
Acornl 



PROGRAMMER ' S 
R E ~ERE N C E 

MANUAL 

Acornl 



ii 

Designed and laser-typeset by Human-Computer Interface Limited, Cambridge. 

Copyright© Acorn Computers Limited 1987 

Neither the whole nor any part of the information contained in, or the product described in, 
this guide may be adapted or reproduced in any material form except with the prior written 
approval of Acorn Computers limited (Acorn Computers). 

The product described in this guide and products for use with it are subject to continuous 
development and improvement. This applies particularly to the Arthur Machine Operating 
System, which will be subject to further development and improvement. All information of a 
technical nature and particulars of the product and its use (including the information and 
particulars in this guide) are given by Acorn Computers limited in good faith. However, it is 
acknowledged that there may be errors or ommissions in this guide or in the products it 
describes. A list of details of any amendments or revisions to the guide can be obtained upon 
request from Acorn Computers. Acorn Computers welcomes comments and suggestions 
relating to the product and this guide. 

All correspondence should be addressed to: 

Customer Support and Training, 
Acorn Computers Limited, 
Cambridge Technopark, 
645 Newmarket Road, 
Cambridge CBS 8PB. 

All maintenance and service on the product must be carried out by Acorn Computers' 
authorised dealers. Acorn Computers can accept no liability whatsoever for any l05s or damage 
caused by service, maintenance or repair by unauthorised personnel. This guide is intended 
only to assist the reader in the use of this product, and therefore Acorn Computers shall not be 
liable for any 105s or damage whatsoever arising from the use of any information or particulars 
in, or any error or omission in, this guide, or any incorrect use of the product. 

The British Broadcasting Corporation has been abbreviated to BBC in this guide. 

Acorn is a trademark of Acorn Computers Limited. 
Econet is a registered trademark of Acorn Computers limited. 
Archimedes is a trademark of Acorn Computers Limited. 
Vax is a trademark of the Digital Equipment Corporation. 

First published 1987 
Issue 1 November 1987 
Published by Acorn Computers limited 
Part number 0476,005 

ISBN 1 85250 052 2 



l oNTENTS 

INTRODUCTION 
CONVENTIONS USED IN THIS GUIDE 

FUNDAMENTAL OPERATING SYSTEM CONCEPTS 
INTRODUCTION 
COMMUNICATING WITH THE OPERATING SYSTEM 
SWINUMBERS 
ERROR HANDLING 
ERROR NUMBERS 
GENERATING ERRORS 
OS_BYTE AND OS_ WORD 
SOFfWARE VECTORS 
HARDWARE VECTORS 
INTERRUPTS 
TYPES OF INTERRUPTS 
EVENTS 
BUFFERS 
MISCELLANEOUS OS_BYTES 

CHARACTER OUTPUT 
CHARACTER OUTPUT ROUTINES 
THE OUTPUT STREAMS 
THE RS423 OUTPUT STREAM 
THE YOU STREAM 
THE PRINTER STREAM 
THE *SPOOL STREAM 

THE VDU DRIVERS 
YOU DRIVER CONCEPTS 
YOU CONTROL SEQUENCES 
THE YOU OS_BYTES 
THE YOU OS_ WORDS 
THE YOU SWI CALLS 
THE MOUSE AND POINTER 
THE YOU EXTENSION VECTOR 

1 

3 
3 
4 
6 
8 
9 
li 
13 
16 
30 
31 
32 
36 
42 
48 

51 
51 
54 
55 
56 
57 
63 

65 
65 
70 

104 
116 
121 
128 
134 

iii 



iv 

CHARACTER INPUT 
THE INPUT STREAMS 
BASIC INPUT ROUTINES 
LINE INPUT 
THE KEYBOARD 
THE *EXEC INPUT STREAM 

THE COMMAND LINE INTEPRETER 
CALLING THE COMMAND LINE INTERPRETER 
THE ACTION OF OS_CLI 
OPERATING SYSTEM COMMANDS 

FILING SYSTEMS 
INTRODUCTION 
FILES, DIRECTORIES AND PATHNAMES 
FILE TYPES AND DATE STAMPING 
FILESWITCH AND OS FILING SYSTEM COMMANDS 
OS FILING SYSTEM SWI CALLS 
THE ADVANCED DISC FILING SYSTEM 
THE NETWORK FILING SYSTEM 
CONFIGURATION COMMANDS 
INTERFACES 
NETPRINT, THE NETWORK PRINTING SYSTEM 
INTERFACES 
WRITING YOUR OWN FILING SYSTEM 

MEMORY MANAGEMENT 
NON-VOLATILE MEMORY (CMOS RAM) 
HEAP MANAGER 
MISCELLANEOUS MEMORY SWis 

THE PROGRAM ENVIRONMENT 
RUNNING AN APPLICATION 
LEAVING AN APPLICATION 
THE ENVIRONMENT SWis 
OPERATING SYSTEM VARIABLES 
SUMMARY OF EXECUTION MODES 

137 
137 
139 
140 
143 
181 

183 
183 
184 
189 

209 
209 
210 
213 
217 
231 
263 
283 
285 
286 
290 
292 
293 

317 
322 
325 
330 

333 
333 
334 
335 
345 
351 



MODULES 

TIME AND DATE 

NUMBER CONVERSIONS 

SPRITES 

THE WINDOW MANAGER 

THE FONT MANAGER 

SOUND 

THE DEBUGGER 

THE FLOATING POINT EMULATOR 

ECONET, THE TRANSPORT LAYER 

PODULE, THE PODULE SYSTEM MANAGER 

APPENDIX A - ARM ASSEMBLER 

APPENDIX B - THE LINKER 

ON TENTS 

APPENDIX C - ARM PROCEDURE CALL STANDARD 

APPENDIX D - OPERATING SYSTEM CALLS 

INDEX 

355 

391 

403 

417 

439 

489 

519 

567 

573 

585 

593 

595 

613 

623 

641 

I 

v 



vi 



I NTRODUCTION 

This guide describes the Arthur Operating System for the programmer who wants to 
make the most of the many facilities provided. This operating system is known as the 
'Arthur Operating System', but is usually just referred to as the 'OS'. The guide is 
organised into chapters each of which describes a particular aspect of the system. 
Because many of the functions are inter-related, you may find that in order to 
understand a subject fully, you will have to consult several chapters. 

At the end of the guide there are some tables which provide a quick reference to 
many of the operating system calls. You can often locate the information you require 
by scanning down the appropriate table. 

An appendix describes briefly the instruction set of the ARM processor. The 
operating system call descriptions are oriented towards the assembly language 
programmer, so some knowledge of ARM assembler is a definite advantage when 
using this guide. 

For information on the ARM chip set (the Acorn Rise Machine, ARM; the memory 
conrroller, MEMC; the video controller, VIDC; and the I/0 controller, IOC) you 
are referred to the appropriate Archimedes Hardware Reference Manual. 

CONVENTIONS USED IN THIS GUIDE 

The following conventions are applied throughout this guide: 

- Specific keys to press are denoted as IDelelel, [Qill, and so on. 

- Text you type on the keyboard and text that is displayed on the screen appears as 
follows: 

PRINT "Hello" 

1 



2 



lluNDAMENTAL OPERATING SYSTEM CONCEPTS 

INTRODUCTION 

The operating system (OS) is really just a collection of useful routines. Combined, 
they provide all the facilities that a programmer might expect to need when writing 
a complex program. For example, nearly all programs require a way of reading 
information from the user, and displaying results. The Arthur OS therefore provides 
a host of routines to perform these important input/output (IJO) operations. 

Other aspects of the OS are: 

- memory management 
- filing system management 
- command interpretation 
- time and date handling 
- data format conversion. 

Each of these major topics, and several more, are described in separate chapters. 

Some of the OS's work is performed 'behind the scenes'. This refers to the way in 
which it handles interrupts. An interrupt is a signal to the ARM processor indicating 
that a device requires attention. The OS will deal with this device by temporarily 
halting the user's program, and entering what is termed an interrupt routine. This 
routine deals with the interrupting device very quickly - so quickly, in fact, that you 
will never realise that your program has been interrupted. 

Amongst the devices which are handled under interrupts on the Archimedes are the: 

- keyboard 
- printer 
- RS423 port 
- mouse 
- disc 
- drives 
- built-in timers. 

Additionally, external hardware may cause new interrupts to be generated. For 
example, the analogue to digital convertor on the BBC 1/0 podule can interrupt 

3 



when it has finished a conversion. It is therefore possible to install routines which 
deal with these new interrupts. 

In fact, much of the OS is concerned with extendibility- allowing you to add to the 
features already provided to enhance the performance of the machine. A central 
feature of this is the relocatable module. A module is a piece of software which is 
loaded into RAM.lt conforms to various standards in the way in which it behaves, 
which means that the facilities provided by the module can be integrated into the 
system as if they were 'built-in'. It is very hard to tell whether a facility you are using 
is provided by the operating system itself, or is really an extension provided by a 
module. 

Because modules are so useful for providing system functions, much of the basic 
Archimedes software is implemented as modules. Thus, although facilities such as 
filing systems, sprites, sound, the window manager and fonts are described in this 
guide as though they were part of the OS, they are really just extension modules 
which always happen to be present. They differ from other modules, in that they are 
stored in the machine's ROM, and not loaded into RAM. However they work in the 
same way. In fact, you can totally replace a ROM module by loading a RAM module 
of the same name. 

COMMUNICATING WITH THE OPERATING SYSTEM 

4 

There is only one way in which a program can access an operating system routine, 
namely by using a SWI instruction. SWI stands for SoftWare Interrupt, and is one of 
the ARM's built-in instructions. When the ARM executes a SWI, it leaves the 
current program, and jumps to a fixed location in memory. At this location there is a 
branch instruction into the operating system ROM. The code in the ROM examines 
the SWI instruction, and determines which particular OS routine the user wanted. 
This is called, and when it is finished, control returns to the user's program. 



lluNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

The OS can work out what routine is required because the SWI instruction code 
contains a 24-bit information field. On the Archimedes, these 24 bits are used to 
identify a routine uniquely. Thus we talk about SWI numbers. These are the 
numbers embedded in the SWI instruction. A concrete example is the routine 
OS_ WriteC. This happens to have a SWI number of &00. In assembler it would be 
written 

SWI OS WriteC 

where OS_ WriteC has been set to &00. When this is assembled, the bottom 24 bits 
of the instruction are set to zero. When the instruction is executed, the OS looks at 
these 24 bits, and on discovering that they are all zeros, calls the routine to do the 
OS_ WriteC (which prints a character). 

In general, you don't have to worry about the exact mechanism used by the OS to 

decode the SWI instructions. As long as you use the right number after the SWI, the 
correct result will be obtained. This is particularly easy when you use the BBC 
BASIC assembler because you can refer to the routines by name. For example, the 
instruction: 

SWI "OS_Byte" 

will be assembled with the correct SWI number for the routine OS_Byte. As long as 
you spell the name correctly (including the case of the letters), you should never 
have to worry about SWI numbers. 

The prefix of the SWI name (OS in the example above) determines which part of 
the system wiJI deal with the SWI. OS obviously refers to the calls handled directly 
by the operating system. Examples of other prefixes are Font, Wimp, ADFS. The 
prefix is determined by the module which implements the SWI. 

Obviously, you need to be able to pass values to OS routines (parameters), and must 
be able to read values back (results). The ARM registers are used to pass information 
between the user and the OS. In general, RO is used to pass the first parameter, and 
then enough registers after that to pass the rest. It is rare for a routine to use more 
than 4 or 5 registers. 

5 



SWINUMBERS 

6 

When the information passed is numeric, character or address, the data itself is 
generally stored in the register. However, if the data is a string, or a large amount of 
numeric data, then it passes a pointer to the data instead. For example, filenames are 
passed as pointers to the characters in memory, and the window manager uses 
pointers to large window descriptors. 

The 24 bits used to encode the SWI number in the instruction allow SWis in the 
range 0- 16777215 to be used. This SWI 'address range' is divided up into several 
parts under the OS. For example, SWis in the range 0- 262143 provide the basic 
operating system functions. (Fewer than 150 of these are currently used, however.) 
Modules can provide their own SWis, and these must be given unique numbers to 
avoid clashes. 

Finally, you can provide your own SWI actions. When a program executes a SWI 
whose number is not recognised by the OS or any of the modules in the machine, 
the OS calls a special routine called the 'Unused SWI vector'. Usually, this will just 
cause the error No such SWI. However, a user program can intercept this and, if the 
SWI number is one that it recognises, perform the appropriate task. 

This section explains in detail how SWI numbers are allocated. The bottom 24-bit 
section of the SWI op-code is divided up as follows: 

Bits 20-23 

These are used to identify the particular operating system in the machine. All SWis 
used under Arthur have these bits set ro zero. 

Bits 18- 19 

These are used to identify which part of the system software implements the SWI, as 
follows: 



UNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

Bit 19 Bit 18 Meaning 

0 
0 
1 
1 

0 
1 
0 
1 

Operating system 
System modules and Acorn extensions 
Third party resident applications 
User applications 

Thus OS SWls, such as OS_ WriteC, have both bits clear. Modules such as filing 
systems and the Font manager have bit 18 of their SWis set, so their SWI numbers 
start at &40000. Any software distributed by other software houses should have bit 
19 set and bit 18 clear. 

Bit 17 

This is used to determine the action taken on errors. It is the 'X' bit. Error handling 
in SWis is described below. 

Bits 6-16 

These are the SWI Chunk Identification numbers. They identify a block of 64 
consecutive SWis. Anyone wishing to use one of these blocks of SWis for distributed 
software should apply in writing to Acorn Computers who will allocate a unique 
value. 

The current Acorn chunk numbers are: 

SWI base 

&40000 
&40040 
&40080 
&400CO 
&40100 
&40140 
&40180 
&401CO 
&40200 

Use 

Econet 
NetFS 
Font 
Wimp 
TUBE 
Sound (level 0) 
Sound (level 1) 
Sound (level 2) 
Net Print 

7 



ERROR HANDLING 

8 

&40140 
&40280 
&402CO 
&40300 
&40340 
&40380 
&403CO 
&40400 
&40440 

Bits 0-5 

ADFS 
Podule 
ARM PC 
WaveSynth 
I ntell igentl nterfaceiEEE 
Debugger 
SCSIDriver 
VFS 
VideoCommand 

These identify individual SWis in a chunk. Hence a third party may use SWis in the 
following binary range: 

00001 OnnnnnnnnnnnnOOOOOO to 00001 Onnnnnnnnnnnn 111111 

where nnnnnnnnnnnn is the chunk number that the software house has been 
allocated. 

It is reasonable to expect that most SWis can generate an error. For example, if you 
pass an invalid memory address as a parameter, or a number outside of the expected 
range, you would expect the SWI routine to tell you about it. 

SWis report errors in a consistent way. If no error occurred, and the desired action 
was performed, the SWI will clear the ARM's V (overflow) flag on exit. If the SWI 
routine wishes to indicate that an error did occur, V will be set on exit. Furthermore, 
RO will contain a pointer to an error block, which is described below. 

Now, just before the operating system passes control back to the user, it checks the V 
flag. If it is clear (no error) control passes directly back to the user. 

IfV is set (ie the SWI routine gave an error), the OS performs an action dependent 
on exactly how the SWI was called in the first place. In particular, if the SWI 



ERROR NUMBERS 

1!1 UNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

number had its bit 17 set, the OS just returns to the user. The V flag will still be set 
to indicate an error, and RO will contain the error pointer. 

If the SWI number had bit 17 clear, then on detecting the error the OS calls a 
special error handler routine. This routine is usually set up by the current 
application, so that when an error occurs, control passes to the application, which 
deals with the error appropriately. In fact, the OS first notifies modules of the error 
using a service call, then calls the error vector. (Vectors are a very important part of 
the operating system, and are described later in this chapter.) 

These two types of SWI are known as error-generating (bit 17 clear) and error
returning SWls. For every SWI, you can call either version, depending on whether 
you want to detect the error yourself, or leave the current error handler to deal with 
it. 

SWI names also come in two varieties. The error-generating SWis are of the form we 
have already seen: OS_Byte, Font_Paint, etc. Error-returning SWis, with bit 17 set, 
are prefixed by an X, eg XOS_Byte, XFont_Paint. 

The error block pointed to by RO has the following format: the first four bytes form a 
word containing the error number; following this word is the textual error message, 
terminated by a zero byte. An error block must be word-aligned, and must be less 
than 256 bytes long. 

Just as the 24-bit SWI number is divided into different fields, 32-bit error numbers 
are also split up. Error numbers are partitioned as described below. 

The top byte contains flags: 

- Bit 31, if set, implies that the error was a serious one, usually a hardware 
exception (eg the program tried to access non-existent memory), from which it 
wasn't possible to return properly with V set. 

- Bit 30 is defined to be clear, and can therefore be used by programmers to flag 
internal errors. 

9 



10 

- Bits 24 - 29 are reserved. 

The bottom byte is the basic 'error number'. 

The middle two bytes constitute a 'generator' identifier. External authors producing 
their own errors should apply to Acorn for an identifier. 

