optional pa lette
(equivalent to *ScreenSave).

Syntax: os error *sprite_screensave(const char *filename ,
sprite_palflag)

Load a sprite fi le onto the screen (equivalent to *ScreenLoad).

Syntax: os error *sprite_screenload(const char *filename)

Initialises an area of memory as a sprite area.
Syntax: vo1d spr1te area lnlt1al1se(spr1te area *, int size)

Reads information from a sprite area control block.
Syntax: os error *spr1te_area_read1nfo(spr1te area * sprite_area

*resultarea)

RISC OS library reference section 307

sprite_ area_rei nit

sprite_ area _ load

sprite_ area_ merge

sprite_area_save

sprite_getname

sprite_get

sprite_get_rp

308

Reinitialises a sprite area. If the sprite area is a system area, the function is
equivalent to *SNew.

Syntax: os error *sprite_area_reinit(sprite_area *)

Loads a sprite file into a sprite area. If the file is a system area, the function
is equivalent to * SLoad.

Syntax: os error *spr~te area load(spr~te ar~a * canst char
* filename)

Merges a sprite file with a sprite area. If the file is a system area, the
function is equivalent to *SMerge.

Syntax: os_error *sprite area_merge (sprite_area * canst char
*filename)

Saves a sprite area as a sprite file. If the sprite area is a system area, the
function is equivalent to * SSave.

Syntax: os error *sprite_area_save(sprite_area * canst char
*filen ame)

Returns the name and length of the nth sprite in a sprite area into a buffer.
Syntax: os error *sprite_getname (sprite_area * , void *buffer , int

*length , int index)

Copies a rectangle of screen delimited by the last pair of graphics cursor
positions as a named sprite in a sprite area, optionally storing the palette
with the sprite.

Syntax: os_error *spr1te get (sprlte_area *
sprite_palflag)

char *name ,

Copies a rectangle of screen delimited by the last pair of graphics cursor
positions as a named sprite in a sprite area, optionally storing the palette
with the sprite . The address of the sprite is returned in resul taddre s s.
Syntax: os_error *sprite_get_rp (sprite_area * , char *name ,

sp r ite_pa l flag , sprite_ptr * res u ltaddress)

RISC OS library reference section

sprite_get_given

sprite _get_given _rp

sprite_ create

sprite_ create _rp

sprite: operations on
system/user area,
name/sprite pointer
sprite_ select

sprite_select_rp

sprite_ delete

Copies a rectangle of
coordinates as a named
with the sprite.

Syntax:

screen delimited by the given pair of graphics
sprite in a sprite area, optionally storing the palette

os_error *sprite_get_given(sprite_area * , char *name ,
sprite_palflag , int xO , int yO , int xl , int yl)

Copies a rectangle of screen delimited by the given pair of graphics
coordinates as a named sprite in a sprite area, optionally storing the palette
with the sprite . The ddress of the sprite is returned in resul taddre ss.
Syntax: os_error *sprite_get_given_rp (sprite_area * , char *name ,

sprite_palflag , int xO , int yO , int xl , int yl ,
sprite_ptr *resultaddress)

Creates a named sprite in a sprite area of specified size and screen mode,
optionally reserving space for palette data with the sprite.
Syntax: os_error *spr~te_create (sprlte area * , char *name ,

sprite_palflag , int width , int height , int mode)

Creates a named sprite in a sprite area of specified size and screen mode,
optionally reserving space for palette data with the sprite. The address of the
sprite is returned in resultaddress.

Syntax: os_error *sprite create_rp (sprite_area * , char *name ,
sprite_palflag , int width , int height , int mode ,
sprite_ptr *result a ddress)

Selects the specified sprite for plotting using plot (Oxed 1 x 1 y).

Syntax: os_error *spr1te se l ect (sprlte area * sprite id *)

Selects the specified sprite for plotting using plot (Oxed 1 x 1 y). The
address of the sprite is returned in resul taddress.
Syntax: os_error *sprite_select_rp(sprite_area * spr>te >d *

sprite_ptr *resultaddress)

Deletes the specified sprite.

Syntax: os error *spr1te_delete (s p r1te area * , spr1te 1d *)

RISC OS library reference section 309

sprite _rename

sprite_copy

sprite_put

sprite_put_given

sprite _put_ scaled

sprite_put_greyscaled

sprite _put_ mask

sprite_put_mask_given

sprite_put_mask_scaled

310

Renames the specified sprite within the same sprite area.

Syntax: os_error *spr>te rename(spr>te area * sprite id * char
*newname)

Copies the specified sprite as another named sprite in the same sprite area.
Syntax: os_error *sprite_copy (sprite_area * sprite id * char

*copyname)

Plots the specified sprite using the given GCOL action.
Syntax: os error *sprite_put(sprite_area * sprite id * int gcol)

Plots the specified sprite at (x,y) using the given GCOL action.
Syntax: os_error *sprite_put_given(sprite_area * sprite_id * ,

int gcol , int x , int y)

Plots the specified sprite at (x,y) using the given GCOL action, and scaled
using the given scale factors.

Syntax: os_error *sprite_put_scaled (sprite_area * , sprite_id *
int gcol , int x , int y , sprite_factors *factors ,
sprite_pixtrans pixtrans[])

Plots the specified sprite at (x,y) using the given GCOL action, greyscaled
using the given scale factors.

Syntax: os_error *sprite_put_greyscaled(sprite_area * ,
sprite_id * , int x , int y , sprite_factors *factors ,
sprite_pixtrans pixtrans[) l

Plots the specified sprite mask in the background colour.
Syntax: os_error *sprite_put_mask(sprite_area * sprlte 1d *)

Plots the specified sprite mask at (x,y) in the background colour.
Syntax: os_error *sprite_put_mask_given (sprite_area *

sprite_id * , int x , int y)

Plots the sprite mask at (x,y) scaled, using the background colour/action.
Syntax: os_error *sprite_put_rnask_scaled (sprite_area * ,

sprite_id * , int x , int y , sprite_factors *factors)

RISC OS library reference section

sprite_put_char_scaled

sprite_ create_ mask

sprite_remove_mask

sprite_insert_row

sprite_ delete _row

sprite_insert_column

sprite_delete_column

sprite_flip_x

sprite_flip_y

sprite_readsize

Paints char scaled at (x,y).

Syntax: os~error *sprite_put_char_scaled(char ch , int x , int y ,

sprite_factors *factors)

Creates a mask definition for the specified sprite.

Syntax: os error *sprite_create_mask(sprite_area * sprite_id *)

Removes the mask defin ition from the specified sprite.

Syntax: os error *sprite_remove_mask (sprite_area * spr1te 1d *)

Inserts a row into the specified sprite at the given row.

Syntax: os error *spr1te_1nsert_row(spr1te area * spr1te 1d *
int row)

Deletes the given row from the specified sprite.

Syntax: os error *spr1te_delete row(spr1te_area * , spr1te 1d * ,
i nt row)

Inserts a column into the specified sprite at the given column.

Syntax: os_error *sprite_insert_column (sprite_area * ,

sprite_id * , int column)

Deletes the given column from the specified sprite.

Syntax: os_error *sprite_delete_column (sprite_area *
sprite_id * , i n t column)

Flips the specified sprite about the x axis.

Syntax: os error *sprlte flip_x (sprite area * sprite id *)

Flips the specified sprite about they axis.

Syntax: os error *sprite fllp_y (sprlte area * sprite id *)

Reads the stze mformation for the speCLfted sprite i d.

Syntax: os_error *spr1te reads1ze (spr1te area * , sprite id *
sprite_info *resultinfo)

RISC OS library reference section 311

sprite_readpixel

sprite_ writepixel

sprite_readmask

sprite_writemask

sprite_restorestate

sprite_ outputtosprite

sprite_outputtomask

sprite_ outputtoscreen

sprite_sizeof_
spritecontext

sprite_sizeof_
screencontext

312

Reads the colour of a given ptxel in the specified sprit e id.

Syntax: os_error *sprlte readplxel(sprlte area * sprite id *
int x , int y , sprite_colour *resultcolour)

Wntes the colour of a given pixel m the specified spr i t e i d.

Syntax: os_error *sprlte_wrlteplxel(sprlte area* sprlte ld *
int x , int y , sprite_colour *colour)

Reads the state of a given pixel in the spec ified sprite mask.

Syntax: os_error *sprlte readmask (sprlte_area * , sprite id * ,
int x , int y , sprite_maskstate *resultmaskstate)

Writes the state of a given pixel in the specified sprite mask.
Syntax: os error *spr~te_wr~temask(sprlte area * , spr1te_1d *

int x , int y , sprite_maskstate *maskstate)

Restores the old state after one of the sprite redirection calls.
Syntax: os error *sprite_restorestate(sprite_state state)

Redirects VOU output to a sprite, saving the old state.
Syntax: os_error *spr1te_outputtospr1te(spr1te area *area ,

sprite_id *id , int *save_area , sprite_state *state)

Redirects output to a sprite's transparency mask, saving the old state.
Syntax: os_error *sprite_outputtomask(sprite_area *area ,

sprite_id *id , int *save_area , sprite_state *state)

Redirects output back to screen, saving the old state.
Syntax: os_error *sprite_outputtoscreen (int *save_area,

sprite_state *state)

Gets the size of the save area needed to save the sprite context.
Syntax: os_error *sprlte_slzeof_sprltecontext(sprlte area *area ,

sprite_id *id , int *size)

Gets the size of the save area needed to save the screen context.
Syntax: os error *sprite_sizeof_screencontext(int *size)

RISC OS library reference section

sprite _removewastage

template

template_ copy

template_readfile

template_find

template_loaded

Removes the lefthand wastage from a sprite .
Syntax: os_error *sprite_removewastage(sprite_area *area,

sprite_id *id)

This file contains functions used for loading and manipulating templates
(typically set up using the template editor, FormEd). The templates are
assumed to be held in a file Te mplat es in the application's directory. The
dialogue box module of the RlSC OS library uses these templates when
creating dialogue boxes.

Creates a copy of a template .
Syntax:

Parameters:

template *template_copy (template *from)

templa t e *from- the original template
Returns: a pointer to a copy of fr om.
Other Information: Copying includes fixing up pointers into workspace
for indirected icons/title, and the allocation of this space.

Reads the template file into a linked list of templates.
Syntax:

Parameters:

BOOL template_readfile (char *name)

cha r *name- name of template file
Returns: Non-zero if sprites are used in the template file.
Otherlnformation: Note that a call is made to r esspr_ a rea(), in
order to fix up a window's sprite pointers, so you must have already called
resspr init.

Finds a named template in the template list.
Syntax: template *template_find (char *name)

Parameters:

Returns:

c ha r *name- the name of the template (as given
in FormEd)

a pointer to the found template.

Sees if there is anything in the template list.
Syntax: BOOL template_loaded(void)

Parameters: v o id

Returns: Non-zero if there is something in the template list.

RISC OS library reference section 313

template_init

template_syshandle

trace

tracef

trace_is_on

trace_on

trace_off

314

Initialises ready for the use of templates.

Syntax: void template init(void)

Parameters:

Returns:

Other Information :

void

void.

Should be called before any operations which use
templates (such as dialogue box creation) .

Gets a pointer to the underlying window used to create a template.

Syn tax: wimp_wi nd *template_syshandl e(char *name)

Parameters:

Returns:

O ther Information:

char *templatename.

Pointer to template's underlying window (0 if
template not found) .

Any changes made to the wimp wind structure wdl
affect fu ture windows generated using th is template.

These functions provide centralised control for trace/debug output.

O utputs tracing information .

Syntax: void t racef (c har * , . .. 1
void tracefO (char*)

Parameters:

Returns:

Other Information:

void tracefl (char *, int)
void tracef2 (char* , i nt , int)
void tracef3 (char *, i nt , int , int)
voi d t r acef4 (char* , i nt , int , int , int)

char*- print f-s tyle format string
... - variable argument list .

void.

called by tracefO, tracefl etc. Fixed-format

ones will compile to nothing if trace is not set at
compile time.

int trace is on (void) returns True if tracing is turned on

void trace on (void) turns tracing on

void trace off (void) turns tracing off

RISC OS library reference section

txt

txt: interface functions

txt_new

txt_ show

txt_ hide

txt_settitle

A txt is an array of characters, displayed
behaves in many ways similarly to a single
Guide for details of this application).
Edit$0ptions to set up colours, fonts and
flex init before calling txt.

in a window on the screen. It
buffer from Edit (see the User
It uses the system variable
other features. You must call

Creates a new txt object, containing no characters with a given title (to appear
in its window).

Syntax: txt txt_new(char *title)

Parameters: char *title- the text title to appear in its
window.

Returns: pointer to the newly created text.
Other Information: This function does not result in the text being
displayed on the screen; it simply creates a new text object. 0 is returned if
there is not enough space to create the object.

Displays a given text object in a free-standing window of its own.
Syntax:

Parameters:

Returns:

Other Information:

void txt_show(txt t)

txt t- the text to be displayed.

void.

t should have been created using txt new.

Hides a text which has been displayed.

Syntax:

Parameters:

Returns:

void txt_hide(txt t)

txt t- the text to be hidden.

void.

Changes the title of the window used to display a text object.
Syntax:

Parameters:

Returns:

Other Information:

void txt_settitle (txt L, char *title)

txt t- the text object
char *title- new title of window.

void.

Long titles may be truncated when displayed.

RISC OS library reference section 315

txt_ dispose

txt : general control
operations

txt_bufsize

txt_setbufsize

txt_charoptions

316

Destroys a text and the window associated with it.

Syntax: void txt_dispose (txt *t)

Parameters:

Returns:

txt *t- pointer to the text.

void.

A text object's main data content is an array of characters. This resides in a
buffer of known size. The characters of the array are not laid out precisely in
the buffer; a gap is used in order to make insertion and deletion fast. When
initially created, a text has bufsize=O.

Tells caller how many characters can be stored in the buffer before more
memory needs to be requested from the operating system.

Syntax: *int txt_bufsize (txt)

Parameters:

Returns:

txt t- the text.

size of buffer.

Allocates more space for the text buffer.

Syntax: BOOL txt_setbufsize(txt , int)

Parameters: txt t- the text
int b- new buffer size.

Returns: True if space could be allocated successfully.

Other Information: This call increases the buffer size, so that at least b
characters can be stored before requiring more from the operating system.

The character array is displayed on the screen in a window. The characters
travel horizontally from left to right. If a \ n is encountered, this signifies the
end of the current text line, and the start of a new one. All lines have the
same height, although characters may be of differing widths. There is no limit
on the number of characters allowed in a line. There is no restriction on the
characters allowed in the array: any number from 0 to 255 is acceptable.

Informs the caller of the currently set charoptions.

Syntax: txt_charoption txt_charoptions(txt)

Parameters:

Returns:

txt t- text object.

Currently set charoptions.

RlSC OS library reference section

txt_setcharoptions

txt_setdisplayok

txt: operations on the
array of characters

txt dot

C learing the DISPLAY flag can be used during a long and complex sequence
of ed its, to reduce the overall amount of display activity. The UPDATED flag
is set by the insertion or deletion of any characters in the array.

Sets the flags which are used to control the display of text in a screen window.
Syntax: void txt_setcharoptions (txt , txt_charoption affect ,

txt_charoption values)

Parameters:

Returns:

Other Information:

t x t t- text object
txt charoption affect- flags to affect
txt_ c har opt i o n value s - values to give to
affected flags.

vo id.

Only the flags named in affec t are affected - they
are set to the value value s . This therefore has the meaning:

(previ ousState & - affect) (affe c t & values)

Sets the display flag in charoptions for a given text.
Syntax:

Parameters:

Returns:

void txt_setdisplayok(txt)

txt t- text object

vo id.

Other Information: This asserts to the system that the display is up to
date, preventing a redraw. It is useful only in very specialised circumstances.

dot is an index into the character array. If there are n characters in the array,
with indices in o ... n-1, then d o t is in o ... n. It is thought of as pointing just
before the character with the same index, but it can also point just after the
last one. When the text is displayed, the character after the d o t is always
visible. The caret is a visible indication of the position of the d o t within the
array. It can be made visible using SetCharOpti ons above.

Informs the caller of where the dot (current position) is in the array of
characters.

Syntax: txt_index txt_dot (txt t)

Parameters: t x t t- text object.

Returns: An index into the array of characters.

RISC OS library reference section 317

txt_ size

txt_setdot

txt_movedot

txt_i nsertchar

txt_i n se rtstri ng

318

Informs the caller as to the maximum value dot can take.

Syntax: txt_i ndex txt_ size (txt t)

Parameters: txt t -text object.

Returns: Maximum permissible value of d o t.

Sets the dot at a given index in the array of characters.

Syntax: void txt_setdot (txt t , tx t _index i)

Parameters:

Returns:

Other Information:

txt t- text object.
txt index i- index at which to set dot.

void.

If i is outside the bounds of the array it is set to the
beginning or end of the array, as appropriate.

Moves the dot by a given distance in the array.

Syntax: void txt_movedot (txt , int by)

Parameters: txt t- text object
int by- distance to move by

Returns: void

Other Information: If the resulting dot is outside the bounds of the
array it is set to the beginning or end of the array, as appropriate.

Inserts a character into the text just after the dot.

Syntax: v oid t xt_i nsertcha r (txt t , c har c)

Parameters: txt t- text object

Returns:

Other Information:

char c- the character to be inserted.

void.

If the DISPLAY option flag is set, the window is
redisplayed after insertion.

Inserts a given character string into a text.

Syntax: void txt_insertstr ing (txt t , char *s)

Parameters: txt t- text object
char * s - the character string.

Returns: void.

RISC OS library reference section

txt_ delete

txt_replacechars

txt_charatdot

txt_charat

Other Information: If the DISPLAY option flag is set, the window is

redisplayed after insertion.

Deletes n characters from the dot onwards.

Syntax:

Parameters:

Returns:

Other Information:

void txt_delete(txt t , int n)

txt t- text object

int n- number of characters to delete.

void.

If dot +n is beyond the end of the array, deletion is
to the end of the array.

Deletes ntodelete characters from dot, and inserts n characters in their
place, where the characters are pointed at by a.

Syntax:

Parameters:

Returns:

void txt_replacechars(txt t , int ntodelete , char *a , int
n)

txt t- text object

int ntodelete- number of characters to delete
char *a- pointer to characters to insert
int n- number of characters to insert.

void.

Informs the caller of the character held at dot in the array.

Syntax:

Parameters:

Returns:

Other Information:

char txt_charatdot (txt t)

txt t- text object.

Character at dot.

Returns 0 if dot is at or beyond end of array.

Informs the caller of the character at a given index in the array.

Syntax: char txt_charat (txt t , txt_index i)

Parameters: txt t- text object
txt index i- the index into the array.

Returns: Character at given index in array.

Other Information: Returns 0 if index is at or beyond end of array.

RISC OS library reference section 319

txt_charsatdot

txt_replaceatend

txt: layout-dependent
operations

txt_movevertical

320

Copies at most n characters from dot in the array into a supplied buffer.
Syntax: void txt_charsatdot (txt , char/ *out * / *buffer , int

/ * inout * / * n)

Parameters: txt t- text object
char *buffer- the buffer
int *n- maximum characters to copy.

Returns: void.

Other Information: If you are close to the end of the array, n characters
may not be available. In this case, characters up to the end of the array are
copied, and * n is updated to report how many were copied.

Deletes a specified number of characters from the end of the array and then
inserts specified characters.

Syntax: void txt_ replaceatend (txt , int ntodelete , char *, int)

Parameters:

Returns:

txt t- text object
int ntodelete- number of characters to delete
char * s -pointer to characters to insert
int n- number of characters to insert.

void.

These operations are provided specifically for the support of cursor-key
driven editing.

Moves the dot by a specified number of textual lines, with the caret staying
in the same horizontal position on the screen.
Syntax: vo id txt_moveve r t i cal (tx t t , i nt b y , int care t still)

Parameters:

Returns:

txt t- text object
int by- number of lines to move by
int caretstill- set to non-zero, if you want the
text to move rather than the caret.

void.

RISC OS library reference section

txt_movehorizontal

txt_ visiblelinecount

txt_ visiblecolcou nt

txt: operations on
markers

txt_newmarker

Moves the caret (and dot) horizontally.

Syntax:

Parameters:

Returns:

Other Information:

void txt_movehorizontal (txt , int by)

txt t- text object

int by- distance to move by.

void.

This behaves like txt_ movedot (), except that if

by is positive and the end of the current text line is encountered, the caret

will continue to move to the right on the screen.

Gives the number of lines visible or partially visible on the display.

Syntax:

Parameters:

Returns:

Other Information:

int txt_visiblelinecount (txt t)

txt t- text object.

Number of visible lines

Takes into account current window size, font etc.

Gives the number of columns currently visible.

Syntax: int txt_visiblecolcount (txt t)

Parameters: txt t - text object.

Returns: Visible column count.

Other Information: If a fixed pitch font is currently in use, this gives the
number of display columns; otherwise, it makes a guess for average characters.

Markers are indices into the array. Once set, a marker will point to the same
character in the array regardless of insertions or deletions within the array. If
the character pointed at by the marker is deleted, the marker will point to the
next character. Markers never fa ll off the end of the array, but stay at the top
or bottom of it, if that's where they end up.

Creates a new marker in the text.

Syntax: void txt_newmarker (txt , txt_marker *mark)

Parameters: txt t- text object

txt marker *mark- pointer to your text marker.

Returns: void.

RISC OS library reference section 321

txt_movemarker

txt_movedottomarker

txt_indexofmarker

txt_disposemarker

322

Other Information: The marker itself is kept by the client of this
function, but the text object retains a pointer to it. The client's marker is
updated by the text object whenever necessary. Its initial value is the same as
dot. If the character at which a marker points is deleted, then the marker gets
moved to the value of d o t when the deletion occurred. If characters are
inserted when the marker is at dot, the marker stays with dot.

Resets an existing marker.

Syntax: void txt_movemarker(txt t , txt_marker *mark, txt index to)

Parameters: txt t- text object
txt marker *mark- the marker
txt index to- place to move the marker to.

Returns: void.

Other Informat ion: The marker must already point into this text object.

Moves the dot to a given marker.

Syntax: void txt_movedottomarker (txt t , txt_ marker *mark)

Parameters:

Returns:

txt t - text object
txt marker *mark- pointer to the marker.

void.

Gives the current index into the array of a given marker.
Syntax: txt_index txt_indexofmarker (txt t , txt_marker *mark)

Parameters: txt t -text object
txt_ marker *mark- pointer to the marker.

Returns: Index of marker.

Delete a marker from a text object.
Syntax: void txt_disposemarker(txt , txt_marker*)

Parameters: txt t- text object
txt marker *mark- the marker to be deleted.

Returns: void.

Other Information: You should remember to dispose of a marker which
logically ceases to exist, otherwise the text object will continue to update the
location where it was.

RISC OS library reference section

txt: operations on a
selection

txt selectset

txt_selectstart

txt_selectend

txt_setselect

txt: input from the user

The selection is a contiguous portion of the array which is displayed
highlighted.

Informs the caller whether there is a selection made in a text.

Syntax: BOOL txt_selectset (txt t)

Parameters: txt t- text object.

Returns: True if there is a selection in this text.

Gives the index into the array of the start of the current selection.

Syntax: txt_index txt_selectstart (txt t)

Parameters:

Returns:

txt t- text object.

Index of selection start.

Gives the index into the array of the end of the current selection.

Syntax: txt_index txt_selectend(txt t)

Parameters:

Returns:

txt t -text object.

Index of selection end.

Sets a selection in a given text, from start to end.

Syntax: void txt_setselect(txt , txt_index start , txt_index end)

Parameters:

Returns:

Other Information:

txt t- text object
txt index start - array index of start of

selection
txt index end- array index of end of selection .

void.

If start >= end then the selection will be unset .

Characters entered into the keyboard, and various mouse events, are buffered
up by the text object for use by the client.

A call to the event handler registered with a text object will give an event
code to the event handler, to say what sort of event has occurred. The
following event codes are defined; any that are not understood should be
ignored.

• Codes 0 - 255: key codes from the keyboard

RISC OS library reference section 323

324

• Codes 256- 511: various function keys, etc; refer to h.akbd for the rules.

• Mouse events:

A mouse event occurs when the mouse is pointing in the text object and a
button is pressed or released, or the mouse moves while any button is
depressed. A mouse event will result in Get producing an EventCode with
bit 31 set, bits 24 .. 28 as a mouseeventflags value, and the rest of the
word containing an index value.

The index shows where in the visible representation of the array the
mouse event happened. If all three index bytes are 255, the event
happened outside the window. The mouseeventflags show what button
transitions occurred:

MSELECT

MEXTEND

MSELOLD

MEXTOLD

Select's new value

Adjust's new va lue

Select's old value

Adjust's old value

MEXACT the event is in exactly the same place as the last one.

The byte gives the values of the select and extend buttons: 1 for
depressed and 0 for not depressed. It gives their previous values,
allowing transitions to be detected. It reports whether the position of the
mouse is exactly the same as for the last event, so that multiple clicks
may be detected. No assumptions should be made concerning the
relationship of these bits to the last mouse event sent to the programmer,
as polling delays etc. could cause any combinations to happen.

If txt_ EXTRACODE is set, the identity of the event is not defined by this
interface. This is used for any expansion. Clients of this interface which
receive such events that they do not recognise, should ignore them without
reporting an error.

The Menu button on the mouse is not transmitted through this interface,
but caught elsewhere. Use event_attach_menu to attach a menu
handler to the txt syshandle of a txt object.

RlSC OS library reference section

txt_get

txt_ queue

txt_unget

• Keyboard events:

txt EXTRACODE + akbd Fn + 1:- help request
txt EXTRACODE + akbd Fn + akbd _ Sh + 2 : insert drag file
txt EXTRACODE + akbd Fn + 12 7:- close icon

txt EXTRACODE + akbd Sh + akbd Ct 1 + akb d _ Upk: scroll up
one line

txt EXTRACODE + akbd Sh + akbd Ctl + akb d Do wnK: scroll
down one line

txt EXTRACODE + akbd Sh + akbd _ UpK: scroll up one page
txt EXTRACODE + akbd Sh + akbd _ DownK: scroll down one page

In the current implementation of txt, txt queue never returns more than
1, so wimpt last_ event () can be accessed to get more mformation.

Gives the next user event code to the caller.

Syntax: txt e ventcode txt get (txt t)

Parameters: txt t- text object

Returns: The event code

Other Information: The returned code can be ASCII, or various other
(system-specific) values for function keys etc. This function can only be called
within an event handler.

Informs the caller of how many event codes are currently buffered for a given
text.

Syntax:

Parameters:

Returns:

Other information:

int txt_queue (txt t)

txt t- text object

Number of buffered event codes.

This function can only be called within an event
handler.

Puts an event code back on the front of the event queue for a given text.

Syntax: void txt_unget (t x t t , txt_eventcode code)

Parameters: txt t- text object
txt event code code- the event code.

Returns: void.

RlSC OS library reference section 325

txt_eventhandler

txt_readeventhandler

txt: direct access to the
array of characters

txt_arrayseg

326

Other information : This function can only be called within an event
handler.

Registers an eventhandler function for a given text, which will be called
whenever there is a value ready which can be picked up by tx t get () .

Syntax:

Parameters:

Returns:

Other Information:

void txt_eventhandler {txt , txt_event_proc , void *handle)

txt t- tex t object
txt_ event _proc func- event handler function
void *handle- caller-defined handle to be
passed to func.

void.

If func ==O, no function is registered.

Informs the caller of the currently registered eventhandler function
associated with a given text, and the handle which is passed to it.
Syntax: void txt_readeventhandle r(txt t , txt event_proc *func ,

void **handle)

Parameters:

Returns:

txt t- text object
txt_ event _proc * func- returned pointer to

handler func
void **handle- returned pointer to handle.

void.

Gives a direct pointer into the memory used to hold the characters in a text.
Syntax: voi d txt_array seg (txt t , txt_i nde x at , char **a , int *n)

Parameters:

Returns:

txt t- text object
txt index at- index into the text
c h a r **a - *a will point at the character whose
index in the text is at
int *n- number of contiguous bytes after at.

void.

Other Information : It is permissible for the caller of this function to
change the characters pointed at by *a , provided that a redisplay is prompted
(using setcharopt i ons).

RISC OS library reference section

txt: system hook

txt_syshandle

txtedit

txtedit_install

txtedit_new

txtedit_dispose

txtedit_mayquit

Obtains a wimp w value for the window underlying a text.

Syntax: int txt_syshandle (txt t)

Parameters: txt t- text object.

Returns: System-dependent hand le for the given text.

These functions provide text editing facilities.

Installs an event handler for the txt t, thus making it an editable text.

Syntax:

Parameters:

Returns:

txtedit_state *txted it_install(txt t)

txt t- the text object (created via txt new)

A pointer to the resulting txtedi t st a te.

C reates a new text object and loads the given file into it. The text can then be

edited.

Syntax: txtedit_state *txtedit_new(char *filename)

Parameters: char *filename- the file to be loaded.

Returns: a pomter to the txtedit state for thts text.

Other Information : If the file cannot be found, then 0 is returned as a

result, and no text is created. If filename is a null pointer, then an editor

window with no given file name will be constructed. If the fi le is already

being edited, then a pointer to the existing txtedi t _state is returned.

Destroys the given text being ed ited.

Syntax:

Parameters:

Returns:

Other Information :

void txtedit_dispose (txtedit_state *s)

txtedit state *s- the text to be destroyed.

void.

This will ask no questions of the user before
destroying the text.

Check if we may safely quit editing.

Syntax:

Parameters:

BOOL txtedit_mayquit (void)

v o id.

RISC OS library reference section 327

txtedit_prequit

txtedit_menu

txtedit_menuevent

txtedit_doimport

328

Returns: True if we may safely quit, otherwise False.
Other Information: If a text is being edited, then a dialogue box is
displayed asking the user if he really wants to quit. This calls dboxquery (),
and therefore requires the template query as described in dbo xquery . h.

Deals with a PREQUIT message from the Task Manager.
Syntax:

Parameters:

Returns:

void txtedit_prequit(void)

void.

void.

Other Information: Calls txtedi t _may quit (), to see if we may quit,
if text is being edited. If user replies that we may quit, then all texts are
disposed of, and this function sends an acknowledgement to the Task Manager.

Sets up a menu structure for the text being edited, tailored to its current state.
Syntax: menu txtedit_menu (t x tedit_state *s)

Parameters: txtedi t state * s- the text's current state.
Returns: a pointer to an appropriately formed menu structure.
Other Information: The menu created will have the same form as that
displayed when Menu is clicked on an Edit window. (For Edit version 1.00).
Entries In the menu are set according to the supplied txtedi t state.

Applies a given menu hit to a given text.
Syntax: void txtedit_menuevent (txtedi t state *s , char *hit)

Parameters:

Returns:

Other Information:

txtedit state *s- the text to which hit should
be applied
char *hit- a menu hit string.

void.

This can be called from a menu event handler.

Import data into the specified txtedi t object, from a file of a given type.
Syntax:

Parameters:

BOOL t xtedit_doimpo r t (txt edit_state *s , int filetype , int
estsize)

txtedi t _state * s- the text object
int f i letype- type of the file
int est size- the file's estimated size.

RISC OS library reference section

txtedit_doinsertfile

txtwin

txtwin_new

txtwin_number

txtwin_dispose

Returns: True if the import is completed successfully.

Inserts a named file in a given text object.

Syntax: void txtedit_doinsertfile (txtedit state *s , char

*filename , BOOL rep l aceifwasnull)

Parameters:

Returns:

txtedit state *s-thetextobject

c har *filename- the given file

BOO L replaceifwasnull- if set to True then

the text object will be considered to have come from
filename, ie the window title is updated.

void.

These functions give control of multiple windows on text objects. When the

Text is updated, all the windows are updated in step. All the windows have

the same title information.

Creates an extra window on a given text object.

Syntax: void txtwin_new (txt t)

Parameters:

Returns:

txt t- the text to have a window added to it.

void

Other Information: The created window will be in the same style as for

txt new (), with the same title information. The window will be made

visible .

Informs the caller of the number of windows currently on a given text.

Syntax:

Parameters:

Returns:

int txtwin_number (txt t)

txt t- the text.

The number of windows currently on t.

Removes a window, previously on t.

Syntax:

Parameters:

Returns:

void txtwin_dispose (txt t)

txt t- the text

void

RISC OS library reference section 329

txtwin_setcurrentwindow

visdelay

visdelay _begin

visdelay _percent

visdelay_end

visdelay _in it

330

Other Information: This call will have no effect if there is only one
window on t .

Ensures that the last window to which the last event was delivered is the
current window on a given text.
Syntax: void txt win setcurrentwindow(txt t)

Parameters:

Returns:

txt t -the text.

void.

Other Information: Call this when constructing menus, since the same
menu structure is attached to each window on the same text object.

These functions enable a visual indication of some delay.

Changes pointer to show user there will be some delay (currently the
RISC OS hourglass).

Syntax:

Parameters:

Returns:

Other Information:

void visdelay_begi n(void)

v oid.

void.