The following error ranges been reserved: 

Range 

&000-&0FF 
&100-&llF 
&120-&13F 
&140- &15F 
&160-&17F 
&180-&1AF 
&1B0-&1BF 
&1C0-&1DF 
&1E0-&1EF 

&200-&27F 
&280-&2BF 
&2C0-&2FF 

&300-&3FF 
&400-&4FF 
&500-&SBF 
&5C0-&5FF 
&600 - &63F 
&640-&6FF 
&700-&7FF 
&800-&8FF 

&1XXOO- &lXXFF 
&10800- &108FF 

Error generator 

Operating system - BBC-compatible error 
OS_Module errors 
OS_ReadVarVai/SetVarVal errors 
Redirection manager errors 
OS_EvaluateExpression errors 
OS_ Claim/Release errors 
OS_ ChangeDynamicArea errors 
OS_ChangeEnvironment errors 
OS_CLI/miscellaneous errors 

Font manager errors 
Wimp errors 
Date/time conversion errors 

Econet errors 
FileSwitchErrors 
Podule errors 
Printer driver errors 
General OS errors 
International module errors 
Sprite errors 
Debugger errors 

Errors from FS number &XX 
ADFS errors 



Sound errors 
SCSI errors 

lluNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

&20000- &200FF 
&20100- &201FF 
&20200 - &202FF Video command errors 

GENERATING ERRORS 

In addition to detecting errors, a program might want to generate an error, to call the 
current error handler so that the user can find out about the problem. A common 
example occurs when a program detects that IEscapeJ is pressed. This is usually a sure 
sign that the user wants to abandon the current operation. The standard response is 
for the program to acknowledge the escape (see the chapter CHARACTER 
INPUT for details), and generate an Escape error. This is then dealt with by the 
current error handler. 

To generate the error, the program calls the SWI OS_GenerateError. On entry, RO 
contains a standard error block pointer. The routine never returns to the caller, as it 
is very difficult to resume after an error. For example, BASIC's error handler will 
cause the current BASIC program to terminate, returning control to the command 
mode, or to execute an ON ERROR statement, if one is active. We will use 
OS_GenerateError to illustrate the way in which SWis are documented in this 
guide. The entry and exit conditions are listed, followed by a short description of the 
call. 

Any registers not mentioned on entry are irrelevant to the call. Any registers not 
mentioned on exit can be assumed to be preserved. 

OS_GenerateError &2B (43) 

On entry: RO =pointer to error block 

On exit: either doesn't return or rerums with V set 

OS_GenerateError generates an error and invokes the the error handler. Whether or 
not it returns depends on the type ofSWI being used.IfXOS_GenerateError is used, 
the only effect is to set the V flag. This is not very useful. 

ll 



12 

Here is an example of how OS_GenerateError would be used: 

SWI "OS_ReadEscapeState" 
BCC noEscape 
ADR RO,escapeBlock 

SWI "OS GenerateError" 
.noEscape 

.escapeBlock 
EQUD 17 
EQUS "Escape"+CHR$0 
ALIGN 

The command line interpreter 

;Sets C if escape 

;Get ptr. to error block 
;Do the error - doesn't return 

;Error number for escape 
;Error string 

One particular SWI is very important because it allows commands to be passed to 
the OS textually, instead of through machine code instructions. The call OS_CLI 
takes a pointer to a string. It then interprets that string by executing the command 
contained within it. There are several commands built into the Archimedes OS, and 
modules add many more. 

The user generally calls the command line interpreter (CLI) by prefixing a command 
to the current application with a *.The application recognises the * prefix and 
passes the input line to OS_CLI, instead of trying to execute it itself. The user is said 
to issue (or execute) a * command. 

Because the CLI is so important, it is given a chapter of its own. In that chapter, 
most of the built-in OS commands are described. The rest of the available 
commands are described in the chapters appropriate to the command. For example, 
filing system commands are described in the chapter FILING SYSTEMS. 

Often, a* command does little more work than call a couple ofSWis. However, 
whereas it would be very difficult to arrange for a user to be able to call SWis directly 
from most applications, it is very easy to allow him or her to type in * commands. 
Consider the command *TIME. This prints the time and date on the screen. All the 
command really does is call three SWis. You can achieve the same effect with a few 
lines of BASIC: 



DIM time 5, str 100 
?time ~ 3 

SYS "OS_Word",14,time 

UNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

SYS "OS_ConvertStandardDateAndTime",time,str,lOO 

SYS "OS_WriteO",str : PRINT 

Most people would agree that the * command version is somewhat more convenient. 

One disadvantage of using the CLI to perform a task is that it is harder to pass 
information back to the user. For example, many of the SWis described in this guide 
can be used either to set up a system function, or to read the current status of that 
function without altering its present state. On the other hand, * commands can 
generally only perform a set or a read operation, not both. 

Just as a module may add new SWI numbers to the system, it may also add new * 
commands. Most of the work of decoding (ie looking up) the command is performed 
by the OS. The module is called at an address given in its table of commands, and 
the OS sets up some information for it, such as a pointer to the rest of the command 
line (so the routine can read any parameters), the number of parameters on the line, 
and a pointer to the module's workspace. 

Finally, like many of the common SWis, the OS_CLI routine is vectored. This 
means that its operation may be altered, or replaced entirely, by a routine provided 
by the user. The section Software vectors describes vectors in detail. 

OS_BYTE AND OS_ WORD 

Most SWis deal with only one task. For example, OS_Module deals with modules, 
OS_RemoveCursors just removes cursors, and so on. However, there are two calls 
which perform a wide variety of operations. They are called OS_Byte and OS_ Word. 
They exist, principally, to ease the conversion of software from the BBC and Master 
series of computers. The operating systems on these machines have two 
corresponding routines called OSBYrE and OSWORD. 

Because the calls are multi-purpose, they tend to appear in more than one chapter of 
this guide. This section documents the calls in general terms, so that when examples 

13 



14 

of their use are given later on, you will understand the entry and exit conditions 
better. 

OS_Byte takes one, two or three parameters. The first parameter, passed in RO, is the 
reason code. This indicates which particular OS_Byte is required. It has the range 
0 - &FF. Thus when we talk about 'OS_Byte &81', this is shorthand for 'OS_Byte 
with RO set to &81 on entry'. A complete list of the OS_Byte numbers may be found 
in the appendix SUMMARY OF OPERATING SYSTEM CALLS. 

The second and third parameters are passed in R l and R2. These too are in the range 
0- &FF; the name OS_Byte comes from the fact that it deals with byte-wide 
parameters. 

The calls may be grouped into three main classes, according to the value ofRO on 
entry.lfRO < &80 (128), then generally only Rl is used to pass further information. 
These calls are used for setting, for example, the auto-repeat rate of the keyboard, 
where only one single-byte quantity is required. 

In addition to setting the appropriate system variable, these calls may also perform 
some other task. For example, OS_Byte &05 sets the printer type, and also waits for 
the current printer buffer to become empty before returning. Although these calls 
sometimes return the 'previous' state of whatever is being changed, they are normally 
used for the action they perform, rather than the information they return. 

When RO is between &80 (128) and &A5 (165), both Rl and R2 are used to hold 
parameters, and both registers may contain information on exit from the call. The 
calls are often used for the results they return, rather than to perform particular 
actions. 

For calls with RO between &A6 ( 166) and &FF (255) on entry, the action is the 
same for each value. RO acts as an index into the RA.i\11 which contains certain 
system variables. These variables are held in consecutive memory locations, with 
RO=&A6 accessing the first one, RO=&A 7 affecting the second one, and so on. The 
contents of Rl and R2 determine what happens to this system variable, as follows: 

New Value ., (Old Value AND R2) EOR Rl 



UNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

The most useful application of this rule occurs when the old value is returned 
without being altered (allowing the status to be read 'non-destructively') as shown 
below: 

R2 = &FF and Rl = &00 

and where the value is set to a particular number: 

R2 = &00 and R 1 = new value 

These are the only cases which are stated in the descriptions of OS_Bytes in this 
guide. Other values ofRl and R2 may be used to alter only selected bits of the 
variable. For example, to set bits 2 - 4 to the binary pattern 101, and leave the rest 
unaltered, you would use: 

R2 = &E3 (2_11100011) and Rl = &14 (2_00010100) 

In all cases, the calls in the range &A6- &FF return with the previous value of the 
variable in Rl and the value of the next variable (ie the one which would be 
accessed with RO+ 1) in R2. 

Many of the calls in this last group access the same system variables as the low
numbered calls, between &00 and &7F. However, as noted above, the lower group 
may also perform some other action in addition to changing the variable value. This 
means that the lower group should be used to alter a variable, whereas the upper 
group may be used for reading the current value without changing it. 

Because OS_Bytes perform many useful functions, a • command is provided to call 
the routine directly. It has the syntax: 

*FX a 
*FX a [,1 b 
*FX a ( , I b ( , I c 

The command is followed by one, two or three parameters, which may be separated 
by spaces or commas. The values a, band care loaded into register RO, Rl and R2 
respectively before the OS_Byte is called. Any omitted values arc set to zero. 

15 



The OS_ Word call also takes a reason code in RO. The parameter in Rl, which must 
always be given, is a pointer to a parameter block. This is an area of memory where 
input parameters are passed to the OS_ Word, and where results may be stored. 
OS_ Word is generally used where the two bytes allowed by OS_Byte are not 
sufficient to pass the required parameters or results. The size of the parameter block 
varies from call to call, and is documented with each OS_ Word description. 

Like OS_Byte, OS_ Word is multi-purpose, and covers such areas as reading the time 
and date, setting the screen's 'palette', and reading the definition of are-definable 
character. There are far fewer OS_ Words than OS_Byte, 0- &16 being the current 
range afRO on entry. This is because calls which require multiple parameters are 
often given their own SWI numbers, with registers being used to hold the values, as 
these are more efficient in execution than OS_ Words. 

SOFTWARE VECTORS 

16 

Vectors have already been mentioned a couple of times in this chapter. A vector 
provides a way of enabling you to change the actions of certain fundamental system 
routines. When the OS calls such a routine, it docs not pass control directly to the 
code in ROM. Instead, it jumps to the routine pointed to by a memory word- this 
word is the vector. 

Consider the OS_ WriteC routine as a concrete example. When the OS deaxles a 
SWI with SWI number &00, it knows that you are requesting a write character 
operation. Now it could just jump to the appropriate place in the OS ROM. 
However, this would never allow the action of OS_ WriteC to be altered. So instead, 
the OS loads an address from a memory word- the vector called WriteCV, and 
passes control to that routine. 

Now by default, the WriteCY contains the address of the standard write character 
routine in ROM. However, you can change this to point to your own routine by 
calling the SWI OS_ Claim, documented later in this section. After you have 
claimed the vector, whenever an OS_ WriteC is executed, your routine will be 
called, with the same entry conditions. Once your routine has finished, it can either 
pass the call on, so that the OS write character is still executed, or 'intercept' the 
call, which will cause control to return to you immediately. 



. UNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

In fact, there may be more than one routine on a given vector. The routines are 
called in the reverse order to the order in which they called OS_ Claim: the last 
routine to OS_Claim the vector will be the first one called. If that routine passes the 
call on, the next most recent claimant will get the call, and so on. If any of the 
routines on the vector intercept the call, the earlier claimants will not be called. 

There are some vectors which should not be intercepted; they must always be passed 
on to other claimants. This is because the default owner, ie the routine which is 
called if no one has claimed the vector, might perform some important action. The 
error vector, ErrorV, is a good example. The default owner of this vector is a routine 
which calls the error handler. If you intercept ErrorV, the error handler will never be 
called, and errors won't be dealt with properly. 

A routine, using a vector, should obey the rules determining which registers are 
preserved for that call, etc. If passing the call on, the routine should leave all 
registers intact, unless they are deliberately altered to change the effect of the call. If 
intercepting the call, the routine should preserve all unused registers to pass back 
results. 

Vector SWI calls 

The SWls which control the use of vectors are documented below: 

OS_Claim &lF (31) 

On entry: RO =vector number 

On exit: 

Rl =address of claiming routine 
R2 = value to be passed in R12 when the routine is called 

This call adds the routine whose address is given in Rl to the list of routines 
intercepting the vector. This becomes the first routine to be used when the vector is 
called. 

17 



18 

The R2 value enables the routine to have a workspace pointer set up in R12 when it 
is called. If the routine using the vector is in a module (as will often be the case), this 
pointer will usually be the same as its module workspace pointer. 

See below for a list of the vector numbers. 

Example: MOV RO, tByteV 
ADR Rl, MyByteHandler 
MOV R2, tO 
SWI "OS Claim" 

OS_Release &20 (32) 

On entry: RO = vector number 

On exit: 

Rl - address of releasing routine 
R2 = value given in R2 when claimed 

This removes the routine, which is identified by both its address and workspace 
pointer, from the list for the specified vector. The routine will no longer be called. 

Example: MOV RO, tByteV 
ADR Rl, MyByteHandler 
MOV R2, tO 
SWI "OS Release" 

OS_CallA Vector &34 (52) 

On entry: RO- R8 =vector routine parameters 
R9 = vector number 

OS_CaiiAVector calls the vector number given in R9. RO- R8 are parameters to 
the vectored routine; see the descriptions below for details. This is used for calling 
vectored routines which don't have any other entry point, such as the lnsV vector. 



OS_UpCall &33 (51) 

On entry: RO = reason code 
Rl - R3 depend on reason code 

On exit: RO depends on response to upcall 

UNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

OS_UpCall calLs the UpCall vector. This is called in (potentially recoverable) error 
circumstances by the system, so corrective action can be taken. For example, ADFS 
executes an OS_UpCall before issuing a Disc not present error, so the 
application in control of the screen can print an appropriate prompt for the disc to 
be inserted. 

There are two currently defined reason codes, as follows: 

RO = 1 

This is issued by the filing system to indicate 'medium not present'. If the code on 
the UpCall vector can take corrective action, such as by prompting the user to insert 
the correct disc, then the code should return (by intercepting the vectored call) with 
RO = 0. If no action can be taken, the call should be passed on. 

When the UpCall vector is called, the following registers are set up: 

Rl filing system number, eg 8 for ADFS 
R2 pointer to a null-terminated disc name required, or - 1 
R3 device number, if appropriate, or - 1 if not 

RO = &100 

This call is made just before a new application is going to be started (eg due to a 
•RUN or module command). If for some reason you don't want the application to 
start, you should set RO to 0 and claim the call. This will cause the error Unable to 
start application to be given. Otherwise, you should pass the call on with all 
registers intact. 

19 



20 

Writing v~tor code 

A routine using a vector has tO obey certain rules. It must obey the entry and exit 
conditions of the OS routine in question. For example, a routine on WriteCV must 
preserve all registers. Routines intercepting a vector are allowed to return errors by 
setting the V flag, and storing the error pointer in RO. 

The processor mode in which the routine is entered depends on the vector. Most 
vectors are called in SYC mode. This is the mode used when the SWI instruction is 
executed. An important thing to remember about this mode is that if you call 
another SWI, R14 will be corrupted. This is not the case when a user-mode program 
calls a SWI. Consequently, the routine should use the (full, descending) stack 
addressed by R13 to save Rl4 first. 

The event vector is called in IRQ mode, and has access to the IRQ stack. From 
within the event code, all the usual restrictions of interrupt routines must be 
observed. 

One of two methods is used to return from a vectOred routine. If a routine wishes to 
pass on the call (to the previous owner), it should return by copying the value ofRl4 
with which it was entered into the PC. This can be done by: 

MOV PC,R14 

If you wish to intercept the call, it should pull an exit address (which has been set up 
by the operating system) from the stack and jump to it. This should be done by: 

LDMFD R13!,{PC} 

Sometimes, a routine may want to call the previous owner of the routine, and modify 
the resultS that it produced before returning to the original caller. This may be 
achieved as follows: 



STMFD Rl3!, {R9} 

lluNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

;Save work register 
ADR R9, cont+SVC_Mode ;'Fudge' a return address on the 

;stack for previous owner STMFD Rl3!, R9 
MOV PC, Rl4 

.cont 

;Call previous owner 
;the previous owner returns here 
;Process results returned 

LDMFD Rl3!, {R9,PC} ;Restore R9 and claim call 

The return address, pushed on the stack for the default owner, must also have the 
correct mode bits set, in this example SVC_Mode (the bottom two bits ofR15 set). 