Under RISC OS, the hourglass will only appear if
the delay is longer than 1/3 sec.

Indicates to the user that a delay is p percent complete.
Syntax: void visdelay_percent l int p i

Parameters:

Returns:

int p- percentage complete.

void.

Removes the indication of delay.
Syntax:

Parameters:

Returns:

vo>d v>sdelay_end (void)

v o id.

void.

Initialises ready for visdelay functions .

Syntax: void visdelay_init (void)

Parameters: v o id.

RISC OS library reference section

werr

wimp

wimp_flags

Returns: void.

This function provides error reporting in Wimp programs, causing a (possibly
fatal) error message to appear in a pop-up dialogue box.

Syntax: void werr (int fatal , c har * format , ...)

Parameters: int fatal- non-zero indicates fatal error
char *format- printf-style format string
... -variable arg list of message to be printed .

Returns: void.

Other Information: The program exits if fatal is non-zero. The pointer
is restricted to the displayed dialogue box to stop the user continuing until he
has clicked on the OK button. The message should be divided into at most
three lines, each of 40 characters or less.

This file provides a C interface to RISC OS Wimp SWls, and the following
useful type definitions.

typedef enum{

wimp_WMOVEABLE

wimp_REDRAW_OK

Ox00000002,

Ox00000010,

wimp_WPANE Ox00000020,

wimp_WTRESPASS = Ox00000040,

is moveable

can be redrawn entirely by
Wimp ie no user graphics

window is stuck over tool window

window is allowed to go outside
main area

wimp_WSCROLL_Rl= Ox00000100, scroll request returned when
scroll button clicked - auto-
repeat

wimp_ SCROLL_ R2 = Ox00000200, as SCROLL_Rl, debounced, no
auto

wimp_ REAL_ COLOURS = Ox0000004 00, use real window colours.

wimp_BACK_WINDOW = Ox000000800, this window is a background
window.

wimp HOT_KEYS = OxOOOOOlOOO,

wimp_WOPEN = OxOOOlOOOO,

RISC OS library reference section

- · -· J •,,...,, -• '""'-' VCVLIUII

generate events for 'hot keys'

window is open

331

wimp_wcolours

wimp_iconflags

332

wimp_WTOP = Ox00020000,

wimp_WFULL = Ox00040000,

wimp_WCLICK_TOGGLE = Ox00080000,

wimp_WFOCUS = OxOOlOOOOO,

wimp_WBACK OxOlOOOOOO,

wimp_WQUIT = Ox02000000,

wimp_WTITLE = Ox04000000,

wimp_WTOGGLE= Ox08000000,

wimp_WVSCR OxlOOOOOOO,

wimp_WSIZE = Ox20000000,

wimp_WHSCR = Ox40000000,

wimp_WNEW = Ox80000000

}wimp_flags ;

Note: Always set the WNEW flag.

window is on top (not covered)

window is full size

open_ window_ request was

due to click on Toggle size icon

window has input focus

window has Back icon

has a C lose icon

has a title bar

has a Toggle size icon

has vertical scroll bar

has Adjust size icon

has horizontal scroll bar

use these new flags

If the work area background is 255, it isn't painted. If the title foreground is
255, you get no borders, title etc. at all.

typedef enum{

wimp_WCTITLEFORE ,

wimp_WCTITLEBACK ,

wimp_WCWKAREAFORE ,

wimp_WCWKAREABACK ,

wimp_WCSCROLLOUTER ,

wimp_WCSCROLLINNER,

wimp_WCTITLEHI ,

wimp_WCRESERVED

}wimp_wcolours ;

If the icon contains anti-aliased text, the colour fields give the font handle

typedef enum{

wimp ITEXT = OxOOOOOOOl,

wimp ISPRITE Ox00000002,

wimp IBORDER Ox00000004,

icon contains text

icon is a sprite

icon has a border

RISC OS library reference section

wimp_ibtype

wimp IHCENTRE Ox00000008 ,

wimp_IVCENTRE Ox00000010,

wimp_IFILLED = Ox00000020,

wimp IFONT = Ox00000040,

wimp IREDRAW = Ox00000080 ,

wimp INDIRECT = Ox00000100,

wimp IRJUST = Ox00000200 ,

wimp_IESG_NOC = Ox00000400,

wimp IHALVESPRITE=Ox00000800,

wimp_IBTYPE = Ox00001000,

wimp_ISELECTED = Ox00200000,

wimp INOSELECT = 0x00400000 ,

wimp_IDELETED Ox00800000,

wimp_IFORECOL = OxOlOOOOOO,

wimp IBACKCOL = OxlOOOOOOO

)wimp_iconflags ;

Button types:

typedef enum{

wimp_BIGNORE,

wimp_BNOTIFY ,

wimp_BCLICKAUTO ,

wimp BCLICKDEBOUNCE,

wimp_BSELREL ,

wimp_BSELDOUBLE ,

wimp_BDEBOUNCEDRAG ,

wimp_BRELEASEDRAG ,

wimp_BDOUBLEDRAG,

wimp BSELNOTIFY ,

wimp_BCLICKDRAGDOUBLE ,

wimp BCLICKSEL ,

wimp Bwritable 15

RISC OS library reference section

text is horizontally centred

text is vertically centred

icon has a filled background

text is in an anti-aliased font

redraw needs application's help

icon data is 'indirected'

text right-justified in box

if selected by Adjust, don't

cancel other icons in same ESG

plot sprites half-size

4-bit field: button type

icon selected by user (inverted)

icon cannot be selected (shaded)

icon has been deleted

4-bit field: foreground colour

4-bit field: background colour

ignore all mouse ops

useful for on/off and radio

buttons

333

wimp_bbits

wimp_dragtype

wimp_w

wimp_i

wimp_t

wimp _icondata

334

}wimp ibtype ;

Button state bits

typedef enum{

wimp BRIGHT OxOOl ,

wimp BMID = Ox002 ,

wimp_BLEFT = Ox004 ,

wimp_BDRAGRIGHT = Ox010 ,

wimp_BDRAGLEFT = Ox040 ,

wimp_ BCLICKRIGHT = OxlOO ,

wimp BCLICKLEFT = Ox400

}wimp_bbits ;

typedef enum{

wimp_MOVE_WIND

wimp SIZE_WIND

wimp_DRAG_HBAR

wimp DRAG_VBAR

1 ,

2 ,

3 ,

4 ,

wimp_USER_FIXED = 5,

wimp_ USER_ RUBBER 6,

wimp USER_HIDDEN = 7

}wimp dragtype ;

typedef int wimp_w ;
Abstract window handle .

typedef int wimp_ i ;
Abstract icon handle.

typedef int wimp t ;
Abstract task handle .

The data field in an icon.
typedef union {

change position of window

change size of window

drag horizontal scroll bar

drag vertical scroll bar

user drag box - fixed size

user drag box - rubber box

user drag box - invisible box

RISC OS library reference section

wimp_box

wimp_wind

char text[l2];

char sprite name[l2];

struct

char *name;

void *spritearea ;

BOOL nameisname;

indirect sprite;

struct

char *buffer ;

char *validstring;

int bufflen;

indirect text ;

wimp icondata ;

typedef struct{

int xO , yO , xl, yl

wimp_box;

up to 12 bytes of text

up to 12 bytes of sprite name

0 ~ use the common sprite area

1 ~ use the Wimp sprite area

if False, name is in fact a sprite
pointer.

if indirect

pointer to text buffer

pointer to validation string

length of text buffer

If there are any icon definitions, they should follow this structure
immediately in memory.

typedef struct{

wimp_box box ;

int sex, scy;

wimp_w behind ;

wimp_wflags flags ;

char colours[8];

wimp box ex ;

wimp iconflags titleflags;

wimp_iconflags workflags;

RlSC OS library reference section

screen coordinates of work area

scroll bar positions

handle to open window behind,
or -1 if top

word of flag bits defined above

colours: index using
wimp_ wcolours.

maximum extent of work area

icon flags for title bar

just button type relevant

;jJ(

335

wimp_winfo

wimp_icon

wimp_icreate

wimp_openstr

336

void *spritearea ;

int minsize ;

wimp_icondata title ;

int nicons ;

} wimp_wind ;

0 ~ use the common sprite area

1 ~ use the Wimp sprite area

two 16-bit OS-unit fields,

(width/height) giving minimum
size of window

0 ~use title

title icon data

number of icons in window

Result of get_info call. Space for icons must follow.

typedef struct {

wimp_w w;

wimp_wind info ;

} wimp_winfo ;

Icon description structure.
typedef struct {

wimp_box box ;

wimp iconflags flags ;

wimp icondata data ;

} wimp icon ;

Structure for creating icons.
typedef struct {

wimp_w w;

wimp icon i ;

} wi mp icreate ;

typedef struct

wimp_w w;

bounding box - relative to
window origin (work area top
left)

word of flag bits defined above

union of bits & bobs as above

window handle

RISC OS library reference section

wimp_wstate

wimp_etypes

wimp_box box ;

int x , y ;

wimp_w behi nd ;

) wimp openstr ;

Result for window state enquiry.

typedef struct {

wimp_openstr o ;

wimp wflags flags ;

) wimp_wstate ;

Event types.

typedef enum

wimp ENULL ,

wimp_EREDRAW ,

wimp_EOPEN ,

wimp_ECLOSE ,

wimp_EPTRLEAVE ,

wimp_EPTRENTER ,

wimp_EBUT ,

wimp EUSERDRAG ,

wimp_EKEY ,

wimp_EMENU ,

wimp_ESCROLL,

wimp_ELOS ECARET ,

wimp_EGAINCARET ,

wimp_ ESEND = 17 ,

wimp_ESEN DWANTACK

wimp_EACK = 19

wimp_etype ;

18 1

RISC OS library reference section

position on screen of visible

work area

'real' coordinates of visible
work area

handle of window to go behind

(- 1 = top, - 2 = bottom)

null event

redraw event

mouse button change

send message, don't worry if it
doesn't arrive

send message, re turn ack if not
acknowledged

acknowledge rece ipt of message

337

wimp_emask

wimp_redrawstr

wimp_mousestr

wimp_caretstr

338

Event type masks.
typedef enum

wimp_EMNULL = 1 << wimp_ENULL ,

wimp_EMREDRAW 1 << wimp EREDRAW ,
wimp_EMOPEN = 1 << wimp_EOPEN ,

wimp EMCLOSE = 1 << wimp ECLOSE ,
wimp_EMPTRLEAVE = 1 << wimp_EPTRLEAVE ,
wimp EMPTRENTER = 1 << wimp EPTRENTER ,
wimp_EMBUT = 1 << wimp_EBUT ,

wimp EMUSERDRAG = 1 << wimp_EUSERDRAG ,
wimp EMKEY = 1 << wimp_EKEY ,

wimp_EMMENU = 1 << wimp_EMENU ,
wimp_EMSCROLL = 1 << wimp_ESCROLL
} wimp_emask ;

typedef struct

wimp_w w;

wimp_box box ;

int sex , scy ;

wimp_box g ;

} wimp redrawstr ;

typedef struct

int x , y ;

wimp_bbits bbits ;

wimp w w;

wimp i i ;

} wimp_mousestr ;

typedef struct

wimp_w w;

wiinp_i i ;

int x , y ;

work area coordinates

scroll bar positions

current graphics window

mouse x and y

button state

window handle, or - 1 if none

icon handle, or - 1 if none

offset re lative to window origin

RISC OS library reference section

wimp_msgaction

int height ;

int index;

} wimp_ caretstr;

-1 if calc within icon

bit 24 ~ VDU-5 type caret

bit 25 ~caret invisible

bit 26 ~bits 16 ... 23 contain
colour

bit 27 ~colour is 'real' colour

position within icon

Message action codes are allocated just like SWI codes.

typedef enum {

wimp_MCLOSEDOWN = 0 ,

wimp MDATASAVE = 1 ,

wimp_MDATASAVEOK = 2,

wimp_MDATALOAD = 3 ,

wimp_MDATALOADOK = 4,

wimp_MDATAOPEN 5 ,

wimp_MRAMFETCH = 6 ,

wimp_MRAMTRANSMIT = 7,

wimp_MPREQUIT = 8 ,

wimp PALETTECHANGE = 9,

wimp FilerOpenDir = Ox0400 ,

wimp_ FilerCloseDir = Ox0401 ,

wimp_Notify = Ox40040

wimp_MMENUWARN = Ox400c0 ,

RISC OS library reference section

reply if any dialogue with the

user is required, and the
closedown sequence will be
aborted.

request to identify directory

reply to message type 1

request to load/insert dragged

icon

reply that file has been loaded

warning that an object is to be

opened

transfer data to buffer in my

workspace

I have transferred some data to

a buffer in your workspace

net filer notify broadcast

menu warning. Sent if

wimp_ MSUBLINKMSG set. Data

sent is:

339

wimp_msghdr

340

wimp MMODECHANGE = Ox400cl,

wimp_MINITTASK = Ox400c2 ,

wimp_MCLOSETASK = Ox400c3 ,

wimp_MSLOTCHANGE = Ox400c4 ,

wimp_MSETSLOT = Ox400c5 ,

wimp_MTASKNAMERQ

wimp_MTASKNAMEIS

wimp_MHELPREQUEST

Ox400c6 ,

OX400c7 ,

= Ox502 ,

wimp MHELPREPLY = 0x503 ,

Messages for dialogue with printer applications

wimp_MPrintFile Ox80140 ,

wimp_MWillPrint = Ox80141 ,

wimp_ MPrintTypeOdd = Ox80145 ,

wimp_MPrintTypeKnown = Ox80146 ,

wimp_MPrinterChange = Ox80147

} wimp_msgaction ;

submenu field of relevant
wimp_ menui tern.

screen x-coord

screen y-coord

list of menu selection indices
(0 .. n- 1 for each menu)

terminating -1 word.

Typical response is to call
wimp create submenu.

Slot size has altered

Task Manager requests

application to change its slot size

Request task name

Reply to task name request

interactive help request

interactive help message

Printer application's first
response to a DA T ASA VE

Acknowledgement of PrintFile

Broadcast when strange files
dropped on the printer

Acknowledgement to above

New printer applicat ion
installed

Message block header. size is the size of the whole msgstr, see below.

typedef struct

int size ; 20<=size<=256, multiple of 4

RISC OS library reference section

wimp_msgdatasave

wimp_ msgdatasaveok

wimp_msgdataload

wimp_t task ;

int my ref ;

int your ref ;

wimp_msgaction action ;

} wimp_msghdr ;

typedef struct

wimp_w w;

wimp i i ;

int x ; int y ;

int estsize ;

int type ;

char leaf[12] ;

wimp_msgdatasave ;

task handle of sender (filled in

by Wimp)

unique ref number (filled in by

Wimp)

(O= =>none) if non-zero,

acknowledge

message action code

window in which save occurs.

icon there

position within that window of
destination of save

estimated size of data, in bytes

fil e type of data to save

proposed leaf-name of fil e, 0-

terminated

w, i , x , y , type , est size copied unaltered from DataSave message.

typedef struct

wimp_w w;

wimp i i ;

int x ; int y ;

int estsize ;

int type ;

char name[212] ;

} wimp_msgdatasaveok ;

For a data load reply, no arguments are required.

typedef struct {

wimp_w w;

RISC OS library reference section

window in which save occurs.

icon there

position within that window of

destination of save.

estimated size of data, in bytes

file type of data to save

the name of the file to save

target window

341

wimp_msgdataopen

wimp_msgramfetch

wimp_msgramtransmit

wimp_msghelprequest

wimp_msghelpreply

342

wimp_i i ;

int x ; int y ;

int size ;

int type ;

char name[212] ;

} wimp_msgdataload ;

target icon

target coordinates in target
window work area

must be 0

type of file

the filename follows.

wimp_msgdataopen derives its typedef from wimp msgdataload, since
the data provided when opening a file is exactly the same. The window, x and
y refer to the bottom lefthand corner of the icon that represents the file be ing
opened, or w=- 1 if there is no such icon .

Transfer data in memory.
typedef struct

char *addr ;

int nbytes ;

} wimp_msgramfetch ;

address of data to transfer

number of bytes to transfer

'I have transferred some data to a buffer in your workspace'.
typedef struct

char *addr ;

int nbyteswritten ;
} wimp_msgramtransmit ;

typedef struct {

wimp_mousestr m;

} wimp_msghelprequest ;

typedef struct {

char text[200] ;

} wimp_msghelpreply ;

copy of value sent in RAM fetch

number of bytes written

where the help is required

the helpful string

RISC OS library reference section

wimp_msgprint

wimp_msgstr

wimp_eventdata

Structure used in all print messages.
typedef struct {

int filler[S]

int type ;

char name[256- 44]

} wimp_msgprint ;

Message block.
typedef struct

wimp_msghdr hdr ;

union {

char chars[236] ;

int words[59] ;

file type

filename

maximum data size.

wimp_msgdatasave datasave ;

wimp_msgdatasaveok datasaveok ;

wimp_msgdataload dataload ;

wimp_msgdataopen dataopen ;

wimp_msgramfetch ramfetch ;

wimp_msgramtransmit ramtransmit ;

wimp_msghelprequest helprequest ;

wimp_msghelpreply helpreply ;

wimp_msgprint print ;

data ;

wimp_msgstr ;

typedef union {

wimp openstr o ;

struct {

wimp_mousestr m;

for redraw, close, enter, leave
events

wimp_ bb its b ; } but ; for button change event

wimp_ box dragbox ; for user drag box event

struct {wimp caretstr c ; int chcode ; } key ; furkeyeven~

int menu [10] ; for menu event: terminated by - 1

RISC OS library reference section 343

wimp_eventstr

wimp_menuhdr

wimp_menuflags

344

struct {wimp_openstr o ; int x , y ; } scroll ; for scroll request

x=- 1 for left, + 1 for right

y=- 1 for down,+ 1 for up

scroll by +/-2 -> page scroll
request

wimp caretstr c ;

wimp_msgstr msg ;

} wimp_eventdata ;

Wimp event description .
typedef struct

wimp_etype e ;

wimp_eventdata data ;

} wimp_eventstr ;

typedef struct {

char title[12] ;

for caret gain/lose

for messages

event type

menu title (optional)

char tit fcol , tit_bcol , work fcol , work_bcol ; colours

int width , height ;

int gap ;

} wimp_menuhdr ;

size of following menu items

vertical gap between items

Use wimp_INOSELECT to shade the item as unselectable, and the button
type to mark it as writeable.
typedef enum {

wimp_MTICK = 1 ,

wimp_MSEPARATE = 2 ,

wimp_Mwriteable = 4 ,

wimp_MSUBLINKMSG = 8 ,

wimp_MLAST = Ox80

wimp_menuflags ;

show a = > flag, and inform
program when it is activated

signal last item in the menu

RISC OS library reference section

wimp_menuptr

wimp_menuitem

wimp_menustr

wimp_dragstr

wimp_which_block

Only for the circular reference in menuitem/str.

typedef struct wimp_menustr *wimp_menuptr ;

Submenu can also be a wimp w, in which case the window is opened as a

dialogue box within the menu tree.

typedef struct {

wimp_menuflags flags ;

wimp_menuptr submenu ;

wimp_iconflags iconflags ;

wimp icondata data ;

} wimp_menuitem ;

typedef struct {

wimp_menuhdr hdr ;

} wimp_menustr ;

typedef struct {

wimp_w window ;

wimp_dragtype type ;

wimp_box box ;

wimp_box parent ;

} wimp_dragstr ;

typedef struct

wimp_w window ;

int bit mask ;

int bit set ;

wimp_which block ;

RISC OS library reference section

menu entry fl ags

wimp_ menustr* pointer to sub

menu, or wimp w dialogue box,

or -1 if no submenu

icon flags for the entry

icon data for the entry

zero or more menu items follow

in memory

initial position for drag box

parent box for drag box

handle

bit set=> consider this bit

desired bit sett ing

345

wimp_pshapestr

wimp_font_array

wimp_template

346

typedef struct

int shape num ;

char *shape_data ;

int width , height ;

int activex , activey ;

} wimp pshapestr ;

typedef struct

char f[256) ;

wimp font array ;

T emplate reading structure
typedef struct {

int reserved ;

wimp wind *buf ;

char *work free ;

char *work end ;

wimp_font array *font ;

char *name ;

pointer shape number (0 turn
off pointer)

shape data, NULL pointer
implies ex isting shape

Width and height in pixe ls
Width = 4n, where n is an
integer.

active point (pixels from top
left)

initialise all to zero before
using for first
load_template, then just use
repeatedly without altering

ignore - implementation deta il

pointer to space for putting
template in

pointer to start of free Wimp
workspace - you have to prov ide
the Wimp system with
workspace to store its redirected
icons in end of workspace you
are offering to the Wimp

points to font reference count
array; 0 pointer implies fonts
not allowed

name to match with (can be
wildcarded)

RISC OS library reference section

wimp_paletteword

wimp_palettestr

Function prototypes

wimp_initialise

wimp_taskinit

wimp_create_wind

wimp_create_icon

int index ;

} wimp template;

position in index to search from
(0 = start)

The gcol char (least significant) is a gcol colour except in 8-bpp modes, when
bits 0 .. 2 are the tint and bits 3 .. 7 are the gcol colour.

typedef union {

struct {char gcol; char red; char green; char blue ;}
bytes ;

int word;

} wimp paletteword;

typedef struct {

wimp_paletteword c[l6]; Wimp colours 0 .. 15

wimp_paletteword screenborder, mousel, mouse2 , mouse3;

wimp_palettestr;

os_error *wimp_initialise(int *v)

Closes and deletes all windows, returning Wimp version number.

os error *wimp taskinit(char *name, wimp_t *t)

name is the name of the program. Used instead of wimp initialise.
Returns your task handle.

os_error *wimp_create wind(wimp_wind *, wimp w *)

Defines (but does not display) window, returning window handle.

os_error *wimp_create icon(wimp icreate *, wimp i
*result)

Adds icon definition to that of window, returning icon handle.

RISC OS library reference section 347

wimp_delete_wind

wimp_delete_icon

wimp_open_wind

wimp_close_wind

wimp _poll

wimp_save_fp_state_on_
poll (void)

wimp_corrupt_fp_state_
on_poll (void)

wimp_redraw_wind

wimp_update_wind

wimp_get_rectangle

348

os error *wimp_delete_wind(wimp_w)

os error *wimp delete icon(wimp w, wimp_i)

os error *wimp open_wind(wimp_openstr *)

Makes a window appear on the screen.

os_error *wimp_close_wind(wimp_w)

Removes from the active list the window with its handle in the integer
argument.

os error *wimp_poll(wimp emask mask , wimp eventstr
*result)

Polls the next event from the Wimp.

os_error *wimp_save_fp_state on_poll (void)

Activates the saving of the floating point state on calls to wimp_poll and
wimp_pollidle; this is needed if you do any floating point at all, as other
programs may corrupt the FP status word , which is effectively a global in
your program.

void *wimp corrupt fp_state on_poll(void)

Disables the saving of the floating point state on calls to wimp _po 11 and
wimp _po 11 idle; use only if you never use FP at all.

os_error *wimp_redraw_wind(wimp_redrawstr* , BOOL*)

Draws a window outline and icons. Return False if there's nothing to draw.

os error *wimp_update_wind (wimp_redrawstr* , BOOL*)

Returns the visible portion of a window. Returns False if there's nothing to
redraw.

os_error *wimp_get_rectangle (wimp_redrawstr* , BOOL*)

Returns the next rectangle in the list, or False if done.

RISC OS library reference section

wimp_get_wind_state

wimp_get_wind_info

wimp_ set_icon _state

wimp_get_ icon_info

wimp _get _poi nt_i nfo

wimp_drag_box

wimp_force_redraw

wimp _set_ caret_pos

wimp _get_ caret_pos

wimp_create_menu

os_error *wimp get_wind_state(wimp_w , wimp_ wstate
*result)

Reads the current window state.

os_error *wimp_get_wind_ info(wimp_winfo *result)

On entry result->w gives the window in question. Space for any icons must
follow *result.

os error *wimp set icon state(wimp w, wimp i,
wimp iconflags value , wimp iconflags mask)

Sets an icon's flags as (old state & ~mask) " value.

os_error *wimp get icon info(wimp w, wimp i, wimp icon
*result)

Gets the current state of an icon.

os error *wimp get_point info(wimp_mousestr *result)

Gives information regarding the state of the mouse.

os_error *wimp_drag_box(wimp dragstr *)

Starts the Wimp dragging a box.

os_error *wimp_force_redraw(wimp_redrawstr *r)

Marks an area of the screen as invalid. If r->wimp w -1, use screen
coordinates. Only the first five fields of r are valid.

os_error *wimp_set_caret_pos(wimp caretstr *)

Sets the position and size of the text caret.

os error *wimp get caret_pos(wimp caretstr *)

Gets the position and size of the text caret.

os error *wimp_create_menu(wimp_menustr *m, int x, int y)

'Pops up' a menu structure. Set m==(wimp_menustr*)-1 to clear the menu
tree.

RISC OS library reference section 349

wimp_decode_menu

wimp_which_icon

wimp_set_extent

wimp_set_point_shape

wimp_open_template

wimp_close_template

wimp _load_ template

wimp_processkey

wimp_closedown

wimp_taskclose

wimp _starttask

350

os error *wimp decode_menu(wimp_menustr * void* void
*)

os_error *wimp_which icon(wimp_which_block * , wimp i
*results)

The results appear in an array, terminated by a (wimp i) - 1.

os_error *wimp set extent(wimp redrawstr *)
Alters the extent of a window's work area - only the handle and the first set
of four coordinates are looked at.

os_error *wimp_set_point shape (wimp_pshapestr *)
Sets the pointer shape on screen.

os_error *wimp_open_template (char *name)

Opens the named file to allow load_template to read a template from the
file .

os_error *wimp_close_template(void)

Closes the currently open template file.

os error *wimp load template(wimp_template *)

Loads a window template from an open file into buffer.

os_error *wimp_processkey(int chcode)

Hands back to the Wimp a key that you do not understand.

os error *wimp_closedown(void)

os error *wimp_taskclose(wimp_t)

Calls closedown in the multi-tasking form.

os_error *wimp_starttask(char *clicmd)

Starts a new Wimp task, with the given CLI command.

RISC OS library reference section

wimp_getwindowout

wimp_pollidle

wimp_ploticon

wimp_setmode

wimp _readpalette

wimp_setpalette

wimp_setcolour

wimp_spriteop

wimp_ spriteop _fu II

os_ error *wimp_getwindowoutline(wimp redrawstr *r)

Sets r~w on entry. On exit, r~box will be the screen coordinates of the
window, including border, title, scroll bars.

os error *wimp_pollidle(wimp emask mask, wimp eventstr
*result, int earliest)

Like wimp _poll, but does not return before the earliest return time. This is a

value produced by OS_ ReadMonotonicTime.

os_error *wimp_ploticon(wimp_icon*)

Called only within an update or redraw loop, and just does the plotting. This
need not be a real icon attached to a window.

os_error *wimp_setmode(int mode)

Sets the screen mode. Palette colours are maintained, if possible.

os error *wimp readpalette(wimp_palettestr*)

os error *wimp_setpalette(wimp_palettestr*)

The bytes. gcol values of each field of the palettestr are ignored; only
the absolute colours are taken into account.

os error *wimp_setcolour(int colour)

bits 0 ... 3 =Wimp colour (translate for current mode)

4 ... 6 = gcol action

7 = foreground/background.

os error *wimp_spriteop(int reason code, char *name)

Calls SWI Wimp SpriteOp.

os_error *wimp_spriteop full(os_regset *)

Calls SWI Wimp Spr i teOp allowing full information to be passed.

RISC OS library reference section 351

wimp_ baseofsprites

wimp_ blockcopy

wimp_errflags

wimp_reporterror

wimp_sendmessage

wimp_ sendwmessage

352

void *wimp_baseofsprites(void)

Returns a sprite_area*, which may be moved about
mergespri tefile.

os error *wimp_blockcopy(wimp_w , wimp_box *source , int
x , int y)

by

Copies the source box (defined in window coordinates) to the given
destination (in window coordinates). Invalidates any portions of the
destination that cannot be updated using on-screen copy.

typedef enum {

wimp_EOK = 1 ,
wimp ECANCEL = 2 ,
wimp EHICANCEL 4
} wimp errflags ;

put in OK box
put in CANCEL box
highlight CANCEL rather than OK

If OK and CANC EL are both 0 you get an OK.

os_error *wimp reporterror(os_error* , wimp_errflags ,
char *name)

Produces an error window. Uses sprite called error in the Wimp sprite
pool. name should be the program name, appearing after error in at the
head of the dialogue box.

os_error *wimp_sendmessage(wimp etype code , wimp_msgstr*
msg , wimp_t dest)

dest can also be 0, in which case the message is sent to every task in turn,
including the sender. msg can also be any other wimp_ eventdata * va lue.

os_error *wimp_sendwmessage (wimp_etype code , wimp_msgstr
*msg , wimp_w w, wimp_i i)

Sends a message to the owner of a specific window or icon . msg can also be
any other wimp_ eventdata * value.

RISC OS library reference section

wimp_create_submenu

wimp_slotsize

wimp_transferblock

wimp_setfontcolours

wimp_readpixtrans

wimp_command_tag

os_error *wimp_create_submenu(wimp_menustr *sub , int x ,
int y)

sub can also be a wimp_ w, in which case it is opened by the Wimp as a
dialogue box.

os error *wimp slotsize (int *currentslot ,
int *nextslot ,
int *freepool)

currentslot/nextslot==O - > just read setting.

os_error *wimp_transferblock(
wimp t sourcetask ,
char *sourcebuf ,
wimp_ t desttask ,
char *destbuf ,
int buflen)

Transfers memory between domains.

os_error *wimp_setfontcolours(int foreground , int
background)

Sets font manager colours. The Wimp handles how many shades etc. to use.

os_error *wimp_readpixtrans(sprite_area *area , sprite id
*id, sprite_factors *factors , sprite_pixtrans *pixtrans)

Tells you how the Wimp will plot a sprite when asked to
PutSpri teScaled.

typedef enum {
wimp_command_TITLE = 0 ,
wimp_command_ACTIVE = 1 ,
wimp_command_CLOSE_PROMPT
wimp_command_CLOSE_ NOPROMPT
} wimp command_tag ;

RISC OS library reference section

2 ,
= 3

353

wimp_commandwind

wimp_commandwindow

wimpt

wimpt_poll

wi mpt_fake _event

wimpt_last_event

354

typedef struct {
wimp_command_tag tag;
char *title

wimp commandwind ;

os error *wimp_commandwindow(wimp_commandwind
commandwindow)

Opens a text window for normal VDU 4-type output. The tag types
correspond to the four kinds of call to SWI wimp_CommandWindow
described in the RISC OS Programmer's Reference Manual. title is only
required if tag wimp command_TITLE. It is the application's
responsibility to set the tag correctly.

These functions provide low-level Wimp functionality.

Polls for an event from the Wimp (with extras to buffer one event).
Syntax: os_error *wimpt_poll(wimp_emask mask, wimp_eventstr

*result)

Parameters: wimp_emask mask- ignore events in the mask
wimp_ event str *result- the event returned
from Wimp

Returns: possible error condition.
Other Information: lf you want to poll at this low level (ie avoiding
event process ()), use this function rather than wimp _ poll. Using
wimpt _poll allows you to use the routines shown below.

Posts an event to be collected by w impt _poll.

Syntax:

Parameters:

Returns:

Other Information:

void wimpt_fa ke_event(wimp_eventstr *)

wimp eventstr- the posted event

void

use with care!

Informs the caller of the last event returned by w impt _po 11.
Syntax: wimp_eventstr *wimpt_last_event (void l

Parameters: void

RISC OS library reference section

wimpt_last_event_ was_
a_key

wimpt_noerr

wimpt_complain

Returns: pointer to last event returned by wimpt _poll.

Informs the caller if the last event returned by wimpt _poll was a key stroke.

Syntax:

Parameters:

Returns:

Other Information:
wimpt_last event

wimp_EKEY.

lnt Wlmpt_last_event_was a key(vold)

void

non-zero if las t event was a keystroke.

retained for backwards compatibility. Use
for preference, and test if e field of returned struct ==

Halts the program and reports an error in a dialogue box (if e!=O).

Syntax: void wimpt_noerr(os_error *e)

Parameters:

Returns:

os error *e- error return from system ca ll

void.

Other Information: Usefu l for 'wrapping up' system calls which are not
expected to fail; if failure occurs, your program probably has a logical error.
Call when an error would mean disaster: for example:

wimpt noerr(some system_call(.......)) ;

The error message is :

ProgName has suffered a fatal internal error
(errormessage) and must exit immediately.

Reports an error in a dialogue box (if e!=O).

Syntax:

Parameters:

Returns:

Other Information:
fail. Call when your
appropriate action).

os_error *wlmpt_complaln(os_error Ae)

o s _error * e - error return from system call

the error returned from the system call (ie. e).