Vector descriptions 

The operating system vectors are: 

ErrorV 
IrqV 
WriteCV 
ReadCV 
CliV 
ByteV 
WordY 
FileV 
ArgsV 
BGetV 
BPutV 
GBPBV 
FindV 
ReadLineV 
FSControiV 
Even tV 
InsV 
RemV 
CnpV 
UKVDU23V 
UKSWIV 

(&01) Error vector (OS_GcnerateError) 
(&02) Interrupt vector 
(&03) Write character vector (OS_ WriteC) 
(&04) Read character vector (OS_ReadC) 
(&05) Command line interpreter vector (OS_CLI) 
(&06) OS_Byte indirection vector 
(&07) OS_ Word indirection vector 
(&08) File read/write vector (OS_File) 
(&09) File arguments read/write vector (OS_Args) 
(&OA) File byte read vector (OS_BGet) 
(&OB) File byte put vector (OS_BPut) 
(&OC) File byte block gee/put vector (OS_GBPB) 
(&OD) File open vector (OS_Find) 
(&OE) Read a line of text vector (OS_ReadLine) 
(&OF) Filing system control vector (OS_FSControl) 
(&10) Event vector (OS_GenerateEvent) 
(&14) Buffer insert vector 
(&15) Buffer remove vector 
(&16) Counc/Purge Buffer Vector 
(&17) Unknown VDU23 vector (OS_ WriteC) 
(&18) Unknown SWI vector (SWl) 

21 



22 

UKSWIY 
UKPLOTV 
MouseY 
YOU XV 
TickerY 
UpcallY 
ChangeEnvironmentY 

(&18) Unknown SWI vector (SWI) 
(&19) Unknown YDU25 vector (OS_ WriteC) 
(&l A) Mouse vector (OS_Mouse) 
(&lB) YOU vector (OS_ Write) 
(&lC) 100Hz pacemaker vector 
(&ID) Warning vector (OS_UpCall) 
(&IE) Environment change warning 

(OS_ ChangeEnvironment) 

The names of the routines which can cause the vector to be called are in brackets. 

More details of these vectors are given below. For the vectors which correspond to 
OS calls documented elsewhere, you should see those sections for the entry and exit 
conditions of the vector. 

Note that the filing system vectors FileY (&08) to OpcnY (&OD) have 'no default 
action', ie they return immediately. However, the FileSwitch module (described in 
the chapter FILING SYSTEMS) OS_ Claims the vectors whenever the machine is 
reset, so effectively the default action is to perform the appropriate filing system 
routine. 

ErrorV (&01)- Error vector 

On entry: RO = pointer to an error block 

On exit: 

This vector is called when an error is generated. When the end of the chain is 
reached (ic when the default vector owner is called), the error handler is called. The 
error block pointed to by RO consists of a one-word error number followed by a null
terminated error string. 

- Note: it is important that routines on this vector do not intercept it. If they do, 
the owner of the error handler will never be called, and strange things will occur. 
You should view this as a 'warning' vector, which gives you the opportunity, for 
example, to set an internal flag before passing it on. 



lrqV (&02)- Unknown interrupt vector 

On entry: Processor in IRQ mode, IRQs disabled 

On exit: -

l uNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

This vector is called when an unknown IRQ is detected. No information is passed to 

the routine. The routine finds out if the device causing the interrupt request is its 
responsibility, and if so deals with it appropriately. If this is done, the call should be 
claimed, otherwise (if your routine does not recognise the interrupt) it is passed on. 

The routine preserves all registers, keeps IRQs disabled, and rerums as quickly as 
possible. The default action is to generate an Unknown IRQ error. 

Wrch V (&03) - Write character vector 

This vector is used to indirect all calls to OS_ WriteC. The default action is to call 
the ROM write character routine. 

Rdch V ( &04) - Read character vector 

This vector is used to indirect all calls to OS_ReadC. The default action is to call 
the ROM read character routine. 

CliV (&05)- Command line interpreter vector 

This vector is used to indirect all calls to OS_ CU. The default action is to call the 
ROM command line interpreter. 

ByteV (&06)- OS_Byte indirection vector 

This vector is used to indirect all calls to OS_Byte. The default action is to call the 
ROM OS_Byte routine. 

23 



24 

WordV (&07)- OS_ Word indirection vector 

This vector is used to indirect all calls to OS_ Word. The default action is to call the 
ROM OS_ Word routine. 

FilcV (&08)- File read/write vector 

This vector is used to indirect calls to OS_File. See the note above for the default 
action. 

ArgsV (&09)- File arguments read/write vector 

This vector is used to indirect calls to OS_Args. See the note above for the default 
action. 

BGctV (&OA) - File byte read vector 

This vector is used to indirect calls to OS_BGet. See the note above for the default 
action. 

BPutV (&OB)- File byte put vector 

This vector is used to indirect calls to OS_BPut. See the note above for the default 
action. 

GBPBV ( &OC) -File byte block get/put vector 

This vector is used to indirect calls to OS_GBPB. See the note above for the default 
action. 

Open V ( &OD) - File open vector 

This vector is used to indirect calls to OS_Find. See the note above for the default 
action. 



RcadlineV (&OE)- Read line vector 

UNDAMENT AL OPERATING 
SYSTEM CONCEPTS 

This vector is used to indirect calls for SWI OS_ReadLine. The default action is to 
call the ROM OS_ReadLine routine. 

FSCV (&OF)- Filing system control vector 

This vector is used to indirect calls to OS_FSControl. See the note above for the 
default action. 

EventV (&10)- Event vector 

This vector is called by OS_GenerateEvent (which all event-generating routines 
use). For details on the entry conditions see the section Events below. The default 
action is to call the event handler. See the chapter THE PROGRAM 
ENVIRONMENT for details of this and other handlers. 

lnsV (&14)- Buffer insert vector 

On entry: RO = character to be inserted 
Rl =buffer number 

On exit: R2 is undefined 
C = 1 implies insertion failed 

This routine is called by OS_Byte &SA and OS_Byte &99. The default action is to 
call the ROM routine to insert a character into a buffer. It may also be called using 
OS_ CaliA Vector. It should be called with interrupts disabled (the OS_Bytes do this 
automatically). 

See the section Buffers for a description of the available buffers. 

RemV (&15)- Buffer remove vector 

On entry: Rl =buffer number 
R3 - 1 if buffer to be examined only, else R3 = 0 

25 



26 

On exit: RO = next character to be removed (for examine option) 
R2 = character removed (for remove option) 
C = 1 means buffer was empty on entry 

This vector points to the operating system routine used to remove a character from a 
buffer or to examine the next character to be removed. It is used by OS_Byte &91 
and OS_Byte &98. The default action is to call the ROM routine to inspect or 
remove a character from a buffer. 

If the remove option is used then the character is returned in R2. If the buffer was 
empty then the carry flag is returned set. 

CnpV (&16)- Count/purge buffer vector 

On entry: Rl • buffer number 
R3 = desired effect 
C = return value flag, ifR3=0 

On exit: RO is undefined 
Rl is count, ifR3=0 on entry 

This vector points to the operating system routine used to count the number of 
entries in a buffer or to purge the contents of a buffer. R3 determines the operation 
as follows: 

count the entries in a buffer 
purge the buffer 

If the entries are to be counted then the result returned depends on the carry flag on 
entry as follows: 

C = 0 return the number of entries in the buffer 
C = 1 return the amount of space left in the buffer 

This vector is used by OS_Bytes &OF, &15 and &80. 



UKVDU23V (&17)- Unknown VDU23 vector 

UNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

On entry: RO = VDU 23 option requested 
Rl = pointer to VDU queue 

On exit: 

This vector points to a routine to handle the case when VDU 23,n has been issued, 
and n is not a recognised value, ie it is in the range 18 - 25 or 28 - 31. The nine 
parameters sent after the VDU 23 command are stored in the VDU queue. Rl points 
to the byte holding n, and RO also contains n. 

The default action is to do nothing, ie unknown VDU 23s are usually ignored. 

SWIV (&18)- Unknown SWI vector 

On entry: RO- R9 as set up by the caller 
Rll = SWI number 

On exit: -

This vector points to a routine to handle the case when a SWI call has been issued 
with an unknown SWI value. Before this vector is called, the OS tries to pass the 
call to any modules which have SWI table entries in their header. 

The default action is to call the unknown SWI handler. The usual action of this 
handler is to give a No such SWI error. See the chapter THE PROGRAM 
ENVIRONMENT for more details of how the SWI handler is called. 

UkPlotV (&19)- Unknown VDU 25 vector 

On entry: RO =PLOT number 

On exit: 

This vector points to a routine to handle the case when an unrecognised VDU 25 
(PLOT) number has been used. The co-ordinates of the last three points, which 

27 



28 

On entry: 

have been visited, may be read using OS_ReadVduVariables. The contents ofVDU 
variables 138 - 14 7, at the point when the vector is called, are: 

GCsX 
OlderCsX 
OldCsX 
GCsix 
NewPtX 

Co-ordinates given in unknown plot command {external) 
Last but two point visited (internal) 
Last but one point visited (internal) 
Last point visited {graphics cursor) (internal) 
Co-ordinates given in unknown plot command (internal) 

When the call returns, the VDU drivers update the variables, so that the point given 
in the unknown plot becomes the graphics cursor position. The previous graphics 
cursor becomes the last point but one, the previous last point but one becomes the 
last point but two, and the previous last point but two is lost. 

The default action is to do nothing, ie unknown plot commands have no effect. 

MouseV (&lA)- Mouse vector 

On exit: RO = x position of mouse 
R 1 = y position of mouse 
R2 = button state 
R3 = monotonic time of the reading 

This is the vector called by OS_Mouse. The default action is to examine the mouse 
buffer. If there is an entry, this is used to form the return registers. If the buffer is 
empty, the current state is read, and the current monotonic time is used for R3 . 

VDUXV (&lB)- VDU extension vector (under certain conditions only) 

On entry: RO = Byte sent to the VDU 

On exit: 

This vector points to a routine to handle calls to the VDU when bit 5 of the 
OS_ WriteC destination flag is set. When this bit is set, all characters sent to the 



l!luNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

YDU driver are routed through this vector instead. Note that this only affects the 
display driver: other output streams such as the printer and *SPOOL file are called as 
usual, even when YDUXY is used for screen updating. 

It is up to the owner of the vector to perform the usual queuing of parameter bytes 
etc. The default owner of this vector does nothing, so issuing a *FX3,32 call is much 
the same as disabling the YOU using ASCII 21. 

The font manager uses this vector. Sec the chapter VDU DRIVERS for more 
details on the YOU streams. 

TickerV (&lC)- 100Hz pacemaker vector 

On entry: processor in IRQ mode 

On exit: 

This vector is called every centi-second. It should never be intercepted, as this might 
prevent other users from being called. A typical use of this call is in writing an 
interrupt driven custom printer driver. 

UpCallV (&lD)- Warning vector 

On entry: See SWI OS_UpCall above 

On exit: See SWI OS_ Upcall above 

This vector is called by OS_UpCall. The entry and exit conditions for that call are 
documented above. The default action is to return immediately. 

ChangeEnvironmentV (&lE)- Warning of change in environment 

On entry: RO = change handle 
Rl = new value 
R2 = R12 to be called with 
R3 depends on RO 

29 



On exit: Rl = 0 to stop change from taking place 

This vector is called whenever a program issues an OS_ChangeEnvironment. It is 
called with the same entry conditions as that routine. If you have OS_Ciaimed this 
vector, and if you do not want the change to occur, you should set Rl to 0 and pass 
the call on. See the above-mentioned SWI for more details of when this is used (and 
the chapter THE PROGRAM ENVIRONMENT). 

HARDWARE VECTORS 

30 

The hardware vectors are a set of words starting at logical address &0000000. They 
are used by the ARM processor in certain exceptional circumstances. Usually, a 
vector will contain a branch to a routine to handle the exception. The vectors and 
their addresses are: 

Address Vector Default contents 

&00 Reset B branchThruOError 

&04 Undefined instruction LDR PC, UndHandler 
&08 SWI B decodeS WI 
&OC Prefetch abon LDR PC, Pabhandler 
&10 Data abon LDR PC, DabHandler 
&14 Address exception LDR PC, AexHandler 

&18 IRQ B handleirq 
&lC FIQ FIQ code 

The Reset vector is always under control of the hardware; it can never be usefully 
altered because on resetting the machine, ROM is temporarily switched into 
location zero, so the Reset vector will always be the same. Any attempt to jump to 
this location will result in a Branch through zero error. 

The middle group of vectors, except SWI, are under the control of various 
'environment' handlers. These may be set and read as described in the chapter THE 
PROGRAM ENVIRONMENT. Very few programs need to take account of these 
vectors. The usual action of these exceptions is to cause an error. If the floating point 



INTERRUPTS 

UNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

emulator is active, it intercepts the undefined instruction vector to interpret floating 
point instructions. 

The SWI vector contains a branch to the OS code which determines the SWI 
number and branches to the appropriate location. If no built-in or module SWI 
corresponds to the number given, the unused SWI vector is called. It is not 
recommended that you replace this vector. 

The IRQ vector also contains a branch into the OS code. This code attempts to deal 
with the interrupt by examining the hardware devices that are expected to interrupt 
the processor. If none of these prove to be the source of the interrupt, the software 
vector IrqV is called. 

Finally, FIQ doesn't usually contain a branch, but is the first instruction of a RAM
based routine to deal with the FIQ. See the next section for more details on IRQ and 
FIQ. 

Interrupts are signals from various hardware devices to the CPU to tell the processor 
that a device requires attention. They are sent, for example, when a key has been 
pressed or when one of the software timers needs updating. They provide a very 
efficient means of control since the processor doesn't have to be responsible for 
regularly checking to see if it needs to deal with any background tasks of this nature. 
Instead, it can concentrate on executing your code or whatever else its current main 
task may be, and only deal with the background tasks when necessary. 

If a device wants attention, it alters the status of its interrupt request pin, setting it 
either high or low depending on the particular device. Then, if interrupts are 
enabled, the CPU: 

- finishes executing the current instruction 

- stores the program counter in the interrupt mode's R14 

- disables interrupts so that the interrupt routine may not be interrupted 

31 



then passes through the hardware interrupt vector to the interrupt handling 
routine. 

The routine must discover which device requested the interrupt. Any device, which 
is capable of requesting interruptS, has a starus byte mapped in memory, of which one 
particular bit is set if it is requesting an interrupt. Hence, the interrupt bitS of all 
these registers are checked in order from the most time-sensitive to the least time
sensitive to find out which device put in the request. The interrupt condition must 
be cleared to prevent further interruptS. The method of doing this depends on the 
device. However, a common method is for the status byte to be 'read sensitive' so 
that the act of reading the value in it automatically clears the interrupt request bit. 

Once the interrupt routine for the device has been executed a 'return from interrupt' 
is performed. This is done using the instruction: 

SUBS PC, R14, 14 

The Rl4 used is the IRQ/FIQ mode one. The CPU then continues executing the 
interrupted program at the next instruction. 

You are not likely to have to employ such code yourself, as interruptS, like all other 
aspectS of the machine's operation, are under the control of the OS. 

TYPES OF INTERRUPTS 

32 

There are actually two classes of interruptS, normal interruptS and fast interruptS. 
Fast interruptS are generated by devices which demand that their request is dealt 
with as quickly as possible. These fast interruptS have a separate interrupt request pin 
from the normal interruptS and are passed through a different vector; see the 
previous section. 

Intercepting interrupts 

A program wishing to use IRQ-type interruptS should OS_ Claim the software vector 
lrqV. Once the OS has determined that it doesn't know about the interrupting 
device, it calls lrqV to deal with it. This can lead to quite slow responses if there 



lluNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

happens to be an interrupt from a device that the OS does know about at the same 
time as your program's hardware, the OS will deal with that first. 

It is possible to intercept the IRQ routine before the OS does its checking. The 
routine to which the hardware IRQ vector at location &18 branches, contains code 
which is similar to the following: 

SUB Rl4, R14, t4 
STMFD R13!, {R12,R14} 
MOV R12, tO 
ADR R14, return 
LOR PC, [Rl2,t&100) 

.return 

;Get actual return address 
;Save it and R12 on IRQ stack 

;Set up return address 
;Call vector at location &100 
;Test call back flag 

So, if you put a pointer to your routine at location &100, this will be called 
whenever an IRQ occurs. You can then make a quick check for the interrupting 
device and if it is not one of yours, jump to the previous contents of &100 - having 
preserved all registers. 

If the interrupt was yours, you should handle it, and return using R14. Again, all 
registers should be preserved, except Rl2, which may be corrupted. 

Note that no workspace pointer is set up if you use this method, so any workspace 
you use will have to rely on the stack. As you must have a copy of the old contents of 
location &100 which has to be stored with the code, the routine must be RAM
based. 

Here are some general points regarding interrupt (and event) routines: 

It is strongly advised that the interrupt routine should notre-enable interrupts. If it 
does, then your interrupt routine should be able to handle a second interrupt 
occurring and hence being entered a second time before the first is finished. 

The interrupt routine should avoid calling certain operating system routines since it 
may call the one which the foreground process was using when the interrupt 
occurred. If this routine is not re-entrant, the foreground process will be adversely 
affected. In general, OS_Byte and OS_ Word calls can be used. Any particular calls 

33 



34 

which cannot be used are documented as such. OS_ WriteC and routines which use 
it should never be called. 

Before a SWI is called from an interrupt routine, the register Rl4_SVC must be 
preserved, and restored once the routine returns. The recommended way of doing 
this is: 

MOV R9, PC ;Save current status/mode 
ORR RS, R9, tSVC_Mode ;Derive SVC-mode version of 
TEQP RS, to ;Enter SVC mode 
MOVNV RO, RO ;No-op to prevent contention 
STMFD R13!, {R14} ; Save R14 svc -
SWI xxxx ;Do the SWI 
LDMFD R13!, {R14} ;Restore R14 svc -

it 

TEQP R9, ItO ;Re-enter original processor mode 
MOVNV RO, RO :No-op 

SVC_Mode is 3. Of course, you must preserve R8 and R9. 

FIQs are intercepted in a different way from IRQs. There is a default owner of the 
(hardware) FIQ vector. This is the Econet module, if present. If anyone else wantS to 
use FIQs, for example to perform a disc transfer under interruptS, you should claim 
the FIQ vector for the time required. Having claimed the FIQ vector (using the 
appropriate service call), and ensured that no FIQs are generated immediately, the 
claimer should poke the new FIQ-handling routine into addresses &lC onwards. Up 
to location &100 is available (ie the last possible instruction is at &FC). 

When the FIQ operation is complete, the claimer should release the FIQ vector 
again. Claiming and releasing the FIQ vector is performed using a module service 
call. See the chapter MODULES for details. In summary, the sequence of eventS is: 

- Claim FIQs 

- Set-up FIQ code at &lC. .. 

- Enable your FIQ device, and only the appropriate bit in the IOC FIQ mask 



- Perform AQ operation 

l!luNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

- Disable your FIQ device having set the IOC FIQ mask to zero 

- Release FIQs. 

The rules for writing FIQ code are much the same as IRQ code. It is even more 
important that the code returns quickly. 

Disabling interrupts 

Although both types of interrupt are maskable, these masks may not be set when the 
processor is in user mode. Programs generally execute in user mode, so you must use 
special techniques if you want to disable interrupts. 

It is possible to disable interrupts (IRQs only) by calling OS_IntOff (no entry or exit 
conditions). However, this should be used with care, and particularly not for long 
periods of time since this will have various unwanted effects such as stopping the 
clock, disabling the keyboard, etc. IRQs may be re-enabled again by calling 
OS_IntOn. 

Alternatively, you may enter SYC mode using OS_EnterOS. When the processor is 
in this mode, the IRQ and FIQ masks may be changed at will. It is not recommended 
that you execute programs in SVC mode, as you will be using a small stack, and R14 
will have to be preserved between calls to SWls etc. To rer.um to user mode after an 
OS_EnterOS, use a TEQP instruction. For example, the code below disables both 
types of interrupts and returns to user mode: 

SWI 
MOV 
ORR 

TEQP 

"OS EnterOS" 
RO,PC 
RO,t&OCOOOOOO 
RO,t3 

;Enter SVC mode 
;Get status in RO 
;Set the interrupt masks 
;Update PSR, and return to user mode 

35 



EVENTS 

36 

The operating system performs a large number of background tasks by servicing 
interrupts on a regular basis. Whilst carrying out these tasks the operating system 
may generate one or more of the following events which indicate that a particular 
situation has occurred: 

Number 

0 
1 
2 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Event type 

Output buffer has become empty 
Input buffer has become full 
Character has been placed in input buffer 
Electron beam has reached last displayed line (Vsync) 
Interval timer has crossed zero 
ESCAPE condition has been detected 
RS423 error has been detected 
Econet has generated an event 
User has generated an event 
Mouse buttons have changed state 
A key has been pressed or released 
Sound event 

To use an event, you must first OS_Claim the event vector, then enable the required 
event(s). By default, all events are disabled. They may be enabled by using OS_Byte 
&OE (14) and disabled using OS_Byte &00 (13), as follows: 

OS_Byte &OD (13)- Disable event 

On entry: Rl = event number 

On exit: R l = old enable state 
R2 is undefined 

The previous enable state of the event is returned in Rl: 

Rl = 0 
Rl > 0 

previously disabled 
previously enabled 



UNDAMENT AL OPERATING 
SYSTEM CONCEPTS 

Note that to disable an event totally, you must use OS_Byte &OD (13) the same 
number of times as you use OS_Byte &OE ( 14). 

OS_Byte &OE (14)- Enable event 

On entry: Rl = event number 

On exit: Rl =old enable state 
R2 is undefined 

This call provides a means of enabling specific events (see above). 

The previous enable state of the event is returned in Rl: 

Rl = 0 
Rl > 0 

previously disabled 
previously enabled 

In addition to the OS interrupt routines generating events, user programs may also 
cause them. An event number, 9, has been reserved for such events. You cause an 
event using OS_GenerateEvent: 

OS_GenerateEvent &22 (34) 

On entry: RO =event number 
Rl... = event parameters 

On exit: 

Note that, as usual, the event vector will only be called if the event number given in 
RO has previously been enabled using OS_Byte &OE. 

When an event occurs, your event routine is entered with the event number stored 
in register RO and possibly other information in Rl onwards, depending on the 
event. 

37 



38 

The notes which apply to interrupt handlers also apply to event handlers- namely, 
event routines are entered with interrupts disabled, with the processor in a non-user 
mode. They should not re-enable interrupts, and the use of cert.1in operating system 
calls should be avoided. See the code fragment in the section Intercepting 
interrupts for the way in which SWis must be called. 

Details of all the events and values passed to the event routines are given below. 

Output buffer has become empty (0) 

On entry: R 1 = buffer number 

This event is generated when the last character has just been removed from an 
output buffer (eg printer buffer, RS423 output buffer). Buffers are discussed in the 
next section Buffers. 

Input buffer has become full ( 1) 

On entry: Rl = buffer number 
R2 .. Buffer value of character 

This event is generated when an input buffer is full and when the operating system 
tries to enter a character into the buffer but fails. See the discussion on buffers below. 

Character has been placed in the keyboard input buffer (2) 

On entry: R2 = Buffer value of key 

This event is generated when a key is pressed, independent of the input stream 
selected. See the chapter CHARACTER INPUT for a description of buffer values 
for the keyboard buffer. 



On entry: 

On entry: 

On entry: 

UNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

Vsync- Electron beam has reached last displayed line (4) 

This event is generated every fiftieth of a second. It occurs when the electron beam 
reaches the bottom of the displayed area and is about to start displaying the border 
colour. This event corresponds to the time when the OS_Byte &19 call returns to 
the user. 

It could be used, for example, to start a timer which will cause a subsequent 
interrupt. On this interrupt, the screen palette might be changed, to allow more than 
the usual number of colours on the screen at once. 

Interval timer has crossed zero (5) 

This event is generated when the interval timer, which is a five-byte value 
incremented 100 times a second, has reached zero. See OS_ Word &03 for details of 
the interval timer. 

Escape condition has been detected (6) 

This event is generated when either IEscapel is pressed or when an escape condition is 
received from the RS423 input port. See the chapter CHARACTER INPUT for a 
discussion of escape conditions. 

RS423 error has been detected (7) 

On entry: Rl = pseudo 6850 status register shifted right 1 place 
R2 = character received 

This event is generated when an RS423 error is detected. Such errors are parity 
errors, framing errors etc. On entry, the bits ofRl have the following meanings: 

39 



40 

On entry: 

On entry: 

Bit Meaning when set 

5 Parity error 
4 Over-run error 
3 Framing error 

Econet has generated an event (8) 

This event is generated when an Econet event is detected. 

User event (9) 

This event is generated when the user calls OS_GeneratcEvcnt with R0=9. The 
other registers are as set up by the user. Note that this is entered in SVC mode, not 
IRQ mode. 

Mouse button event (10) 

On entry: Rl =mouse X co-ordinate 
R2 = mouse Y co-ordinate 
R3 = button state 
R4 = 4 bytes of monotonic centi-second value 

This event is generated when a mouse button changes, ie when a button is pressed or 
released. The buttOn state is given in R3 as follows: 

Bit Meaning when set 

0 Right-hand button down 
1 Centre button down 
2 Left-hand button down 



high 

Key up/down event (11) 

On entry: Rl = 0 for key up, 1 for key down 
R2 = key number 
R3 = keyboard driver ID 

lluNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

This event is issued whenever a key on the keyboard is pressed or released. The key 
number, R2, is an low-level internal key number, which does not relate to other 
codes used elsewhere. The table below lists the values for each possible key, giving 
the high and low hex digit of the key code: 

low 0 2 3 4 5 6 7 8 9 A B c D E F 

0 
1 
2 
3 
4 
5 
6 

Esc 

Hmc 
p 

G 
c 
AIR 

fl. f2 f3 f4 f5 f6 f7 f8 f9 flO fll fl2 Pr SL Brk 
2 3 4 5 6 7 8 9 0 <- Ins 

PgU NL I * # Tab Q w E R T y u I 0 
[ 1 \ Del Cpy PgD 7 8 9 CtL A s D F 
H 1 K L Ret 4 5 6 + ShL z X 
v B N M ShR Up 1 2 3 CL AIL Spc 
CtR Lft Own Rt 0 Ent 

Where there is some ambiguity, eg the digit keys, it should be clear from referring to 
the keyboard layout which code refers to which key. The keys are numbered top to 
bottom, left to right, starting from IEscapel at the top left corner. 

Note that the keycodes given in this event bear little relationship to any other code 
the user is likely to see. They are not, for example, related to the negative INKEY 
numbers described in the chapter CHARACTER INPUT. 

Sound event ( 12) 

On entry: Rl =sound level number (2) 
R2=0 

Currently, the only sound event is generated by the level2 scheduling software, so 
R1=2. The 0 in R2 may change in future versions to give the invocation number of 
the task causing the event. 

41 



BUFFERS 

42 

The event is generated whenever the sound beat counter is reset to zero, marking the 
start of a bar. See the chapter SOUND for more details. 

On the Archimedes much of the transfer of data is performed under interrupts, 
therefore there is extensive use of buffers. These act as temporary holding areas for 
data after it is generated by the user (or device) and before it is consumed by the 
device (or user). For example, whenever you type a character on the keyboard, that 
character is stored in the keyboard input buffer by the keyboard interrupt handler, 
and it remains there until the program is ready to use it. 

We are not concerned with filing system buffers in this section. However, these are 
areas where whole sectors of a disc are held in memory to increase the efficiency of 
the disc accesses. The use of disc buffers is generally invisible to the user, who has no 
direct way of accessing their contents. 

The buffers under discussion are known as first-in first-out, or FIFO, buffers. This is 
because the characters are removed from the buffer in the same order in which they 
were inserted. Many operations on buffers are implicit. For example, when you send 
a character to the printer or RS423 port, a character is inserted into a buffer. When 
you read from the keyboard or RS423 port using OS_ReadC, a character is removed 
from the buffer. 

Additionally, there are several explicit buffer operations available. These include: 

- inserting a character into a buffer 
- removing a character 
- counting the space in a buffer 
- examining the next character without removing it 
- flushing a buffer (clearing its contents). 

These are implemented as OS_Bytes, and are documented below. The flush 
operation is also performed implicitly when the escape condition is cleared (see the 
chapter CHARACTER INPUT). 



UNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

Buffer numbers 

There are ten buffers, numbered 0-9. Their uses are as follows: 

Number Use Size 

0 Keyboard 31 
1 RS423 (input) 255 
2 RS423 (output) 255 
3 Printer 63 
4 Sound channel 0 15 
5 Sound channel 1 15 
6 Sound channel 2 15 
7 Sound channel3 15 
8 Speech 63 
9 Mouse 63 

Buffers 2 to 8 are output buffers. They hold data generated by the user until a device 
is ready to consume it. The others are input buffers. These store bytes generated by 
the keyboard, RS423 and mouse respectively until the user is ready to read them. 

Currently, buffers 4 to 8 are not used. They are provided for compatibility with BBC 
Micro software. Sound buffering is performed differently on the Archimedes from the 
BBC, and speech is also implemented in a different way. These buffers are not 
considered further. 

The format of data in all buffers in current use, except for the mouse buffer, is byte
oriented ASCII data. The mouse buffer contents refer to buffered key clicks. The 
format is as follows: 

43 



44 

Byte Value 

0 Mouse x co-ordinate low 
1 Mouse x co-ordinate high 
2 Mousey co-ordinate low 
3 Mouse y co-ordinate high 
4 Button state 
5 Time of button change, byte 0 
6 byte 1 
7 byte 2 
8 Time of button change, byte 3 

The bytes are listed in the order in which they would be removed using OS_Byte 
&91 (145). Usually OS_Mouse reads data from the mouse buffer. If none is 
available, it returns the current state instead. The mouse buffer is 63 bytes long, so 7 
entries may be held at once. 

Buffer OS_Byte calls 

OS_Bytes for handling buffers are described below. 

OS_Bytc &OF (15)- Flush buffer 

On entry: Rl = action code 

On exit: Rl is undefined 
R2 is undefined 

This call empties either all the buffers or only the current input buffer: 

Rl = 0 
Rl = 1 

flush all buffers 
flush the current input buffer (keyboard/RS423) 

The contents of the buffer(s) are discarded. Individual buffers may be flushed using 
OS_Byte &15 (21). 



. UNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

OS_Byte &15 (21)- Flush selected buffer 

On entry: Rl =buffer number 

On exit: R2 is undefined 

OS_Byte &80 (128)- Get buffer/mouse status 

On entry: Rl = action code 

On exit: R I = low byte of position or number of bytes in buffer/free 
R2 = high byte of position or number of bytes in buffer/free 

The action of this call depends upon the value in Rl. It determines either the 
current x or y position of the mouse, or the nl.imber of free bytes in a particular input 
buffer, or how many bytes there are free in a particular output buffer: 

On entry 

Rl= 7 
R1= 8 
Rl = 255 
Rl = 254 
Rl = 253 
Rl = 252 
Rl = 251 
Rl = 250 
Rl = 249 
Rl = 248 
R1 = 247 
Rl = 246 

On exit 

RI contains x position MOD 256; R2 contains x position DIV 256 
R1 contains y position MOD 256; R2 contains y position DIV 256 
R 1 & R2 contain the number of bytes in the keyboard buffer 
Rl & R2 contain the number of bytes in the RS423 input buffer 
Rl & R2 contain the number of bytes free in the RS423 output buffer 
Rl & R2 contain the number of bytes free in the printer buffer 
Rl & R2 contain the number of bytes free in sound channel 0 
Rl & R2 contain the number of bytes free in sound channel 1 
R 1 & R2 contain the number of bytes free in sound channel 2 
Rl & R2 contain the number of bytes free in sound channel3 
R 1 & R2 contain the number of bytes free in the speech buffer 
R 1 & R2 contain the number of bytes in the mouse buffer 

Obviously we are more concerned with the calls where Rl >= 24 7 here. Note that 
Rl =-(buffer number+ 1) AND &FF (or 255-buffer number). 

45 



46 

On exit, Rl contains the low byte of the count, and R2 contains the high byte. For 
input buffers the count is the number of bytes in the buffer. For output buffers it is 
the number of free bytes left in the buffer. 

OS_Byte &SA ( 138)- Insert character code into buffer 

On entry: Rl =buffer number 
R2 =value 

On exit: C = 1 if buffer is full 

This call insertS the number specified in R2 into the buffer identified by Rl. If C= 1 
on exit, the character was not inserted as there was no room. Inserting characters 
into the mouse buffer isn't recommended, but if you must, you should be careful to 
insert all nine bytes with interrupts disabled, to prevent an interrupt routine from 
calling OS_Mouse and possibly reading the wrong information. 

OS_Byte &91 (145)- Get character from buffer 

On entry : Rl = buffer number 

On exit : R2 = character extracted 
C = 1 if buffer empty 

This call extracts the next character from a specified buffer. If the buffer was empty 
then the carry flag is set, and R2 will be invalid. 

OS_Byte &98 (152)- Examine buffer status 

On entry: Rl =buffer number 

On exit: R2 = next character or preserved if empty 
Carry reflect buffer empty status 

This call returns the status of a specified buffer; the carry flag is set if the buffer is 
empty. If a character is available, it is returned in R2 but is not removed from the 
buffer. 



lluNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

OS_Byte &99 (153)- Insert character into buffer 

On entry: Rl =buffer number (0 or 1) 
R2 = character 

On exit: R1 is undefined 
R2 is undefined 
C = 1 if buffer is full 

This call enables characters to be inserted into one of the two input buffers as 
follows: 

R1 = 0 
R1 = 1 

insert character into the keyboard buffer 
insert character into the RS423 input buffer 

If the current escape character (usually ASCII 27) is inserted, then appropriate 
action is taken, ie the escape condition is set, and an escape event is generated, if 
enabled. If the buffer was full and a character could not be inserted, then the carry 
flag is set on return. 

These OS_Bytes are, in fact, just an interface to the vectored buffer routines 
described in the section Software vectors. Usually, the OS_Bytes are easier to use. 
However, there are times when it is preferable, or necessary (for example to read the 
bytes free in an input buffer) to use the vectors. They can be called directly using 
OS_CallA Vector. 

It is possible to change the operation of the machine by replacing these calls. In 
particular, you could write a module which OS_Claims all three buffer vectors, then 
replaces, say, the printer buffer with a much larger one, using memory claimed from 
the relocatable module area. Such a module could have its own configuration byte 
for the number of pages to use for the buffer, which it would claim on initialisation. 

47 



MISCELLANEOUS OS_BYTES 

48 

This section describes four OS_Bytes which don't really belong in any particular 
section of this guide. 

OS_Byte &00 (0)- Display OS version information 

On entry: Rl = 0 to display message 
Rl <> 0 to return result 

On exit: Rl = OS version number ifRl <> 0 on entry 

If this is called with Rl =0, an error is produced, and the text of the error shows the 
version number and creation date of the operating system. If it is called with Rl <>0, 
then a version-dependent result is returned in Rl. 