Useful for 'wrapping up' system calls which may
program can still limp on regard less (taking some

RISC OS library reference section 355

wimptt: control of
graphics environment

wimpt_checkmode

wimpt_mode

wimpt_dx/wimpt_dy

wimpt_bpp

wimpt_init

356

Registers the current screen mode with the wimpt module.

Syntax: BOOL wimpt_checkmode (void)

Parameters:

Returns:

Reads the screen mode.

Syntax:

Parameters:

Returns:

Other Information:

void

True if screen mode has changed.

int wimpt_mode(void)

void

screen mode.

faster than a normal OS call. Value is only valid if
wimpt che c kmode is called at redraw events.

Informs the caller of OS x/y units per screen pixel.
Syntax:

Parameters:

Returns:

Other Information:

i n t wimpt_dx (void)

int wimpt_dy (void)

v o id

OS x/y units per screen pixel.

faster than a normal OS call. Value is only valid if
wimpt checkmode is called at redraw events.

Informs the caller of bits per screen pixel.
Syntax:

Parameters:

Returns:

Other Information :

int wimpt_bpp (void)

void

bits per screen pixel (in current mode)
faster than a normal OS call. Value is only valid if
wimpt checkmode is called at redraw events.

Set program up as a Wimp task.
Syntax: void wimpt lnlt (char *programname)

Parameters:

Returns:

char *pro gramname- name of your program

void.

RISC OS library reference section

wimpt_programname

wi m pt_repo rterro r

wimpt_task

wimpt_forceredraw

Other Information: Remembers screen mode, and sets up signal
handlers so that task exits cleanly, even after fatal errors. Response to signals
SIGABRT, SIGFPE, SIGILL, SIGSEGV and SIGTERM is to display error
box with message:

pro gname has suffere d an internal erro r (type
a nd must exit immediately

s ign a l)

SIGINT (Escape) is ignored. pro gname will appear in the Task manager

display and in error messages. Calls wimp t as kin it and stores tas k id

returned. Also installs exit-handler to close down task when program calls
ex i t () function.

Informs the caller of the name passed to w impt in it.

Syntax: char *wimpt_programname (void)

Parameters: v o id.

Returns: pointer to the program's name.

Reports an OS error in a dialogue box (including program name).

Syntax: void wimpt_reporterror(os_error* , wimp_errflags)

Parameters:

Returns:

os erro r*- OS error block
wimp_ e rrflags- flag whether to include OK

and/or CANCEL (highlighted or not) button in
dialogue box

v o id.

Other Information: similar to wimp reporterror (), but includes the

program name automatically (eg the one passed to wimpt _ in i t).

Informs the caller of its task handle.

Syntax: wimp_t wimpt task (void)

Parameters: v o id

Returns: task handle.

Causes the whole screen to be invalidated (running applications will be
requested to redraw all windows).

Syntax: vo1d w1mpt forceredraw (void)

Parameters: v o id.

RISC OS library reference section 357

win

win_register_event_
handler

358

Returns: v o i d .

This file offers central management of RISC OS windows, constructing a very
simple idea of 'window class' within RISC OS. RISC OS window class
implementations register the existence of each window with this module.

This structure allows event-processing loops to be constructed that have no
knowledge of what other modules are present in the program. For instance,
the dialogue box module can contain an event-processing loop without
reference to what other window types are present in the program.

Claiming Events

Installs an event hand ler function for a given window.
Syntax: void win~register_event_handler (wimp_w ,

win_event_handler , void *handle)

Parameters:

Returns:

wimp_ w- the window's handle
win event handler- the event handler function
v o id *handle - caller-defined handle.

void.

Other Information: This call has no effect on the window itself - it just
informs the win module that the supplied function should be called when
events are delivered to the window. To remove a handler, call with a null
function pointer:

win register event_handl e r (w, (win_ event_ handle r) 0 , 0)

To catch key events for an icon on the icon bar, register a handler for
win I CONBAR:

win event_handler(win_ ICONBAR , handler fun c , handle)

To catch load events for an icon on the icon bar, register a handler for
win ICONBARLOAD:

win event handler(win I CONBARLOAD , l o ad_fun c , handl e)

RISC OS library reference section

win_claim_idle_events

win add unknown
event_processor

win_remove_unknown_
event_processor

Causes 'idle' events to be delivered to a given window.

Syntax: void win_claim_idle_events(wimp_w)

Parameters:

Returns:

Other Information:

wimp w - the window's handle.

void.

To cancel this, ca ll with window handle
(wimp_w) -1.

Adds a handler for unknown events onto the front of the queue of such

handlers.

Syntax:

Parameters:

Returns:

void win_add_unknown_event_processor

(win_unknown_event_processor , void *handle)

win unknown_ event _processor- handler

function
void *handle- passed to handler on call.

void.

Other Information: The win module maintains a list of unknown event

handlers. An unknown event results in the 'head of the list' function being

called; if this function doesn't deal with the event it is passed on to the next in

the list, and so on. Handler functions should return a Boolean result to show if

they dealt with the event, or if it should be passed on. 'Known' events are as

follows:

ENULL, EREDRAW, ECLOSE, EOPEN, EPTRLEAVE, EPTRENTER, EKEY,

ESCROLL, EBUT and ESEND/ESENDW ANT ACK for the following msg

types: MCLOSEDOWN, MDATASAVE, MDATALOAD,

MHELPREQUEST

All other events are considered 'unknown'. If none of the unknown event

handlers deals with the event, then it is passed on to the unknown event

claiming window (registered by win_ claim_ unknown events ()). If there

is no such claimer, then the unknown event is ignored.

Removes the given unknown event handler with the given handle from the

stack of handlers.

Syntax: void win_remove_unknown_event_processor

(win_unk nown_event_processor , void *handle)

RISC OS library reference section 359

win_idle_event_claimer

win_claim_unknown_
events

win_unknown_event_
claimer

win: menus

win_setmenuh

360

Parameters:

Returns:

Other Information:

win_unknown event_processor- the handler
to be removed
void *handle- its handle.

void.

The handler to be removed can be anywhere in the
stack (not necessarily at the top).

Informs the caller of which window is claiming idle events.
Syntax:

Parameters:

Returns:

Other Information:

wimp_w win_idle_event_claimer(void)

void

Handle of window claiming idle events.
Returns (wimp_ w) -1, if no window is claiming idle
events.

Cause any unknown, or non-window-specific events to be delivered to a given
window.

Syntax:

Parameters:

Returns:

Other Information:

void win_claim_unknown_events(wimp_ w)

wimp_ w - handle of window to which unknown
events should be delivered.

void.

Calling with (wimp_ w) -1 cancels this. See
win add_ unknown event _processor () for
details of which events are 'known'.

Informs the caller of which window is claiming unknown events.
Syntax: wimp_w win_unknown_event_claimer(void)

Parameters: void

Returns: Handle of window claiming unknown events.
Other Information: Return of (wimp w) -1 means no claimer registered.

Attaches the given menu structure to the given window.
Syntax: void win_setmenuh(wimp_w , void *handle)

RISC OS library reference section

win_getmenuh

win: event processing

win_processevent

win: termination

win_activeinc

Parameters:

Returns:

Other Information:

wimp w - handle of window

void *handle- pointer to menu structure.

void.

Mainly used by higher level RISC_OSlib routines to
attach menus to windows (eg event

attachmenu ()).

Returns a pointer to the menu structure attached to the given window.

Syntax: void *win_getmenuh(wimp_w)

Parameters: wimp w- handle of window

Returns: pointer to the attached menu (0 if no menu attached).

Other Information: As for win setmenuh (), this is used mainly by

higher level RISC OS routines (eg event attachmen u ()).

Delivers an event to its relevant window, if such a window has been registered
with this module (via win register_ event _handler ()).

Syntax: BOOL win_processevent(wimp_eventstr*)

Parameters: wimp eventstr* - pointer to the event which has
occurred

Returns: True if an event handler (registered with this
module) has dealt with the event, False otherwise.

Other Information: the main client for this routine is
event_process (), which uses it to deliver an event to its appropriate
window. Keyboard events are delivered to the current owner of the caret.

Increment by one the win module's idea of the number of active windows
owned by a program.

Syntax: void win_activeinc(voidl

Parameters:

Returns:

void

void.

RISC OS library reference section 361

win activedec

win_ activeno

win_give_away _caret

362

Other Information: event_ process () calls exit() on behalf of the
program when the number of act ive windows reaches zero. Programs which
wish to remain running even when they have no active windows should ensure
that win activeinc () is called once before creating any windows, so that
the number of active windows is always > = 1. This is done for you if you use
ba r i con () to install your program's icon on the icon bar.

Decrements by one the win module 's idea of the number of active windows
owned by a program.

Syntax:

Parameters:

Returns:

Other Information :

void win_activedec(void)

v o id.

v o id.

See the note in win activein c () regarding
program termination.

Informs the caller of the number of act ive windows owned by your program.
Syntax: int win_activeno (void)

Parameters: void.

Returns: number of active windows owned by the program.
Other Information: This is given by (number of ca lls to
win activeinc ()) minus (number of calls to win activede c ()). Note
that modules in the RISC OS library itself may have made calls to
win activeinc () and win a ct ivedec ().

Gives the caret away to the open window at the top of the Wimp's window
stack (if that window is owned by your program).
Syntax:

Parameters:

Returns:

void win_give_ a way_caret (void)

void.

void.

Other Information: If the top window is interested it will take the caret.
If not then nothing happens. This only works if polling is done using the
wimpt module, which is the case if your main inner loop goes something like:
while (TRUE) event_proces s().

RISC OS library reference section

win settitle

xferrecv

xferrecv _ checki nsert

xferrecv _insertfi leak

xferrecv _ checkpri nt

Changes the title displayed in a given window.

Syntax:

Parameters:

Returns:

v o i d win_settitle (w i mp_ w w, char *ne wtitle);

wimp_ w w- given window's handle

char *newtitle- null-terminated string giving
new title for window.

void.

Other information: The title icon of the given window must be indirected
text. This will change the title used by all windows created from the given
window's template if you have used the template module (since the Window
Manager uses your address space to hold indirected text icons). To avoid this,
the window can be created from a copy of the template, ie
template *t =template copy (template find(" name "));
wimp create wind(t->window, &w);

This file covers the general purpose importing of data by dragging icons.

Sets up the acknowledge message for a MDA T A OPEN or MDA T ALOAD
and gets the filename to load from.

Syntax: int xfe r recv_c heckinsert (char **filename)

Parameters: char **filename- returned pointer to filename.

Returns: the file's type (eg. OxOfff for Edit).

Other Information: This function checks to see if the last Wimp event
was a request to import a file. If it was, the function returns file type and a
pointer to file's name is put into * f i 1 ename. Otherwise, it returns - 1.

Deletes the scrap file (if used for transfer), and sends acknowledgement of
MDA T ALOAD message.

Syntax:

Parameters:

Returns:

void xferrecv_ insertfileok (void)

void

void.

Sets up an acknowledge message to a MPrintTypeOdd message and gets the
filename to print.

Syntax: i n t xf e r recv checkp r1 nt(c har * *f1lename)

Parameters: char **filename- returned pointer to filename.

RISC OS library reference section 363

xferrecv _pri ntfi leak

xferrecv _ checki mport

xferrecv_buffer_
processor

xferrecv _doimport

364

Returns: The file's type (eg. Ox Offf for Edit).
Other Information: The application can either print the file directly or
convert it to Printer$ Temp for printing by the printer application.

Sends an acknowledgement back to the printer application. If a file is sent to
Printer$T emp, this also fills in the file type in the message.
Syntax:

Parameters:

Returns:

void xferrecv_printfileok (int type)

int type- type offile sent to Printer$Temp (eg
Ox Offf for Edit).

v o id.

Sets up an acknowledgement message to a MDA T ASA VE message.
Syntax: int xferrecv_ checkimport (int *estsize)

Parameters: in t *est siz e -sender's estimate of file size
Returns: File type.

This is a typedef for the caller-supplied function to empty a full buffer
during data transfer.

Syntax:

Parameters:

typedef BOOL (*xferrecv_buffer_processor) (char **buffer ,
i n t *size)

char **buffer - new buffer to be used
int *size- updated size.

Returns: False if unable to empty buffer or create new one.
Other Information: This is the function, supplied by the application,
which will be called when the buffer is full. It should empty the current
buffer, or create more space and modify size accordingly, or return False.
*buffer and *size are the current buffer and its size on function entry.

Loads data into a buffer, and calls the caller-supplied function to empty the
buffer when full.

Syntax:

Parameters:

i n t xferrecv_ doimport (char *buf , int size ,
xferrecv_buffer_processor)

char *buf- the buffer
int s ize- buffer's size
xfe r recv _buffer _pro c esso r- caller-supplied
function to be called when the buffer is full.

RISC OS library reference section

xferrecv _file _ is_safe

xfersend

xfersend: caller
supplied function types

xfersend_saveproc

xfersend_sendproc

Returns: Number of bytes transferred on successful
completion; -1 otherwise.

Informs the caller if the file was received from a 'safe' source (see below for
what this means).

Syntax: BOOL xferrecv_file_is_safe (void)

Parameters: void

Returns: True if file is safe.

Other Information: 'Safe' in this context means that the supplied
filename wi ll not change in the foreseeab le future.

This file covers the general purpose export of data by dragging icons.

A function of this type should save to the given file and return True if
successful. Handle is passed to the function by xfersend ().

Syntax:

Parameters:

Returns:

typedef BOOL (*xfersend_saveproc) (char *filename , void

*handle)

char *filename-filetobesaved

void *handle- the handle you passed to

xfersend ().

True if the save was successful.

A function of th is type should call xfersend _ sendbu f () to send one

buffer-full of data no bigger than *maxbuf.

Syntax:

Parameters:

Returns:

typedef BOOL (*xfersend_sendproc) (void *handle , int

*maxbuf)

void *handle- handle which was passed to
xfersend ()

int *maxbuf- size of receiver's buffer.

True if the data was successfully transmitted.

RISC OS library reference section 365

xfersend_printproc

xfersend: library
functions

xfersend

366

Other Information: Your sendproc will be called by functions in the
xfersend module to do an in-core data transfer, on receipt of MRAMFetch
messages from the receiving application. If xfersend sendbuf () returns
False, then return False immediately.

A function of this type should either print the file directly, or save it into the
given filename, from where it will be printed by the printer application.
Syntax:

Parameters:

Returns:

Other Information:

Reason codes:

typedef int (*xfersend_printproc) (char *filename, void
*handle)

char *filename- file to save into, for printing
void *handle- handle that was passed to
xfersend ()

Either the file type of the file it saved, or one of the
reason codes #defined below.
This is called if the file icon has been dragged onto
a printer application.

#define xfersend_printPrinted -1
#define xfersend_printFailed - 2

file dealt with internally
had an error along the way

The saveproc should report any errors it encounters itself. If saving to a
file, it should convert the data into a type that can be printed by the printer
application (ie text).

Allows the user to export application data, by icon drag.
Syntax: BOOL xfersend(int filetype, char *name, int estsize ,

xfersend_saveproc , xfersend_sendproc , xfersend_printproc ,
wimp_eventstr *e, void *handle)

Parameters: int filetype- type offile to save to
char *name -suggested file name
int est size -estimated size of the file
xfersend _ saveproc- caller-supplied function
for saving application data to a file

RISC OS library reference section

xfersend_sendbuf

xfersend _ sendproc- caller-supplied function

for in-core data transfer (if application is able to do
this)
xfersend _printproc- caller-supplied function

for printing application data, if icon is dragged onto
printer application
wimp_ events t r * e - the event which started the
export (usually mouse drag)
void *handle- handle to be passed to handler
functions.

Returns: True if data exported successfully.

Other Information: You should typically call this function in a window's
event handler, when you get a mouse drag event. See the s avea s . c code for
an example of this. xfersend deals with the complexities of message
passing protocols to achieve the data transfer. Refer to the above type
definitions for an explanation of what the three caller-supplied functions
should do.

If name is 0 then a default name of Selection is supplied.

If you pass 0 as the xfersend sendproc, no in-core data transfer will be
attempted.

If you pass 0 as the xfersend_printproc, the file format for printing is
assumed to be the same as for saving. The estimated file size is not essential,
but may improve performance.

Sends the given buffer to a receiver.

Syntax: BOOL xfersend sendb uf (char *buffer , int size)

Parameters: char *buffer- the buffer to be sent
in t size - the number of characters placed in the
buffer.

Returns: True if send was successful.

Other Information: This function should be called by the caller-
supplied xfersend_sendproc (if such exists) to do in-core data transfer
(see notes on xfersend_sendproc above).

RISC OS library reference section 367

xfersend_file_is_safe

xfersend_set_fileissafe

368

Informs the caller if the file's name can be reliably assumed not to change
(during data transfer!) .

Syntax:

Parameters:

Returns:

Other Informat ion :

Returns:

BOOL xfersend_file_is_safe(void)

void.

True if file is 'safe'.

See also the xferrecv module .

True if file recipient will not modify it; changing the
window t itle of the file can be done conditionally on
this result. This can be called within your
xfersend_saveproc,sendproc,or printproc,
or immediately after the main xfersend.

Allows the caller to set an indication of whether a file's name wi ll remain
unchanged during data transfer.
Syntax: void xfersend_set_fileissafe (BOOL value)

Parameters:

Returns:

BOOL value- True means the file is safe.

void.

RISC OS library reference section

Assembly language interface

Register names

Object code modules from the Acorn C compiler can be linked with those

produced by ObjAsm, provided they observe the conventions of the ARM

Procedure Call Standard.

This chapter gives a brief description of how to handle procedure entry and

exit in assembly language in order to interface to C. For details of ObjAsm

syntax and AOF files, you should consult AJJpendix D: ARM Procedure Call
Standard and the Archimedes Assembler Guide.

The following names are used in referring to ARM registers:

al RO Argument 1, also integer result, temporary

a2 Rl Argument 2, temporary

a3 R2 Argument 3, temporary

a4 R3 Argument 4, temporary

vl R4 Register variable

v2 RS Register variable

v3 R6 Register variable

v4 R7 Register variable

v5 RB Register variable

v6 R9 Register variable

sl RlO Stack limit

fp Rll Frame pointer

ip Rl2 Temporary work register

sp Rl3 Lower end of current stack frame

lr Rl4 Link address on calls, or workspace

pc Rl5 Program counter and processor status

fO FO Floating point result

Assembly language interface 369

Register usage

Control arrival

f1 Fl Floating-point work register
f 2 F2 Floating-point work register
f3 F3 Floating-point work register
f4 F4 Floating-point register variable (must be preserved)
f5 FS Floating-point register variable (must be preserved)
£6 F6 Floating-point register variable (must be preserved)
f7 F7 Floating-point register variable (must be preserved)

In this section, 'at [r] ' means at the location pointed to by the value in
register r; 'at [r , # n] ' refers to the location pointed to by r+n. This accords
with ObjAsm's syntax.

The following points should be noted about the contents of registers across
function calls.

• Calling a function (potentially) corrupts the argument registers al to a4,
ip, lr, and f0-£3. The calling function should save the contents of any
of these registers it may need.

• Register l r is used at the time of a function call to pass the return link to
the called function; it is not necessarily preserved during or by the
function call.

• The stack pointer sp is not altered across the function call itself, though it
may be adjusted in the course of pushing arguments inside a function. The
limit register s l may change at any time, but should always represent a
valid limit to the downward growth of sp. User code will not normally
alter this register.

• Registers vl to v6, and the frame pointer fp, are expected to be
preserved across function calls. The called procedure is responsible for
saving and restoring the contents of any of these registers which it may
need to use.

At a procedure call, the convention is that the registers are used as follows:

• a 1 to a 4 contain the first four arguments. If there are fewer than four
arguments, just as many of alto a4 as are needed are used.

370 Assembly language interface

Passing arguments

Return link

• If there are more than four arguments, sp points to the fifth argument;
any further arguments will be located in succeeding words above [sp] .

• fp points to a backtrace structure.

• sp and s l define a temporary workspace of at least 256 bytes available
to the procedure.

• l r contains the value which should be restored into p c on exit from the

called procedure.

• pc contains the entry address of the called procedure.

• sl contains a stack chunk handle, which is used by stack handling code to

extend the stack in a non-contiguous manner.

All integral and pointer arguments are passed as 32-bit words. Floating
point 'float' arguments are 32-bit values, 'double' -argument 64-bit values.
These follow the memory representation of the IEEE single and double
precision formats.

Arguments are passed as if by the following sequence of operations:

• Push each argument onto the stack, last argument first.

• Pop the first four words (or as many as were pushed, if fewer) of the
arguments into registers a l to a 4.

• Call the function, for example by the 'branch with link' instruction:

BL functionname.

In many cases it is possible to use a simplified sequence with the same effect
(eg load three argument words into a 1-a 3).

If more than four words of arguments are passed, the calling procedure
should adjust the stack pointer after the call, incrementing it by four for each
argument word which was pushed and not popped.

On return from a procedure, the registers are set up as follows:

• fp, sp, sl, vl to v6 and f4 to f7 have the same values that they

contained at the procedure call.

Assembly language interface 371

Structure results

Storage of variables

372

• Any result other than a floating point or a multi-word structure value is
placed in register a 1.

• A floating point result should be placed in register fO.

Structure values returned as function results are discussed below.

A C function which returns a multi-word structure result is treated in a
slightly different manner from other functions by the compiler. A pointer to
the location which should receive the result is added to the argument list as
the first argument, so that a declaration such as the following:

s type afunction(int a, int b, int c)
{

s_type d;
I* ... *I
return d ;

is in effect converted to this form:

void afunction(s_type *p, int a , int b, int c)

s type d;
I* ... *I
*p = d ;
return;

Any assembler-coded functions returning structure results, or calling such
functions, must conform to this convention in order to interface successfully
with object code from the C compiler.

The code produced by the C compiler uses argument values from registers
where possible; otherwise they are addressed relative to sp, as illustrated in
Examples below.

Assembly language interface

Function workspace

Examples

Local variables, by contrast, are always addressed with positive offsets
relative to sp. In code which alters sp, this means that the offset for the same

variable will differ from place to place. The reason for this approach is that
it permits the stack overflow procedure to recover by changing sp and sl to

point to a new stack segment as necessary.

The values of sp and s l passed to a called function define an area of

readable, writeable memory available to the called function as workspace.
All words below [sp] and at or above [s l , #-512] are guaranteed to be

available for reading and writing, and the minimum allowed value of sp is
s 1-2 56. Thus the minimum workspace available is 256 bytes.

The C run-time system, in particular the stack extension code, requires up to
256 bytes of additional workspace to be left free . Accordingly, all called
functions which require no more than 256 bytes of workspace should test that
s p does not point to a location below s 1, in other words that at least 512
bytes remain. If the value in sp is less than that in s l, the function should
call the stack extension function x$stack overf low. Functions which need
more than 256 bytes of workspace should amend the test accordingly, and call
x$ s tack_ overflowl, as described below. The following examples
illustrate a method of performing this test.

Note that these are the C-specific aliases for the kernel functions
kernel_stkovf split_ Of rame and kerne l s tkovf _spl it

frame respectively, described in the chapter How to use the C library kernel.

The following fragments of assembler code illustrate the main points to
consider in interfacing with the C compiler. If you want to examine the code
produced by the compiler in more detail for particular cases, you can request
an assembler listing with the compiler option-S.

This is a function gggg which expects two integer arguments and uses only
one register variable, vl. It calls another function ffff.

AREA IC$$codel , CODE , READONLY

IMPORT lffff l
I MPORT lx$stac k_overflowl

EXPORT lggggl
gggx DCB '' gggg '', 0 ; name of functio n, 0 terminated

Assembly language interface 373

374

ALIGN
gggy DCD

; padded to word boundary
&ffOOOOOO + gggy - gggx

; dist . to start of name
;Function entry : save necessary regs . and args. on stack
gggg MOV ip , sp

STMFD sp 1 , {al, a2 , vl , fp, ip , lr , pc)
SUB fp , ip, #4 ; points to saved pc

; Test workspace size
CMPS sp , sl
BLLT lx$stack overflow!

; Main activity of function

ADD
BL
CMP

vl , vl , 1

lffffl
vl , 99

; use a register variable
; call another function
;rely on reg. var . after call

;Return: place result in al , and restore saved registers
MOV al , result
LDMEA fp , { vl , fp , sp , pc)'

If a function will need more than 256 bytes of workspace, it should replace
the two-instruction workspace test shown above with the following:

SUB
CMP
BLLT

ip, sp , #n
ip , sl
lx$stack overflowll

where n is the number of bytes needed. Note that x$stack overflowl
must be called if more than 256 bytes of frame are needed. ip must contain
sp _needed, as shown in the example above.

A function which expects a variable number of arguments should store its
arguments in the following manner, so that the whole list of arguments is
addressable as a contiguous array of values:

MOV ip , sp ; copy value of sp
STMFD sp !' {al, a2 , a3 , a4} ;save 4 words of args.
STMFD sp!' {vl , v2 , fp , ip , lr, pc}

; save vl - v6 needed
SUB fp , ip, #20 ; fp points to saved pc
CMPS sp, sl ;test workspace
BLLT lx$stack overflow I

Assembly language interface

How to write relocatable modules in C

Introduction Relocatable modules are the basic building blocks of RISC OS and the
means by which RISC OS can be extended by a user. The archetypal use for
RISC OS extensions is the provision of device drivers for devices attached to
Archimedes hardware.

Relocatable modules also provide mechanisms which can be exploited to:

• extend RISC OS's repertoire of built-in commands (*commands)
(analogous to plugging additional ROMs into a BBC microcomputer of
pre-Archimedes vintages)

• provide services to applications (for example, as does the shared C
library module)

• implement 'terminate and stay resident' (TSR) applications.

The idea of TSR applications will be most familiar to PC users, whereas
extending the * command set (via 'software ROM modules') will seem most
familiar to those with a background in the BBC computer. A complete
discussion of these topics is beyond the scope of this chapter.

For modules which provide services, the principal mechanism for accessing
those services from user code is the SoftWare Interrupt (SWI). For example,
the shared C library implements a handler for a single SWI which, when
called from the library stubs linked with the application, returns the address
of the C library module which in turn allows the library stubs to be
initialised to point to the correct addresses within the library module.
Thereafter, library services are accessed directly by procedure call, rather
than by SWI call. All this illustrates is the rich variety of mechanism
available to be exploited.

How to write relocatable modules in C 375

Getting started

Constraints on modules
written inC

Overview of modules
written inC

To write a module inC you will need:

• a copy of the C compiler Release 3, C Shared Library module Release
3.5, and Shared C library stubs (Release 3);

• a copy of the C Module Header Generation tool, cmhg ;

• a thorough understanding of RISC OS modules (read the chapter of the
RISC OS Programmer's Reference Manual entitled Modules).

If you also intend to interface assembly code to your module, you should note
that the procedure call standard used by the Release 3 C system is different
from that used by pre-Release 3 C systems as follows:

APCS register name:
Release 3 register number:
pre-Release 3 register number:

s1 fp ip s p
10 11 1 2 13

1 3 1 0 11 1 2

All other register numberings are invariant between the releases.

A module written in C must use the shared C library module via the library
stubs. Use of the stand-alone C library (Ansilib) is not a supported option.

All components of a module written in C must be compiled using the
compiler option - zM. This allows the module's static data to be separated
from its code and multiply instantiated.

Modules written in C should not be compiled with stack limit checking
disabled. The stack limit check is cheap and can save your machine from
crashing.

A module written inC includes the following:

• a Module Header (described in the Modules chapter of the RISC OS
Programmer's Reference Manual), constructed using c mhg;

• a set of entry and exit 'veneers', interfacing the module header to the C
run-time environment (also constructed using cmhg);

• the stubs of the shared C library;

376 How to write relocatable modules in C

Functional components
of modules written in C

• code written by you to implement the module's functionality - for

example: * command handlers, SWI handlers and service call handlers.

These parts must be linked together using the link command with the

-m [odule] option.

In the next section we describe:

• how to drive cmhg to make a module header and any necessary entry

veneers

• the interface definitions to which each component of your module must

conform

• how to use cmhg to generate entry veneers for IRQ handlers written in C.

The following components may be present in a module written in C (all are

optional except for the title string and the help string which are obligatory):

• Runnable application code (called start code in the module header

description). This will be present if you tell cmhg that the module is

runnable and include a main () function amongst your module code.

• Initialisation code. 'System' initialisation code is always present, as the

shared library must be initialised. Your initialisation function will be

called after the system has been initialised if you declare its name to

cmhg.

• Finalisation code. The C library has to be closed down properly on

module termination. Your own finalisation code will be called on

exit() if you register it with the C library by using the atexit ()

library function.

• Service call handler. This will be present if you declare the name of a

handler function to cmhg. In addition, you can give a list of service call

numbers which you wish to deal with and cmhg will generate fast code to

ignore other calls without calling your handler.

• A title string in the format described in the RISC OS Progmmmer's

Reference Manual. cmhg will insist that you give it a valid title string.

• A help string in the format described in the RISC OS Programmer's
Reference Manual. Again, cmhg will insist that you give a valid help string.

How to write relocatable modules inC 377

The C module header
generator

378

• Help and command keyword table. This section is optional and will be
present only if you describe it to cmhg and declare the names of the
command handlers to cmhg. Obviously, their implementations must be
included in the linked module.

• SWI chunk base number. Present only if declared to cmhg .

• SWI handler code. Present if you declare the name of a handler function
to cmhg.

• SWI decoding table. Present only if described to cmhg.

• SWI decoding code. present only if you declare the name of your
decoding function to cmhg.

• IRQ handlers. Though not associated with the module header, cmhg will
generate entry veneers for IRQ handlers. You can register these veneers
with RISC OS using SWI OS_ Claim, etc; you have to provide
implementations of the handlers themselves. The names of the handler
functions and of the entry veneers have to be given to cmhg.

Each component that you wish to use must be described in your input to cmhg.
Use of most components also requires that you write some C code which must
conform to the interface descriptions given in the sections below.

The C Module Header Generator (cmhg) is a special-purpose assembler of
module headers. It accepts as input a text file describing which module
facilities you wish to use and generates as output a linkable object module (in
Acorn Object Format). The command format is:

cmhg <input -file-name> <output -file-name>

or

cmhg <input -file-name>

if you merely wish to check the correctness of your input.

Example:

cmhg MyModHdr o .modhdr

cmhg will not create or overwrite the output object file if it detects any error
in its input.

How to write relocatable modules in C

The format of input to
cmhg

Input to cmhg is in free format and consists of a sequence of 'logical lines'.

Each logical line starts with a keyword which is followed by some number of
parameters and (sometimes) keywords. The precise form of each kind of
logical input line is described in the following sections.

A logical line can be continued on the next line of input immediately after a
comma (that it, if the next non-white-space character after a comma is a
newline then the line is considered to be continued).

lists of parameters can be separated by commas or spaces, but use of comma
is required if the line is to be continued.

A comment begins with a ; and continues to the end of the current line. A
comment is valid anywhere that trailing white space is valid (and, in
particular, after a comma).

A keyword consists of a sequence of alphabetic characters and minus signs.
Often, a keyword is the same as the description of the corresponding field of
the module header (as described in the RISC OS Programmer's Reference
Manual) but with spaces replaced by minus signs. For example:
initialisation-code;title-string;service-call -handler.

Keywords are always written entirely in lower case and are always
immediately followed by a :. Character case is significant in all contexts: in
keywords, in identifiers, and in strings.

Numbers used as parameters are unsigned. Three formats are recognised:

• unsigned decimal

• Oxhhh ... (up to 8 hex digits)

• &hhh ... (up to 8 hex digits).

In the following sections, the parts headed cmhg description tell you what you
have to describe to cmhg in order to use the facility described in that section;

the parts headed C interface introduce a description of the interface to which
the handler function you write must conform. You may omit any trailing
arguments that you don't need from your handler implementations.

How to write relocatable modules in C 379

Runnable application code

Initialisation code

Finalisation code

380

cmhg description:

module-is-runnable : No p a r a mete r s .

C interface:

int main (int argc , char *argv[]) ;
/*
* Entered in user - mode with argc and argv
* set up as for any other application . Malloc
* obtains storage from application workspace .
*I

To be useful (ie re-runnable) as a 'terminate and stay resident' application, a
runnable application must implement at least one * command handler (see
below) for its command line, which, when invoked, enters the module (calls
SWI OS_Module with the Enter reason code).

cmhg description:

initialisation- code : user init

C interface:

The name of your initialisation function .

Any valid C function name will do .

_kernel_oserror *user_init(char *cmd_fail , int podule_base, void *pw) ;
/*

* Return NULL i f your i n itialisation succeeds ; otherwise return a pointer to an
* error block. cmd_tail p oints to the string of arguments with which the
* module is invoked (may be "").
* podul~_base is 0 unless the code has been invoked from a podule .
* pw is the ' rl2 ' value established by mo d ule initialisation . You may assume
* nothing about its value (in fact it points to some RMA space claimed and
* used by the module ve neers). All you may do is pass it back for your module
*veneers via an intermediary such as SWI OS_Call Every (use kernel swi() to
* issue the SWI call) .

*I

Note that you can choose any valid C function name as the name of your
initialisation code (cmhg insists on no more than 31 characters).

User finalisations are handled by using atexi t () to register finalisation
functions. A call to library finalisation code is inserted automatically by
cmhg; the C library finalisation code will call these registered functions
immediately before closing down the library (on module finalisation).

How to write relocatable modules in C

Service call handler

Title string

Help string

cmh g description:

se rvice- call - ha nd ler : sc hand ler <number> <numbe r > .. .

C interface:

v oid sc ha ndl e r(int service_numbe r , ke rnel_swl_regs *r , void *pw);

/ *

* Retu r n values s ho ul d be poked directl y into r - >r [n] ;
* t he right va lue /register to use depe nds on the service number
* (see t he relevant RISC OS Programme r ' s Reference Ma nual section for details) .
* pw is the pri v ate word (the ' r12 ' value .

* I

Service calls provide a generic mechanism. Some need to be handled quickly;
others are not time critical. Because of this, you may give a list of service
numbers in which you are interested and cmhg will generate code to ignore
the rest quickly. The fast recognition code looks like:

CMPS rl , #FirstinterestingServiceNumber
CMPNES rl , #SecondinterestingServiceNumbe r

CMPNES rl , #NthinterestingServiceNumber
MOVNES pc , lr

; drop into service call entry veneer .

If you give no list of interesting service numbers then all service calls will be
passed to your handler.

cmh g description:

title- string : <title>

<title> must consist entirely of printable, non-space ASC II characters.

Any underscores in the title are replaced by spaces . cmhg will fault any title
longer than 31 characters and warn if the length of the title string is more than
16.

cmhg description:

help-st r i ng : <help> d.dd <comment> help string and version number

How to write relocatable modules in C 381

Help and command
keyword table

382

The help string is restricted to 15 or fewer alphanumeric, ASCII characters
and underscores. l onger strings are truncated (with a warning) to 15
characters then padded with a single space. Shorter titles are padded with
one or two TAB characters so they will appear exactly 16 characters long.

The version number must consist of a digit, a dot, then 2 consecutive digits.
Conventionally, the first digit denotes major releases; the second digit minor
releases; and the third digit bug-fi x or technical changes. If the version
number is omitted, 0.00 is used.

cmhg automatically inserts the current date into the version string, as required
by RISC OS convention.

A 'comment' of up to 34 characters can also be included after the version
number. It will appear in the tail of the module's help string, after the date.
A typical use is for annotating the help string in the following style:

SomeModule 0 . 91 (27 JUN 1989) Experimental version

cmhg refuses to generate a help string longer than 79 characters and warns if
it has to truncate your input.

cmhg description:

command- keyword- table : cmd handler command- description+

(Here command- description+ denotes one or more command
descriptions).

A command-description has the format:

<star- command- name> "("
min- args : <unsigned- int> default 0
max - args : <unsigned- int> default 0
gstrans - map : <unsigned- int> default 0
fs - command : ; >flag bits in
status : ; >the flag byte
configure : ; >of the cmd table
help : ; >info word .
invalid- syntax : <text>
help- text : <text>
")"

How to write relocatable modules in C

Each sub-argument is optional. A comma after any item allows continuation on
the next line.

A <text> item follows the conventions of ANSI C string constants: it is a

sequence of implicitly concatenated string segments enclosed in " and ".

Segments may be separated by white space or newlines (no continuation
comma is needed following a string segment).

Within a string segment \ introduces an escape character. All the single
character ASCII escapes are implemented, but hexadecimal and octal escape
codes are not implemented. A \ immediately preceding a newline allows the
string segment to be continued on the following line (but does not inlude a
newline in the string, which must be represented by \ n).

min-args and max-args record the minimum and maximum number of
arguments the command may accept; gstrans-map records, in the least
significant 8 bits, which of the first 8 arguments should be subject to
expansion by OS_GSTrans before calling the command handler.

The keywords fs-command, status, configure and help set bits in the
command's information word which mark the command as being of one of
those classes.

invalid-syntax and help-text messages are (should be) self
explanatory.

Example cmhg description:

command-keyword-table: cmd handler
tmO(min-args: 0, max-args: 255,

help-text: "Syntax\ttml <filenames>\n"),
tml(min-args:l, max-args:l,

help-text: "Syntax\ttm2" " <integer>"
"\n")

This describes two *commands, *tmO and *tml, which are to be handled by
the C function cmd handler. The handler function will be called with 0 as
its third argument if it is being called to handle the first command (tmO,
above), 1 as its third argument if it is being called to handle the second
command (tml, above), etc. The programmer must keep the cmhg description
in step with the implementation of cmd_handler.

How to write relocatable modules in C 383

SWI chunk base number

SWI handler code

384

C interface:

kernel_oserror *cmd_handler(char *arg strlng , int argc , int cmd_no , void *pw) ;
/*

* If cmd no identifies a *HELP entry , then cmd handler must return
* arg str1ng or NULL (lf arg str1ng is returned , the NUL-terminated
* buffer will be printed).
* Return NULL if if the command has been successfully handled ;
* otherwise return a pointer to an error block describing the failure
* (in this case , the veneer code will set the 'V' bit) .
* *STATUS and *CONFIGURE handlers will need to cast ' arg str1ng ' to
* (possibly unsigned) long and ignore argc . See the RISC OS Programmer ' s
* Reference Manual for details .
* pw is the private word pointer (' rl2 ') value passed into the entry veneer
*I

c mhg description:

swi -chunk-bas e -number : <number>

You should use this entry if your module provides any SWI handlers. It
denotes the base of a range of 64 values which may be passed to your SWI
handler. SWI chunks are allocated by Acorn: read the documentation
carefully to discover which chunks you may use safely. In some cases you may
need to write to Acorn to get a chunk allocated uniquely to your product
(though this should not be undertaken lightly and should only be done when
all alternatives have been exhausted). See the chapter entitled An introduction
to SWls in the RISC OS Programmer's Reference Manual for more details.

cmhg description:

swi-handler- code : s wi handler any valid C function name will do

C interface:

_kernel_oserror *swi_handler(int swi_no , _kernel_swi_regs *r , void *pw);
/*

* Return: NULL if the SWI is handled successfully; otherwise return
* a pointer to an error block which describes the error.
* The veneer code sets the 'V' bit if the returned value is non-NULL .
* The handler may update any of its input registers (r0-r9) .
* ps is the private word pointer (\ rl2 ') value passed into the
* swi_handler entry veneer .

*I

If your module is to handle SWis then it must include both swi -handler
codeandswi-chunk-base.

How to write relocatable modules in C

SWI decoding table

SWI decoding code

Example cmhg description:

swi - chunk- base- number : Ox88000
swi - handler- code : widget swi

cmhg description:

swi - decoding- table : <swi - base- name> <swi - name>*

This table, if present, is used by OS_SWINumberTo/FromString.

Example cmhg description:

swi - chunk- base- number :
swi - handler- code :
swi - decoding- table :

Ox88000
widget_swi
Widget ,
Init Read Write Close

This would be appropriate for the following name/number pairs:

Widget_Init
Widget_Read
Widget_Write
Widget Close

cmhg description:

swi - decoding- code :

C interface:

Ox88000
Ox88001
Ox88002
Ox88003

swi decoder ; any valid C
function name will do

void swi decode(int r[4] , void *pw);

I*
* On entry , r[O] < 0 means a request to convert from text to a number.

* In this case r[l] points to the string to convert (terminated by a
* control character, NOT necessarily by NUL) .

* Set r[O] to the offset (0 . . 63) of the SWI within the SWI chunk if
* you recognise its name; set r[O] < 0 if you don't recognise the name.

* On entry, r[O] >= 0 means a request to convert from a SWI number to
* a SWI string:

r[O] is the offset (0 .. 63) of th SWI within the SWI chunk .
r[l] is a pointer to a buffer ;
r[2] is the offset within the buffer at which to place the text;
r[3] points to the byte beyond the end of the buffer.

How to write relocatable modules in C 385

IRQ handlers

386

* You should write th SWI name into the buffer at th posit1on given
* by r[2] then update r[2] by the length of the text written (excluding
* any terminating NUL , if you add one) .

* pw is the private word pointer ('rl2') passed into the swi decode
* entry veneer .
*I

If you omit a SWI decoding table then your SWI decod ing code will be
ca lled instead. Of course, you don't have to provide either.

cmhg description:

irq-handlers: entry name/handler name

Any number of entry_name/hand ler_name pairs may be given. If you omit the
/ and the handler name, cmhg constructs a handler name by appending

handler to the entry name.

C interface:

extern 1nt entry name(kernel sw1 regs *r , vo1d *pw) ;
I*
* This is name of the IRQ handler entry veneer compiled by cmhg .
* Use this name as an argument to , for example , SWI OS_Claim , in
* order to attach your handler to IrqV .
*I
int handler_name(kernel sw1 regs *r, void *pw);

I*
* This is the handler function you must write to handle the IRQ for
* wh1ch entry name 1s the veneer function .

* Return 0 if you handled the interrupt .
* Return non-0 if you did NOT handle the interrupt (because,
* for example, it wasn ' L for your handler, but for some olher
* handler further down the stack of handlers) .

* 'r' points to a vector of words containing the values of r0-r9 on
* entry to the veneer. Pure IRQ handlers do not require these , though
* event handlers and filing system entry points do . If r is updated,
* the updated values will be loaded into r0-r9 on return from the
* handler.

* pw is the private word pointer ('rl2 ') value with which
* the IRQ entry veneer is called.
*I

Handlers must be installed from some part of the module which runs in SVC
mode (eg initialisation code, a SWI handler, etc). The name to use at
installat ion time is the entry name (not the name of the handler function) .

How to write relocatable modules in C

Turning interrupts on and
off

This is because C functions cannot be entered directly from IRQ mode, but
have to be entered and exited via a veneer which switches to SVC mode.
Running in SVC mode gives your handler maximum flexibility.

IRQ handlers can also be used as event handlers and filing system entry
points. A full discussion of these topics is beyond the scope of this Guide;
refer to the RISC OS Programmer's Reference Manual for details and for
information on how to install and remove handlers.

The following (<kernel. h>) library functions support the control of the

interrupt enable state:

int irqs disabled(void);
/*
* Returns non-0 if IRQs are currently disabled.

*I
void irqs off(void);

/*
* Disable IRQs.
*I
void irqs on(void);

/*
* Enable IRQs.
*I

These functions suffice to allow saving, restoring and setting of the IRQ state.
Ground rules for using these functions are beyond the scope of this document.
However, general advice is to leave the IRQ state alone in SWI handlers
which terminate quickly, but to enable it in long-running SWI handlers.

What a SWI handler does to the IRQ state is part of its interface contract
with its clients: you, the implementor, control that interface contract.

How to write relocatable modules in C 387

388 How to write relocatable modules in C

Overlays

Paging vs overlays

Overlays are a very old technique for squeezing quart-sized programs into pint
sized memories: a kind of poor man's paging.

In common with paged programs, an overlaid program is stored on some
backing store medium such as a floppy disc or a hard disc and its components
(called overlay segments) are loaded into memory only as required . In
theory, this reduces the amount of memory required to run a program at the
expense of increasing the time taken to load it and repeatedly re-load parts
of it. It is a classic space-time tradeoff. In practice, except in rather special
circumstances, the saving in memory accruing from the use of overlays is rather
modest and less than you might expect. Indeed, as discussed below, overlays
have rather restricted applicability under RISC OS. Nonetheless, their use
can occasionally be a 'life saver'.

In a paged system, a program and its workspace is broken up into fixed size
chunks called pages. A combination of special hardware and operating system
support ensures that pages are loaded only when needed and that un-needed
pages are soon discarded. In principle, the author of a paged program need
not be aware that it will be paged (but this is often not true in practice if the
author wishes the program to run at maximum speed). Both code and data are
paged, automatically. In general, for single programs which re-use their
workspace whenever possible, one sees a ratio of program size plus
workspace size to occupied memory size in the region 1.5 to 3. One can always
increase the ratio abitrarily by integrating several sequentially used programs
into a single image and by never re-using workspace. But, fundamentally,
paging rarely squeezes more than a quart-sized program into a pint-sized
memory. Of course, there are other benefits of paging, but these are beyond
the scope of this section.

RISC OS is not a paged system, but Acorn's sister product, the Unix-based
R140/RISC iX, is.

Overlays 389

When to use overlays

390

In contrast, an overlaid program is broken up into variable sized chunks
(called overlay segments) by the user, who also determines which of these
chunks may share the same area of memory. As the overlay system permits
two code fragments which share the same area of memory to cal l one another
and return successfu lly to the caller, this is merely a matter of performance.
However, if data is included in an overlaid segment the situation becomes
more complicated and the user has more work to do. For example, it must be
ensured that all code which uses the data resides in the same segment as the
data. Furthermore, it must be acceptable that the data is re-initialised every
time the segment is re-loaded. Thus, in general, it is possible to overlay two
work areas each of which is private to two distinct sets of functions which are
not simultaneously resident in memory. Overall, it would be unusual to
overlay more than a quart-sized program into a pint-sized memory, much as
with paging (you may achieve a factor as high as four for code, but non
overlaid data will usually dilute the overall factor substantially; it all
depends on the details of your application).

A more detailed description of the low-level aspects of overlays is given in
the sect ion entitled Generating overlnid programs in the Linker chapter. If you
are especially interested in using overlays you may prefer to read that section
next. Otherwise, if you are more interested in when to use overlays, please
read on.

Overlays work best when a program has several semi-independent parts. A
good model for purposes of understanding is to think of a special-purpose
command interpreter (the root segment) which can invoke separate commands
(overlay segments) in response to user input. Consider, for example, a word
processor which consists of a text editor and a collection of printer drivers. It
is clear that each of the printer drivers can be overlaid (you are unlikely to
have more than one printer); it may even be plausible to overlay each with the
editor itself (you may not be able to edit while printing - depending on how
fast the printer goes and on how much CPU time is required to drive it).
Furthermore, if the time taken to load an overlay segment can be tacked on to
an interaction with the user, it is probable that the program will feel little
slower than if it were memory-resident. In summary: overlays work best if
your program has many independent sub-functions.

On the other hand, if your program has many semi-independent parts, it may
be better to structure it as several independent programs, each called from a
control program. By using the shared C library, each program can be

Overlays

relatively small, and the Squeeze utility can be used to reduce the space
taken by it on backing store by nearly a factor of 2. (See the section on
Squeeze in the chapter Other utilities for details). In contrast, overlay segments
cannot be squeezed (though the root program can be) . Consider, for example,
the following programs from this release of C:

Program Squeezed Size Unsqueezed Size
amu 13Kb 23Kb
cmhg 9Kb 16Kb
link 22Kb 41Kb
squeeze 8Kb 14Kb
SharedCLibrary 61Kb

So, if you can structure your application as independent, squeezed programs it
may take up less precious floppy disc space and load faster, especially from
a floppy disc, than if you structure it using overlays.

If adopted, this strategy will force the independent programs to communicate
via files. Provided the data to be communicated has a simple structure this
causes no problems for the application; provided it is not too voluminous, use
of the RAM filing system (RamFS) is suggested as this is fast and requires no
special application code in order to use it.

So, overlays are most appropriate for applications which manipulate very
large amounts of highly structured data Computer Aided Design
applications are archetypal here - whereas multiple independent programs
are most appropriate for applications which manipulate relatively small
amounts of simply structured data and are otherwise dominated by large
amounts of code.

Naturally, if you are porting an ex1stmg application to RISC OS, your view
will be coloured by whether or not it is already structured to use overlays. If
it is, it will probably be best to stick to using overlays, rather than attempting
to split the application up into semi-independent sub-applications.

On the other hand, if you are writing an application from scratch, you
probably want to ponder this question in more depth . For example, to what
other systems will the application be targetted? Using multiple semi
independent applications may work very nicely under Unix or OS/2 where
the output of one process can be piped into another, but less well under MS
DOS where use of overlays is much more the norm.

Overlays 391

392 Overlays

Machine~specific features

How to use the C
library kernel

C library structure

This chapter describes the following machine-specific features of the Acorn C
compiler:

• the C library kernel

• calling other programs from C

• the shared C library

• #pragma directives

• storage management

• handling host errors .

The C library is organised into layers, like the skins of an onion. At the centre
is the language-independent library kernel. This is implemented in assembly
language and provides basic support services, described below, to language
run-time systems and, directly, to client applications.

One level out from the library kernel is a thin, C-specific layer, also
implemented in assembly language. This provides compiler support functions
such as structure copy, interfaces to stack- limit checking and stack extension,
set jmp and longjmp support, etc. Everything above this level is written in C.

Finally, there is the C library proper. This is implemented in C and, with the
exception of one module which interfaces to the library kernel and the C
specific veneer, is highly portable.

Machine-specific features 393

The library kernel The library kernel is designed to allow run-time libraries for different
languages to co-reside harmoniously, so that inter-language calling can be
smooth. At the present time, the Fortran-77 library uses the run-time kernel,
but the Pascal library does not. Currently, code compiled by the F77
compiler does not adhere to the new procedure-call standard, so inter
working with C is not possible in this release.

The library kernel provides the following facilities:

• a generic, status-returning, procedural interface to SWls

• a procedural interface to the following commonly used SWls:

OS_Byte
OS_Rdch
OS_Wrch
OS_BGet
OS_BPut
OS_GBPB
OS_ Word
OS_Find
OS_File
OS_Args
OS_CLI /*use is not advised - use kernel system () */

• a procedural interface to the following arithmetic functions:

unsigned integer division
unsigned integer remainder
unsigned divide by 10 (much faster than general division)
signed integer division
signed integer remainder
signed divide by 10 (much faster than general division).

• a procedural interface to the following miscellaneous functions:

finding the identity of the host system (RISC OS, Arthur, etc)
determining whether the floating point instruction set is available
getting the command string with which the program was invoked
returning the identity of the last OS error
reading an environmental variable
setting an environmental variable
invoking a sub-application
claiming memory to be managed by a heap manager

394 Machine-specific features

Interfacing a language
run-time system to the
Acorn library kernel

unwinding the stack
finding the name of a function containing a given address
finding the source language associated with code at a given address.

• support for manipulating the IRQ state from a relocatable module:

getting the processor mode
determining if IRQs are enabled
enabling IRQs
disabling IRQs.

• support for allocating and freeing memory in the RMA area:

allocating a block of memory in the RMA
extending a block of memory in the RMA
freeing a block of memory in the RMA.

• support for stack-limit checking and stack extension:

finding the current stack chunk
four kinds of stack extension- small-frame and large-frame extension,

number of actual arguments known (eg Pascal), or unknown (eg C) by
the callee.

• trap handling, error handling, event handling and escape handling.

Most of these functions are described in the C library header file
<kerne l . h>. This header also declares the data structures you will need to
use in order to call these functions or to interpret their results. See Appendix
D for a detailed description.

In order to use the kernel, a language run-time system must provide an area
named RTSK$$DAT A, with attributes READONLY. The contents of this area
must be a kernel languagedescription as follows:

typedef enum (NotHandled, Handled) _ kernel_HandledOrNot

typedef struct
int regs [16] ;
kernel_registerset ;

typedef struct (
int regs [10] ;
kernel_eventregisters ;

typedef void (*PROC) (void) ;
typedef _kernel_HandledOrNot

Machine-specific features 395

396

(*_kernel_trapproc) (int code , kernel_reg1sterset *regs) ;
typedef _ker nel_HandledOrNot

(*_kernel_eventproc) (int code , ker n el_registerset *regs) ;

typedef struct {
int size ;
int codestart , codeend ;
char *name ;

PROC (*InitProc) (void); /* that is , InitProc returns a PROC */

PROC FinaliseProc ;

kernel_trapproc TrapProc ;

kernel trapproc UncaughtTrapProc ;

kernel_eventproc EventProc ;
kernel_ev entproc UnhandledEventProc ;

void (*FastEventProc) (_kernel_eventregisters *);

int (*UnwindProc) (_kernel_un windblock * inout , char **language) ;

char * (* NameProc) (int pc);

ker nel_languagedescr1pt1on ;

Any of the procedure values may be zero, indicating that an appropriate
default action is to be taken. Procedures whose addresses lie outside of
[codestart ... codeend] also cause the default action to be taken.

codestart, codeend

These values describe the range of program counter (PC) values which may
be taken while executing code compiled from the language. The linker
ensures that this is describable with just a single base and limit pair if all
code is compiled into areas with the same unique name and same attributes
(conventionally, Language$$code, CODE, READONLY. The values required
are then accessible through the symbols Language$$code$$Base and
Language$$code$$Limit).

lnitProc

The kernel contains the entrypoint for images contammg it. After initialising
itself, the kernel calls (in a random order) the InitProc for each language
RTS present in the image. They may perform any required (language-library
specific) initialisation: their return value is a procedure to be called in order
to run the main program in the image. If there is no main program in its
language, an R TS should return 0. (An lnitProc may not itself enter the main
program, otherwise other language R TSs might not be initialised. In some
cases, the returned procedure may be the main program itself, but mostly it
will be a piece of language R TS which sets up arguments first.)

Machine-specific features

It is an error for all InitProcs in a module to return 0. What this means
depends on the host operating system; if RISC OS, SWI OS_GenerateError
is called (having first taken care to restore all OS handlers). If the default
error handlers are in place, the difference is marginal.

FinaliseProc

On return from the entry call, or on call of the kernel's Exit procedure, the
FinaliseProc of each language RTS is called (again in a random order). The
kernel then removes its OS handlers and exits setting any return code which
has been specified by call of kernel setreturncode.

TrapProc, UncaughtTrapProc

If an image is not being run under a debugger, the kernel installs OS trap
and error handlers. On occurrence of a trap, or of a fatal error, all registers
are saved in an area of store belonging to the kernel. These are the registers
at the time of the instruction causing the trap, except that the PC is wound
back to address that instruction rather than pointing a variable amount past it.

The PC at the time of the trap together with the call stack are used to find the
TrapHandler procedure of an appropriate language. If one is found, it is
invoked in user mode. It may return a value (Handled or NotHandled), or
may not return at all. If it returns Handled, execution is resumed using the
dumped register set (which should have been modified, otherwise resumption
is likely just to repeat the trap). If it returns NotHandled, then that handler is
marked as failed, and a search for an appropriate handler continues from the
current stack frame.

If the search for a trap hanJler fails, then the same procedure is gone through
to find a 'uncaught trap' handler.

If this too fails, it is an error. It is also an error if a further trap occurs while
handling a trap. The procedure _kernel_exittraphandler is provided
for use in the case the handler takes care of resumption itself (eg via
l o ngjmp).

(A language handler is appropriate for a PC value if LanguageCodeBase <=
PC and PC < LanguageCodeLimit, and it is not marked as failed. Marking as
'failed' is local to a particular kernel trap handler invocation. The search for

Machine-specific features 397

398

an appropriate handler examines the current PC, then Rl4, then the link field
of successive stack frames. If the stack is found to be corrupt at any time, the
search fails) .

EventProc, UnhandledEventProc

The kernel always installs a handler for OS events and for Escape flag
change. On occurrence of one, all registers are saved and an appropriate
EventProc, or failing that an appropriate UnhandledEventProc is found and
called. Escape pseudo-events are processed exactly like Traps. However, for
'real' events, the search for a handler terminates as soon as a handler is
found, rather than when a willing handler is found (this is done to limit the
time taken to respond to an event). If no handler is willing to claim the event,
it is handed to the event handler which was in force when the program started.
(The call happens in CallBack, and if it is the result of an Escape, the Escape
has already been acknowledged.)

In the case of escape events, all side effects (such as termination of a
keyboard read) have already happened by the time a language escape
handler is called.

FastEventProc

The treatment of events by EventProc isn't too good if what the user level
handler wants to do is to buffer events (eg conceivably for the key up/down
event), because there may be many to one event handler call. The
FastEventProc allows a call at the time of the event, but this is constrained to
obey the rules for writing interrupt code (called in IRQ mode; must be quick;
may not call SW!s or enable interrupts; mustn't check for stack overflow).
The rules for which handler gets called in this case are rather different from
those of (uncaught) trap and (unhandled) event handlers, partly because the
user PC is not available, and partly because it is not necessarily quick enough.
So the FastEventProc of each language in the image is called in turn (in some
random order).

Machine-specific features

How the run-time stack is
managed and extended

UnwindProc

UnwindProc unwinds one stack frame (see description of
kernel_unwindproc for deta ils). lf no procedure is provided, the default

unwind procedure assumes that the ARM Procedure Call Standard has been
used; languages should provide a procedure if some internal calls do not
fo llow the standard.

NameProc

NameProc returns a pointer to the string naming the procedure in whose body
the argument PC lies, if a name can be found; otherwise, 0.

The run-time stack cons ists of a doubly-linked list of stack chunks. The initial
stack chunk is created when the run-time kernel is initialised. Currently, the
size of the initial chunk is 16Kb. Subsequent requests to extend the stack are
rounded up to at least this size, so the granularity of chunking of the stack is
fairly coarse. However, clients may not rely on this.

Each chunk implements a portion of a descending stack. Stack frames are
singly linked via their frame pointer fields within (and between) chunks. See
Appendix C: ARM Procedure Call Standard for more details.

ln general, stack chunks are allocated by the storage manager of the master
language (the language in which the root procedure - that containing the
language entry point - is written). Whatever procedures were last registered
with kernel_register_allocs () will be used (each chunk 'remembers'
the identity of the procedure to be called to free it). Thus, in a C program,
stack chunks are allocated and freed using malloc () and free ().

ln effect, the stack is allocated on the heap, which grows monotonically in
increasing address order.

The use of stack chunks allows multiple threading and supports languages
which have co-routine constructs (such as Modula-2). These constructs can be
added to C fairly easi ly (provided you can manufacture a stack chunk and
modify the fp, sp and sl fields of a jmp _ buf, you can use set jmp and
longjmp to do this).

Machine-specific features 399

400

Stack chunk format

A stack chunk is desribed by a kernel stack chunk data structure
located at its low-address end. It has the following format :

typedef struct stack chunk
unsigned long sc_mark ; /* == Oxf60690ff */
struct stack chunk *sc next , *sc_p rev;
unsigned long sc_size ;
int (* sc deallocate) () ;

kernel stack chunk ;

sc _mark is a magic number; sc _next and sc _prev are forward and
backward pointers respectively, in the doubly linked list of chunks; sc_size
is the size of the chunk in bytes and includes the size of the stack chunk data
structure; sc_ deallocate is a pointer to the procedure to call to free this
stack chunk - often free () from the C library. Note that the chunk lists are
terminated by NULL pointers - the lists are not circular.

The seven words above the stack chunk structure are reserved to Acorn. The
\ stack-limit register points 512 bytes above this (ie 560 bytes above the base of
\ the stack chunk).

Stack extension

Support for stack extension is provided in two forms:

• fp, arguments and sp get moved to the new chunk (Pascal/Modula-2-
style)

• fp is left pointing at arguments in the old chunk, and sp is moved to the
new chunk (C-style).

Each form has two variants depending on whether more than 4 arguments are
passed (Pascal/Modula-2-style) or on whether the required new frame is
bigger than 256 bytes or not (C-style) . See Appendix D: ARM Procedure Call
Standard for further details.

_kernel_stkovf_copyargs

Pascal/Modula-2-style stack extension, with some arguments on the stack (ie
stack overflow in a procedure with more than four arguments). On entry, ip

must contain the number of argument words on the stack.

Machine-specific features

Calling other programs
from C

_kernel_stkovf_copyOargs

Pascal/Modula-2-style stack extension, without arguments on the stack (ie
stack overflow in a procedure with four arguments or fewer).

_kernel_stkovf_split_frame

C-style stack extension, where the procedure detecting the overflow needs
more than 256 bytes of stack frame. On entry, ip must contain the value of
sp - the required frame size (ie the desired new sp which would be below
the current stack limit).

_kernel_stkovf_split_Oframe

C-style stack extension, where the procedure detecting the overflow needs 256
or fewer bytes of stack frame.

Stack chunks are deallocated on returning from procedures which caused stack
extension, but with one chunk of latency. That is, one extra stack chunk is kept
in hand beyond the current one, to reduce the expense of repeated call and
return when the stack is near the end of a chunk; others are freed on return
from the procedure which caused the extension.

The C library procedure system () provides the means whereby a program
can pass a command to the host system's command line interpreter. The
semantics of this are undefined by the draft ANSI standard.

RISC OS distinguishes two kinds of commands, which we term built-in
commands and applications. These have different effects. The former always
return to their callers, and usually make no use of application workspace; the
latter return to the previously set-up 'exit handler', and may use the currently
available application workspace. Because of these differences, system ()

exhibits three kinds of behaviour. This is explained below.

Applications in RISC OS are loaded at a fixed address specified by the
application image. Normally, this is the base of application workspace,
Ox8000. While executing, applications are free to use store between the base
and end of application workspace. The end is the value returned by SWI
OS_GetEnv. They terminate with a call of SWI OS_Exit, which transfers
control to the current exit handle,

Machine-specific features 401

402

When a C program makes the call system("command ") several things are
done:

• The calling program and its data are copied to the top end of application
workspace and all its handlers are removed.

• The current end of application workspace is set to just below the copied
program and an exit handler is installed in case " command" is another
application.

• "command" is invoked using SWI OS_Cli.

When "command" returns, either directly (if it is a built-in command) or via

the exit handler (if it is an application), the caller is copied back to its
original location, its handlers are re-installed and it continues, oblivious of
the interruption.

The value returned by system () indicates

• whether the command or application was successfully invoked

• if the command is an application which obeys certain conventions, whether
or not it ran successfully.

The value returned by system (with a non-NULL command string) is as
follows:

< 0- couldn't invoke the command or application (eg command not found);

>=0- invoked OK and set Sys$ReturnCode to the returned value.

By convention, applications set the environmental variable Sys$ReturnCode to
0 to indicate success and to something non-0 to indicate some degree of
failure. Applications written in C do this for you, using the value passed as an
argument to the exit () function or returned from the main () function .

If it is necessary to replace the current application by another, use:

system(" CHAIN:command");

If the first characters of the string passed to system () are " CHAIN :" or
"chain:", the caller is not copied to the top end of application workspace,
no exit handler is installed, and there can be no return (return from a built-in
command is caught by the C library and turned into a SWI OS_Exit).

Machine-specific features

The shared C library

Costs involved in using
the shared C library

Typically, CHAIN: is used to give more memory to the called application
when no return from it is required. The C compiler invokes the linker this way
if a link step is required. On the other hand, the Acorn Make Utility (AMU)
calls each command to be executed. Such commands include the C compiler
(as both use the shared C library, the additional use of memory is
minimised). Of course, a called application can call other applications using
system (). A callee can even CHAIN : to another application and still,

eventually, return to the caller. For example, AMU might execute:

system(" cc hello.c");

to call the C compiler. In turn, cc executes:

system(" CHAIN : link - o hello o .hello $.CLib.o.Stubs ");

to transfer control to the linker, giving link all the memory cc had .

However, when Link terminates (calls exit (), returns from main () or
aborts) it returns to AMU, which continues (providing Sys$ReturnCode is
good).

Release 3 of C makes extensive use of the shared C library module, first
introduced with Release 2 of C and subsequently used by the RISC OS
applications Edit, Paint, Draw and Configure.

The shared C library is a RISC OS relocatable module (called
SharedCLibrary) which contains the whole of the ANSI C library. Once
installed in your computer it can be used by every program written in C.
Consequently, it save both RAM space and disc space.

In fact, this is as much as you really need to know about the shared C library
and probably as far as you should delve at first reading. So, if you are eager
to try your first practical work with this release of C, skip the rest of this
section. However, if you are curious and would like to know more about what
it really costs to use it, its benefits, and a little of how it works, then read on.

The SharedCLibrary modules occupies about 61Kb. Each program that uses it
must be linked with the library stubs, a small object module containing space
for a copy of the shared C library's data and an entry vector via which
functions in the shared library can be called. The stubs occupy just 5Kb. Thus

Machine-specific features 403

Execution time costs

404

a single program linked with the shared C library consumes about 65Kb of
RAM for C library. However, two programs in memory at the same time use
only 70Kb for library and three programs, only 75Kb.

In contrast, a program linked with Release 3 of AnsiLib will include a
minimum of 40Kb. So, as soon as you have two or more C programs in
memory at the same time, it is cheaper to use the SharedCLibrary. Usually,
you will have Edit resident (which uses the shared C library anyway) and
then you may want to run cc under AMU. In this situation, use of the shared
C library saves 45Kb of RAM.

Efficient use of RAM is not the only consideration. The C compiler includes
48Kb of AnsiLib and when squeezed occupies 1 72Kb on disc. However, when
linked with Stubs and squeezed it occupies only 140Kb. There are similar
savings from Link, AMU, ASD, and Squeeze, as well as for the programs you
compile (the 'hello world' program is reduced in size from over 40Kb to just
5.5Kb).

Without using the shared C library it would not be possible to use C Release
3 on a system with only a single floppy disc drive (imagine the loss of 150Kb
of work space, together with a minimum image size of 40Kb). And, of course,
smaller programs load much faster from a floppy disc.

If you have a larger Acorn system, use of the shared C library still brings
benefits:

• Small programs load noticeably faster, even from a hard disc.