OS_Byte &01 (1)- Write user flag 

On entry: Rl = new value 

On exit: Rl = old value 

This OS_Byte accesses a location which is guaranteed to be unused by the OS. You 
can use this tO pass results between programs. However, system variables provide 
much more versatile means of doing this. The byte may also be read and written 
using OS_Byte &Fl (241) below. 

OS_Byte &F1 (241)- Read/write user flag 

On entry: Rl = 0 or new value 
R2 = &FForO 

On exit: Rl = old value 



OS_Byte &FO (240)- Read country flag 

On entry: Rl = 0 
R2 = &FF 

On exit: Rl = country flag 

lluNDAMENTAL OPERATING 
SYSTEM CONCEPTS 

This call returns the country value used by the international module. 

49 



50 



I HARACTER OUTPUT 

This chapter describes the ways in which characters can be sent to one or more of 
the Archimedes' output devices. There is one SWI which is central to all character 
output - OS_ WriteC. When this routine is called, a character is sent to the current 
output streams. You can view an output stream as any device which expects 
characters; the screen is an obvious example. The propenies of each output stream 
are described separately below . 

..:;HARACTER OUTPUT ROUTINES 

OS_ WriteC (&00)- Write character 

On entry: RO = character to write 

On exit: 

On entry: 

On exit: 

Vectored through WriteCV. This call sends the byte in RO to all of the active ouput 
streams. 

In addition to to OS_ WriteC, there are three related calls which send more than one 
character to the output streams (they use OS_ WriteC to output each character). 
These calls are: 

OS_ WriteS (&01)- Write an in-line string 

This routine writes a string which immediately follows the SWI instruction to the 
current output stream(s). The string is terminated by a zero-byte. Execution 
continues at the word after the end of the string. 

OS_WriteO (&02)- Write an indirect string 

This routine writes a zero-terminated string to the current output strcam(s). 

On entry: RO points to the string to print 

51 



52 

On exit: RO points to the byte after the zero-byte 

On entry: 

On exit: 

OS_NewLinc(&03)- Write NewLine 

This routine sends a line feed followed by a carriage return to the output stream(s) 
currently selected. 

OS_NewLine is equivalent to two calls to OS_ Writel. For example: 

SWI OS Wri te! + 10 
SWI OS WriteC + 13 

may be replaced by: 

VDU 10 
VDU 13 

SWI OS NewLine ; VDU 10,13 

ie linefeed 
ie carriage return 

The next two calls are available only on OS versions greater than 0.40. 

OS_PrettyPrint (&44)- Print a formatted string 

On entry: RO = pointer to string to print 

On exit: 

This call is only available under OS 0.40 and above. On entry, RO points to a zero
terminated string. The string may contain normal printable characters, which are 
sent straight to OS_ WriteC. Certain special characters may also be present: 

- CR (ASCII 13) causes a newline to be generated 

- TAB (ASCII 9) causes a tabulation to the next multiple of eight columns 

- ASCII 31 is a 'hard space'. 



. HARACTER OUTPUT 

Usually, OS_PrettyPrint will break a line at a space if the next word will not fit on 
the line; it will not do this at hard spaces. 

OS_Plot (&45)- Perform a plot command 

On entry: RO = plot command code 
Rl = x co-ordinate 

On exit: 

R2 = y co-ordinate 

This call is equivalent to a YOU PLOT command (see the chapter THE VDU 
DRIVERS). However, it is much more efficient as only one call is required (instead 
of six), and the YOU drivers are called directly instead of via the usual stream 
handling routines. 

OS_WriteN (&46)- Write a counted string 

This routine writes a string which is pointed to by RO. Rl contains a count of the 
number of bytes to write. 

On entry: RO = pointer to string to write 
Rl = number of bytes to write 

On exit: 

On entry: 

If the YOU is the only active stream, this call uses the low-level YOU drivers 
directly, and is therefore much more efficient that using multiple calls to 
OS_ WriteC. Also, because no special character is used to mark the end of the string, 
any YOU sequence may be sent. 

OS_Writel (&100- &lFF)- Write an immediate byte 

On exit: -

53 



OS_ Write! writes the character contained in the bottom byte of the SWI number, 
using OS_ WriteC. For example, to write a space character, you would use: 

SWI OS Writei+ASC" " ; write a space 

THE OUTPUT STREAMS 

54 

There are four principal output streams: 

- The VDU stream; this means the Archimedes display 
- The RS423 output stream; buffered 
- The printer stream; buffered 
- The *SPOOL file. 

The RS423 port is a bi-directional port. Its input and output sides may be controlled 
independently. For example, you can transmit at a different baud rate from the one 
which you are using to receive. In this chapter, the output-specific calls to the 
RS423 port are covered. In the chapter CHARACTER INPUT both the input
specific and general RS423 calls are described. 

There are several printer ports available. Unlike the output streams, where several 
may be used at once, only one printer may be active at any time. The comment 
'buffered' next to the entries for the RS423 and printer means that the OS provides 
some buffering for these streams, which are emptied under interrupts. The *SPOOL 
file is buffered, but by the filing system. 

An OS_Byte controls which of the output streams are enabled at any time. 

OS_Byte &03 (3)- Specify output streams 

On entry: Rl determines the output stream(s) 

On exit: Rl contains the old stream specification 
R2 is undefined 

This call selects the device(s) to which all subsequent output will be sent. The 
output stream(s) are determined by which bits are set in Rl as follows: 



HARACTER OUTPUT 

Bit Effect if set 

0 Enables RS423 driver 
1 Disables VDU driver 
2 Disables VDU printer driver 
3 Enables printer (independently of the VDU) 
4 Disables spooled output 
5 Calls VDUXV instead of VDU driver (see the chapter VDU 

DRIVERS) 
6 Disables printer apart from VDU 1 ,n 
7 Not used 

The interpretations of all of these bits are described in subsequent sections. All bits 
are zero by default. This means that the VDU is enabled, the VDU printer driver is 
enabled, and the *SPOOL stream is enabled. 

OS_Byte &EC (236) may also be used to read or set this variable. 

OS_Bytc &EC (236) -Read/write character destination status 

On entry: Rl = 0 or new status 
R2 = 255 orO 

On exit: RI = previous status 
R2 = value of next location (cursor key status) 

THE RS423 OUTPUT STREAM 

When bit 1 of the output stream's byte is set, characters sent to OS_ WriteC are 
routed to the RS423 output port. In particular, they are inserted into the RS423 
output buffer (buffer number 2), where they remain until removed by the interrupt 
routine dealing with RS423 transmission. 

The RS423 buffer is 255 characters long. If there is nothing connected to the RS423 
port, inserting more than 255 characters will result in the machine 'hanging' while it 
waits for a character to be removed to make space for the new character. An escape 
condition abandons this wait. 

55 



To set the speed at which RS423 characters are transmitted, OS_Byte &08 is used 
(sec below). 

OS_Byte &08 (8) - Write RS423 transmit rate 

On entry: R 1 = baud rate code 

On exit: R 1 is undefined 
R2 is undefined 

This call sets the RS423 baud rate for transmitting data as follows: 

Value Baud rate 

0 9600 
1 75 
2 150 
3 300 
4 1200 
5 2400 
6 4800 
7 9600 
8 19200 

The default rate is that set by *CONFIGURE Baud. 

An event can be caused by the RS423 output stream: an output buffer empty event, 
when the last character is removed. See the section Events in the chapter 
FUNDAMENTAL OPERATING SYSTEM CONCEPTS for details. 

Tl IE VDU STREAM 

56 

Bit 1 of the streams byte disables the VDU stream if it is set. This prevents characters 
from appearing on the screen. It also disables all screen graphics etc. Finally, as 
control codes will not be acted on, it disables the VDU printer driver, (described in 
the next section). 



IIHARACTER OUTPUT 

Disabling the VDU, by setting this bit, is independent of the 'disable VDU drivers' 
control code (ASCII 21) described in the chapter VDU DRIVERS. The main 
difference is that the VDU printer driver will still work (if already enabled by ASCII 
1) after an ASCII11. 

(The Archimedes VDU drivers are very sophisticated and provide a large number of 
facilities for drawing on the screen. They are described in detail in the next chapter.) 

Bit 5 of the streams byte controls the VDUXV stream. If this bit is set, then 
characters that would usually be sent to the VDU drivers are sent instead to the 
routine on the VDU extension vector. This allows you to replace the VDU drivers, 
usually temporarily. The font manager uses this facility. See the section Software 
vectors for more details. 

From the diagram below, you can see that bit 5 is only checked if bit 1 is clear. That 
is, the VDU extension vector is only used if the VDU is enabled, and if the VDUXV 
bit is set. Notice also that you can cause the character sent to VDUXV to be printed 
by setting the carry flag on return from the vector. 

THE PRINTER STREAM 

Three bits in the output stream's byte control whether a character is sent to the 
printer. In addition, a character may also be sent to the printer under the control of 
the VDU stream. 

Bit 2 provides 'global' control over the printer. If this bit is set, then it is not possible 
for OS_ WriteC to cause a character to be inserted into the printer buffer. If it is 
clear, then the character may or may not be sent to the printer, depending on the 
state of the other bits. 

Bit 6 acts in a similar way: if it is clear, characters may be sent to the printer, but if it 
is set, they are stopped. There is one way of still getting characters to the printer if 
bit 6 is set; this is described below. 

Assuming bits 2 and 6 are clear, then the simplest way of enabling the printer is by 
setting bit 3. When this is done, all characters sent to OS_ WriteC (except the 
printer ignore character) will be inserted into the printer buffer too. 

57 



58 

The most common way of controlling the printer is through the YOU driver. If the 
YOU stream is enabled (bit 1 of the stream's byte is clear), then sending the code 
ASCII 2 (!QillB) to OS_ WriteC enables the 'YOU printer driver'. Once this is done, 
all printable characters, and some control characters, sent to the YOU stream will 
also go to the printer. Sending ASCII 3 (!QillC) to the YOU disables the copying of 
characters to the printer. 

A further control code, ASCII 1 (!QillA), causes the next character to be sent to the 
printer (if enabled by !QillB), but not to the screen. All characters may be sent this 
way, including the control codes which are usually ignored by the YOU printer 
driver, and the printer ignore character. 

If either bit 6 or bit 2 of the streams byte is set, then the YOU printer driver has no 
effect. The exception is when the character is preceded by a [QillA. In this case, bit 6 
will not prevent the character from being sent, although bit 2 will. 

The flow of control is summarised by the diagram below: 



~~HARACTER OUTPUT 

I OS_WriteC 

I 

I 
l Bit 3 set I l Bit 1 clear I 

I 

I Bit 5 set I l Bit 5 clear J 

VDUXV l VDU 2 mode I 
returns with C= 1 

I 
Not in a VDU seq. Character n in 
Character in range: a VDU 1,n 

8-13, 32-126, 128-255 

I 
l Bit 6 clear I 

Not printer ignore char 
(if any) 

I Bit 2 clear I 
I 

Printer I 

59 



60 

More details of the VDU printer driver control codes are given in the chapter THE 
VDUDRIVER. 

Regardless of how a character gets to the printer, it is sent to the device controlled 
by the current printer type. This is set by another OS_Byte (see OS_Byte &05 (5)). 

OS_Byte &OS (5)- Write printer driver type 

On entry: Rl = driver type 

On exit: Rl =previous driver type 

R2 is undefined 

The driver is determined as follows: 

Value 

0 
1 
2 
3 
4 
5-255 

Type 

Printer sink 
Parallel (Centronics) printer driver 
RS4 23 output 
User printer driver 
Network printer driver 
User printer driver 

The old value is returned in Rl. This call enables interrupts. 

This call determines which printer driver type (and hence printer port) is selected 
for subsequent printer output. The default state is set by *CONFIGURE Print. 

Note that if the RS423 port is selected as the printer, and the RS423 port is enabled 
by setting bit 0 of the stream's byte, then the character is inserted into both buffers. 
This means that eventually the character is printed twice (first from the RS423), so 
this practice is not recommended. 



. HARACTER OUTPUT 

Instead of choosing an actual device type, for example a parallel printer driver, a 
'printer sink' may be selected. This means that all characters sent to the printer are 
ignored. 

The new destination type comes into effect only when all the current contents of the 
printer buffer have been sent to the previously-selected driver. This means that when 
you issue this OS_Byte, or the corresponding *FX command, the machine may 
appear to 'hang' until the current printer buffer's contents are cleared. (You may 
force this to happen by generating an escape condition.) 

OS_Byte &F5 (245) may be used to read this variable, but not to set it (as it does 
not wait for the printer buffer to empty first). Because of this, it does not enable 
interruptS, and so may be used to read the printer type from within an interrupt 
routine. 

OS_Byte &F5 (245) - Read printer driver type 

On entry: Rl • 0 
R2 = 255 

On exit: Rl = previous value 
R2 =value of next location (printer ignore character) 

Like the RS423 stream, the printer stream may give rise to an output buffer empty 
event when the last character is removed. 

The printer ignore character 

The printer ignore character is discussed above. This is the character which is 
suppressed from the printer stream, unless the character got there via the VDU 
printer driver and was preceded by ASCII 1 ([QillA). There may be no printer ignore 
character set, in which case all characters are sent. 

Below are descriptions of OS calls relating to the printer ignore character. 

61 



62 

OS_Byte &06 (6)- Write printer ignore character 

On entry: Rl =ASCII value of ignore character 

On exit: Rl =old ignore character 
R2 is undefined 

The default value of the printer ignore character is set by *CONFIGURE Ignore. It 
may be changed temporarily using this OS_Byte, or by the associated command 
*IGNORE. The latter has the advantage that it also allows a 'no ignore' state to be 
set. See OS_Byte &B6 (182) below for details of this. 

This variable may be read or set by OS_Byte &F6 (246) below. 

OS_Byte &F6 (246)- Read/write printer ignore character 

On entry: Rl = 0 or new value 
R2 = 255 orO 

On exit: R 1 = previous value 
R2 is undefined 

The next OS_Byte relates to reading and setting the 'no ignore' state flag. 

OS_Byte &B6 (182)- Read/write NOIGNORE state 

On entry: Rl = 0 or new value 
R2 = 255 orO 

On exit: Rl determines the state 
R2 is undefined 

If the value read or written is >=&80 (ie has bit 7 set), then the printer ignore 
character is not used. If bit 7 is clear, then the current printer ignore character is 
filtered out. 



IIHARACTER OUTPUT 

The default setting of this flag is controlled by *CONFIGURE Ignore and may be 
changed temporarily using *IGNORE. 

THE *SPOOL STREAM 

The final stream belongs to the current *SPOOL file. When a *SPOOL file is 
opened, all characters subsequently displayed using OS_ WriteC are also sent to that 
file, using the OS_BPut routine. This action continues until the file is closed, by 
another *SPOOL command. See the chapter FILING SYSTEMS for details of the 
*SPOOL command. 

You can temporarily disable the *SPOOL file stream by setting bit 4 of the streams 
byte. This does not close the file, but simply prevents OS_ WriteC from trying to 
send the character to file. To close the file, another *SPOOL command must be 
issued, or you can close the file directly by reading its handle using the OS_Byte 
documented below. 

OS_Byte &C7 (199) provides direct control over the *SPOOL file, without the 
necessity of using the command line interpreter interface. It reads and writes the 
location which holds the handle of the current *SPOOL file. If this is zero, 
OS_ WriteC makes no attempt to use the *SPOOL stream, as no file is open. So, to 
set up a *SPOOL file without using the command, you would perform the following 
steps: 

1 
2 
3 
4 

Read the current handle 
If it is non-zero, close the file (using OS_Find) 
Open the new file for output (again using OS_Find) 
Store the handle returned from the filing system in the *SPOOL 
handle location. 

OS_Bytc &C7 (199)- Read/write •SPOOL file handle 

On entry: Rl = 0 or new handle 
R2 = 255 or 0 

63 



On exit: Rl =- previous handle 
RZ = value of next location (Break or Escape status) 

64 



IIHE VDU DRIVERS 

As noted in the previous chapter, the YOU drivers are quite complex, and deserve a 
chapter of their own. This chapter introduces the important concepts relating to the 
YOU, such as: 

- screen modes 
- window 
- colour palette etc. 

It then documents all the OS calls relating to the YOU. The most important one is 
OS_ WriteC, as this is used in nearly all programs which have to make marks on the 
screen. Other calls, such as various OS_Bytes and OS_ Words, are more concerned 
with returning information about the VDU. 

There arc three imponant aspects ofVDU interaction which are not described in 
this chapter. These are the Font manager, the Window manager, and sprites. These 
are implemented as modules separate from the main OS, and are described in their 
own chapters. 

VDU DRIVER CONCEPTS 

Modes 

The Archimedes has many different ways of displaying information on the screen, 
the exact number available depending on the type of monitor you have. They are all 
bit-mapped displays, in which one or more bits of screen memory control the colour 
of a dot, or pixel, on the screen. However, individual pixel control is not always 
available to the user: this is what differs between the text and graphic modes. 