• No hard disc is ever big enough; saving 25AOKb per program is not to be
sneezed at if you have 40 or 50 programs (1-2Mb saved).

• Much more can be packed into the RAMFS - perhaps all the tools you
ever use, giving almost instantaneous loading of them.

It costs only 4 cycles (O.Sj..ls) per function call and a very small penalty on
access to the library's static data by the library (the user program's access to
the same data is unpenalised). In general, the difference in performance
between using the shared C library and linking a program stand-alone with
Ansi Lib is less than 1%. For the important Dhrystone-2.1 benchmark the
performance difference cannot be measured (you can try this experiment for
yourself using the sources provided in $.User. c).

Machine-specific features

How it works

#pragma directives

The shared C library module implements a single SWI which is called by
code in the library stubs when your program linked with the stubs starts
running. That SWI call tells the stubs where the library is in the machine.
This allows the vector of library entry points contained in the stubs to be
patched up in order to point at the relevant entry points in the library module .

The stubs also contain your private copy of the library's static data. When
code in the library executes on your behalf, it does so using your stack and
relocates its accesses to its static data by a value stored in your stack-chunk
structure by the stubs initialisation code and addressed via the stack-limit
register (this is why you must preserve the stack-limit register everywhere if
you use the shared C library and call your own assembly language sub
routines). The compiler's register allocation strategy ensures that the real
dynamic cost of the relocation is almost always low: for example, by doing it
once outside a loop that uses it many times.

If you go on to write your own relocatable modules in C, you'll use the - zM

feature of the compiler which causes similar code to be generated.

Pragmas recognised by the compiler come in two forms:

#pragma -<letter><optional-digit>

and

#pragma [no]<feature-name>

A short-form pragma given without a digit resets that pragma to its default
state; otherwise to the state specified.

For example,

#pragma -sl
#pragma nocheck stack

#pragma - p2
#pragma profile statements

Machine-specific features 405

Storage management
(malloc, calloc, free)

406

The current list of recognised pragmas is:

pragma name

warn implicit fn decls
warn implicit casts
check_memory_accesses
warn_deprecated
continue after hash error - -
optimise crossjump
optimise_multiple loads
profile
profile_statements
check stack
check_printf_formats
check scanf formats - -
check formats
side effects
optimise cse

short form

al
bl
cl
dl
el
jl
ml
pl
p2
sO
vl
v2
v3
yO
zl

'no' form

aO
bO
cO
dO
eO
jO
mO
pO
pO
sl
vO
vO
vO
yl
zO

The set of pragmas recognised by the compiler, together with their default
settings, varies from release to release of the compiler. In general, the only
pragmas you should need to use are check_stack and nocheck_stack.
These enable and disable, respectively, the generation of code to check the
stack limit on function entry and exit. In reality there is little advantage to
turning stack checks off: they cost at most two instructions and two machine
cycles (about 0.25!-ls) per function call. The one occasion when
nocheck stack would be used is in writing a signal handler for the
SIGSTAK event. When this occurs, stack overflow has already been detected,
so checking for it again in the handler would result in a fata l circular
recursion.

The aim of the storage manager is to manage the heap in as 'efficient' a
manner as possible. However, 'efficient' does not mean the same to all
programs and since most programs differ in their storage requirements,
certain compromises have to be made. The main two issues to be considered
are speed and heap fragmentation .

Machine-specific features

Allocation of blocks

You should also try to keep the peak amount of heap used to a minimum so
that, for example, a C program may inv_oke another C program leaving it the
maximum amount of memory. This implementation has been tuned to hold the
overhead due to fragmentation to less than 50%, with a fast turnover of small
blocks.

The heap can be used in many different ways. For example it may be used to
hold data with a long life (persistent data structures) or as temporary work
space; it may be used to hold many small blocks of data or a few large ones
or even a combination of all of these allocated in a disorderly manner. The
storage manager attempts to address all of these problems but like any
storage manager, it cannot succeed with all storage allocation/deallocation
patterns. If your program is unexpectedly running out of storage, using the
following information on the storage manager's stategy for managing the heap
may help you to remedy it.

Note the following:

• The word heap refers to the section of memory currently under the control
of the storage manager.

• All block sizes are in bytes and are rounded up to a multiple of four
bytes.

• All blocks returned to the user are word-aligned.

• All blocks have an overhead of eight bytes (two words). One word is
used to hold the block's length and status, the other contains a guard
constant which is used to detect heap corruptions. The guard word may not
be present in future releases of the ANSI C library.

When an allocation request is received by the storage manager, it is
categorised into one of three sizes of blocks; small, medium or large (0 <
small<= 64 <medium<= 512 <large< 16777216).

The storage manager keeps track of the free sections of the heap in two ways.
The medium and large sized blocks are chained together into a linked list
(overflow list) and small blocks of the same size are chained together into
linked lists (bins). The overflow list is ordered by ascending block address,
while the bins have the most recently freed block at the start of the list.
When a small block is requested, the bin which contains the blocks of the
required size is checked, and if the bin is not empty, the first block in the list
is returned to the user. If there was no block of the exact size available, the

Machine-specific features 407

Failure to allocate a block
immediately

Deallocation of blocks

408

bin containing blocks of the next size up is checked, and so on, until a block is
found. If a block is not found in the bins, the last block (highest address) on
the overflow list is taken. If the block is large enough to be split into two
blocks, and the remainder a usable size (> 12 including the overhead), the
block is split, the top section returned to the user and the remainder,
depending on its size, is either put in the relevant bin at the front of the list or
left in the overflow list.

The allocation of medium blocks is the same as for small blocks, except that
the search for a block ignores the bins and starts with the overflow list which
is searched in reverse order for a block of usable size.

When a large block is requested, the overflow list is searched in increasing
address order and the first block in the list which is large enough is taken. If
the block is large enough to be split into two blocks, and the size of the
remainder is larger than a small block (> 64) then the block is split, the top
section is returned to the overflow list and bottom section given to the user.

If there is no block of the right size available, the storage manager has two
options:

• Take all the free blocks on the heap and join adjacent free blocks
together (coalescing), in the hope that a block of the right size will be
created which can then be used.

• Ask the operating system for more heap. The block returned is put on the
overflow list and allocation of the user block continues as above.

The heap will only be coalesced if there is enough free memory in it to make
it worthwhile, or if the request for more heap was denied. Coalescing causes
the bins and overflow list to be emptied, the heap to be scanned, adjacent
free blocks coalesced, and the free blocks scattered into bins and overflow
list in increasing address order.

When a block is freed, if it will fit in a bin, it is put at the start of the
relevant bin list. Otherwise, it is just marked as being free and effectively
taken out of the heap until the next coalesce phase, when it will be put in the
overflow list. This is done because the overflow list is in ascending block
address order and it would have to be scanned so that the freed block could
be inserted at the correct position. Surprisingly, fragmentation is also reduced
if the block is not reusable until after the next coalesce phase.

Machine-specific features

Handling host errors Calls to RISC OS can be made via one of the functions in the C header file
kernel.h, (such as kernel osfind(64 , " ")) . If the call causes
an operating system error, the function will return the value

kernel ERROR. To find out what the error was, a call to
kernel last oserror should be made. This will return a pointer to a
kernel oserror block contaming the error number and any associated

error string. If there has been no error since kernel_last_oserror was
last called, the function returns the NULL pointer. Some functions in the
ANSI C library call kernel functions, so if an ANSI C library function
(such as fopen (" ", "r ")) fai ls, try call ing kernel last
oserror to find out what the error was.

For more details about operating system calls, refer to the kernel. h header
(reproduced as Appendix E in this Guide), and for more information about
RISC OS error hand ling, refer to the chapter entitled Generating and handling
errors in the RISC OS Programmer's Reference Manual.

Machine-specific features 409

410 Machine-specific features

Appendix A: New features of Release 3

Release 3 of the C compiler product is a powerful and effective vehicle for
developing software for the RISC OS operating system and incorporates
many more features than the previous release, Release 2. The scope of the
Guide has accordingly been extended and much use made of worked
examples provided on disc as well as in the text . Particular attention is given
to machine- and operating system-specific features.

The key additional features of Release 3 are:

• conformity with the latest ANSI draft (December 1988)

• RISC OS library extens ions

• support for developing the following types of program for RISC OS:

• Desktop applications

• Relocatable modules

• Overlaid applications

• improved portability to and from RISC OS

• enhanced and new software tools, previously part of the Software
Developer's Toolbox.

Further details are given below in the sections Additional Software and New
Features of the Guide.

All known bugs in the compiler system have been fixed, and the performance
of the compiler in terms of speed and size of compiled code has been
improved, typically by a few percent, though some operations such as integer
divide have been speeded up sufficiently to make a 40% overall difference to

an arithmetic encoding program.

Further details are given in the Release Note supplied in the release package.

Appendix A: New features of Release 3 411

Additional software

Existing utilities
incorporated in Release 3

The Procedure Call Standard has been revised since Release 2 of the
Compiler, and this is covered in the section New Procedure Call Standard and
in Appendix D.

Support for the Brazil operating system, which was developed for prototype
ARM-based machines, has been dropped, so the Brazil library, Superlib, and
its header are not included.

Additional software for Release 3 consists of:

• existing utilities incorporated in Release 3

• new utilities

• examples.

The following utility programs are part of the Software Developer's Toolbox,
and were not part of Release 2 of the C product. Upgraded versions of these
utilities are included inC Release 3:

• AMU- the Acorn 'make' utility

Details of the enhanced features of AMU are given in the chapter
entitled Other Utilities.

• ASD- the Acorn Source-level Debugger

The functionality of the debugger has been extended to include support
for debugging at the assembly language level, including the facility for
inspecting register contents and blocks of memory. ASD can therefore
now be used to debug high-level language programs at the source code
level or at the machine code level, as well as to debug programs written
in assembler.

A complete worked example to illustrate use of the debugger is
supplied in the the chapter on the debugger and on disc (directory
AsdDemo on Disc 1).

• Squeeze- an image file compaction utility.

412 Appendix A: New features of Release 3

New utilities

Examples

The following utility programs have not previously been released as part of
an Acorn product, and are included inC Release 3:

• FormEd

This takes much of the hard work out of preparing templates (icons,
dialogue boxes, menus etc) for the Window Manager environment. It can
be found in $. ! FormEd on Disc 3.

• Conversion utilities- toansi and topcc

toansi converts pee-style source to ANSI-style source. topcc converts
ANSI-style source to pee-style source. The executable images for these
utilities are in $.Library on Disc 1, and their source files are in
$.Conversion on Disc 2.

• cmhg- the C Relocatable Module Header Generator

cmhg can be found in $.Library on Disc 1. It is a special-purpose
module header assembler for modules written in C. It is described in the
chapter entitled How to write relocatable modules in C.

There were four example programs provided in Release 2:

He11oW

Sieve
Balls64
HowToCa11

simple 'Hello World' example
the sieve of Eratosthenes
colourful graphics demonstration
illustrating calling other programs from C.

Ba 11 s 6 4 has been used as the starting point for one of the Desktop
Application illustrations, and HowToCa11 has been modified in line with
changes in the way other programs are called from C. Many more example
programs have been included with Release 3 of the compiler, the complete
list being:

File Description Directory Disc
He11oW Simple 'Hello World' example. $. User 1

Sieve The sieve of Eratosthenes. $.User

CModu1e Example Relocatable Module $.User
Cmodu1eHdr in C with header file
MakCModu1e and 'make' file.

Appendix A: New features of Release 3 413

Upgrades

New features of the
Guide

Part 1 : Using the C
compiler and tools

414

HowToCall Illustrates calling other $. User

programs from C.

swi list Generates a list of SWI names. $. User

AsdDemo ASD debugger demonstration. $. AsdDemo

Dhrystone Source for the Dhrystone 2.1 $.Dhrystone

benchmark.

Over Ex Example of use of overlays. $. 0verEx 3

Examples to illustrate features $. DeskEgs

of Desktop Applications:
!Balls64 colourful graphic display;

! DrawEx example which includes rendering a Draw file;

! Life runs Conway's game of life;

!WExample example developed in thismanual.

The following software elements were provided in Release 2, and have been
upgraded for Release 3:

• fpe 2 8 0 Floating point emulator

For details, see Appendix F: the Floating Point Emulator.

• link Linker

Link has been re-implemented; it is now smaller and faster and provides
support for overlays.

The additional material in the Guide reflects the extra software functionality
supplied in the product:

• How to install and run the compiler

This section has been extensively revised, and has new sections to cover setting
up your working environment and an overview of the C compiler system.

• Using the linker

This has been revised to accommodate the changes to the linker command
line interface, and the new functionality supporting overlays.

Appendix A: New features of Release 3

Part 2: Language issues

Part 3: Developing
software for RISC OS

Part 4: Appendices

• Acorn Source-level Debugger

The content of the ASD Guide from the Software Developer's Toolbox has
been revised to incorporate ASD's new features and to cover the extended
example ASD session.

• Other utilities

The coverage of AMU and Squeeze has been revised to incorporate their
enhancements.

The following chapters have been revised to address the changes to the ANSI
standard .

• Implementation details

• Standard implementation definition.

The following chapters are new:

• Portability

• ANSI library reference section.

A new section of the manual, with chapters to cover:

• How to write desktop applications in C

• How to use the template editor

• RISC OS library reference section

• Assembly language interface

• How to write relocatable modules in C

• Overlays

• Machine-specific features .

The following appendices are new to the manual:

• New features of Release 3

• ARM procedure call standard

kernel. h (the low-level interface to RISC OS)

Appendix A: New features of Release 3 415

Changes to the compiler

New Procedure Call
Standard

416

• The floating point emulator.

The appendix covering the Arthur Operating System library (ArthurLib) no
longer lists the functions: for details of these, refer to the header files on Disc
3.

The appendix covering Errors and Warnings has been revised and updated.

These are listed in the Release Note supplied with the release package.

C Release 3 conforms to the new ARM Procedure Call Standard. Full
technical details are given in Appendix D: ARM Procedure Call Standard, but
essentially the changes have been made to support the writing of modules in
C for better commonality with other Acorn products.

The changes made have maintained the backwards compatibility of the shared
C library. Thus old software (compiled before Re lease 3, using the old
Procedure Call Standard) will run with the new shared C library but
software compiled with Re lease 3 will not run with the old shared library.

To maintain standalone compatibility, two binaries of the stand-alone C
library (Ansilih) and the Arthur operating system library (ArthurLib) have
been provided, the fi les with the suffix A conforming to the old standard.
However, this is an interim measure. ArthurLib is now obsolete, being
replaced by RISC_OSlib, and support for the old Procedure Call Standard
will be dropped from the next release of C. You are therefore advised to
recompile all existing application sources with the new compiler, and revise
any software that needs to observe the Procedure Call Standard so that it is in
line with the new standard.

Appendix A: New features of Release 3

Appendix B: Arthur Operating System library

Using the Arthur
libraries

Under RISC OS, the Arthur Operating System library is obsolescent, and
will not be supported in the future. It is included in this release only for
compatibility with Release 1 and Release 2 C. A C program should interact
with RISC OS via the RISC OS library (RISC_OSlib), as used by Edit, Paint,
Draw and other applications included in the RISC OS Applications Su ite.
The chapter entitled RISC OS library reference section gives full deta ils.

Low-level access to RISC OS is now provided via the language- independent C
library kernel. The RISC OS library reference section also gives information on
this; alternatively, you can refer to the header file ke rnel . h listed in

Appendix E and provided on Disc 3 of this release. As the library kernel is
part of the shared C library and part of every C program linked with
Ansilib, it is the preferred interface for occasional low- level access to the
operating system.

Two variants of the Arthur library are provided (in $. clib . o on Disc 2):

• Arthurlib

• ArthLib A

conforms to the new ARM procedure call standard

conforms to the old ARM procedure call standard .

The standard is covered in Appendix D of this Guide.

To use Arthurlib functions, their declarations must be inserted in your code
by means of a #include line. As an example, here is the 'hello world'

program again, here using the mode () function to change screen mode:

#include <stdio . h>
#include <Arthur . h>
int main ()

art_mode (7) ;

Appendix B: Arthur Operating System library 417

418

printf ("Hell o world! \n ");
return 0 ;

When the above program is compiled and linked, the - arthur option has to
be used:

cc - arthur hello

This causes the linker to use the arthurlib library in addition to the usual
ansi lib one.

Because it is quite possible for the names of the constants, functions and
variables declared in h . arthur to clash with other identifiers used in a
program, names are long and are all prefixed by art_. Constants relating to
Wimp and sound functions are prefixed by Wimp and Sound respectively.
An example is art_ mode (), illustrated above. Often, a funct ion name is the
same as the equivalent BBC BASIC keyword, written in lower case and
prefixed by art_, a.s in art_ mode (), art_ vdu (),and art_ clg (),etc.

If the macro symbol ARTHUR_ OLD _NAMES is defined before the Arthur
header file is included, then all the names documented in this chapter can be
used without their art prefixes. Here is yet another version of the hello
program using this method:

#define ARTHUR OLD NAMES
#include <stdio .h>
#include <Arthur . h>
int main ()

mode(7);
printf ("Hello world ! \n ");
return 0 ;

An alternative way of achieving the same effect as the #define line above
would be to use the compiler command line option -DAR"J;'HUR _OLD _NAMES.

Appendix B: Arthur Operating System library

General Arthurlib
functions

These functions deal with general I/0 features of Arthur, including graphics,
sound and keyboard . In general their functionality emulates that of similarly
named BASIC keywords. Brief descriptions are given below, but you are
recommended to refer to the BBC BASIC Guide for comprehensive
descriptions.

Functions such as art_osfile () are essentially those described in detail in
the RISC OS Programmer's Reference Manual. Any C structures referred to are
defined in the Arthur header file <Arthur . h> (ie $. clib .h. Arthur). In
the function declarations, the ANSI prototype facility to give names as well
as types to arguments is used. This makes the arguments' use a little more self
explanatory.

On the working disc (Disc 1 of the release), headers are given in compressed
form to save space. Comments and argument names are omitted for brevity.
On the documentation disc (Disc 3), headers are given in full. You should
therefore consult the file $. c 1 ib . h . Arthur on Disc 3.

Appendix 8: Arthur Operating System library 419

420 Appendix B: Arthur Operating System library

Appendix C: Errors and warnings

Levels of errors and
warnings

The compiler can produce error or warning messages of several degrees of
severity. They are:

• Warnings indicating curious, but legal, program constructs, or constructs
that are indicative of potential error.

• Non-serious errors which still allow code to be produced.

• Serious errors which may produce loss of code.

• Fatal errors which stop the compiler from compiling.

• System errors which signal faults in the compiler itself.

Errors and serious errors collectively correspond to ANSI 'diagnostics';
whether an error is serious or not reflects the compiler's view, not that of the
user or the ANSI committee.

If the compiler produces any message more serious than a warning it will set
a bad return code, usually terminating any 'make' of which it is part. Any
serious error will cause the output object file to be deleted; fatal and system
errors cause immediate termination of compilation, with loss of the object fi le
and a bad return code set.

Future releases of the compiler may dist inguish further errors or produce
slightly different forms of wording.

In pee mode, constructs that are erroneous in ANSI mode are warned of, even
though legal in pee mode.

The messages are listed alphabetically in each section.

Appendix C: Errors and warnings 421

Warnings

Warning messages

422

Warning messages indicate legal but curious C programs, or possibly
unintended constructs (un less warnings are suppressed) . O n detection of such
a condit ion, the compiler issues a warning message, then continues compilation.

#define macro 'xx' defined but not used

'&' unnecessary for function or array xx

This is a reminder that if xx is defined as char xx [1 0] then xx already has

a pointer type. T here is a similar reminder for function names too. Example:

static char mesg[] = " hello\n " ;
int main ()

char *p = &mesg ; / * mesg is already compatible with char * *I

actual type 'xx' mismatches format '%x'

A type error in a printf or scanf format str ing. Example:

int i ;
printf (" %s\n ", i) ; / * %s need char* n o t int * /

ANSI 'xx' trigraph for 'x' found- was this intended?

This helps to avoid inadvertent use of ANSI trigraphs. Example:

printf (" Type ??/ !!: "); /* " ??/ " is trigraph for " \ " *I

argument and old-style parameter mismatch : xx

A funct ion with a non-ANSI declaration has been called using a parameter of
a wrong data type . Example:

int fnl (a , b)
int a ;
int b ;

return a * b ;

Appendix C: Errors and warnings (warnings)

int main ()

int 1 ; float m;
fnl(l , m) ; /* m should be ' int ' */

character sequence /* inside comment

You cannot nest comments in C. Example:

/*comment out func() for now ...
/* func() returns a random number */
int func(void)

return i ;

*/

dangling 'else' indicates possible error

This hints that you may have mis-matched your ifs and elses. Remember an

e 1 se always refers to the most recent un-matched if. Use braces to avoid

ambiguity. Example:

if (a)
if (b)

return 1 ;
else if (c)
return 2 ;

else /* this belongs to the if (a). Or does it?*/
return3 ;

deprecated declaration of xx() - give arg types

A feature of the ANSI draft standard is that argument types should be given
in function declarations (prototypes) . 'No arguments' is indicated by void.

Example:

Appendix C: Errors and warnings (warnings) 423

424

extern int func() ; / * should have ' void ' in the parentheses */

extern clash xx , xx clash (ANSI 6 char rnonocase)

Using compiler option -fe, it was found that two external names were not
distinct in the first six characters. Some linkers provide only six significant
characters in their symbol table. Example:

extern double function1
extern char * function2

(int i);
(long 1) ;

extern 'main' needs to be 'int' function

This is a reminder that main () is expected to return an integer. Example:

void main ()

extern xx not declared in header

Compiling - fh, an external object was discovered which was not declared in
any included header file.

floating point overflow when folding

This is typically caused by a division by zero in a floating point constant
expression evaluated at compile time. Example:

#define lim 1
#define eps 0 . 01
static float a= eps/(1im- 1); /* lim-1 yields 0 */

floating to integral conversion failed

A cast (possibly implicit) of a floating point constant to an integer failed at
compile time. Example:

static int i = (int i l.Oe20; /* INT MAX is about 2el0 ~ ;

formal parameter 'xx' not declared- 'int' assumed

The declaration of a function parameter is missing. Example:

Appendix C: Errors and warnings (warnings)

int func(a)
/*a should be declared here or within the parentheses*/
{

format requires nn parameters, but mm given

Mismatch between a printf or scanf format string and its other arguments.
Example:

printf(" %d , %d\n",l); /* should be two ints */

function xx declared but not used

When compiling with - fv, the function xx was declared but not used within
the source file.

illegal format conversion '%x'

Indicates an illegal conversion implied by a printf or scanf format string.
Example:

printf(" %w\n",l0); /*no such thing as %w */

implicit narrowing cast : xx

An arithmetic operation or bit manipulation is attempted involving assignment
from one data type to another, where the size of the latter is naturally
smaller than that of the assigned value. Example:

double d = 1.0; long l = 2L ; int i 3 ;
i d * i ;
i 1 3 ;
i 1 & -1 ;

implicit return in non-void function

A non-void function may exit without using a return statement, but won't return
a meaningful result. Example:

Appendix C: Errors and warnings (warnings) 425

426

int func (int a)

int b=a*lO ;
0 0 ol* no return <expr> statement */

incomplete format string

A mistake in a print f or scan f format string. Example:

printf(" Score was %d %", score); /* 2nd % should be %% */

'int xx() ' assumed- ' void' intended?

If the definition of a function omits its return type - it defaults to int. You

should be explicit about the type, using void if the function doesn 't return a

result. Example:

main()
{

i nventing ' extern int xx();'

The declaration of a function is miss ing. Example:

printf (" Type your name : ");
/* forgot to #include <stdio oh> */

label xx was defined but not used

Example:

errlab : exit (- 1); /*no corresponding goto errlab */

lower precision in wider context : xx

An arithmetic operation or bit manipulation is attempted involving ass ignment
from int , short or char to long. Example:

Appendix C: Errors and warnings (warnings)

long 1 = lL; int i 2; short j 3 ;
1 = i & j;

1 = i I 5;
1 i * j;

One circumstance in which this causes problems is when code like

long f(int x) {return l<<x;}

(which fails if int has 16 bits) is moved to machines such as the IBM PC.

no side effect in void context: 'op'

An expression which does not yield any side effect was evaluated; it will have
no effect at run-time. Example:

a+b ;

no type checking of enum in this compiler

Compiling -fx, an enum declaration was found, and this message refers to
the ANSI stipulation that enum values be integers, less strictly typed than in
some earlier dialects of C.

non-ANSI #include <xx>

A header file has been #included which is not defined in the ANSI draft
standard. < > should be replaced by " ".

non-portable- not 1 char in 'xx' \
Assigning character constants containing more than one character to an int
will produce non-portable results. Example:

static int exitCode = 'ABEX';

non-value return in a non-void function

The expression was omitted from a ret urn statement in a function which was
defined with a non-void return type. Example:

int func (int a)

Appendix C: Errors and warnings (warnings) 427

428

int b=a*lO ;

return ; /* no <expr> */

odd unsigned comparison with 0 : xx

An attempt has been made to determine whether an unsigned variable is
negative. Example:

unsigned u 1 v ;
if (u < 0) u = u * v;
if (u >= 0) u = u I v ;

old-style function: xx

Compiling with - fo , it was noted that the code contains a non-ANSI function
declaration. Example:

void fn2(a 1 b)
int a ;
int b ;
{ b = a ;

omitting trailing 1 \0 1 for char[nn]

The character array being equated to a string is one character too short for the
whole string, so the trailing zero is being omitted. Example:

static char mesg[l4] = " (C)l988 Acorn\n "; /* needs 15 */

repeated definition of #define macro xx

When compi ling with fh, a macro has been repeatedly #defined to take the
same value.

Appendix C: Errors and warnings (warnings)

shift by nn illegal in ANSI C

This is given for negative constant shifts or shifts greater than 31. On the
ARM, the bottom byte of the number given is used , ie it is treated as
(unsigned char) nn. NB: negative shifts are not treated as positive sh ifts
in the other direction. Example:

printf (" %d\n ", l<<- 2) ;

'short' slower than 'int' on this machine

For speed you are advised to use ints rather than shorts where possible.
This is because of the overhead of performing implicit casts from short to

int in expression evaluation. However, shorts are half the size of ints, so
arrays of shorts can be useful. Example:

short i , j ; /*quicker to use ints */

spurious {} around scalar initialiser

Braces are only required around structure and array initialises. Example:

static int i = {INIT I} ; /* don ' t need braces */

static xx declared but not used

A static variable was declared in a file but never used in it. It is therefore
redundant.

undefined macro 'xx' in #if- treated as 0

Unrecognised #pragma (no '-' or unknown word)

#pragma directives are of the form

#pragma -xd
or
#pragma long_spelling

Appendix C: Errors and warnings (warnings) 429

430

where x is a letter and d is an optional digit. These messages warn against
unknown letters and missing minus signs.

use of 'op' in condition context

Warns of such possible errors as = and not = = in an if or looping statement.

Example:

if (a=b)

variable xx declared but not used

This refers to an automatic variable which was declared at the start of a block
but never used within that block. It is therefore redundant. Example:

int func(int p)

int a;/* this is never used*/
return p*lOO;

xx may be used before being set

Compiling with option -fa, an automatic variable is found to have been used
before any value has been assigned to it.

xx treated as xxul in 32-bit implementation

This message warns of two's complement arithmetic's dependence on assigning
negative constants to unsigned ints, and it explains that ints and long
ints are both 32 bits.

Appendix C: Errors and warnings (warnings)

Non-serious errors These are errors which will allow 'working' code to be produced - they will

not produce loss of code. On detection of such an error the compiler issues an

error message, if enabled, then continues compilation.

(not ';') separates formal parameters

Incorrect punctuation between function parameters. Example:

extern int func(int a ; int b) ;

ANSI C does not support 'long float'

This used to be a synonym for double, but is not allowed in ANSI C.

ancient form of initialisation, use '='
Example:

int i{l}; /* use int i=l ; */

array [0] found

The minimum subscript count allowed is 1. (Remember that the subscripts go

from 0 .. n -1.) Example:

static int a[O] ;

array of xx illegal - assuming pointer

Illegal objects have been declared to occupy an array. Examples:

int fn2 [5] () ;
void v[lO] ;

/* array of functions */

/* array of voids */

assignment to 'const' object 'xx'

You can't assign to objects declared as con st. Example:

const int ic = 42; /* initialisation ok */

ic = 69 ; /* can ' t change it now */

Appendix C: Errors and warnings (non-serious errors) 431

432

comparison 'op' of pointer and int :
literal 0 (for == and !=) is the only legal case

You cannot use the comparison operators between an integer and a pointer
type. As the message implies, you can only check for a pointer being (not)
equal to NULL (int 0). Example:

int i , j , *ip ;
j = i>ip ; /* can ' t compare an int and an int * * /

declaration with no effect

The compiler detected what appeared to be a declaration statement, but
which resu lted in no store being allocated. This may imply that a data type
name was omitted.

string initialiser longer than char [nn]

An attempt was made to initialise a character array with a string longer than
the array. Example:

static char str[10] " 1234567891234 " ;

differing pointer types : 'xx'

An illegal implicit type cast was detected m a comparison operation between
two pointers of different types. Example:

int *ip ;
char *cp;
printf(" %d\n ", ip==cp); /* can ' t compare these */

differing redefinition of #define macro xx

#define gives a definition contradicting that already assigned to the named
macro.

Appendix C: Errors and warnings (non-serious errors)

digit 8 or 9 found in octal number

Octal (base 8) numbers may only have digits up to 7. Example:

static inti= 0178 ; /*probably meant 0177 , ie Oxff */

ellipsis (...) cannot be only parameter

Although C allows variable length argument lists, the '

cannot stand alone in this function declaration. Example:

void fnl (...) { }

expected 'xx' or 'x' - inserted 'x' before 'yy'

parameter

Often caused by omitting a terminating symbol in a statement when the
compiler is able to insert this symbol for you, and then to recover. Example:

int f(int j)
{

return j ;

int main ()
{

int i=f(lO ;
return i ;

/* ')' omitted here*/

formal name missing in function definition

This error occurs when a comma in a function definition led the compiler to
suspect a further formal parameter was going to follow, but none did.
Example:

int a(int b ,) /*missing parameter*/

Appendix C: Errors and warnings (non-serious errors) 433

434

function prototype formal 1 xx 1 needs type or class
1 int 1 assumed

A formal parameter in a function prototype was not given a type or class. It
needs at least one of these (register being the only allowed class).
Example:

void func (a) ; /*I mean int a or perhaps register a*/

function returning xx illegal - assuming pointer

A function apparently intends to return an illegal object. Example:

int fn3 () [J

{

int list[3]
return list ;

/* hoping to return an array */

{ 1 1 2 1 3} ;

function xx may not be initialised - assuming function
pointer

A function is not a variable, so cannot be initialised. As an attempt to
initialise xx has been made, xx is treated as of type function *. Example:

extern int func (void);
static int fn () = func ; /* the compiler will use

static int (* fn) () = func ; instead *I

illegal string escape 1 \X1 -treated as x

Unrecognised string escape (\ followed by a character) found. The \ is
ignored. Example:

printf (" \w"); /*no such escape*/

<int> op <pointer> treated as <int> op (int)<pointer>

Warns of an illegal implicit cast within an expression. Typically op is an
operator which has no business being used on pointers anyway, such as I or
dyadic *. Example:

Appendix C: Errors and warnings (non-serious errors)

int i , *ip ;
i = i I ip ; /* bitwise-or on a pointer? ! */

junk at end of #xx line - ignored

The xx is either else or endif. These directives should not have anything

following them on the line. Example:

/* text after the #else should be a comment */
#else if it isn ' t defined

L' ... ' needs exactly 1 wide character

The wchar t declarat ion of a wide character names an identifier comprising

other than one character. Example:

wchar t we= L' abc ';

linkage disagreement for ' xx' -treated as 'xx'

There was a linkage type disagreement for declarations, eg a function was

declared as extern then defined later in the file as static. Example:

int func (i nt a) ; /*compiler assumes extern here*/

static func(int a) /* but told static here */

missing newline before EOF - inserted

The last line of the source fi le did not have its terminating end of line

character.

more than 4 chars in '

A character constant of more than four characters cannot be assigned to a 32

bit int. Example:

Appendix C: Errors and warnings (non-serious errors) 435

436

int i ' 12345 ' ; /*more than four chars */

no chars in character constant''

At least one character should appear in a character constant. The empty
constant is taken as zero. Example:

int i I I,

' /* less than one char I \0 I

objects that have been cast are not 1-values

The programmer tried to use a cast express ion as an !-value. Example:

char *p ;

*I

*((int *)p)=lO ; /* (int *)p is NOT an 1-value */

omitted <type> before formal declarator- 'int' assumed
This is given in a formal parameter declaration where a type modifier is
given but no base type. Example:

int func(*a) ; /*a is a pointer , but to what?*/

'op': cast between function pointer and non-function
object

Casts between function and object pointers can be very dangerous! One
possibly valid (but st ill very suspect) use is in cast ing an array of int into
which machine code has been loaded into a function pointer. Example:

static int mcArray[lOO];
/*pointer to function returning void*/
typedef void (*pfv) (void) ;

((pfv)mcArray) () ; /*convert to fn ·type and apply*/

Appendix C: Errors and warnings (non-serious errors)

'op': implicit cast of non-0 int to pointer

Zero, equal to a NULL pointer, is the only int which can be lega lly implicitly

cast to a pointer type. Example:

int i , * ip ;
ip = i ; / * only the constant int 0 ca n be implicitly cast to a pointer type */

'op' : implicit cast of pointer to non-equal pointer

An illegal implicit cast has been detected between two different pointer

types. The type casting must be made explicit to escape this error. Example:

int *ip ;
c har *cp ;
ip = cp ; /* differing pointer types */

'op': implicit cast of pointer to 'int'

An illegal implicit cast has been detected between an integer and a pointer.

Such casts must be made explicitly. Example:

int i , *ip;
i = ip ; /* p o inter must be cast explicitly * /

overlarge escape '\\xxxx' treated as '\\xxx'

A hexadecimal escape sequence is too large. Example:

int novalue ()
{

if (seize) return ' \xfff ';
else return ' \ xff ';

/* \xfff ' t o o large * /

overlarge escape '\\x' treated as '\\x'

An octal escape sequence is too large. Example:

Appendix C: Errors and warnings (non-serious errors) 437

438

int novalue ()
{

if (huit) return ' \777 ';
el se r e turn ' \77 ';

/* \777 too l arge * /

<pointer> op <int> treated as (int)<pointer> op <int>

The only legal operators allowed in this context are+ and-.

prototype and old-style parameters mixed

Use has been made of both the ANSI style function/definition (including a
type name for formal parameters in a function's heading) and pee style
parameters lists. Example:

v o id fn4(a , int b)
int a ;

a = b ;

'register' attribute for 'xx' ignored when address taken

Addresses of register variables cannot be calculated, so an address being
taken of a variable with a register storage class causes that attribute to be
dropped. Example:

register int i , * ip ;

ip = &i ; / * & forces i to lose its register attribute */

return <expr> illegal for void function

A function declared as void must not return with an expression. Example:

v o id a(vo id)

return 0 ;

Appendix C: Errors and warnings (non-serious errors)

size of 'void' required - treated as 1

This indicates an attempt to do pointer arithmetic on a void *, probably

indicating an error. Example:

void *vp;
vp++; /* how many bytes to increment by ? */

size of a [] array required - treated as [1]

If an array is declared as having an empty first subscript size, the compiler
cannot calculate the array's size. It therefore assumes the first subscript limit
to be 1 if necessary. This is unlikely to be helpful.

extern int array[)[lO] ;
static int s = sizeof (array); /*can 't determine this*/

size of function required - treated as size of pointer

The compiler cannot know the size of a function at compile time, so instead it
uses the size of a (*) () . Example:

extern int func(void) ;
int main(void)

inti= sizeof(func) ;

sizeof <bit field> illegal - sizeof(int) assumed

Bitfields do not necessarily occupy an integral number of bytes but they are
always parts of an int, so an attempt to take the size of a bitfield will return

sizeof (int). Example:

struct s {

} ;

int exp : 8 ;
int mant : 2 3 ;
int s : 1;

int main(void)

Appendix C: Errors and warnings (non-serious errors) 439

440

struct s st ;
inti= sizeof (st . exp) ; /*can ' t obtain this in

bytes */

Small (single precision) floating value converted to 0 . 0
Small floating point value converted to 0 . 0

A fl oating point constant was so small that it had to be converted to 0.0.
Example:

static float f l . OOOle - 38 - l . Oe - 38 ; /* le - 42 too
small for
float */

Spurious #elif ignored
Spurious #else ignored
Spurious #endif ignored

One of these three direct ives was encountered outside of any #if or #ifdef
scope. Example:

#if defined sym

#endif
#else /* this one is spurious */

stat ic function xx not defined - treated as e xtern

A prototype declares the function to be static, but the function itself is absent
from this compilation unit.

struct component xx may not be function
funct i on pointer

a s suming

A variable such as a structure component cannot be declared to have type
function , only function *. Example:

Append ix C: Errors and warnings (non-serious errors)

struct s {
int fn() ; /* compiler will use int (*fn)(); */
char c ;

} ;

type or class needed (except in function definition)
int assumed

You can't declare a function or variable with neither a return type nor a
storage class. One of these must be present. Examples:

func(void); /*need , eg , int or static*/
x ;

Undeclared name, inventing ' extern int xx '

The name xx was undeclared, so the defau lt type extern int was used.

This may produce later spurious errors, but compilation continues. Example:

int main(void)
int i = j ; /*j has not been previously declared*/

unprintable character xx found - ignored

An unrecognised character was found embedded in your source - this cou ld
be file corruption, so back up your sources! Note that 'unprintable character'
means any non-whitespace, non-printable character.

variable
pointer

xx may not be function assuming function

A variable

Example:

cannot be declared to have type function, only function *

int main(void)
{

auto void fn(void); /* treated as void (*fn) (void);*/

Appendix C: Errors and warnings (non-serious errors) 441

Serious errors

442

wrong number of parameters to 'xx'

The function xx was called with the wrong number of parameters, as
declared by its protype. Example:

size t strlen (const char *s) ;

int i strlen(str , j) ; /*only str needed*/

xx may not have whitespace in it

Tokens such as the compound assignment operators (+= etc) may not have
embedded whitespace characters in them. Example:

int i ;

i + = 4 ; /* space not allowed between + and */

These are errors which will cause loss of generated code. On detection of such
an error, the compiler will attempt to continue and produce further diagnostic
messages, which are sometimes useful, but will delete the partly produced
object file.

#error encountered "xx"

Source intentionally producing an error with a #error directive. The
compiler stops immediately, unless #pragma - e is set. Example:

#if CHAR BIT ! = 8
#error This program needs eight-bit characters
#endif

#include file "xx" wouldn't open
#include file <xx> wouldn't open

Probably caused by a spelling mistake in the file name. Example:

#include <stde f.h > /* missed out a ' d ' */

Appendix C: Errors and warnings (serious)

' .. . ' must have exactly 3 dots

This is caused by a mistake in a function prototype where a vari able number
of arguments is specified. Example:

extern int printf (const char *format ,) ; /*one . too
many*/

' { ' of function body expected- found ' xx'

This is produced when the first character after the formal paramete r
declarations of a function is not the {of the function body. Example:

int func (a)
int a ;

if (a) ... /* omitted the { */

' { ' or <identifier> expected after 'xx' , but found ' yy'

xx is typically struct or union, which must be followed either by the tag

identifier or the open brace of the field list. Example:

struct *fred; /* Missed out the tag id */

' xx' variables may not be initialised

A variable is of an inappropriate class for initialisation . Example:

int main ()
{

extern i nt n=l ;
return 1 ;

' op': cast to non-equal 'xx' illegal
' op': illegal cast of ' xx ' to pointer
' op' : illegal cast to 'xx'

These errors report various illegal casting operat ions. Examples:

struct s {
int a , b ;

} ;

Appendix C: Errors and warnings (serious) 443

444

struct t {
float ab ;

} ;

int main(void)

int i ;
struct s sl ;
struct t s2 ;

/* ' =': illegal cast to ' int ' */
i = sl ;

/* ' = ': illegal cast to non - equal ' struct ' */
sl = s2 ;

/* <cast> : illegal cast of ' struct ' to pointer
i = * (i nt *) sl ;

/* <cast> : illegal cast to ' int ' *I
i = (int) s2 ;

'op': illegal use in pointer initialiser

*I

(Static) pointer initialisers must evaluate to a pointer or a pointer constant
plus or minus an integer constant. This error is often accompanied by others.
Example:

extern int count ;
static int *ip = &count*2 ;

\<space> and \<tab> are invalid string escapes

Use <space> and \ t respectively for these characters in strings and
character constants. Example:

printf(" \ Next? "); /*No need for*/

{} must have 1 element to initialise scalar

When a scalar (integer or floating type) is initialised, the expression does not
have to be enclosed in braces, but if they are present, only one expression
may be put between them. Example:

static int i = {1 , 2} ; /* which one to use? */

Appendix C: Errors and warnings (serious)

Array size nn illegal - 1 assumed

Arrays have a maximum dimension of Oxffffff. Example:

static char dict[OxlOOOOOO]; /*Too big*/

attempt to apply a non-function

The function call operator () was used after an expression which did not

yield a pointer to function type. Example:

int i ;
i () ;

Bit fields do not have addresses

Bitfields do not necessarily lie on addressable byte boundaries, so the &

operator cannot be used with them. Example:

struct s {
int hl ,h 2 13 ;

} ;

int main (void)

struct s sl ;
short *sp = &sl . h2 ; /* can ' t take & of bit field*/

Bit size nn illegal - 1 assumed

Bitfields have a maximum permitted width of 32 bits as they must fit in a
single integer. Example:

struct s {
int fl
int f2

} ;

40; /* This one is too big */
8 ;

Appendix C: Errors and warnings (serious) 445

446

' break ' not in loop or switch - ignored

A break statement was found which was not inside a for, while or do loop
or switch. This might be caused by an extra }, closing the statement
prematurely. Example:

int main (i nt argc)

if (argc == 1)

break ;

' case ' not in switch - i gnored

A case label was found which was not inside a switch statement. This
might be caused by an extra }, closing the switch statement prematurely.
Example:

void fn(void)

case return ;

<command> expected but found a ' op'

This error occurs when a (binary) operator is found where a statement or side
effect expression would be expected. Example:

if (a) /10 ; /* mis - placed) perhaps? */

' continue ' not in loop - ignored

A cont inue statement was found which was not inside a for, while or do
loop. This might be caused by an extra }, closing the loop statement
prematurely. Example:

while (cc)
if (dd) /* intended a { here */

error();
/*this closes the while */

Appendix C: Errors and warnings (serious)

if (ee)
continue ;

'default' not in switch - ignored

A default label was found which was not inside a switch statement. This
might be caused by an extra }, closing the switch statement prematurely.
Example:

switch (n)
case 0 :

return fn (n) ;
case 1 : if (cc)

return - 1 ;
else

break ;
} /* spurious
default :

error() ;

closes the switch */

Digit required after exponent marker

A syntax error in a floating point constant was found. Example:

a= b*1 o1e ; /* need [+/ -)digits here */

duplicated case constant: nn

The case label whose va lue is nn was found more than once in a switch
statement. Note that nn is printed as a decimal integer regardless of the form
the express ion took in the source. Example:

switch (n)
case

case

' '0

' '0

Appendix C: Errors and warnings (serious) 447

448

duplicate ' default' case ignored

Two cases in a single switch statement were labelled default. Example:

switch (n)
default :

default :

duplicate definition of ' struct' tag ' xx'

There are duplicate definitions of the type struct xx { . .. } ; . Example:

struct s { int i , j ; } ;
struct s {float a , b ; } ;

duplicate definition of 'union' tag ' xx'

There are duplicate definitions of the type union xx { ... } ; . Example:

union u {inti ; char c[4) ; } ;
union u {doubled ; char c[8) ; } ;

duplicate definition of ' xx'
duplicate definition of label xx -ignored

These both refer to various types of duplicated definition. Examples:

static int i ;
void fn (void)

lab :

lab :

char i ;
int fn ()

/* redefinition of lab */

/* redefinition of i */
/* redefinition of fn () */

Appendix C: Errors and warnings (serious)

duplicate type specification of formal paramet e r ' xx'

A formal function parameter had its type declared twice, once in the
argument list and once after it. Example:

void fn (int i)
int i ; /* this one is redundant */

EOF i n comment
EOF in string
EOF in string escape

These all refer to unexpected occurrences of the end of the source file.

Expected <identifier> after 'xx' but found ' xx '
expected ' xx ' - inserted before ' yy '

This typically occurs when a terminating semi-colon has been omitted before
a }. (Common amongst Pascal programmers) Another case is the omiss ion of a
closing bracket of a parenthesised expression. Examples:

int fn (int a, int b, int c)

int d = a* (b+c ;
return d

/* missing
/* missing

*/

*I

Expecting <declarator> or <type>, but found ' xx'

xx is typically a punctuation character found where a variable or function
declaration or definition would be expected (at the top level). Example:

static int i = MAX;+l; /* spuriou s ; ends expression */

<expression> expected but found ' op'

Similar to above. An operator was found where an operand might reasonably
be expected. Example:

func (>>lO); /*missing left hand side of>>*/

Appendix C: Errors and warnings (serious) 449

450

'goto' not followed by label - ignored

Self explanatory.

grossly over-long floating point number

Only a certain number of decimal digits are needed to specify a floating
point number to the accuracy that it can be stored to. This number of digits
was exceeded by an unreasonable amount.

grossly over-long number

A constant has an excessive number of leading zeros, not affecting its value.

hex digit needed after Ox or OX

Hexdecimal constants must have at least one digit from the set 0 .. 9, a .. f,
A .. F following the Ox . Example:

int i = Oxg; /* illegal hex char */

<identifier> expected but found 'xx' in 'enum' definition

An unexpected token was found in the list of identifiers within the braces of
an enum definition. Example:

enum colour {red , green , blue ,; }; /*spurious */

identifier (xx) found in <abstract declarator> - ignored

The sizeof () function and cast expressions require abstract declarators, ie
types without an identifier name. This error is given when an identifier is
found in such a situation. Examples:

i (int j) ip; /* trying to cast to integer */
1 sizeof(char str[lO)); /*probably just mean

sizeof(str) */

illegal bit field type 'xx' - 'int' assumed

lnt (signed or unsigned) is the only valid bitfield type in ANSI-conforming
implementations. Example:

Appendix C: Errors and warnings (serious)

struct s { char a 4 ; char b 4 ; } ;

illegal character (Ox%1x = ' xx') in source
illegal character (hex code Ox%x) in source

(as for above but applies to unprintable characters). Example:

char @str = " string " ; /* should be char *str */

illegal in case expression (ignored) : xx
illegal in constant expression : xx
illegal in floating type initialiser : xx

All of these errors occur when a constant is needed at compile time but a
variable expression was found.

illegal in 1-value : ' enurn' constant 'xx'

An incorrect attempt was made to assign to an enum constant. This could be

caused by mis-spelling an en urn or variable identifier. Example:

enum col {red , green, blue} ;
int fn ()

int read;
red = 10 ;

illegal in the context of an 1 - value : ' xx'
illegal in lvalue : function or array ' xx'

An incorrect attempt was made to assign to xx, where the object in question is

not ass ignable (an !-value). You can't, for example, assign to an array name or
a function name. Examples:

int a ,b, c ;
a ? b : c = 10;
if (a)

b 10;

/* ?: can't yield 1-values. */
/* use this instead */

Appendix C: Errors and warnings (serious) 451

452

else
c = 10 ;

or, in the same context ,

*(a ? &b : &c) 10 ;

illegal in static integral type initialiser : xx

A constant was needed at compile time but a suitable express ion wasn 't found.

illegal types for operands : 'op'

An operation was attempted using operands which are unsuitable for the
operator in question. Examples:

struct {int a , b ; } s ;
int i ;
i * s ;
s = s+s ;

/* can ' t indirect through a struct */
/* can ' t add structs */

incomplete type at tentative declaration of 'xx'
An incomplete non-static tentative definition has not been completed by the
end of the compilation unit. Example:

int incomplete[) ;

/* should be completed with a declaration like : */
/* int incomplete[SOMESIZE) ; */

junk after #if <expression>
junk after #include "xx"
junk after #include <xx>

None of these directives should have any other non-whitespace characters
following the expression/filename. Example:

#include <stdio . h> this isn ' t allowed

Appendix C: Errors and warnings (serious)

label 'xx' has not been set

An attempt has been made to use a label that has not been declared in the
current scope, after having been referenced in a got o statement. Example:

int main (void)

goto end;

misplaced'{' at top level- ignoring block

{ } blocks can only occur within fuction definitions. Example:

/* need a function name here */
{

int i;

misplaced 'else' ignored

An else with no matching if was found . Example:

if (cc)

else

i 1 ;
j =2 ;

k 3 ;

/* should have used { } */

misplaced preprocessor character 'xx'

Usually a typing error; one of the characters used by the preprocessor was
detected out of context. Example:

char #str[] = " string"; /* should be char *str[] */

missing #endif at EOF

A #if or #ifdef was still active at end of the source file. These directives
must always be matched with a #endif.

Appendix C: Errors and warnings (serious) 453

454

missing , "' in pre-processor command line

A line such as #include "name has the second " missing.

missing')' after xx(... on line nn

The closing bracket (or comma separating the arguments) of a macro call was
omitted. Example:

#define rdch (p) { ch=*p++ ; }

rdch(p /* missing) */

missing',' or')' after #define xx(...

One of the above characters was omitted after an identifier in the macro
parameter list. Example:

#define rdch(p {ch *p++ ; }

missing'<' or'"' after #include

A #include filename should be within either double quotes or angled
brackets.

missing hex digit(s) after \x

The string escape \ x is intended to be used to insert characters in a string
using their hexadecimal values, but was incorrectly used here. It should be
followed by between one and three hexadecimal digits. Example:

printf("\xxx/"); /*probably meant " \\xxx/ " */

missing identifier after #define
missing identifier after #ifdef
missing identifier after #undef

Each of these directives should be followed by a valid C identifier. Example:

#define @ at

Appendix C: Errors and warnings (serious)

missing parameter name in #define xx(...

No identifier was found after a , in a macro parameter list. Example:

#define rdch (p ,) { ch=*p++ ;)

newline or end of file within string

no ') ' after #if defined (...

The defined operator expects an identifier, optionally enclosed within

brackets. Example:

#if defined(debug

no identifier after #if defined

See above.

non static address 'xx' in pointer initialiser

An attempt was made to take the address of an automatic variable in an

expression used to initia lise a static pointer. Such addresses are not known

at compile-time. Example:

int i ;
static int *ip &i; /*&i not known to compiler*/

non-formal 'xx' in parameter-type-specifier

A parameter name used to declare the parameter types did not actually occur

in the parameter list of the function. Example:

void fn(a)
int a,b;

Appendix C: Errors and warnings (serious) 455

456

number nn too large for 32-bit implementation

An integer constant was found which was too large to fit in a 32 bit int.
Example:

static int mask Ox800000000 ; /*Ox80000000 intended?*/

objects or arrays of type void are illegal

void is not a valid data type.

overlarge floating point value found
overlarge (single precision) floating point value found
A floating point constant has been found which is so large that it will not fit
in a float ing point variable. Examples:

float f = le40 ; /* largest is approx le38 for float */
double d = le310 ; /* and le308 for double */

quote ("or') inserted before newline

Strings and character constants are not allowed to contain unescaped newline
characters. Use \ <n l > to allow strings to span lines. Example:

printf (" Total =

re-using ' struct ' tag ' xx' as 'union' tag
There are conflicting definitions of the type struct xx { ... } and
union xx { . .. } ; . Structure and union tags currently share the same name
space in C. Example:

struct s { int a, b;};

unions (int a ; doubled;};

re-using ' union' tag ' xx' as ' struct ' tag
As above.

Appendix C: Errors and warnings (serious)

size of struct 'xx' needed but not yet defined

An operation requires knowledge of the size of the struct , but this was not
defined . This error is likely to accompany others. Example:

/* forward declaration */
/* pointer to s */

struct s ;
struct s *sp ;
sp++ ; /* need size for inc operation */

size of union 'xx' needed but not yet defined

See above.

storage class 'xx' incompatible with 'xx' -ignored

An attempt was made to declare a variable with conflicting storage classes.
Example:

static auto int i ; /* contradiction i n terms */

storage class 'xx' not permitted in context xx - ignored

An attempt was made to declare a variable whose storage class conflicted
with its position in the program. Examples:

register int i ;
void fn (a)
static int a ;

/* can ' t have top- level regs */

/* or static parameters */

struct 'xx' must be defined for (static)
declaration

variable

Before you can declare a static structure variable, that structure type must
have been defined. This is so the compiler knows how much storage to reserve
for it. Examples:

Appendix C: Errors and warnings (serious) 457

458

static struct s sl ;
struct t ;
static struct t tl ;

/* s not defined */

/* t not defined */

struct/union 'xx' has no xx field

The field name used with a . or ~ operator is not a val id one for the union

or structure type 'xx' being referenced . Example:

struct s {int a , b ; } ;

struct s sl ;
sl . c 3 ; /* no c field*/

struct/union 'xx' not yet defined - cannot be selected
from

The structure or union type used as the left operand of a . or ~ operator has
not yet been defined so the field names are not known. Example:

/* forward reference */ struct s sl ;
sl.a 12 ; /* don ' t know field names yet */

too few arguments to macro xx(... on line nn
too many arguments to macro xx(... on line nn

The number of arguments used in the invocation of a macro must match
exactly the number used when it was defined. Example:

#define rdch (ch , p) while((ch = *p++)==' ');

rdch (ptr); /* need ptr and ch */

too many initialisers in {} for aggregate

The list of constants in a static array or structure initialiser exceeded the
number of elements/fields for the type involved. Example:

Appendix C: Errors and warnings (serious)

static int powers[8] {0 , 1 , 2 , 4 , 8 , 16 , 32 , 64 , 128};

type 'xx' inconsistent with 'xx'
type disagreement for 'xx'

Conflicting types were encountered in function declaration (prototype) and its
definition. Example:

void fn(int);

int fn(int a)

A permCJous error of this type is caused by mixing ANSI and old-style
function declarations. Example:

int f (char x);
int f(x)char x;

typedef name 'xx' used in expression context

A typedef name was used as a variable name. Example:

typedef char flag ;

int i flag;

undefined struct/union 'xx' cannot be member

A struct/union not already defined cannot be a member of another
struct/union. In particular this means that a struct/union cannot be a
member of itself: use pointers for this. Example:

struct s1 {

} ;

struct s2 type; /* s2 not defined yet */
int count;

Appendix C: Errors and warnings (serious) 459

460

unknown preprocessor directive : #xx

The identifier following a # did not correspond to any of the recognised pre

processor directives. Example:

#asm /* not an ANSI directive */

uninitialised static [] arrays illegal

Static [] arrays must be initialised to allow the compiler to determine their

size. Example:

static char str[] ; /*needs {} initialiser */

union 'xx'
declaration

must be defined for (static) variable

Before you can declare a static union variable, that union type must have been
defined. Example:

static union u ul ; /* compiler can ' t ascertain size */

'while' expected after 'do' found 'xx'

The syntax of the do statement is do statement while (expression).

Example:

do /*should put these statements in {} */
1 = inputLine ();
err= processLine(l); /*finds err , not while*/

while (!err);

Appendix C: Errors and warnings (serious)

Fatal errors These are causes for the compiler to give up compilation. Error messages are

issued and the compiler stops.

couldn ' t create object file 'file'

The compiler was unable to open or write to the specified output code file,

perhaps because it was locked or the o directory does not exist.

macro args too long

Grossly over- long macro arguments, possibly as a result of some other error.

macro expansion buffer overflow

Grossly over-complicated macros were used, possibly as a result of some

other error.

no store left
out of store (in cc_alloc)

The compiler has run out of memory - either shorten your source programs or

free some RAM using the *UNPLUG command. To do this, first check which

modules are present in your mach ine by typing *MODULES. If there is a

module that you do not currently need, you can release its space by typing

*UNPLUG mo dulename
*RMTidy

It can later be restored using the *RMREINIT command. For further details,

refer to the chapter entitled Modules in the Programmer's Reference Manual,
(second edition).

If running under the desktop, you can use the Task Manager to increase your

wimpslot size.

too many errors

More than 100 serious errors were detected.

Appendix C: Errors and warnings (fatal) 461

System errors

462

t oo many file names

An attempt was made to compile too many files at once. 25 is the maximum
that will be accepted.

There are some additional error messages that can be generated by the
compiler if it detects errors in the compiler itself. It is very unusual to
encounter this type of error. If you do, note the circumstances under which the
error was caused and contact your Acorn supplier.

These error messages all look like this:

* The compiler has detected an internal inconsistency. This can occur
* because it has run out of a vital resource such as memory or disk
* space or because there is a fault in it . If you cannot easily alter
* your program to avoid causing this rare failure , please contact your
* Acorn dealer . The dealer may be able to help you immediately and will *
* be able to report a suspected compiler fault to Acorn Computers .

Appendix C: Errors and warnings (system)

Appendix D: ARM Procedure Call Standard

Introduction

The purpose of APCS

This Appendix relates to the implementation of compiler code-generators
and language run-time library kernels for the Acorn RISC Machine (ARM).

The reader should be familiar with the ARM's instruction set, floating point
instruction set and assembler syntax before attempting to use this information
to implement a code-generator. In order to write a run-time kernel for a
language implementation, additional information specific to the relevant
ARM operating system will be needed (some information is given in the
sections describing the standard register bindings for this procedure-call
standard).

The main topics covered in this Appendix are the procedure call and stack
disciplines. These disciplines are observed by Acorn's C language
implementation for the ARM and, eventually, will be observed by the
Fortran and Pascal compilers too. Because C is the first-choice
implementation language for RISC OS applications and the implementation
language of Acorn's UNIX product RISC iX, the utility of a new language
implementation for the ARM will be related to its compatibility with Acorn's
implementation of C.

At the end of this document are srveral examples of the usage of this
standard, together with suggestions for generating effective code for the ARM.

The ARM Procedure Call Standard is a set of rules, designed:

• to facilitate calls between program fragments compiled from different
source languages (eg to make subroutine libraries accessible to all
compiled languages)

• to give compilers a chance to optimise procedure call, procedure entry
and procedure exit (following the reduced instruction set philosophy of
the ARM). This standard defines the use of registers, the passing of

Appendix D: ARM procedure call standard 463

Design criteria

arguments at an external procedure call, and the format of a data
structure that can be used by stack backtracing programs to reconstruct a
sequence of outstanding calls. It does so in terms of abstract register names.
The binding of some register names to register numbers and the precise
meaning of some aspects of the standard are somewhat dependent on the
host operating system and are described in separate sections.

Formally, this standard on ly defines what happens when an externa l
procedure ca ll occurs. Language implementors may choose to use other
mechanisms for internal calls aml are not required to follow the register
conventions described in this document except at the instant of an external
call or return. However, other system-specific invariants may have to be
maintained if it is required, for example, to deliver reliably an asynchronous
interrupt (eg a SIGINT) or give a stack backtrace upon an abort (eg when
dereferencing an invalid pointer). More is said on this subject in later sections.

This procedure call standard was defined after a great deal of
experimentation, measurement, and study of other architectures. It is believed
to be the best compromise between the following important requirements:

• Procedure call must be extremely fast.

• The call sequence must be as compact as possible. (In typical compiled
code, ca lls outnumber entries by a factor in the range 2:1 to 5:1.)

• Extensible stacks and multiple stacks must be accommodated. (The
standard permits a stack to be extended in a non-contiguous manner, in
stack chunks. The size of the stack does not have to be fixed when it is
created, avoiding a fixed partition of the available data space between
stack and heap. The same mechanism supports multiple stacks for
multiple threads of control.)

• The standard should encourage the production of re-entrant programs,
with writeable data separated from code.

• The standard must support variation of the procedure call sequence, other
than by conventional return from procedure (eg in support of C's
longjmp, Pascal's goto-out - of - block, Modula-2+'s exceptions,
UNIX's signals, etc) and tracing of the stack by debuggers and run-rime
error handlers. Enough is defined about the stack's structure to ensure that
implementat ions of these are possible (within limits discussed later).

464 Appendix D: ARM procedure call standard

The Procedure Call
Standard

Register names The ARM has 16 visible general registers and 8 floating-point registers. In
interrupt modes some general registers are shadowed and not all floating
point operations are available, depending on how the floating-point
operations are implemented.

This standard is written in terms of the register names defined in this section.
The binding of certain register names (the 'call frame registers') to register
numbers is discussed separately. We do this so that:

• Diverse needs can be more easily accommodated, as can conflicting
historical usage of register numbers, yet the underlying structure of the
procedure call standard - on which compilers depend critically -
remains fixed.

• Run-time support code written in assembly language can be made
portable between different register bindings, if it obeys the rules given in
the section entitled Defined bindings of the procedure call standard.

The register names and fixed bindings are given immediately below.

General Registers

First, the four argument registers:

al RN 0 argument 1/integer result
a2 RN 1 argument 2
a3 RN 2 argument 3
a4 RN 3 argument 4

Then the six 'variable' registers:

vl RN 4 register variable
v2 RN 5 register variable
v3 RN 6 register variable
v4 RN 7 register variable
v5 RN 8 register variable
v6 RN 9 register variable

Then the call-frame registers, the bindings of which vary (see the section on
register bindings for details):

Appendix D: ARM procedure call standard 465

466

sl stack limit I stack chunk handle
fp frame pointer
ip temporary workspace, used in

procedure entry
sp RN 13 lower end of current stack frame

Finally, lr and pc, which are determined by the ARM's hardware:

lr
pc

RN
RN

14
15

link address on calls/temporary workspace
program counter and processor status

In the obsolete APCS-A register bindings described below, sp is bound to
r 12; in all other APCS bindings, s p is bound to r 13.

Notes

Literal register names are given in lower case, eg v1, sp, lr. In the text that
follows, symbolic values denoting 'some register' or 'some offset' are given in
upper case, eg R, R + N.

References to 'the stack' denoted by sp assume a stack that grows from high
memory to low memory, with sp pointing at the top or front (ie lowest
addressed word) of the stack.

At the instant of an external procedure call there must be nothing of value to
the caller stored below the current stack pointer, between sp and the
(possibly implicit, possibly explicit) stack (chunk) limit. Whether there is a
single stack chunk or multiple chunks, an explicit stack limit (in sl) or an
implicit stack limit, is determined by the register bindings and conventions of
the target operating system.

Here and in the text that follows, for any register R, the phrase 'in R' refers to
the contents of R; the phrase 'at [R]' or 'at [R, #N]' refers to the word
pointed at by R or R+N, in line with ARM assembly language notation.

Floating Point Registers

The floating point registers are divided into two sets, analogous to the subsets
a 1-a 4 and v 1-v 6 of the general registers. Registers f 0- f 3 need not be
preserved by a called procedure; fO is used as the floating-point result

Appendix D: ARM procedure call standard

Data representation and
argument passing

Register usage and
argument passing to
external procedures

register. In certain restricted circumstances (noted below), f 0- f 3 may be

used to hold the first four floating-point arguments. Registers f 4- f7 , the so
ca lled 'variable' registers, must be preserved by callees.

The floating-point registers are:

fO FN floating point result (or 1st FP argument)

fl FN floating point scratch register (or 2nd FP arg)

f2 FN 2 floati n g point scratch register (or 3rd FP arg)

f3 FN 3 floati n g point scratch register (or 4th FP arg)

f4 FN 4 floati n g point preserved register
f5 FN 5 floating point preserved register

f6 FN floating point preserved register

f7 FN floating p oint preserved register

The ARM Procedure Call Standard is defined in terms of N (>= 0) word
sized arguments being passed from the caller to the callee, and a single word
or floating point result passed back by the callee. The standard does not
describe the layout in store of records, arrays and so forth, used by ARM
targeted compilers for C, Pascal, Fortran-77, and so on. In other words, the
mapping from language- level objects to APCS words is defined by each
language's implementation, not by APCS, and, indeed, there is no formal
reason why two implementations of, say, Pascal for the ARM should not use
different mappings and, hence, not be cross-callable.

Obviously, it would be very unhelpful for a language implementor to stand
by this formal position and implementors are strongly encouraged to adopt
not just the letter of APCS but also the obviously natural mappings of source
language objects into argument words. Strong hints are given about this in
later sections which discuss (some) language specifics.

Control Arrival

We consider the passing of N (>= 0) actual argument words to a procedure
which expects to receive either exactly N argument words or a variable
number V (>= 1) of argument words (it is assumed that there is at least one
argument word which indicates in a language-implementation-dependent
manner how many actual argument words there are: for example, by using a
format string argument, a count argument, or an argument- list terminator).

At the instant when control arrives at the target procedure, the following shall
be true (for any M, if a statement is made about argM, and M > N, the
statement can be ignored) :

Appendix D: ARM procedure call standard 467

468

argl is in al
arg2 is in a2
arg3 is in a3
arg4 is in a4
for all I >= 5, argi is at [sp , #4*(I-5)]

fp contains 0 or points to a stack backtrace structure (as described in the next
section).

The values in sp, sl, fp are all multiples of four.

lr contains the pc+psw value that should be restored into rl5 on exit from

the procedure. This is known as the return link value for this procedure call.

pc contains the entry add ress of the target procedure.

Now, let us call the lower limit to which sp may point in this stack chunk
SP LWM (Stack-Pointer Low Water Mark). Remember, it is unspecified
whether there is one stack chunk or many, and whether SP LWM is implicit, or
explicitly derived from s 1; these are binding-specific details. Then:

Space between s p and S P _ LWM shall be (or shall be on demand)
readable, writeable memory which can be used by the called procedure
as temporary workspace and overwritten with any values before the
procedure returns.

sp >= SP LWM + 256 .