Two main characteristics distinguish the modes. The resolution of a mode relates to 

the number of pixels which can be displayed horizontally and vertically. Horizontal 
resolution can be 160, 320, 640, 1056, 1152 or 1280 pixels. Vertical resolution may 
be 256,512,864 or 976 pixels. 

Secondly, the number of colours that can be displayed at once is determined by the 
number of bits used to store each pixel. This can be 1, 2, 4 or 8 bits, leading to 2, 4, 
16 or 256 colours on the screen at once. Between them, the resolution and number 

65 



66 

of colours determine the amount of screen memory used by a mode. 1bis varies 
between 20K and 160K bytes. 

A complete list of the available modes is given in the description ofVDU 22 below. 

Text and graphics 

1bere are two distinct types of object that the VDU drivers can draw onto the screen 
ie text and graphics. It is as if the VDU drivers were split into two separate entities ie 
the text VDU and the graphics VDU. The text VDU deals with drawing text 
characters. Text characters are 8 by 8 patterns of pixels which are positioned on the 
screen at character-aligned positions. 1bere is a text cursor which controls the 
position on the screen of the next character to be displayed. 1bis is usually displayed 
as a flashing underline. 

All text drawing is confined to an area know as the text window. 1bis starts off as 
the whole screen (when a new mode is selected), but may be changed to any part of 
the screen, down to a single character cell. All scrolling is confined to this region, so 
it is sometimes called the scrolling window. 

Various control codes are provided to affect the text VDU. Examples of such actions 
are: 

- changing the colours in which text is drawn 
- positioning and moving the text cursor 
- clearing the window 
- redefining the patterns which make up the displayed characters. 

1be graphics VDU controls the drawing of objects such as points, lines, circles, 
ellipses etc. Its facilities are not available in text-only modes. 1bere is a separate 
window, the graphics or clipping window, which limits the area in which graphics 
may be drawn.1bere is also a graphics cursor, which is invisible and denotes the last 
point at which a graphics operation took place. Like the text VDU, the graphics 
VDU has its own colours etc. 

1bere is a crossover point between the text and graphics VDUs. 1bis is when the 
VDU is in 'VDU 5 mode'. In this mode, text characters are drawn as graphics 



IIHE VDU DRIVERS 

objects, using the current graphics cursor for positioning, and using the graphics 
colour. The advantage of this mode is that it enables characters to be drawn at any 
pixel alignment, and to be clipped to the graphics window (important when you use 
the Wimp environment). The disadvantage is that the characters take longer to 
draw and scrolling is not available. 

The palette 

Another important part of the YOU is the palette. As noted above, each mode may 
display 2, 4, 16 or 256 colours at once. These colours, however, are not fixed; they 
may be selected from 4096 actual colours. The palette is a table built in to the YOU 
hardware which determines the relationship between the colour number stored in 
the screen memory (the logical colours), and the actual colour information sent to 
the monitor (the physical colour). 

The palette is programmed in terms of the intensity of the signal on each of the red, 
green and blue guns in a colour monitor. These intensities have 4 bits each, which 
gives twelve bits altogether, hence the 4096 physical colours. In fact, each logical 
colour can have 2 physical colours associated with it. These may be swapped at 
programmable rates, allowing flashing colours. 

The palette also controls the colour of the border around the screen and the colour 
of the mouse pointer. These can be set independently of any other colour on the 
screen. 

Screen RAM and banks 

A certain amount of the machine's RAM is allocated for use by the screen. You can 
control how much is reserved using the •CONFIGURE ScreenSize command. 
Typically, 80K is reserved on a 0.5M byte machine and 160K on larger machines. 

Because screen modes often require less memory than is actually reserved, there is 
room to have more than one 'bank' of screen RAM . For example., if 80K has been 
configured for the screen, there is enough room for four 20K screens. Only one can 
be displayed at once, of course. However, it is possible to tell the YOU drivers to 
write into one bank, while the hardware is displaying another. This allows updating 

67 



68 

of the screen to occur 'behind the scenes', so that a completed screen can be 
instantaneously displayed. 

The simplest form of banked screen RAM is the shadow mode concept. This 
involves two banks- the normal bank, and the so-called shadow bank. When you 
change mode, the *SHADOW command determines whether the normal bank or 
the shadow bank will be used. In addition, you can force the use of the shadow bank 
by adding 128 to the mode number, whether automatic shadow mode is in force or 
not. 

Finally, a pair ofOS_Bytes enables you to switch instantly amongst the current 
screen banks (however many there are), with independent control over what the 
hardware displays and what the VDU drivers use. An OS_ Word gives finer control, 
enablng the start of the screen to be set to any address within the allocated screen 
area. 

Cursor editing 

Although the cursor editing facility isn't strictly part of the YOU drivers, its presence 
does have some interaction with the VDU. Usually there is only one text cursor, 
shown as a flashing underline. This is known as the output cursor, as it denotes 
where the next character will be output on the screen. 

When you press one of the four cursor direction keys, cursor editing mode starts. 
There are now two cursors: the output cursor, which is now shown as a steady 'blob', 
and the input cursor, which is an underline flashing at twice the previous rate. 

If you use OS_Byte &86 to read the text cursor position, or OS_Byte &87 to read 
the character underneath the cursor, the results always relate the flashing cursor, ie 
the output cursor normally, and the input cursor in cursor edit mode. 

The final two effects to note about cursor editing mode are that it is not available in 
VDU 5 mode, and it is cancelled when you send an ASCII 13 (carriage return) to 
the VDU stream. This is usually done when you press Q at the end of an input line. 



. HE VDU DRIVERS 

Using OS_ WriteC 

This section describes all of the facilities that the OS_ WriteC routine provides when 
the YOU stream is enabled. As shown in the last chapter, OS_ WriteC is called with 
the character to display in RO. There are two typeS of character: printable and 
control. Printable characters are those with ASCII codes in the range 32- 126 and 
128 - 25 5. When these are sent to the YOU drivers, the pixel pattern corresponding 
to the character code is drawn onto the screen. 

The way in which a printable character is drawn depends on whether YOU 5 is 
active or not. If it is not (the default state), the character is printed at the position 
denoted by the text cursor. Then the text cursor is moved on. At the end of the line, 
the cursor moves to the start of the next line, and if this is the bottom of the text 
window, the window is scrolled up. (In fact, this is the default action; you can 
control exactly what happens after a character is printed using one of the control 
sequences described below.) 

In YOU 5 mode, printable characters are displayed at the graphics cursor, and the 
cursor is moved to the right by one character width. At the end of the line (which 
means the right edge of the graphics window in this case), the cursor is moved to the 
start of the next line. At the bottom of the screen, the cursor wraps round to the top. 
Again, this is the default behaviour. The direction of cursor movement, and indeed 
whether it moves at all, is under your control. 

The codes which do not belong to printable characters, ie 0 - 31 and 12 7, are called 
control codes. These perform some action on the screen. Simple control codes are 
complete in themselves. For example ASCII 13 (carriage return) moves the cursor tO 

the start of the current line. Others are more complex and have to be followed by 
one or more (up to nine) 'parameter' bytes. An example is ASCII 1, which is 
followed by a character tO send to the YOU printer driver. 

These multi-byte sequences aren't executed until all the required parameter bytes 
have been sent to the YOU driver. When the initial control code has been sent, 
subsequent bytes are 'queued'. That is, they are stored in memory until the last byte 
has been sent. When this has been done, the YOU drivers can access the queue and 
take the appropriate action. 

69 



Below are the descriptions of the YOU control sequences. They are given in terms of 
the BASIC YOU statement which you might use to execute them. Here is a brief 
reminder of the syntax of that statement: 

YOU n sends ASCII code n to OS_ WriteC. YOU m,n sends ASCII m followed by 
ASCII n. 

YOU n; sends the number n as two bytes, first n MOD &100, then n DIY &100. 
This sends 16-bit numbers to the YOU drivers, eg co-ordinates in graphics 
commands. 

YOU n I sends n as a single byte, followed by nine 0 bytes. This is used as shorthand 
in calls in which not all of the parameter bytes are needed. As nine is the largest 
number of bytes required by any YOU sequence, ending the command with ' I ' 
guarantees enough bytes to complete it. Any extra reros are ignored by the YOU 
drivers. 

Of course, as long as the correct characters are sent to the YOU, it doesn't matter 
how they get there. For example, the assembly language equivalent to YOU 12 
(clear screen) is: 

SWI "OS Writei"+l2 

The effect is the same in both cases. 

VDU CONTROL SEQUENCES 

70 

VDU 0 -Null operation 

YOU 0 does nothing. It is this that enables the ' I' character in the YOU statement 
to work. Any of the nine zeros that are sent which aren't required by the current 
YOU command are 'swallowed up'. 

VDU 1 -Next character to printer only 

YOU 1 sends the next character to the printer only, provided that the printer has 
been enabled by YOU 2. Otherwise, the next character is ignored. This enables the 



IIHE VDU DRIVERS 

printer ignore character, and any other character which is not usually passed on by 
the VDU printer driver, to be sent to the printer through the VDU. 

VDU 2 -Enable printer 

VDU 2 enables the printer. After this call, most characters sent to the screen will 
also be sent to the printer port currently selected (see OS_Byte &05). Only 
characters in the following ranges are sent to the printer: 32 - 126, 128-255 (ie the 
printable characters), 8 -13 (backspace, horizontal tab, line feed, vertical tab, form 
feed and carriage return, respectively). No multi-byte control sequences, except 
VDU 1, are sent to the printer. 

Even if the VDU drivers are disabled (using VDU 21) the characters sent to the 
VDU drivers will still be sent tO the printer although they will no longer affect the 
screen. However, if the VDU is disabled using OS_Byte &03, then VDU 2 printing 
will not take place. 

The effect ofVDU 2 can be cancelled using VDU 3. 

You can determine whether VDU printing is enabled using OS_Byte &75 (117). 

VDU 3 - Disable printer 

VDU 3 cancels the effects of VDU 2 so that all subsequent printable characters are 
sent to the screen only. 

VDU 4- Split cursors 

VDU 4 cancels VDU 5 mode. It causes all subsequent printable characters to be 
printed at the current text cursor position using the current text foreground and 
background colours. The text cursor is normally displayed (unless it has been 
disabled using VDU 23) and after each character has been printed the cursor moves 
on by one character. The direction of cursor movement is normally tO the right but 
may be altered (using VDU 23). 

After a character has been printed at the end of a row (or column if vertical printing 
is used) the cursor moves on to the start of the next screen line (or column), 

71 



72 

scrolling the screen when there are no more rows (or columns}. Cursor editing is 
allowed in this mode. 

You can determine whether the cursors are split or joined using OS_Byte &75 (117}. 

VDU 5 -Join cursors 

This enters VDU 5 mode. It links the text and graphics cursors and causes all 
subsequent printable characters to be printed at the current graphics cursor position, 
the top left of the character being placed there. Characters are displayed in the 
current graphics foreground colour using the current graphics action. The 
background colour is not altered. 

After the character has been printed, the graphics cursor is moved by one character 
position. The direction of cursor movement is normally to the right but may be 
altered (using VDU 23}.lt moves to a new row (or column if vertical printing is 
being used} when necessary, or to the opposite comer of the graphics window if there 
are no more rows (or columns}. Scrolling does not occur. 

This command allows characters to be placed at any position on the screen, but 
means that the text is printed somewhat slower than when the cursors are split. In 
addition, each character is superimposed onto the existing text or graphics. Hence, 
printing a backspace character followed by a space moves the graphics cursor back by 
one character and then superimposes a space onto the character already there, 
thereby leaving it unaltered. 

Cursor editing is not possible in this mode. 

VDU 5 has no effect in text-only or teletext modes. In other modes it may be 
cancelled using VDU 4. 

VDU 6- Enable screen output 

VDU 6 restores the functions of the VDU driver after it has been disabled by VDU 
21. It causes all subsequent printable characters to be sent to the screen and control 
sequences to be obeyed. 



. HE VDU DRIVERS 

You can determine whether the YOU is enabled or disabled using OS_Byte & 75 
(117). 

VDU 7 -Bell 

YOU 7 generates either the default bell sound (as specified by •CONFIGURE 
Loud/Quiet and •CONFIGURE SoundDefault) or the bell sound defined using 
OS_Bytes &03 - &06 (211 - 214). 

VDU 8 - Back space 

YOU 8 causes either the text cursor (by default command) or the graphics cursor (in 
YOU 5 mode) to be moved back one character position (ie in the negative X 
direction). This normally means moving it to the left but will be different if the 
direction of cursor movement is altered (using YOU 23,16). 

If the cursor was at the stan of a row (or column if vertical printing is is used) then it 
is moved back to the end of the previous row (or column), scrolling the screen if 
necessary. It does not cause the last character tO be deleted. 

VDU 9- Horizontal tab 

YOU 9 causes either the text cursor (by default) or the graphics cursor (in YOU 5 
mode) to be moved on one character position (ie in the positive X direction). This 
normally means moving it to the right but is different if the direction of cursor 
movement is altered (using YOU 23,16). 

If the cursor was at the end of a row (or column if vertical printing is used) then it is 
moved on to the stan of the next row (or column), scrolling the screen if necessary. 

VDU 10- Line feed 

YOU 10 causes either the text cursor (by default) or the graphics cursor (in YOU 5 
mode) to be moved on one line (ie in the positive Y direction). This normally means 
moving it down but is different if the direction of cursor movement has been altered 
(using YOU 23,16). 

73 



74 

If the cursor was on the last line then the screen will be scrolled provided that 
scrolling is enabled. 

VDU 11- Vertical tab 

VDU 11 causes either the text cursor (by default) or the graphics cursor (in VDU 5 
mode) to be moved back one line (ie in the negative Y direction). This normally 
means moving it up but will be different if the direction of cursor movement has 
been altered (using VDU 23,16). 

If the cursor was on the first line then the screen will be scrolled, if scrolling is 
enabled. 

VDU 12- Form feed/clear screen 

VDU 12 clears either the current text window (by default) or the current graphics 
window (in VDU 5 mode) to the current text or graphics background colour 
respectively. ln addition, the text or graphics cursor is moved to the text home 
position (see VDU 30). 

When sent to a printer, this code generally causes a new page to be staned. 

VDU 13 -Carriage return 

VDU 13 causes the text cursor (by default or the graphics cursor (in VDU 5 mode) 
to be moved to the negative X edge of the relevant window at the same Y value. The 
negative X edge is normally the left edge but it may be changed (using VDU 23,16). 

When sent to a printer, this code generally causes the print head to move to the start 
of the current line. Additionally, some printers may also generate a line feed. 

VDU 14- Page mode on 

VDU 14 causes the screen display to wait for I Shift I to be pressed before the next scroll 
and periodically thereafter. Normally, approximately 75% of the number of lines in 
the current window is scrolled before it waits again. The effects of the command may 
be cancelled using VDU 15. 



. HE VDU DRIVERS 

OS_Byte &75 (117) may be used to determine whether paged mode is enabled. See 
also OS_Byte &09 (217). 

VDU 15- Page mode off 

YOU 15 cancels the effect of YOU 14 so that scrolling is unrestricted. 

VDU 16 -Clear graphics window 

YOU 16 clears the current graphics window to the current graphics background 
colour using the graphics background action. It does not affect the position of the 
graphics cursor. 

VDU 17 ,c - Set text colour 

YOU 1 7 is used to assign a logical colour to either the text foreground or text 
background colour according to the value of c, as follows: 

Value 

0 - 127 
128 - 255 

Colour 

foreground 
background (colour in range 0 - 127) 

If the absolute value of the parameter lies outside the allowed set for the current 
mode, it is treated MOD (the number of colours) so that it lies within that range. For 
example, in mode 1, which allows four colours, the commands YOU 17,9 and YOU 
17,5 are equivalent to YOU 17,1. 

The interpretation of the 'c' parameter depends on the type of mode: 

75 



76 

Colours c parameter meaning 

2,4,16 
256 

Logical colour for that pixel 
Bottom 6 bits of c provide colour information: 

Bit 5 Blue High component 
Bit 4 Blue Low component 
Bit 3 Green High component 
Bit 2 Green Low component 
Bit 1 Red High component 
Bit 0 Red Low component 

This allows 64 different colours to be obtained. Each of these can be used in one of 
four different tints, giving 256 available shades. See VDU 23,17 for more details. 

The current text colours may be read using OS_ReadVduVariables. 

VDU IS,k,c- Set graphics colour and action 

VDU 18 is used to define either the graphics foreground colour or the graphics 
background colour, and the way in which it is to be plotted on the screen. 

The graphics plotting action is determined by 'k' as follows: 

Value 

0 
l 
2 
3 
4 
5 
6 
7 
8-15 
16 -31 
32-47 

Action 

Overwrite colour on screen with c 
OR colour on screen with c 
AND colour on screen with c 
EOR colour on screen with c 
Invert colour on screen 
Leave colour on screen unchanged 
AND colour on screen with (NOT c) 
OR colour on screen with (NOT c) 
As 0 to 7, but background colour is transparent 
Colour pattern 1 using action 0 - 15 
Colour pattern 2 using action 0 - 15 



48 - 63 
64 - 79 
80 - 85 

. HE VDU DRIVERS 

Colour pattern 3 using action 0- 15 
Colour pattern 4 using action 0- 15 
Giant colour pattern (patterns 1 - 4 placed side by side) 

The range 8 - 15 is used in the following circumstances: 

- If a sprite has a 'mask', then plotting it using one of these actions causes the mask 
to be used. 