This condition guarantees that a stack extension procedure, if used, will have a
reasonable amount - 256 bytes - of work space available to it, probably
sufficient to call two or three procedure invocations further.

Control Return

At the instant when the return link value for a procedure call is placed in the
pc+psw, the following statements shall be true:

fp, sp, sl, vl - v6, and f4-f7 shall contain the same values as they did at
the instant of the call. If the procedure returns a word-sized result, R, which is
not a floating point value, then R shall be in al. If the procedure returns a
floating point result, FPR, then FPR shall be infO.

Appendix D: ARM procedure call standard

Notes

The definition of control return means that this is a 'callee saves' standard.

The requirement to pass a variable number of arguments to a procedure (as in
old-style C) precludes the passing of floating point arguments in floating
point registers (as the ARM's fixed point registers are disjoint from its
floating point registers). However, if a callee is defined to accept a fixed
number K of arguments and its interface description declares it to accept
exactly K arguments of matching types, then it is permissible to pass the first
four floating point arguments in floating point registers f 0- f 3. However,
Acorn's C compiler for the ARM does not yet exploit this latitude.

The values of a2-a4, ip, lr and fl -f3 are not defined at the instant of
return.

The Z, N, C and V flags are set from the corresponding bits in the return link
value on procedure return. For procedures called using a BL instruction, these
flag values will be preserved across the call.

The flag values from l r at the instant of entry must be instated; it is not
sufficient merely to preserve the flag values across the call. (Consider a
procedure P roc A which has been 'tail-call optimised' and does: CMP S a 1 ,
#0; MOVLT a2 , #255; MOVGE a2 , #0 ; B ProcB. If ProcB merely
preserves the flags it sees on entry, rather than restoring those from lr, the
wrong flags may be set when ProcB returns direct to ProcA's caller).

This standard does not define the values of fp , sp and sl at arbitrary
moments during a procedure's execution, but only at the instants of (external)
call and return. Further standards and restrictions may apply under
particular operating systems, to aid event handling or debugging. In general,
you are strongly encouraged to preserve fp, sp and sl, at all times.

The minimum amount of stack defined to be available is not particularly
large, and as a general rule a language implementation should not expect
much more, unless the conventions of the target operating system indicate
otherwise. For example, code generated by the Arthur/RISC OS C compiler
is able, if there is inadequate local workspace, to allocate more stack space
from the C heap before continuing. Any language unable to do this may have
its interaction with C impaired. That sl contains a stack chunk handle is
important in achieving this. (See the later discussion of RISC OS register
bindings for further details) .

Appendix D: ARM procedure call standard 469

The stack backtrace data
structure

470

The statements about sp and SP _ LWM are des igned to opttmtse the testing of
the one against the other. For example, in the RISC OS user-mode binding of
APCS, s 1 contains SL _ LWM+ 512, allowing a procedure's entry sequence to
include something like

CMP sp , sl
BLLT lx$stack_overflowl

where x$stack_overflow is a part of the run-time system for the relevant
language. If this test fails, and x$stack overflow is not called, there are
at least 512 bytes free on the stack.

This procedure should only call other procedures when sp has been dropped
by 256 bytes or less, guarantee ing that there is enough space for the called
procedure's entry sequence (and, if needed, the stack extender) to work in.

If 256 bytes are not enough, the entry sequence has to drop sp before
comparing it with s 1 in order to force stack extension (see later sections on
implementation specifics for details of how the RISC OS C compiler handles
this problem) .

At the instant of an external procedure call, the value in fp is zero or it
points to a data structure that gives information about the sequence of
outstanding procedure calls. This structure is in the format shown below:

fp points to here : I save mask pointer I
I return link value I
I return sp value I
I fp value I

[I saved v6 value ll
[I saved vS value ll
[I saved v4 value ll
[I saved v3 value ll
[I saved v2 value ll
[I saved v1 value ll
[I saved a4 value ll
[I saved a3 value ll
[I saved a2 value ll

[fp]
[fp ,
[fp ,
[fp ,

#- 4]
#- 8]
#- 12]

[I saved a1 value I]
[I saved f7 value ll three wo rds

Appendix D: ARM procedure call standard

[I

[I

[I

saved f6 value
saved fS value
s aved f4 value

ll t hree wo rds
I] t h ree wo rds
I] t h ree wo r ds

This picture shows between four and 26 words of store, with those words
higher on the page being at higher addresses in memory. The values shown in
square brackets are optional, and the presence of any does not imply the
presence of any other. The floating point values are in extended format and
occupy three words each.

At the instant of procedure call, all of the following statements about this
structure shall be true:

• The return fp value is either 0 or contains a pointer to another stack
backtrace data structure of the same form. Each of these corresponds to an
active, outstanding procedure invocation. The statements listed here are
also true of this next stack backtrace data structure and, indeed, hold true
for each structure in the chain.

• The save mask pointer value, when bits 0, 1, 26, 27, 28, 29, 30, 31 have been
cleared, points twelve bytes beyond a word known as the return data save
instruction.

• The return data save instruction is a word that corresponds to an ARM
instruction of the following form:

STMDB sp! 1 {[a1] 1 [a2] 1 [a3] 1 [a 4] 1

[vl] 1 [v2] 1 [v 3] 1 [V4] 1 [V5] 1 [v6] 1

fp 1 ip 1 lr 1 pc}

Note the square brackets in the above denote optional parts: thus, there
are 12 x 1024 possible values for the return data save instruction,
corresponding to the following bit patterns:

1110 1001 0010 1101 1101 10xx xxxx xxxx APCS-R , APCS-U

or

1110 1001 0010 1100 1100 11xx xxxx xxxx APCS-A (obsolete)

The least significant 10 bits represent argument and variable registers: if
bit N is set, then register N will be transferred.

Theoptionalparts [al], [a2], [a3], [a4], [vl], [v2], [v 3], [v4],
[v 5] and [v 6] in this instruction correspond to those optional parts of
the stack backtrace data structure that are present such that: for all M, if

Appendix 0: ARM procedure call standard 471

472

[vM] or [aM] is present then so is [I saved vM v alue l l or [1
saved aM value ll, and if [vM] or [aM] is absent then so is [1
saved vM value l l and [I saved aM value I J. This is as if the

stack backtrace data structure were formed by the execution of this
instruction, following the loading of ip from sp (as is very probably the
case).

• The sequence of up to four instructions following the return data save
instruction determines whether saved floating point registers are present
in the backtrace structure. The four optional instructions allowed in this
sequence are:

STFE f7 , [sp , #- 12] ' 1110 1101 0110 1101 0111 0001 0000 0011
STFE f6 , [sp , #-12 I ' 1110 1101 0110 1101 0110 0001 0000 0011
STFE f5 , [sp , #-12] ! 1110 1101 0110 1101 0101 0001 0000 0011
STFE f4 , [sp , #- 12] ! 1110 1101 0110 1101 0100 0001 0000 0011

Any or all of these instructions may be missing, and any deviation from
this order or any other instruction terminates the sequence.

(A historical bug in the C compiler (now fixed) inserted a single
arithmetic instruction between the return data save instruction and the first
STFE. Some Acorn software allows for this.)

The bit patterns given are for APCS-R/APCS-U register bindings. In the
obsolete APCS-A bindings, the bit indicated by'!' is 0.

The optional instructions saving f 4, f 5, f 6 and f7 correspond to those
optional parts of the stack backtrace data structure that are present such
that: for all M, if S TFE fM is present then so is [I s a ved f M v a 1 ue

I] ; if STFE fM is absent then so is [I saved fM v a lue I] .

• At the instant when procedure A calls procedure B, the stack backtrace
data structure pointed at by fp contains exactly those elements [vl],

[v2], [v3], [v4], [v5], [v6], [£4], [£5], [£6], [£7], fp, sp and
pc which must be restored into the corresponding ARM registers in order
to cause a correct exit from procedure A, albeit with an incorrect result.

Notes

The following example suggests what the entry and exit sequences for a
procedure are likely to look like (though entry and exit are not defined in
terms of these instruction sequences because that would be too restrictive; a
good compiler can often do better than is suggested here):

Appendix 0: ARM procedure call standard

Defined bindings of the
procedure call standard

APCS-R and APCS-U:
The RISC OS and
RISC iX PCSs

entry MOV ip, sp
STMDB sp !, {argRegs , workRegs , fp , ip , lr , pc}
SUB fp , ip , #4

exit LDMDB fp , {workRegs , fp , sp , pc}"

Many apparent idiosyncrasies in the standard may be explained by efforts to
make the entry sequence work smoothly. The example above is neither
complete (no stack limit checking) nor mandatory (making arguments
contiguous for C, for instance, requires a slightly different entry sequence; and
storing argRegs on the stack may be unnecessary) .

The workRegs registers mentioned above correspond to as many of vl to v6
as this procedure needs in order to work smoothly. At the instant when
procedure A calls any other, those workspace registers not mentioned in A's
return data save instruction will contain the values they contained at the instant
A was entered. Additionally, the registers f4-f7 not mentioned in the
floating point save sequence following the return data save instruction will
also contain the values they contained at the instant A was entered.

This standard does not require anything of the values found in the optional
parts [al], [a2], [a3], [a4] of a stack backtrace data structure . They are
likely, if present, to contain the saved arguments to this procedure call; but
this is not required and should not be relied upon.

These bindings of the ARM Procedure Call Standard are used by:

• RISC OS applications running in ARM user-mode

• compiled code for RISC OS modules and handlers running in ARM
SVC-mode

• RISC iX applications (which make no use of s 1) running in ARM user
mode

• RISC iX kernels running in ARM SVC mode.

Appendix D: ARM procedure call standard 473

474

The call-frame register bindings are:

sl

fp
ip
sp

RN

RN
RN
RN

10

11

12
13

stack limit I stack chunk handle
unused by RISC iX applications

frame pointer
used as temporary workspace
lower end of current stack frame

Although not formally required by this standard, it is considered good taste
for compiled code to preserve the value of s 1 everywhere.

The invariants sp > ip > fp have been preserved, in common with the

obsolete APCS-A (described below), allowing symbolic assembly code (and
compiler code-generators) written in terms of register names to be ported
between APCS-R, APCS-U and APCS-A merely by relabelling the call
frame registers provided:

• When call-frame registers appear in LDM, LOR, STM and STR instructions
they are named symbolically, never by register numbers or register
ranges.

• No use is made of the ordering of the four call-frame registers (eg in
order to load/save fp or sp from a full register save).

APCS-R: Constraints on sl (For RISC OS applications and modules)

In SVC and IRQ modes (collectively called module mode) SL LWM is
implicit in sp: it is the next megabyte boundary below sp. Even though the
SVC-mode and IRQ-mode stacks are not extensible, sl still points 512 bytes
above a skeleton stack-chunk descriptor (stored just above the megabyte
boundary). This is done for compatibility with use by applications running in
ARM user-mode and to facilitate module-mode stack-overflow detection. In
other words:

s1 = SL LWM + 512 .

When used in user-mode, the stack is segmented and is extended on demand.
Acorn's language-independent run-time kernel allows language run-time
systems to implement stack extension in a manner which is compatible with
other Acorn languages. s l points 512 bytes above a full stack-chunk structure
and, again:

sl = SL LWM + 512 .

Appendix D: ARM procedure call standard

APCS-A: The obsolete
Arthur application PCS

Mode-dependent stack-overflow hand ling code in the language-independent
run-time kernel faults an overflow in module mode and extends the stack in
application mode. This allows library code, including the run-time kernel, to

be shared between all app lications and modules written in C.

In both modes, the value of sl must be valid immediately before each

external call and each return from an external call.

Deallocation of a stack chunk may be performed by intercepting returns from
the procedure that caused it to be allocated. Tail-call optimisation
complicates the relationship, so, in general, sl is required to be valid

immediately before every return from external call.

APCS-U: Constraints on sl (For RISC iX applications and RISC iX

kernels)

In this binding of the APCS the user-mode stack auto-extends on demand so
s 1 is unused and there is no stack- limit checking.

In kernel mode, s 1 is reserved to Acorn.

This obsolete binding of the procedure-call standard is used by Arthur
applications running in ARM user-mode. The applicable call-frame register
bindings are as follows:

sl RN 13 stack limit/stack chunk handle
fp RN 10 frame pointer
ip RN 11 used as temporary workspace
sp RN 12 lower end of current stack frame

(Use of r12 as sp, rather than the architectu rally more natural r13, is

historical and predates both Arthur and RISC OS.)

In this binding of the APCS, the stack is segmented and is extended on
demand. Acorn's language- independent run-time kernel allows language run
time systems to implement stack extension in a manner which is compatible
with other Acorn languages.

The stack limit register, s 1, points 512 bytes above a stack-chunk descriptor,

itself located at the low-address end of a stack chunk. In other words:

sl = SL LWM + 512 .

Appendix D: ARM procedure call standard 475

Notes on APCS bindings

476

The value of sl must be valid immediately before each external call and
each return from an external call.

Although not formally required by this standard, it is considered good taste
for compiled code to preserve the value of s 1 everywhere.

Invariants and APCS-M

In all future supported bindings of APCS sp shall be bound to r13. In all
supported bindings of APCS the invariant sp > ip > fp shall hold . This
means that the only other possible binding of APCS is APCS-M:

sl RN 12 stack limit/stack chunk handle
fp RN 10 frame pointer
ip RN 11 used as temporary workspace
sp RN 13 lower end of current stack frame

This binding of APCS is unlikely to be used (by Acorn).

Further Restrictions in SVC Mode and IRQ Mode

There are some consequences of the ARM's architecture which, while not
formally acknowleged by the ARM Procedure Call Standard, need to be
understood by implementors of code intended to run in the ARM's SVC and
IRQ modes.

An IRQ corrupts r 14 i rq, so IRQ-mode code must run w1th IRQs off until
r14 irq has been saved. Acorn's preferred solution to th1s problem 1s to
enter and exit IRQ handlers written in high-level languages via hand-crafted
'wrappers' which on entry save r 14 _ i rq, change mode to SVC, and enable
IRQs and on exit restore the saved r14 irq (which restores IRQ mode and
the IRQ-enable state). Thus the handlers themselves run in SVC mode,
avoiding this problem in compiled code.

Both SWis and aborts corrupt r 14 _ svc . This means that care has to be taken
when calling SWis or causing aborts in SVC mode.

In high-level languages, SWis are usually called out of line so it suffices to
save and restore r14 in the calling veneer around the SWI. If a compiler can
generate in-line SWis, then it should, of course, also generate code to save
and restore r14 in-line, around the SWI, unless it is known that the code will
not be executed in SVC mode.

Appendix D: ARM procedure call standard

An abort in SVC mode may be symptomatic of a fatal error or it may be
caused by page faulting in SVC mode. Acorn expects SVC-mode code to be
'correct', so these are the only options. Page faulting can occur because an
instruction needs to be fetched from a missing page (causing a prefetch abort)
or because of an attempted data access to a missing page (causing a data
abort). The latter may occur even if the SVC-mode code is not itself paged
(consider an unpaged kernel accessing a paged user-space).

A data abort is completely recoverable provided r 14 contains nothing of
value at the instant of the abort. This can be ensured by:

• saving r 14 on entry to every procedure and restoring it on exit

• not using r 14 as a temporary register in any procedure

• avoiding page faults (stack faults) in procedure entry sequences.

A prefetch abort is harder to recover from and an aborting BL instruction
cannot be recovered, so special action has to be taken to protect page faulting
procedure calls.

For Acorn C, r14 is saved in the second or third instruction of an entry
sequence. Aligning all procedures at addresses which are 0 or 4 modulo 16
ensures that the critical part of the entry sequence cannot prefetch-abort. A
compiler can do this by padding all code sections to a multiple of 16 bytes in
length and being careful about the alignment of procedures within code
sections.

Data-aborts early in procedure entry sequences can be avoided by using a
software stack-limit check like that used in APCS-R.

Finally, the recommended way to protect BL instructions from prefetch-abort
corruption is to precede each BL by a MOV ip, pc instruction. If the BL
faults, the prefetch abort handler can safely overwrite r 14 with i p before

resuming execution at the target of the BL. If the prefetch abort is not caused
by a BL then this action is harmless, as r14 has been corrupted anyway (and,
by design, contained nothing of value at any instant a prefetch abort could
occur).

Appendix D: ARM procedure call standard 477

Examples from Acorn
language
implementations
Example procedure calls
inC

478

Here is some sample assembly code as it might be produced by the C
compiler:

; gggg is a function of 2 args that needs one register variable (vl)
gggg MOV ip , sp

STMFD sp !, (al , a2 , vl , fp , ip , lr , pc)
SUB fp , ip , # 4 points at saved PC

CMPS

BLLT

MOV

sp , sl
lx$stack_overflowl

vl , ...

handler procedure

use a register variable

BL ffff

MOV vl ; rely on its value after ffff()

Within the body of the procedure, arguments are used from registers, if
possible; otherwise they must be addressed relative to fp. In the two
argument case shown above, argl is at [fp,#-24] and arg2 is at [fp,#-
2 0] . But as discussed below, arguments are sometimes stacked with positive
offsets relative to fp.

Local variables are never addressed offset from fp; they always have positive
offsets relative to sp. In code that changes sp this means that the offsets used
may vary from place to place in the code. The reason for this is that it permits
the procedure x$stack_overflow to recover by setting s p (and s l) to
some new stack segment. As part of this mechanism, x$stack_overflow
may alter memory offset from fp by negative amounts, eg [fp , #-64] and
downwards, provided that it adjusts sp to provide workspace for the called
routine.

If the function is going to use more than 256 bytes of stack it must do:

SUB
CMPS
BLLT

ip , sp , # <my stack size>
ip , sl
lx$stack overflow 11

instead of the two-instruction test shown above.

Appendix D: ARM procedure call standard

Procedure calls in other
language implementations

If a function expects no more than four arguments it can push all of them onto
the stack at the same time as saving its old fp and its return address (see the

example above); arguments are then saved contiguously in memory with argl

having the lowest address. A function that expects more than four arguments
has code at its head as follows:

MOV ip , sp

STMFD sp !, (al , a2 , a3 , a4} put argl-4 below stacked args

STMFD sp !, {vl , v2 , fp , ip , lr , pc} ; vl - v6 saved as necessary

SUB fp, ip, #20 point at newly created call-frame

CMPS sp , sl

BLLT lx$stack_overflowl

LDMEA fp , {vl, v2 , fp , sp , pc}"' ; restore register vars & return

The store of the argument registers shown here is not mandated by APCS and
can often be omitted. It is useful in support of debuggers and run-time trace
back code and required if the address of an argument is taken.

The entry sequence arranges that arguments (however many there are) lie in
consecutive words of memory and that on return sp is always the lowest

address on the stack that still contains useful data.

The time taken for a call, enter and return, with no arguments and no registers
saved, is about 22 S-cycles.

Although not required by this standard, the values in fp, sp and sl are

maintained while executing code produced by the C compiler. This makes it
much easier to debug compiled code.

Multi-word results other than double prec1s1on reals in C programs are
represented as an implicit first argument to the call, which points to where the
caller would like the result placed. It is the first, rather than the last, so that
it works with a C function that is not given enough arguments.

Assembler

The procedure call standard is reasonably easy and natural for assembler
programmers to use. The following rules should be followed:

• Call-frame registers should always be referred to explicitly by symbolic
name, never by register number or implicitly as part of a register range.

Appendix 0: ARM procedure call standard 479

Various lessons

480

• The offsets of the call-frame registers within a register dump should not
be wired into code. Always use a symbolic offset so that you can easily
change the register bindings.

Fortran

The Acorn/T opExpress Arthur/RISC OS Fortran- 77 compiler violates the
APCS in a number of ways that preclude inter-working with C, except via
assembler veneers. This may be changed in future releases of the Fortran-77
product.

Pascal

The Acorn/3L Arthur/RISC OS !SO-Pascal compiler violates the APCS in a
number of ways that preclude inter-working with C, except via assembler
veneers. This may be changed in future releases of the ISO-Pascal product.

Lisp, BCPL and BASIC

These languages have their own special requirements which make it
inappropriate to use a procedure call of the form described here. Naturally,
all are capable of making external calls of the given form, through a small
amount of assembler 'glue' code.

General

Note that there is no requirement specified by the standard concerning the
production of re-entrant code, as this would place an intolerable strain on the
conventional programming practices used in C and Fortran. The behaviour of a
procedure in the face of multiple overlapping invocations is part of the
specification of that procedure.

This document is not intended as a general guide to the wntmg of code
generators, but it is worth highlighting various optimisations that appear
particularly relevant to the ARM and to this standard.

The use of a callee-saving standard, instead of a caller-saving one, reduces the
size of large code images by about 10% (with compilers that do little or no
interprocedural optimisation).

Appendix 0 : ARM procedure call standard

In order to make effective use of the APCS, compilers must compile code a
procedure at a time. Line-at-a-time compilation is insufficient.

The preservation of condition codes over a procedure call is often useful
because any short sequence of instructions (including calls) that forms the
body of a short IF statement can be executed without a branch instruction. For
example:

if (a < 0) b

can compile into:

CMP
BLLT
MOVLT

foo ();

a , #0

foo
b, al

In the case of a 'leaf or 'fast' procedure - one that calls no other procedures -
much of the standard entry sequence can be omitted. In very small
procedures, such as are frequently used in data abstraction modules, the cost
of the procedure can be very small indeed. For instance, consider:

typedef struct { ... ; int a; ... } foo;
int get a (foo* f) {return (f->a);}

The procedure gta can compile to just:

LOR
MOVS

al, [al, #aOffset)
pc, lr

This is also useful in procedures with a conditional as the top level statement,
where one or other arm of the conditional is 'fast' (ie calls no procedures). In
this case there is no need to form a stack frame there. For example, using this,
the C program:

int sum(int i)

if (i <= 1)

return(i);
else

return(i + sum(i-1));

could be compiled into:

Appendix D: ARM procedure call standard 481

482

sum CMP al , #1 ; try fast case
MOVSLE pc , lr ; a nd if appropriate , handle quickly !
; else , form a stack frame and handle the rest as normal code .
MOV ip , sp
STMDB sp !, {vl , fp , ip , lr , pc}
CMP sp , sl
BLLT overflow

vl , al register to hold i MOV
SUB
BL
ADD
LDMEA

al , al , #1 set up argument for call
sum do the call
al , al , vl perform the addition
fp , {vl , fp , sp , pc}' and return

This is only worthwhile if the test can be compiled using only i p , and any

spare of a1-a4, as scratch registers. This technique can significantly speed up
certain speed-critical routines, such as read and write character. At the present
time, this optimisation is not performed by the C compiler.

Finally, it is often worth applying the 'tail call' optimisation, especially to
procedures which need to save no registers. For example, the code fragment:

extern void *malloc (size_t n)

return primitive_alloc (NOTGCABLEBIT , BYTESTOWORDS(n});

is compiled by the C compiler into:

ma 1loc ADD
MOV
MOV
B

a 1 , a1, # 3
a 2 , a 1, LSR # 2
a 1, #1 0737 418 2 4
primi t i ve a 11oc

1S
1S
1S
1N+ 2S = 4S

This avoids saving and restoring the call-frame registers and minimises the
cost of interface 'sugaring' procedures. This saves five instructions and, on a
4/SMHz ARM, reduces the cost of the malloc sugar from 24S to 7S.

Appendix D: ARM procedure call standard

Appendix E: kernel.h

/*

Interface to host OS .
Copyright (C) Acorn Computers Ltd ., 1988

*I

!ifndef size t
! define size t 1

typedef unsigned int size t ;
!endif

/* from <stddef . h> */

typedef struct (
int r[lO] ;
kernel swl regs ;

typedef struct {
int load , exec;
int start , end ;
kernel osfile_block ;

typedef struct {

/*only rO- r9 matter for swi's */

/* load, exec addresses */
/* start address/length , end address/attributes */

void * dataptr ; /* memory address of data */
int nbytes , fileptr ;
int buf len ; /* these fields for Arthur gpbp extensions */
char * wild_fld ; /* points to wildcarded filename to match */
kernel_osgbpb_block ;

typedef struct (
int errnum ;
char errmess l252] ;
kernel_oserror ;

/* error number */

/* error message (zero terminated) */

typedef struct stack chunk {
unsigned long sc_mark ; /* ~~ Oxf60690ff */
struct stack chunk *sc next , *sc_prev ;
unsigned long sc size ;
int (*sc_deallocate) ();
kernel stack chunk ;

extern kernel stack chunk *kernel current stack chunk(void) ;

extern void kernel setreturncode(unslgned code);

Appendix E: kernel.h 483

484

extern void _kernel exit(int);

extern void kernel ex1ttraphandler(vo1d);

#define kernel HOST UNDEFINED -
#define kernel BBC MOSl 0 -
#define kernel BBC MOS1 2 -
#define kernel BBC ACW - -
#define kernel BBC MASTER
#define kernel BBC MASTER ET -
#define kernel BBC MASTER COMPACT - -
#define kernel ARTHUR -
#define kernel SPRINGBOARD -
#define kernel A UNIX

extern int _kernel hostos(void) ;

I •

-1

0

l

2

3
4

5
6
7

8

Returns the identity of the host OS
*I

extern inL kernel fpava1lable(vo1d) ;
I*
* Returns 0 if floating point is not available (no emulator nor hardware)
*I

extern kernel oserror * kernel swi(int no, _kernel_swi_regs *in, kernel sw1 regs
*out) ;

I*

'I

Generic SWI interface . Returns NULL if there was no error.
The SWI number may have the X bit set (bit 17) or not; it makes no
difference

extern char *_kernel_comrnand_string(void);

I*
* Returns the address of (maybe a copy of) the string used to run the program
*I

I*

'I

The int value returned by the following functions may have value :
>~ 0 if the call succeeds (significance then depends on the function)

-1 if the call fails but causes no os error (eg escape for rdch) . Not
all functions are capable of generating this result . This return
value corresponds to the C flag being set by the SWI .

-2 if the call causes an os error (in which case , kernel oserror must
be used to find which error it was)

#define kernel ERROR (-2)

extern int kernel osbyte(int op, int x, int y);
I*

Performs an OSByte operation.
If there is no error, the result contains

Appendix E: kernel.h

*I

the return value of Rl (X) in lts bottom byte

the return value of R2 (Y) in its second byte

in the third byte if carry is set on return , otherwise 0
0 in its top byte

(Not all of these values will be significant , depending on the
particular OSByte operation) .

extern int _ kernel osrdch(void) ;
/*

Returns a character read from the currently selected OS input stream

*I

extern int kernel oswrch(int ch) ;

/*

*I

Writes a byte to all currently selected OS output streams
The return value just indicates success or failure .

extern int kernel osbget(unslgned handle) ;
/*

*I

Returns the next byte from the file identified by ' handle' .
(-1 ~> EOF) .

extern int kernel osbput(int ch , unsigned handle) ;
/*

*I

Writes a byte to the file identified by ' handle' .

The return value just indicates success or failure.

extern int kernel osgbpb(lnt op , unslgned handle , kernel osgbpb_block *inout) ;/*
Reads or writes a number of bytes from a filing system.

*I

The return value just indicates success or failure.

Note that for some operations , the return value of C is significant ,
and for others it isn ' t . In all cases , therefore , a return value of -1
is possible , but for some operations it should be ignored .

(To confuse matters further , some Brazil filing systems don ' t set C when
they should , so the best course of action may be to ignore the result
unless it indicates an error) .

extern int kernel osword(lnt op , int *data) ;
/*

*I

Performs an OSWord operation .

The size and format of the block *data depends on the particular OSWord

being used ; il may be updated .

extern int kernel osfind(int op, char *name) ;
/*

Opens or closes a file .

Open returns a file handle (0 => open failed without error)
Close the return value just indicates success or failure

Appendix E: kernel.h 485

486

*I

extern int kernel osf1le(1nt op , canst char *name , kernel osfile_block *inout) ;

/* Performs an OSFile operation , with values of r2 - rS taken from the osfile

block . The block is updated with the return values of these registers ,

and the result is the return value of rO (or an error indication)
*I

extern int kernel osargs(int op, unsigned handle , int arg) ;

I*
Performs an OSArgs operation .
The result is an error indication , or

the current filing system number (if op ~ handle ~ 01
the value returned in R2 by the OSArgs operation otherwise

*I

extern int kernel oscli(const char *s);

I*

*I

Hands the argument string to the OS command line interpreter to execute
as a command . This should not be used to invoke other applications :

kernel system ex1sts for that . Even using it to run a replacement
application is somewhat dubious (abort handlers are left as those of the
current application).

The return value just indicates error or no error

extern kernel_oserror * kernel last oserror(void) ;

I*

*I

Returns a pointer to an error block describing the last os error.

(Not cleared before a SWI call , so it need have no connection with the

last SWI called unless it is known that that produced an error) .
If kernel_swi caused the last os error , the error already returned by that

call gets returned by this too .
Never returns NULL: if there ha~ been no error , returns a pointer to
errnum 0 and null errmess

extern kernel oserror * kerncl_gctcnv(const char *name , char *buffer, unsigned
size) ;

I*

*I

Reads the value of a system variable , placing the value string in the

buffer (of size size) .
Under Arthur , this just gives access to OS ReadVarVal .

Under Brazil , it accesses the file $. environ
(lines of which have the format varname space value newline) .

extern kernel oserror * kernel setenv(const char *name , const char *value);

I*

*I

Updates the value of a system variable to be string valued , with the
given value (value ~ NULL deletes the variable)
Under Brazil , this returns the error '' Not implemented''

Appendix E: kernel.h

extern int kernel system (const char *string , int chain) ;
I*

*I

Hands the argument string to the OS command line interpreter to execute .
If the string causes an application to be invoked , it will execute as a
sub-program of the caller if chain is 0 (so that when it terminates
control returns to the caller) ; as a replacement if chain is non-zero.
Note that running sub- programs requires care : the OS provides no means
of protection against program load overwriting the current application
(in which case , when it exits the result is unlikely to be pretty) .

And of course , since the sub- program executes in the same address space ,
there is no protection against errant writes by it to the code or data
of the caller .
The return value just indicates error or no error

extern unsigned kernel alloc(unslgned m1nwords , vo1d **block) ;
I*

*I

Tries to allocate a block of sensible size>= minwords . Failing that ,
it allocates the largest possible block (may be size zero) .
~ensible size means dl ledst 2K words .
*block is returned a pointer to the start of the allocated block
(NULL if ' a block of size zero ' has been allocated).

typedef void freeproc(void *) ;
typedef void * allocproc(unsigned) ;

extern void kernel reqister allocs (allocproc *malloc, freeproc *free) ;
I*

*I

Registers procedures to be used by the kernel when it requires to
free or allocate storage . The allocproc may be called during stack
extension , so may not check for stack overflow (nor may any procedure
called from it) , and must guarantee to require no more than 41 words
of stack .

extern int kernel_escope_seen(vold) ;
I*
* Returns 1 if there has been an escape since the previous call of

kernel_escape seen (or s1nce program start , if there has been no
* previous call). Escapes are never ignored with this mechanism ,
* whereas they may be with the language EventProc mechanism since there

may be no stack to call it on .
*I

typedef union (
struct {int
int w[3] ;)

typedef struct

s : 1 , u : 16 , x : 15 ; unsigned mhi , mlo ; } i ;
extended fp_number ;

int r4 , r5 , r6 , r7 , r8 , r9 ;
int fp , sp , pc , sl ;
extended_fp_number f4 , f5 , f6 , f7 ; } kernel unwindblock;

Appendix E: kernel.h 487

488

extern int kernel unwind(kernel unwindblock *inout, char **language);
/*

*I

Unwinds the call stack one level .

Returns >0 if it succeeds

0 if it fails because it has reached the stack end

<0 if it fails for any other reason (eg stack corrupt)
Input values for fp , sl and pc must be correct .

r4-r9 and f4-f7 are updated if the frame addressed by the input value

of fp contains saved values for the corresponding registers .
fp, sp, sl and pc are always updated

*language is returned a pointer to a string naming the language
corresponding to the returned value of pc.

extern char* kernel procname(lnl pc) ;
/*

Returns a string naming the procedure containing the address pc .
(or 0 if no name for it can be found) .

*I

extern char* kernel language(int pc) ;
/*

Returns a string naming the language in whose code the address pc lies.
(or 0 if it is in no known language) .

*I

/* divide and remainder functions .

The signed functions round towards zero.

The div functions actually also return the remainder in a2, and use of

this by a code-generator will be more efficient than a call to the rem
function.

Language RTSs are encouraged to use these functions rather than providing

their own, since considerable effort has been expended to make these fast .