- Where the mask has a 0 bit, nothing is plotted; where it has a 1 bit, the 
appropriate sprite colour is plotted. If an action in the range 0- 7 is used, the 
sprite mask is ignored. See the chapter SPRITES for more details. 

These actions are also used in colour pattern plotting. If a pixel in the pattern has 
the same colour as the current graphics background colour, it is not plotted but left 
transparent instead. (If the action is used when setting a background colour pattern, 
then the pixel is left unplatted if it has the same colour as the current graphics 
foreground colour.) 

The graphics colour is determined by 'c' as follows: 

Value 

0-127 
128-255 

Meaning 

Foreground colour specified 
Background colour specified (colour in range 0 - 12 7) 

If the absolute value of the parameter lies outside the allowed set for the current 
mode, it is altered so that it lies within the range. 

Where 'k' has specified a colour pattern, then 'c' is used only to determine whether 
the pattern is used for the graphics foreground or background colour (depending on 
whether it is less than 128 or not). 

The interpretation of the 'c' parameter depends on the type of screen mode. See the 
table for VDU 1 7 above for details. 

The current graphics colours and actions may be read using OS_ReadVduVariablcs. 

77 



78 

VDU 19,l,p,r,g,b- Set palette 

VDU 19 defines the colour palette relationship. It causes a specified logical colour 
for either the screen, border or cursor to be represented by a given physical colour. 

The action depends on the value of 'p' as follows: 

p = 0-15 

p =16 

p"' 17 

p = 18 

p = 24 

p = 25 

Logical colour I = actual colour p 
r, g and b are ignored 

Logical colour I = 
r units red 
g units green 
b units blue 

This sets both flash palettes for logical colour I 

Defines first flash palette for logical colour I 

Defines second flash palette for logical colour I 

Defines border colour = 

r units red 
g units green 
b units blue 

I is not used 

Define logical colour 1 ( 1 - 3) of cursor = 
r units red 
g units green 
b units blue 

In the cases where 'p' is greater than 15, on adding 128 to it, you also set the 
'supremacy' bit of the appropriate palette entry. This is used when the Archimedes' 
video is mixed with an external video source, to provide a superimposed image. 

In all cases, the red, green and blue parameters have a range 0 -255. However, as 
only the top four bits are significant, the 16 possible values are &OX, &1X, 



HE VDU DRIVERS 

&2X, ... &FX, where X means 'don't care'. The lower nibble may be significant in 
future versions of the hardware -you should use 0 for now. 

There are 16 palette registers, which means that in modes with one, two and four 
bits per pixel, there is a register available for each of the logical colours. Therefore, 
each can be assigned a physical colour by a simple one-to-one relationship. 

By default (after a mode change or VDU 20), the palette is set up using a setting 
where 'p' is in the range 0- 15. The settings for each mode are: 

Logical colour Actual colour numbers for modes with: 

1 bit per pixel 2 bits per pixel 4 bits per pixel 

0 0 0 0 
1 7 1 1 
2 3 2 
3 7 3 
4 4 
5 5 
6 6 
7 7 
8 8 
9 9 
10 10 
11 11 
12 12 
13 13 
14 14 
15 15 

The meanings of the 'p' type colours are: 

79 



80 

Physical colour 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Colour 

Black 
Red 
Green 
Yellow 
Blue 
Magenta 
Cyan 
White 
Black-white flashing 
Red-cyan flashing 
Green-magenta flashing 
Yellow-blue flashing 
Blue-yellow flashing 
Magenta-green flashing 
Cyan-red flashing 
White-black flashing 

In modes with eight bits per pixel the situation is more complex. A simple mapping 
of the logical colour to the physical colour via the palette is not possible. Instead, the 
eight bits of the logical colour are treated as two nibbles as follows: 

7 6 5 4 3 2 1 0 

'~----~ ~-----J~~----~ ~-----J/ v v 
passed directly to the digital to passed to the palette registers 

analogue converter (DAC) 

Bit 7 goes directly to the top bit of blue 
Bit 6 goes directly to the top bit of green 
Bit 5 goes directly to the second bit of green 
Bit 4 goes directly to the top bit of red 



IIHE VDU DRIVERS 

The default palettes are set to have the following effect: 

Bit 3 is sent to the second bit of blue 
Bit 2 is sent to the second bit of red 
Bit 1 is sent to the third bits of blue, green and red 
Bit 0 is sent to the fourth bits of blue, green and red 

Hence the palette can only be used to produce subtle effects upon the colour; it does 
not have any effect upon the top (most significant) bits of any colour or the second 
bit of green. It can only control the second bits of blue and red and the white tint 
which is obtained by the settings of all three of the third and fourth (least 
significant) bits. 

You can also set the palette using OS_ Word &OC ( 12), and read the current palette 
using OS_ Word &OB ( 11) and OS_ReadPalette. 

VDU 20 - Restore default colours 

VDU 20 restores the default palette for the current mode. It also resets the default 
text and graphics background colour to black, and the text and graphics foreground 
colour to white. The graphics foreground and background actions arc set to 0 
(overwrite). In 256-colour modes the tints are set to their default values (0 for 
background tints and &CO for foreground ones). 

VDU 21- Disable screen display 

VDU 21 prevents the VDU screen drivers performing any of their normal functions 
until a VDU 6 is issued. Any control sequences sent to the VDU drivers are queued 
in the usual way. Therefore, sending the code VDU 19 causes the next 5 characters 
to be treated as parameters for this (ignored) command. 

For example, the sequence VDU 22,6 is treated as one whole command in the usual 
way and not as VDU 22 followed by VDU 6 which would re-enable the VDU 
drivers. 

This command does not prevent characters from being sent to the VDU printer 
driver (if already enabled by a VDU 2), or any of the other output streams. 

81 



82 

You can use OS_Byte & 75 ( 117) to determine whether the VDU driver is currently 
enabled or disabled. 

VDU 22,n -Change display mode 

VDU 22 is used to select a screen mode. The modes available depend on the 
configured monitor type (see *CONFIGURE MonitorType in the section Operating 
system commands). The three types are: 

0 'TV' type monitor 
1 multi-sync monitor 
2 64 KHz high-resolution monochrome monitor 

Type 2 is only available on 400-scries machines. 

The bottom seven bits of 'n' are used to select the mode as follows: 

MODE Text Resolution Log.Cols bits/pixel Memory used 
col x row hor x ver 

0 80 X 32 640 X 256 2 1 20K 
1 40 X 32 320 X 256 4 2 20K 
2 20 X 32 160 X 256 16 4 40K 
3 80 X 25 Text only 2 2 40K 
4 40 x32 320 X 256 2 1 20K 
5 20 x32 160 X 256 4 2 20K 
6 40x 25 Text only 2 2 20K 
7 40x 25 TELETEXT 16 80K 
8 80x32 640 X 256 4 2 40K 
9 40 X 32 320 X 256 16 4 40K 
10 20 x32 160 X 256 256 8 80K 
11 80 X 25 Text only 4 2 40K 
12 80 x32 640 X 256 16 4 80K 
13 40x31 320 X 256 256 8 80K 
14 80x 25 Text only 16 4 80K 
15 80x32 640 X 256 256 8 160K 



. HE VDU DRIVERS 

16 132 X 32 Text only 16 4 132K 
17 132 X 25 Text only 16 4 132K 

There are four further modes which are only available for use on monitor types 0 and 
1 (normal and multi-sync). 

MODE Text Resolution Log.Cols bits/pixel Memory used 
col x row hor x ver 

18 80 x64 640 X 512 2 1 40K 
19 BOx 64 640 X 512 4 2 80K 
20 80x 64 640 X 512 16 4 160K 
21 80x 64 640 X 512 256 8 320K 

The following two modes (and only these modes) are available if the configured 
monitor type is 2 (64KHz line rate, 400-series machines only): 

MODE Text Resolution Log.Cols bits/pixel Memory used 
col x row hor x ver 

22 160 X 122 1280 X 976 2 160K 
23 144 X 54 Text only 2 160K 

Notes on display modes 

Modes 0- 17 are available on type 0 and 1 monitors only. The refresh rate is 50Hz. 

Modes 18 - 21 are available on type 0 and 1 monitors only. They are displayed at a 
50Hz interlaced (25Hz frame) refresh rate on type 0 monitOrs. On type 1 monitors, 
modes 18-20 are displayed at a 50Hz refresh rate, and mode 21 has a 50Hz 
interlaced (25Hz frame) rate. 

Type 2 monitors only may display modes 22 and 23, and these are the only modes 
available on type 2 monitors. 

Versions of the OS up to and including 0.4 do not support modes 21-23, and only 
support modes 18 - 20 on type 0 and 1 monitors. 

83 



84 

If an attempt is made to select a mode which is not appropriate to the current 
monitor type (or OS version), a suitable mode for that monitor is used. For example, 
an attempt to select mode 22 on a type 0 monitor will result in mode 0 being used. 

If 128 is added to the mode number, the so-called shadow bank is used. Any display 
mode may have several banks of memory available. The number of banks depends on 
the size of the screen memory (as allocated by *CONFIGURE ScreenSize) and the 
size of the current mode. For example, if 160K is allocated, and 20K is used for the 
display, eight banks are available. 

Usually, bank 1 is used. However, if 128 is added to the mode number, or a 
*SHADOW command has been issued, bank 2 is used after a mode change. Shadow 
memory can only be used if ScreenSize is at least twice the memory for the required 
mode. 

The other banks may be accessed using OS_Byte & 70 - & 71 (112 - 113). 

The mode command causes the following actions: 

- Cursor editing is terminated if currently in use 

- YOU 4 mode is entered 

- The text and graphics windows are restored to their default values 

- The text cursor is moved to its home position 

- The graphics cursor is moved to (0,0) 

- The graphics origin is moved to (0,0) 

- Paged mode is terminated if currently in use 

- The logical-physical colour map is set to the new mode's default 

- The text and graphics foreground colours are set to white 



. HE VDU DRIVERS 

- The text and graphics background colours are set to black (colour 0) 

- The colour patterns are set to their defaults for the new mode 

- The dot pattern for dotted lines is reset to &AAAAAAAA 

- The dot pattern repeat length is reset to 8 

- The screen is cleared to the current text background colour. 

The current screen mode may be read using OS_Byte &87 (135). 

VDU 23 - Miscellaneous commands 

YOU 23 is a multi-purpose command taking nine parameters, of which the first 
identifies a particular function. Each of the available functions is described below. 
Eight additional parameters are required in each case, though often most of these are 
ignored. This enables you to use ' 1 ' as shorthand in YOU statements, eg: 

VDU 23,0,101 

instead of 

VDU 23,0,10,0,0,0,0,0,0,0 

VDU 23,0,n,m,O,O,O,O,O,O 

If n = 8, this sets the interlace as follows: 

m • O 
m = l 
m .. &80 
m a &81 

sets the screen interlace state to the opposite of the current *TV setting 
sets the screen interlace state to the current *TV setting 
turns the screen interlace off 
turns the screen interlace on 

If n = 10 or 11, this controls the height of the cursor on the screen and its 
appearance. 

85 



86 

n = 10 m defines the start line for the cursor and its appearance: 

Bits 0-4 define the start line (0 being the top) 
Bits 5 - 6 define its appearance as follows: 

Bit 6 Bit 5 Meaning 

0 0 Steady 
0 1 Off 
1 0 Fast flash 
1 1 Slow flash 

n = 11 m defines the end line for the cursor. 

The bottom line is 7 for 32-line modes, 9 for 25-line modes, and 19 for mode 7. 

VDU 23,1,n,O,O,O,O,O,O,O 

VDU 23,1 controls the appearance of the cursor on the screen depending on the 
value of n: 

Value 

0 
1 
2 
3 

Meaning 

stops the cursor appearing 
makes the cursor re-appear 
makes the cursor steady 
makes the cursor flash 

The effect of this call is cancelled when cursor editing occurs. The effect of the 
previous call is not changed by cursor editing. See also SWI OS_RemoveCursors and 
SWI OS_RestoreCursors. 



HE VDU DRIVERS 

VDU 23,2 - 5,nl, .. ,n8 

VDU 23,2- VDU 23,5 are used to define the four colour patterns: 

VDU23,2 
VDU 23,3 
VDU 23,4 
VDU 23,5 

sets pattern 1 
sets pattern 2 
sets pattern 3 
sets pattern 4 

Each of the integers n1 to n8 defines one row of the pattern, n1 being the top row 
and n8 being the bottom. For a given parameter, the logical colours of the pixels in 
each row depend upon the number of colours available in the current screen mode 
and which pattern mode is used. There are two available pattern modes. The default 
is the Master 128-compatible mode in which a parameter is decoded as it would be 
on a BBC Master-series microcomputer. The other is the Archimedes mode which 
decodes the values in a simpler fashion. To change to this mode use VDU 
23,17,4,11. 

In the Master 128-compatible mode, if the bit settings in each of n1 to n8 are 
denoted by 76543210, then the logical colours of the pixels in each row (from left to 
right) are: 

No. of colours Bits per pixel No. of pixels Logical colours 
in pattern 

2 1 8 7 ,6,5,4,3,2,1 ,0 
4 2 4 73, 62, 51,40 
16 4 2 7531, 6420 

For example in modes with four bits per pixel, bits 7, 5, 3 and 1 of the 'n' parameter 
control the logical colour of the left-hand pixel, and bits 6, 4, 2 and 0 control the 
right-hand pixel. To set the left pixel to colour 2 (green by default) and the right one 
to colour 7 (white), the colours are combined as follows: 

87 



88 

pixel 1 colour 

green (2) 
0010 

Bit 7 6 5 4 3 2 

Left pixel 0 0 1 
Right pixel 0 1 1 

Result 0 0 0 1 

Resulting value= &10 or 29 

0 

0 
1 

0 = &10 

pixel 2 colour 

white (7) 
0 1 1 1 

Whereas in modes with two bits per pixel the method is: 

pixel 1 colour pixel 2 colour pixel3 colour pixcl4 colour 

yellow (2) red (1) white (3) yellow(2) 
10 01 1 1 10 

Bit 7 6 5 4 3 2 1 0 

Pixel1 0 
Pixel2 0 
Pixel3 1 
Pixel4 1 0 

Result 1 0 1 0 1 1 0 =&B6 

Resulting value= &B6 or 182 

In Archimedes mode, the bits 76543210 of a parameter define the pattern as follows: 



. HE VDU DRIVERS 

No. of colours Bits per pixel No. of pixels 
in pattern 

2 
4 
16 

1 
2 
4 

8 
4 
2 

Logical colours 

0,1 ,2,3,4,5,6, 7 
10,32,54, 76 
3210, 7654 

For example, in modes with four bits per pixel, the colour of the left-hand pixel is 
formed from bits 3, 2, 1 and 0 of the 'n' parameter, and the colour of the right-hand 
pixel comes from bits 7, 6, 5 and 4 of the parameter. So, if the pixels are to be logical 
colours 2 and 7 again, the colours are combined as follows: 

pixel 1 colour 

green (2) 
0010 

Bit 7 6 5 4 3 2 1 0 

Left pixel 0 
Right pixel 0 0 0 

Result 011100 0 

Resulting value = & 72 or 114 

pixel 2 colour 

white (7) 
0 1 1 1 

Notice that the pixel colours on the left, as displayed, are derived from the bits on 
the right, as written down, and vice versa. 

In modes with two bits per pixel the method is: 

89 



90 

pixel 1 colour 

yellow (2) 
1 0 

Bit 

Pixel4 
Pixel3 
Pixel2 
Pixel I 

Result 

pixel 2 colour 

red (1) 
0 1 

7 6 5 4 3 2 

0 
1 1 

0 1 

1 0 1 1 0 1 

Resulting value= &B6 or 182 

VDU 23,6,nl, •. ,n8 

pixel 3 colour 

white (3) 
1 1 

1 0 

0 

0 

pixel 4 colour 

yellow(2) 
10 

VDU 23,6 sets the dot-dash line style used by dotted line PLOT commands (see also 
VDU 25 and OS_Byte &A3 (163)). 

Each of the integers n1 to n8 defines eight elements of the line style, nl being at the 
start and n8 at the end. The bits in each byte are read from most significant to least 
significant, each 1-bit indicating a dot and each O-bit a space. The default is 
&AAAAAAAA (alternating dots and spaces) with a repeat length of eight (so only 
nl is used). 