*I

extern unsigned kernel ud1v(uns1gned d1v1sor , uns1gned dividend);

extern unsigned kernel_urem(unsigned divisor , unsigned dividend);
extern unsigned kernel ud1vlO(uns1gned d1v1dend);

extern int kernel sdiv(int divisor , int dividend);
extern int kernel_srem(int divisor , int dividend) ;

extern int kernel sdivlO(int dividend);

/*

*Description of a ' Language description block '

*I

typedef enum { NotHandled, Handled) kernel HandledOrNot ;

typedef struct
int regs [16) ;

Appendix E: kernel.h

kernel reglsterset ;

typedef struct I
int regs [10];

kernel eventregisters ;

typedef void {*PROC) (void) ;

typedef kernel HandledOrNot (* kernel trapproc) (int code , kernel reglsterset

*regs) ;

typedef kernel HandledOrNot (* kernel eventproc) (int code , kernel registerset
*regs) ;

typedef struct {
int size ;
int codestart , codeend ;

char *name ;
PROC (*InitProc) (vo id);

PROC FinaliseProc ;
kernel trapproc TrapProc ;
kernel trapproc UncaughtTrapProc ;
kernel eventproc EventProc ;
kernel_eventproc UnhandledEventProc ;

void (*FastEventProc) (_k ernel_even~registers *) ;
int {*UnwindProc) (_kernel_unwindblock *inout , char **language) ;
char * {*NameProc) {int pc) ;
kernel languagedescrlptlon;

typedef int kernel ccproc(int , int , int) ;

extern int kernel_call_client{int al , int a2, int a3 , kernel ccproc callee) ;
/* This is for shared librar~' use only , and is not exported to shared library

* clients . It is provided to allow library functions which call arbitrary
* client code {C library signal , exit , _main) to do so correctly if the
* client uses the old calling standard .

*I

extern int kernel_client_is __ module (void);
/* For shared library use only , not exported Lo clients . Returns d

* non-zero value if the library ' s client is a module executing in user
* mode {ie module run code) .

*I

extern int kernel processor_mode(void) ;

extern void kernel lrqs on(vold) ;

extern void kernel irqs off(void) ;

extern int kernel lrqs_dlsabled(vold) ;
/ * returns 0 if interrupts are enabled ; some non-zero value if disabled . */

extern void* kernel RMAalloc(size t size) ;

extern void * kernel RMAextend(void *p, size t size) ;

Appendix E: kernel.h 489

exterr. void _kernel_RMAfree (void 'p) :

490 Appendix E: kernel.h

Appendix F: The floating point emulator

FPE280

The floating point emulator is a relocatable module which provides support
for floating point instructions. It must be resident in memory to run programs
which perform operations on real numbers.

Its primary function is to emulate floating point instructions in software on
machines which do not have the optional hardware floating point co-processor
atr::ttched.

However, even with the co-processor attatched, the floating point emulator is
still required

• to interface with the co-processor

• to perform range reduction on trigonometric function arguments

• for a few floating point instructions that the co-processor does not directly
support.

There are two variants of the floating point emulator:

FPE280

FPEmulator

software-only floating point support- v 2.80 and earlier

hardware-assisted AND software-only support - v 3.10 and
later.

Both have the same module name, namely FPEmulator. You can find out the
vers ion number of the module currently resident in your computer by typing
the following at the * prompt:

*help modules

On initialisation, this module disables the floating point co-processor if it
finds one present. It occupies 25Kb.

Appendix F: The floating point emulator 491

FPEmulator

Using the compiler

Without the floating point
maths co-processor

With the floating point
maths co-processor

492

This behaves just like FPE280 if no co-processor is attached (ie it emulates all

floating point instructions in software), but it makes use of the co-processor if

it is present. It occupies 3 7Kb.

If your machine does not have the floating point co-processor attached, the

floating point emulator is required to run any C program which performs

operations on real numbers.

The floating point emulator supplied with Release 3 of the C compiler is

FPE280, and is located on Disc 1 as the file FPE280 in the $.Modules

directory.

Before loading the emulator, it is a good idea to issue a command that will

check that no more recent version of the module is already present, by typing

*RMEnsure FPEmulator 2.80

Then load the emulator:

*RMLoad $. Modules.fpe280

Once you have set up your working environment, you will find it convenient to

place the module in your ! System directory (as

!System.modules.FPEmulator) and arrange for it to be loaded

automatically on power up.

Observe the change of file name to FPE2 8 0, since existing applications will

incorporate the earlier name in their start-up sequence.

In order to make use of the speed increase given by the floating point co

processor, you will need to use the FPEmulator module.

This is supplied with the co-processor, and you will find it convenient to copy

the module into your ! System directory and arrange for it to be loaded

automatically on power up.

Appendix F: The floating point emulator

Floating point
requirements of
applications

Applications should cater for both floating point environments: with and
without the co-processor. In general, programs do not need to know whether a
co-processor is fitted; the only effective difference is in the speed of
execution. However, the combined hardware and software variant,
FPEmulator, is larger than the software-only variant, FPE280, since it includes
the code for interfacing with the co-processor. Therefore, to cater for both
environments, an application must be able to accommodate the extra 12Kb
RAM taken up by FPEmulator.

Software products do not have to supply either version of the floating point
emulator. FPE280 is supplied with new machines, version 2.7 of the emulator
is bundled with the RISC OS upgrade kit, and FPEmulator is supplied with
the co-processor itse lf. It is then up to you to have the appropriate emulator in
your ! System directory; this should be covered in the manual accompanying
the application.

Appendix F: The floating point emulator 493

494 Appendix F: The floating point emulator

Function Index

The main entry for each function is printed in bold type.

A

abort 149, 195
abs 197
acos 171
akbd_pollctl 24 7
akbd_pollkey 24 7
akbd_pollsh 24 7
alarm_anypending 249
alarm_callnext 250
alarm_init 248
alarm_next 249
alarm_remove 249
alarm_removeall 249
alarm_set 248
alarm_timedifference 248
alarm_timenow 248
asctime 208
asin 171
atan 171
atan2 171
atexit 195, 380
atof 191
atoi 191
atol 191

B

baricon 217, 250
baricon_newsprite 250
bsearch 196

Function Index

c
calloc 149, 194
ceil 172
clearerr 190
clock 150, 207
colourmenu_make 235, 254
colourtran_colournumbertoGCOL 258
colourtran_ GCOL_tocolournumber 258
colourtran_invalidate_cache 260
colourtran_return_colournumber 256
colourtran_return_GCOLformode 256
colourtran_return_colourformode 25 7
colourtran_returnfontcolours 259
colourtran_returnGCOL 256
co lourtran_retu rn_ Oppco lou rformod e

258
colourtran_return_ Oppcolournumber

257
colourtran_return_ OppGCOL 25 7
colourtran_return_ OppGCOLformode

258
colourtran_select_GCOLtable 255
colourtran_select_table 255
colourtran_setfontcolours 259
colourtran_setGCOL 256
colourtran_setOppGCOL 25 7
coords_boxesoverlap 262
coords_box_toscreen 260
coords_box_toworkarea 261
coords_intersects 262

495

496

coords_offsetbox 262
coords_point_toscreen 261
coords_point_toworkarea 261
coords_ withinbox 262
coords_x_toscreen/

coords_y_toscreen 260
coords_x_toworkarea/

coords_y_toworkarea 260
cos 171
cosh 171
ctime 208

D

dbox_dispose 222, 263
dbox_eventhandler 236, 267
dbox_fadefield 236, 266
dbox_field/dbox_fieldtype 265
dboxfile 237, 270
dbox_fillin 222, 236, 268
dbox_get 26 7
dbox_gctficld 236, 265
dbox_getnumeric 236, 266
dbox_hide 264
dbox_init 237, 269
dbox_new 222, 263
dbox_persist 236, 269
dbox_popup 268
dboxquery 237, 270
dbox_raweventhandler 268
dbox_setfield 222, 235, 265
dbox_setnumeric 235, 266
dbox_show 222, 235, 264
dbox_showstatic 235, 264
dbox_syshandle 269
dboxtcol 271
dbox_unfadefield 236, 267
difftime 207
div 197
draw_append_diag 273

draw_convertBox 275
draw_create_diag 278
draw _createObj ect 280
draw _deleteObjects 281
draw_doObjects 279
drawex_load_ram 234
drawex_ram_loader 234
draw_extractObj ect 281
drawmod_ask_flattenpath 284
drawmod_ask_stro~path 283
drawmod_buf_transformpath 284
drawmod_do_flattenpath 283
drawmod_do_strokepath 283
drawmod_fill 282
drawmod_insitu_transformpath 284
drawmod_processpath 285
drawmod_stroke 282
draw_querybox 275
draw_rebind_d iag 276
draw _registerMemoryFunctions 2 7 4
draw _render_diag 2 73
draw_setFontTablc 279
draw _set_ unknown_object_handler

276
draw_shift_diag 233, 275
draw _translate Text 281
draw_verify_d iag 273
draw_ verifyObject 2 79

E

event_anywindows 286
event_attachmenu 219, 22 1, 286
event_attachmenumaker 219, 287
event_clear_current_menu 287
event_getmask 288
event_is_menu_being_recreated 287
event_process 220, 286
event_setmask 22 1, 287
exit 149, 195, 402

Function Index

exp 171

F

fabs 172
fclose 178
feof 190
ferror 190
fflush 178
fgetc 185
fgetpos 149, 188
fgets 185
flex_alloc 288
flex_extend 289
flex_free 289
flex_init 225, 227, 289
flex_midextend 289
flex_size 289
float.h 164
floor 172
_fmapstore 25
fmod 147, 172
font_cacheaddress 290
font_caret 292
font_charbbox 294
font_convertoos 293
font_converttopoints 293
font_current 293
font_find 290
font_findcaret 294
font_findcaretj 296
font_future 293
font_list 295
font_lose 290
font_paint 292
font_readdef 291
font_readinfo 291
font_readscalefactor 294
font_readthresholds 296
font_setcolour 295

Function Index

font_setfont 293
font_setpalette 295
font_setscalefactor 295
font_setthresholds 296
font_stringbbox 296
font_strwidth 292
fopen 178-179
fprintf 149, 181-182
fputc 185
fputs 185
fread 188
free 194, 224
freopen 180
frexp 171
fucanf 149, 182-183
fseek 189
fsetpos 189
ftell 149, 189
fwrite 188

G

getc 186
getchar 186
getenv 149, 196
gets 186
gmtime 208

H

heap_alloc 225, 227, 297
heap_free 225, 297
heap_init 227, 297

I

isalnum 147, 167
isalpha 147, 167
iscntrl 147, 167
isdigit 167

497

498

isgraph 168
is lower 147, 168
isprint 147, 168
ispunct 147, 168
isspace 168
is upper 147, 168
isxdigit 168

K

kernel 483-490
_kernel_exittraphandler 397
_kernel_register _allocs 399
_kernel_setreturncode 397
_kernel_swi 165

L

labs 198
lconv 170-171
ldexp 171
ldiv 198
limits.h 164
locale.h 164
localtime 209
log 171
log10 171
longjmp 172-173, 399

M

magnify_select 237, 297-298
main 141, 158, 164,402
malloc 149, 194, 224
_mapstore 25, 28
mblen 198
mbstowcs 200
mbtowc 199
memchr 203
memcmp 202

memcpy 201
memmove 201
memset 205
menu_dispose 299
menu_extend 299
menu_make_sprite 301
menu_make_writeable 300
menu_new 218, 299
menu_setflags 300
menu_submenu 300
menu_syshandle 301
mktime 207
mode 417
modf 172
msgs_init 301
msgs_lookup 302

0

os_args 303
os_byte 303
os_cli 303
os_file 230, 303
os_find 303
os_gbpb 303
os_read_var_val 304
os_swi 302
os_swix 302
os_word 303

p

perror 149, 190
pointer_reset_shape 304
pointer_set_shape 304
pow 172
printf 182, 239
putc 186
putchar 187
puts 187

Function Index

Q
qsort 197

R

raise 174
rand 193
realloc 149, 194
remove 149, 1 77
rename 149, 1 77
res_findname 305
res_init 21 7, 304
res_openfile 305
resspr_area 219,305
resspr_init 305
rewind 190

s
saveas_read_leafname_during_send

307
scanf 183
setbuf 180
setjmp 172, 399
setlocale 14 7, 170
setvbuf 180
signal 148
sin 171
sinh 171
sprintf 182
sprite_area_initialise 307
sprite_area_load 308
sprite_area_merge 308
sprite_area_readinfo 307

sprite_area_reinit 308
sprite_area_save 308
sprite_copy 310
sprite_create 309
sprite_create_mask 311

Function Index

sprite_create_rp 309
sprite_delete 309
sprite_delete_column 311
sprite_delete_row 311
sprite_flip_x 311
sprite_flip_y 311
sprite_get 308
sprite_get_given 309
sprite_get_given_rp 309
sprite_getname 308
sprite_get_rp 308
sprite_insert_column 311
sprite_insert_row 311
sprite_outputtomask 312

sprite_outputtoscreen 312
sprite_outputtosprite 312
sprite_put 310
sprite_put_char_scaled 311
sprite_put_given 310
sprite_put_greyscaled 310
sprite_put_mask 310
sprite_put_mask_given 310
sprite_put_mask_scaled 310
sprite_put_scaled 310
sprite_readmask 312
sprite_readpixel 312
sprite_readsize 311
sprite_remove_mask 311
sprite_removewastage 313
sprite_rename 310
sprite_restorestate 312
sprite_screenload 307
sprite_screensave 307
sprite_select 309
sprite_select_rp 309
sprite_sizeof_screencontext 312

sprite_sizeof_spritecontext 312
sprite_writemask 312
sprite_ writepixel 312
sqrt 172

499

500

srand 194
sscanf 184
strcat 202
strchr 204
strcmp 202
strcoll 203
strcpy 201
strcspn 204
strerror 150, 206
strftime 209-210
strlen 206
strncat 202
strncmp 203
strncpy 201
strpbrk 204
strrchr 204
strspn 204
strstr 205
strtod 191
strtok 205
strtol 192
strtoul 193
strxfrm 203
switch statement 146
system 150, 196

T

tan 171
tanh 171
template_copy 313
template_find 313
template_init 237,305,314
template_loaded 313
templatc_rcadfile 313
template_syshandle 314
time 208
tmpfile 177
tmpnam 177
tolower 168

toupper 168
tracef 314
trace_is_on 314
trace_off 239,314
trace_on 239, 314
txt_arrayseg 326
txt_bufsize 316
txt_charat 319
txt_charatdot 319
txt_charoptions 316
txt_charsatdot 320
txt_delete 319
txt_dispose 316
txt_disposemarker 322
txt_dot 317
txtedit_dispose 32 7
txtedit_doimport 328
txtedit_doinsertfile 329
txtedit_install 327
txtedit_mayquit 32 7
txtedit_menu 328
txtedit_menuevcnt 328
txtedit_new 32 7
txtedit_prequit 328
txt_eventhandler 326
txt_get 325
txt_hide 315
txt_indexofmarker 322
txt_insertchar 318
txt_insertstring 318
txt_movedot 318
txt_movedottomarker 322
txt_movehorizontal 321
txt_movemarker 322
txt_movevertical 320
txt_new 315
txt_newmarker 321
txt_queue 325
txt_readeventhandler 326
txt_replaceatend 3 20

Function Index

txt_replacechars 319

txt_selectend 3 23
txt_selectset 323
txt_selectstart 323
txt_setbufsize 316

txt_setcharoptions 317
txt_setdisplayok 31 7
txt_setdot 318
txt_setselect 323
txt_show 315
txt_size 318
txt_syshandle 32 7
txt_unget 325
txt_ visiblecolcount 321

txt_ visiblelinecount 321
txtwin_dispose 329
txtwin_new 329
txtwin_number 329
txtwin_setcurrentwindow 330

u
ungetc 187

v
va_arg 175
va_end 175
va_list 174-175
va_start 175
vfprintf 174, 184
visdelay_begin 330
visdelay_end 330
visdelay_init 330
visdelay_percent 330
vprintf 184
vsprintf 184

Function Index

w
wcstombs 200
wctomb 199
wimp_baseofsprites 352

wimp_bbits 334
wimp_blockcopy 352
wimp_box 335
wimp_caretstr 338
wimp_closedown 350
wimp_close_template 350

wimp_close_wind 220, 348
wimp_command_tag 353

wimp_commandwind 354

wimp_commandwindow 354

wimp_corrupt_fp_state_on_poll 348

wimp_create_icon 34 7
wimp_create_menu 349

wimp_create_submenu 353

wimp_create_ wind 21 7, 34 7

wimp_decode_menu 350
wimp_delete_icon 348
wimp_delete_wind 348
wimp_drag_box 349
wimp_dragstr 345
wimp_dragtype 334
wimp_emask 338
wimp_errflags 352
wimp_etypes 337
wimp_eventdata 343
wimp_eventstr 344
wimp_flags 331
wimp_font_array 346
wimp_force_redraw 349

wimp_get __ caret_pos 349

wimp_get_icon_info 349

wimp_get_point_info 349

wimp_get_rectangle 348
wimp_get_wind_info 349

wimp_getwindowout 351

501

502

wimp_get_wind_state 220, 349
wimp_i 334
wimp_ibtype 333
wimp_icon 336
wimp_icondata 334
wimp_iconflags 332
wimp_icreate 336
wimp_initialise 34 7
wimp_load_template 350
wimp_menuflags 344
wimp_menuhdr 301,344
wimp_menuitem 301, 345
wimp_menustr 301,345
wimp_mousestr 338
wimp_msgaction 339-340
wimp_msgdataload 341
wimp_msgdataopen 342
wimp_msgdatasave 341
wimp_msgdatasaveok 341
wimp_msghdr 340
wimp_msghelpreply 342
wimp_msghelprequest 342
wimp_msgprint 343
wimp_msgramfetch 342
wimp_msgramtransmit 342
wimp_msgstr 343
wimp_openstr 234, 336
wimp_open_template 350
wimp_open_wind 220,348
wimp_palettestr 34 7
wimp_paletteword 34 7
wimp_ploticon 351
wimp_poll 348
wimp_pollidle 351
wimp_processkcy 350
wimp_pshapestr 346
wimp_readpalette 351
wimp_readpixtrans 353
wimp_redrawstr 234, 338
wimp_redraw_wind 348

wimp_reporterror 352
wimp_save_fp_state_on_poll 348
wimp_sendmessage 165, 229, 352
wimp_sendwmessage 352
wimp_set_caret_pos 349
wimp_setcolour 351
wimp_set_extent 350
wimp_setfontcolours 353
wimp_set_icon_state 349
wimp_setmode 351
wimp_setpalette 351
wimp_set_point_shape 350
wimp_slotsize 353
wimp_spriteop 351
wimp_spriteop_full 351
wimp_starttask 350
wimp_t 334
wimp_taskclose 350
wimp_taskinit 34 7
wimpt_bpp 356
wimpt_checkmode 356
wimpt_complain 223, 355
wimpt_dx/wimpt_dy 356
wimp_template 346
wimpt_fake_event 354
wimpt_forceredraw 357
wimpt_init 217,356
wimpt_last_event 354
wimpt_last_event_was_a_key 355
wimpt_mode 356
wimpt_noerr 223, 355
wimpt_poll 354
wimpt_programname 357
wimp_transferblock 165, 353
wimpt_reporterror 357
wimpt_task 35 7
wimp_update_wind 348
wimp_w 334
wimp_wcolours 332
wimp_which_block 345

Function Index

wimp_which_icon 350
wimp_wind 335
wimp_winfo 336
wimp_wstate 337
win_activedec 362
win_activeinc 217, 361
win_activeno 362
win_add_unknown_event_processor

228,359
win_claim_idle_events 22 7, 359
win_claim_unknown_events 228,

360
win_getmenuh 361
win_give_away_caret 362
win_idle_event_claimer 360
win_processevent 361
win_register_event_handler 358
win_remove_unknown_event_

processor 228, 359
win_setmenuh 360
win_settitle 363
win_unknown_event_claimer 360
win_unknown_event_processor 228

X

xferrecv _buffer_processor 230, 364
xferrecv _checkimport 364
xferrecv _checkinsert 231, 363
xferrecv _checkprint 363
xferrecv _do_import 230
xferrecv _do import 364
xferrecv _file_is_safe 231, 365
xferrecv _insertfileok 363
xferrecv _printfileok 364
xfersend_file_is_safe 368
xfersend_printproc 231, 307, 366
xfersend_saveproc 231, 365
xfersend_sendbuf 367
xfersend_sendproc 231, 306, 365

Function Index

xfersend_set_fileissafe 368

503

504 Function Index

Subject Index

I

Symbols
#pragma directives 24
:mem (pseudo filename) 22

l A
absolute machine addresses 157
Acorn Make Utility see AMU
Acorn Source- level Debugger see

debugging
active count 216
akbd 247
alarm 248-250

in desktop applications 238
alarm.h 238
AMU 23, 47, 117-128, 412

command execution 123-124
command options 119-121
command syntax 119
MFLAGS macro 128
rule patterns 126-127
VPA TH macro 125

ANSI library 14
see also shared C library

ANSI standard 6
vs K&R C 154-158

ANSILib see ANSI library
application resources 215
applications, desktop 44, 49-52,

213-240

Subject Index

error reporting 223-224
general form of 216-217
initialising 216-217
loading 229-231
saving 231-23 2
schema for using 51
standards for 213
terminate and stay resident 375
tracing 239
see also alarm, memory

management
arguments, passing to assembler 3 71
arithmetic conversions in ANSI

standard 156
arithmetic functions 394
arithmetic operations 13 7-138
ARM 68
ARM Procedure Call Standard 399,

416,463-482
argument passing 467-469
bindings 4 73-4 77
control arrival 467-468
control return 468
design criteria 464
examples 4 78-482
purpose 463-464
stack backtrace 4 70-4 7 3

arrays 144, 157
Arthur Operating System 41 7
Arthurlib 417-419
ASD see debugging

505

506

assembly language interface 369-
374

assert.h 167

B

Balls64 52
baricon 250
bbc 251-254
benchmark 4 7
bitfields 145
Brazil operating system 412
breakpoints 69
buffering of input/output 180
byte

c

limits 169
ordering see portability, byte

ordering

C compiler directory structure 13
C library kernel 393-401

interfacing to 395-399
C Module Header Generator see

cmhg
C$Libroot 22
case sensitivity 28
cc command 13
char, limits 169
characters 143

testing and mapping 167
cmhg 378-387,413

command descriptions 382-384

finalisation code 380
help string 381
initialisation code 380
input to 379
IRQ handler 386-387
runnable code 380

service call handler 381
SWichunks 384
SWI decoding code 385
SWI decoding table 385
SWI handler code 384
title string 381

CModule 48
code generation, controlling 25-26

codeend 396
codestart 396
colour translation 234-235, 255-260

colourmenu 254
colours, desktop 235, 332
colourtran 235, 255-260
Command files 42, 44
compiler options see options,

compiler
compiling 30-31
const 155
control statements 157
conventions, naming 14- 17
coordinates, work area vs screen 234
coords 260-262
ctype.h 162, 167-168
current place 21-22

D

data
elements 133-136
elements, see also integers
export 306-307,365-368
import 363-365

data types
structured 136-13 7
see also portability, data types

152
dbox 263-2 71

Subject Index

debugging 25,412
accessing RISC OS Command

Line 100
current context 73-76, 86-87
expressions 79-81
high-level symbols in 112
invoking 71-72
line numbers in 108
low-level 103
low-level symbols in 94-95,

112
operators 79-81
options 70-71
program locations 77-79
remote 72
source-level objects 73-81
tables in 93-94
techniques 68-70
variables in 73-77

debugging commands
alias 98
arguments 85-86, 106-107
backtrace 87
base 97, 113
break 89-90, 106
call 92
cmdline 88
context 86
examine 95, 107
execution control 87-92
format 83
go 88
help 97
in 86
language 99, 113
let 83-84, 96
list 96
load 87-88, 108
log 99
low-level 92-97

Subject Index

lsym 96
obey 99
out 86
PC/pc 97
pes 97
print 82-83, 107
program examination 81 - 82
ptrace 92
quit 100
registers 9 5
return 91
step 88
summary 114-116
symbols 84-85
type 87, 110
unbreak 90
unwatch 91
variable 85
watch 90-91
where 87
while 92

declarators 145
desktop 41

see also applications, desktop
device drivers 3 7 5
Dhrystone 2.1 4 7
diagnostic messages 141
diagnostics 167
dialogue box 235-237

creation 222, 263
deletion 263
events 267-271
fields 264-267
functions 263-2 71
writeable fields in 237

directory
current 12
library 13
root 13

507

508

disc drive
single floppy 35-36
twin floppy 36

discs, release 10,31-34
dot see pointer into text

Draw files 232-234, 272-276

coordinates in 233
data types 2 72
object level interface 2 78-281

DrawEx 52
drawfdiag 233, 272-276
drawferror 277-278
drawfobj 233, 278-281
drawftypes 282
drawmod 282-285

E

Edit 39, 238
Edit Task windows 41
editors 39
EDOM 168
empty comments in ANSI standarJ

156
empty declarations in ANSI

standard 157
enumerations 145
ERANGE 169
errno.h 162, 168-169
error

domain 168
operating system 394
range 169

error handling 397, 409
ESIGNUM 169
evaluation

expression 139
function argument 154

event 286-288

event handling 213-215, 220-222,

236-237,267-271,398
event types 33 7

masks 338
EventProc 398
example programs 46-53,413-414

F

FastEventProc 398
FILE 176
file

buffering 148
creation 1 77
deletion 1 77
opening 178-180
position indicators 188- 190
renaming 177

fileicon 288
filename

rooted 19-20
validity 148

filename components, length of 165

filename extension 22, 165
filename generation 1 77
filename translation 21, 124- 125
files

assembly list 17
compilation list 17
header 15-16
object 16
program 16
source 15
zero-length 148

filing systems 11
FinaliseProc 397
flags

-C 24
-0 24
-E 23

Subject Index

-f 28-30
-g 25
-I 22, 23
-j 22, 23
-o 25
-p 25
-S 26
-U 24
-W 27
-zp 24
preprocessor 23-24

flex 224-227, 288-290
float 156
float.h 169
floating point

co-processor 492
emulator 10,414,491-493
instruction set 394
registers 466-46 7
types 144

floating types 138
floppy disc formats 40
font 290-296
font management 290-296
FormEd 215, 241-245,413
fpos_t 176
function

G

call, bypassing 172-173
declarations 157
definitions 157
prototypes 15 7
workspace 3 7 3

graphical data see Draw files
graphics output functions

BBC-style 251-253

Subject Index

H

headers on release discs 35, 37
heap 224, 297
heap allocation 297, 407-408
HelloW 46
hourglass 231, 232,330
HowToCall 48
HUGE_ VAL 163

I

icon 215
button state bits 334
button types 333
creating 336
data fields 334
flags 332
number 242
placing on icon bar 219, 250

iconbar 215
identifiers 133, 142, 146

limits 134- 136
implementation limits 139
include

fi les 15, 19-24
syntax 20-21

initialisation 434
lnitProc 396-397
input 185, 186, 187

functions 182-184
installation

on hard disc 36-38
on network 41
utilities 36

int, limits 169
integers 144
interactive device 142
l/0

functions 176-191

509

510

redirection 14 2
IRQ state

manipulating 395
see also cmhg

IRQ handler

K

kernel 395
kemel.h 165
keyboard polling 24 7
keywords 17-18

L

libraries
ANSI VS BSD UNIX 162-164
compatibility between

releases 416
library functions 146-150
Life 51
limits.h 169
linker 18-19,30-31,55-65,414

filename list 56
library files 56-57
options 55-56
output file 56
symbols, predefined 60-61

linker keywords
-base 56, 59
--case 59
-debug 58, 71
-entry 56
-map 65
-<Jutput 58
-<Jverlay 63-64
-relocatable 60
-rmf 58
-verbose 59
-via 58

-workspace 56, 60
-xref 65

locale.h 170-171
long 155
long double 155, 156
long float 155
long int, limits 169

M
macro, preprocessor 24
magnifier 237, 298
magnify 297-298
makefile 23,117,121-123

macros 123
math.h 163, 171-172
mathematical functions 147, 171-

172, 197-198
memory allocation functions 194-

195
memory management 42-44, 224-

227,288-290,394
memory models in MS-DOS 165
memory, increasing 42-44
menu 298-301

amend ing 299-301
creating 218-219, 299
responding to user choice 221-

222
menu syntax 298
message action codes 339-344
messages 301
modules, relocatable see relocatable

modules
msgs 301
multibyte character

functions 198-200
limits 169

multibyte string functions 200

Subject Index

N

NameProc 399
network 41

0

Obey files 42, 44
offsetof 176
operating system interface 164-

165, 196
options

-arthur 18
-c 18
-fussy 18
-help 18
- 1 19
- list 18
-pee 18
compiler 17-3 1
flag see flags
keyword see keywords

OS 302-304
output 185, 186, 187, 188

functions 181-182, 184
overlays 61-64,389-391

alternatives to 391

p

paging 389
pathname

separator in 165
pee mode 160-162

preprocessor in 161
type checking in 161

piping 165
pointer 144, 153- 154, 156, 225-226,

304
into text 237-238

Subject Index

subtraction 13 7
types 137

pointer, desktop 304
see also hourglass

portability 151-165,391
byte ordering 152- 153
data types 152
hexadecimal constants 152
operating system calls 154
pointers 153- 154
store alignment 153

prefixes see conventions, naming
preprocessor directives 146, 158
preprocessor, controlling 19-24
profiling 25-26
program termination functions 195
programs, calling from C 48, 401 -

403
ptrdiff_t 176

Q
qualifiers 145

R

RAM filing system 391
random number generating

functions 193-194
register 144

names 369-370
usage 3 70-3 71

register names 465-467
Release 3, new features 411-416
relocatable modules 43, 48, 375-

387
components of 377-378
constraintson 376

res 304-305
resspr 305

511

512

RISCOS
Command Line 41
command types 401
library 14, 213
library, initialising 216

RISC_OSlib see RISC OS library
ROM utility templates 243

s
saveas 306-307
screen units see Draw files,

coordinates in 233
search

functions 196
path 20- 23, 125

setjmp.h 172-173
shared C library 10, 44-46, 403-405

modules 64, 375
when to use 403-404

short int, limits 169
Sieve 46
signal handling 173-174
signal.h 163, 173-174
signed 155
signed char, limits 169
size_t 176
Software Interrupt see SWI
sort functions 197
spooling output 239
sprite 307-313
sprite facilities 307-313
Squeeze 128- 129,412
stack extension 400-401
stack, run-time 399-401
stack-limit checking 395
stdarg.h 17 4- 17 5
stddef.h 176
stdio.h 163, 174, 176-191
stdlib.h 164, 191-200

storage management 406-408
stream

closing 178
flushing 178

string functions
appending 202
comparison 202-203
conversion 191-193
copying 201
error message mapping 206
length 204, 206
locating 203-205
time 209-210
tokenising 205
transformation 203

string literal 158
string.h 163, 200-206
strings in ANSI standard 15 5
struct 155

alignment of members 153
structure result 3 72
structures 14 5

see also struct
stubs 45
suffixes see conventions, naming
SWI 165, 375, 394
SWI_list 47
switch statement 158

T

template 313-314
editor see FormEd
file 242

text
displaying and editing 237-238
highlighting 238

text functions 315- 329
text output functions

BBC-style 25 1

Subject Index

text streams 148
time zones 149
time.h 206-210
Tinydirs 42
toansi 52, 158,413
token-pasting 158
topcc 53, 158-159, 413
trace 314
trace.h 239
tracing 69-70
translation

between dialects 158
ordering of phases 158

trap handling 397
T rapProc 397
Twin 39
txt 315-327
txt.h 237
txtedit 327-329
txtedit.h 23 7
txtwin 329-330
txtwin.h 237

u
Uncaught T rapProc 397
UnhandledEventProc 398
union 155
unions 145
unsigned 155
unsigned char, limits 169
unsigned int, limits 169
unsigned long int 156

limits 169
unsigned short int, limits 169
UnwindProc 399

v
values, limits on 169

Subject Index

variable
environmental 394
storage of 372-373

variadic functions in ANSI
standard 156

visdelay 330-331
void 155
void* 155
volatile 155

w
warning messages, controlling 27
watchpoints 70
wchar_t 176
werr 331
WExample 50
wimp 331-354
Wimp polling 213
Wimp_Createlcon 242
Wimp_CreateWindow 242
wimpt 354-358
win 358-363
window

creating 217-218
maintaining 220-221
opening 219-220

window coordinates 260-262
window drag types 334
window flags 331-332
window identifier 242
window manager 358-363

X

function prototypes 34 7-354
idle events 22 7
unknown events 228

xferrecv 229, 363-365
xfer_send 232, 306
xfersend 231-232, 365-368

513

514 Subject Index

Reader's Comment Form
C Release 3 Guide

We would greatly appreciate your comments about this Guide, which will be taken into account for the
next issue:

Did you find the information you wanted?

Do you like the way the information is presented?

General comments:

How would you classify your programming experience?

D
New to programming

D
New to C

programming

If there is not enough room for your comments, please continue overleaf

D
Experienced with
other C compilers

D
Used Acorn C
Release 1 or 2

Your name and address:
Cut out (or photocopy) and past to:

Dept RC, Technical Publications
Acorn Computers Limited
645 Newmarket Road
Cambridge CBS SPB.

This information will only be used to get in touch with you in case we wish to
explore your comments further.

	cover
	Untitled