VDU 23,7 ,m,d,z,O,O,O,O,O 

VDU 23,7 allows the current text window or whole screen to be scrolled directly in 
any direction without moving the cursor. The values of m, d and z determine the 
area to be scrolled, the direction of scrolling and the amount of scrolling as follows: 

m = 0 scroll the current text window 
m = 1 scroll the entire screen 



. HE VDU DRIVERS 

d = 0 scroll right 
d = 1 scroll left 
d = 2 scroll down 
d = 3 scroll up 
d = 4 scroll in positive X direction 
d = 5 scroll in negative X direction 
d = 6 scroll in positive Y direction 
d = 7 scroll in negative Y direction 

z = 0 scroll by one character cell 
z = 1 scroll by one character cell vertically or one byte horizontally 

If z= 1, the horizontal movement depends on the number of colours in the current 
mode as follows: 

Number of colours Number of pixels moved 

2 
4 
16 
256 

8 
4 
2 
1 

VDU 23,8,tl,t2,xl,yl,x2,y2,0,0 

VDU 23,8 causes a block of the current text window to be cleared to the text 
background colour. The parameters t1 and t2 indicate base positions relating to the 
start and end of the block to be cleared respectively: 

Value 

0 
1 
2 

4 
5 
6 

Meaning 

top left of window 
top of cursor column 
off top right of window 

left end of cursor line 
cursor position 
off right of cursor line 

91 



92 

8 bottom left of window 
9 bottom of cursor column 
10 off bottom right of window 

References to 'left', 'up' and so on are dependent upon the cursor movement control 
set by VDU 23,16. 'Off' means 'one character beyond (in the positive x direction)'. 
The effects of other values, ie 3, 7 and any number over 10, are undefined. 

The parameters xl,yl and x2,y2 are displacements from the positions specified by t1 
and t2 and determine the start and end of the block: 

x1 Displacement from tl in x direction 
yl Displacement from tl in y direction 
x2 Displacement from t2 in x di.rection 
y2 Displacement from t2 in y direction 

The result is undefined if the absolute values defining the start and end of the block 
produce values outside the range -128 to 127. If the end point of the block lies 
before the start point then no clearing takes place. 

The action of this command can be viewed as equivalent to moving the text cursor 
to the start of the block, then printing spaces until the end of the block is reached 
(but without printing a space at the last position). 

VDU 23,9,nl 

VDU 23,9 sets the flash time for the first flashing colour. The length is determined 
by the value of n as follows: 

n =O 
n <>0 

sets an infinite duration (steady colour) 
sets the duration to n VSYNCS 

A VSYNC is the time between refreshes of the screen display. It varies between 
display modes and countries. In the UK for modes 0- 16 it is approximately 50Hz. 

This command is equivalent to OS_Byte &09. 



. HE VDU DRIVERS 

VDU 23,10,n I 

VDU 23,10 sets the flash time for the second flashing colour. The length is 
determined by the value of n as follows: 

n = 0 
n <> 0 

sets an infinite duration (steady colour) 
sets the duration to n VSYNCS 

This command is equivalent to OS_Byte &OA. 

VDU 23,11,0,0,0,0,0,0,0,0 

VDU 23,11 selects the Master-128 compatible pattern mode and causes the four 
colour patterns to be reset to their defaults for the current screen mode. With the 
default logical-physical map, these defaults are: 

Modes 0,4,18 

1- Dark grey 2 - Grey 

10101010 10101010 
00000000 01010101 
10101010 10101010 
00000000 01010101 

Modes 1,5,8,19 

1 - Red-orange 2-0range 

2121 2121 
1111 1212 
2121 2121 
1111 1212 

3-Light grey 

11111111 
01010101 
11111111 
01010101 

3- Ycl-orange 

2222 
1212 
2222 
1212 

4- Hatching 

00010001 
00100010 
01000100 
10001000 

4-Cream 

2323 
3232 
2323 
3232 

93 



94 

Modes 2,9,12,20 

1-0range 2- Pink 3- Yel-green 4-Cream 

21 61 32 37 
11 16 23 73 
21 61 32 37 
l2 16 23 73 

All the patterns repeat after four rows, so only the first four are shown. 

VDU 23,12 -15,nl,n2,n3,n4,n5,n6,n7,n8 

YOU 13,11- 15 are used to define the four colour patterns in a simpler way than 
that provided by YOU 23,2- 5. The limitation is that you can only set a two-by-four 
pattern of pixels. 

YOU 13,11 sets colour pattern 1 
YOU 13,13 sets colour pattern 2 
YOU 13,14 sets colour pattern 3 
YOU 13,15 sets colour pattern 4 

The pixels of the top row of the resulting pattern are assigned alternating logical 
colours nl and n2, those of the next row have colours n3 and n4 etc. For example, to 
set up the following pattern in mode 1: 

RedYel 11 
WhtRed 31 
BlkRed 01 
WhtYcl 31 

the required sequence is YOU 23,11,1,1,3,1,0,1 ,3,1 



] 

..., 

~ 

.../-

IIHE VDU DRIVERS 

VDU 23,16,x,y I 

VDU 23,16 gives control of the movement of the cursor after a character has been 
printed. This movement is under the control of a byte of flags. VDU 23,16 replaces 
the byte by: 

((current byte) ANDy) EOR x 

The interpretation of the flags is as follows: 

bit 7 = 0 

bit 7 = 1 

bit 6 = 0 

bit 6 ~ 1 

bit 5 = 0 

bit 5 = 1 

bit 4 = 0 

bit 4 = 1 

bit3 = 0 

Normal. 

Undefined. 

In VDU 5 mode, cursor movements beyond the current edge of the 
window cause special actions. For example, they generate newlines at 
the end of the line . 

In VDU 5 mode, cursor movements beyond the edge of the window do 
not cause special actions. 

Cursor moves in the positive X direction after the character is printed. 
If this results in the cursor moving beyond the edge of the window, the 
settings of bits 6, 4 and 0 define the action which is taken. 

Cursor does not move after the character is printed. 

When a cursor movement in theY direction results in the cursor 
moving beyond the window edge, the window is scrolled if in VDU 4 
mode. If in VDU 5 mode, the cursor moves to the opposite edge of the 
window. 

When a cursor movement in theY direction results in the cursor 
moving beyond the window edge, the cursor is always moved to the 
opposite edge of the window. 

X direction is horizontal, Y direction is venical. 

95 



96 

bit3 = 1 

bit2 = 0 

bit2 = 1 

bit 1 = 0 

bit 1 = 1 

bit 0 = 0 

bit 0 = 1 

X direction is vertical, Y direction is horizontal. 

Positive vertical direction is down. 

Positive vertical direction is up. 

Positive horizontal direction is right. 

Positive horizontal direction is left. 

Disables the scroll-protect option. When printing a character in VDU 
4 mode results in the cursor moving beyond the edge of the window, 
the cursor is instead moved to the negative X edge of the window and 
one line in the positive Y direction. 

Enables the scroll protect option. When printing a character in VDU 4 
mode results in the cursor moving beyond the edge of the window, a 
'pending newline' is generated. It is actually executed just before the 
next character is printed, provided that it has not been deleted or 
executed by another cursor control code. For example VDU 12 7 would 
cancel it; VDU 9 would execute it. 

VDU 23,17,n,ml 

VDU 23,17,0-3 is used to set the tint for a colour in the 256-colour modes. The 'n' 
parameter determines which colour is set, as follows: 

Value 

0 
1 
2 
3 

Colour 

sets the tint for the text foreground colour 
sets the tint for the text background colour 
sets the tint for the graphics foreground colour 
sets the tint for the graphics background colour 

The VDU 17- 18 commands control the top two bits of blue, green and red 
independently of each other. This command allows the bottom two bits to be 



HE VDU DRIVERS 

controlled. However, they cannot be set independently. The least significant bits 
must either all be set or all clear. Hence it determines the amount of white tint given 
to the colour. 

The value of the tint is given by the top two bits of 'm': 

Value 

&00 
&40 
&80 
&CO 

Tint 

Bit 0 and bit 1 clear (darkest) 
Bit 0 set and bit 1 clear 
Bit 1 set and bit 0 clear 
Bit 0 and bit 1 set (lightest) 

When a pixel is plotted the following occurs, in terms of the actual logical colour 
stored in the screen memory: the bottom six bits of the colour number (set by YOU 
17 - 18) are shifted up by two bits, giving bits 2- 7 of the colour byte; the 
appropriate tint value is shifted down by six bits, into bits 0 and 1, and the two parts 
are then combined. 

YOU 23,17,4,m I chooses which set of default colour patterns are used, depending 
on the value of 'm': 

Value 

0 
1 

Mode 

Use 6502 BBC Micro compatible colour patterns 
Use native colour patterns 

YOU 23,17,5 1 exchanges the current text foreground and background colours. After 
the first YOU 23,17,51 subsequent characters printed are in inverse video. After the 
second YOU 23,17,51 subsequent characters printed are of normal appearance. 

VDU 23,18 .• 251 

YOU 23,18- YOU 23,24 are reserved for future Acorn extensions. 

97 



98 

VDU 23,25- 26,nl,n2,n3,n4,n5,n6,n7,n8 

These calls are provided by the Font Manager. See the chapter THE FONT 
MANAGER for details. 

VDU 23,2 7 ,m,n,O,O,O,O,O,O 

This call is provided by the Sprite Manager. See the chapter SPRITES for details. 

VDU 23,28 .. 31,n l,n2,n3,n4,n5,n6,n7 ,n8 

VDU 23,28 to VDU 23,31 are reserved for use by applications programs. 

VDU 23,32- 255,nl,n2,n3,n4,n5,n6,n7,n8 

VDU 23,32 to VDU 23,255 redefine the printable ASCII characters. The redefined 
character depends on the value of the second parameter. For example, VDU 23,65 
redefines the character whose ASCII code is 65, ie capital A. The parameters nl to 
n8 are integers representing the eight rows of the character to be redefined, nl being 
the top row and n8 the bottom row. Each bit of a value represents one pixel of the 
corresponding row, with a '1' indicating that the corresponding pixel is to be plotted 
in the foreground colour and a zero that it is to be plotted in the background colour 
(or not at all in the case ofVDU 5 mode printing). The most significant bit of the 
byte corresponds to the left-hand pixel of its row, and the others follow linearly. 

Although the delete character (ASCII 127) can be redefined, redefining has no 
effect as it cannot be displayed. 

You can read the pattern for a given character using OS_ Word &OA. 

VDU 24,xl;yl;x2;y2;- Define graphics window 

VDU 24 allows the user to define a graphics window. Any graphics objects which are 
drawn (including VDU 5 mode and fancy-font characters) and which lie outside this 
window are clipped to the edges of the window. The four parameters define the left, 
bottom, right and top boundaries of the window respectively, relative to the current 
graphics origin (the bottom left of the screen, by default). The window which you 



. HE VDU DRIVERS 

are defining must lie within the screen boundaries, otherwise the command is 
ignored. 

Use OS_ReadVduVariables to discover the size of the current graphics window. 

VDU 25,k,x;y; -General PLOT command 

VDU 25 is a multi-purpose graphics plotting command. The first parameter defines a 
particular function. The other parameters are the x co-ordinate and the y co
ordinate. They are relative either to the current graphics origin, or to the last point 
visited, depending on the value of'k'. 

The bottom three bits of 'k' determine the manner in which the plot is to be 
performed: 

(k AND 7) = 0 move cursor relative (to last graphics point visited) 
1 plot relative using current foreground colour 
2 plot relative using logical inverse colour 
3 plot relative using current background colour 
4 move cursor absolute (ie move to actual co-ordinates 

given) 
5 plot absolute using current foreground colour 
6 plot absolute using logical inverse colour 
7 plot absolute using current background colour 

The remaining bits of 'k' determine the action to be performed: 

k= 

k = 

0-7 
8- 15 

16- 23 
24 - 31 

32-39 
40-47 
48-55 
56 -63 

Solid line including both end points 
Solid line excluding the final point 
Dotted line including both endpoints, pattern restarted 
Dotted line excluding the final point, pattern restarted 

Solid line excluding the initial point 
Solid line excluding both end points 
Dotted line excluding the initial point, pattern continued 
Dotted line excluding both end points, pattern continued 

99 



100 

k -

k = 

k= 

k = 

k = 

k = 

64- 71 
72 - 79 
80-87 
88-95 

96- 103 
104-111 
112- 119 
120 - 127 

128-135 
136 - 143 
144- 151 
152- 159 

160 - 167 
168 - 175 
176 - 183 
184 - 191 

192- 199 
200-207 
208- 215 
216- 223 

224- 231 
232 - 239 
240- 247 
248- 255 

Point Plot 
Horizontal line fill (left and right) to non-background 
Triangle fill 
Horizontal line fill (right only) to background 

Rectangle fill 
Horizontal line fill (left and right) to foreground 
Parallelogram fill 
Horizontal line fill (right only) to non-foreground 

Flood to non-background 
Flood to foreground 
Circle outline 
Circle fill 

Circular arc 
Segment 
Sector 
Block copy/move * 

Ellipse outline 
Ellipse fill 
Graphics Characters 
Reserved for Acorn Expansion 

Reserved for Acorn Expansion 
Sprite Plot - see the chapter SPRITES 
Reserved for User programs 
Reserved for User programs 

*The eight codes in the range 184- 191 , which perform a block copy/move, have 
the following meanings: 

184 Move relative 
185 Relative rectangle move 
186 Relative rectangle copy 
187 Relative rectangle copy 



IIHE VDU DRIVERS 

188 Move absolute 
189 Absolute rectangle move 
190 Absolute rectangle copy 
191 Absolute rectangle copy 

Some of the objects require several points to be specified in order to define the shape 
completely. The last plot does the actual drawing. The sequences of moves and draws 
required for each type are: 

Shape 

Line 

Triangle 

Rectangle 

Parallelogram 

Circle 

Arc, segment, sector 

Block copy/move 

Ellipse 

Sequence of moves 

Move to one endpoint. Plot line to other endpoint. 

Move to first vertex. Move to second vertex. Plot triangle 
to last vertex. 

Move to one comer. Plot rectangle to diagonally-opposite 
comer. 

Move to first comer. Move to second corner. Plot 
parallelogram to third comer. The fourth comer is derived 
from the other three. 

Move to centre. Plot circle to point on the circumference. 

Move to centre of circle. Move to start of arc. Plot to a 
point on the line from the centre to the end of the arc. 
Arcs, etc, are always drawn counter-clockwise. 

Move to one comer of source rectangle. Move to 
diagonally-opposite comer of source rectangle. Plot block 
copy/move to lower left of destination rectangle. 

Move to centre. Move to intersection of ellipse 
circumference and centre's Y co-ordinate. Plot ellipse to 
highest or lowest point on the ellipse. 

101 



102 

VDU 26 - Restore default windows 

VDU 26 causes the text and graphics windows to be reset to their default states, ie 
both become the full screen. In addition, the command resets the graphics origin to 
(0,0), moves the graphics cursor to (0,0) and moves the text cursor to its home 
position. Hardware scrolling of the text window is initiated. 

VDU 27- No operation 

VDU 2 7 has no effect. 

VDU 28,lx,by,rx,ty- Define text window 

VDU 28 defines (or redefines) a text window. The parameters are integers specifying 
the boundary of the window as follows: 

lx = left-most x column 
by = bottom-most y row 
rx = right-most x column 
ty = top-most y row 

If the command attempts to define a window which extends outside the screen 
boundaries, has lx greater than rx, or has by less than ty, it will have no effect. The 
smallest possible window is one character. 

You can read the si~e of the current text window using OS_ReadVduVariables. 

VDU 29,x;y;- Set graphics origin 

VDU 29 defines the point specified as the origin to be used for all subsequent 
graphics output using VDU 25 commands, and for the graphics window defined by 
VDU 24. The parameters are the two pairs of bytes specifying the absolute x andy 
co-ordinates of the new origin. 

- Note: changing the graphics origin does not alter the position of the graphics 
window on the screen. The window's co-ordinates in terms of the origin therefore 
effectively change after a VDU 29. 



IIHE VDU DRIVERS 

You can read the position of the current origin using OS_ReadVduVariables. 

VDU 30 -Home text cursor 

VDU 30 moves the text cursor to its 'home' position. This is normally the top left of 
the window but may be changed (using VDU 23,16). In VDU 5 mode the graphics 
cursor is moved instead. It may have an offset of up to seven pixels out of the comer 
along one or both of the axes to allow for the height or width of the character 
depending on the direction of character printing. 

VDU 31,x,y- Position text cursor 

VDU 31 moves the text cursor to a specified x andy co-ordinate on the screen. The 
parameters x andy are the column and row numbers. 

In VDU 4 mode, x andy are given relative to the text 'home' position which is at 
(0,0). If the position lies outside the text window, nothing happens, unless the scroll 
protect option is enabled and the x co-ordinate is just beyond the positive X edge of 
the window. In this case, the text cursor is moved to position (x- 1 ,y) and a pending 
newline is generated. 

In VDU 5 mode the graphics cursor is moved to its 'home' position plus 8*x pixels in 
the positive X direction, plus 8*y pixels in the positive Y direction. It is possible to 
move the cursor outside the graphics window in VDU 5 mode. 

You can read the position of the text cursor using OS_Byte &86 (134). 

VDU 127- Delete 

Unless the previous use ofVDU 23,16 indicates that no cursor movement is to take 
place after character printing, the cursor is moved backwards as if by VDU 8. Then 
the character under the cursor is deleted by overprinting it with a space (in VDU 4 
mode) or a solid block of graphics background colour (in VDU 5 mode). These space 
and solid block characters are selected from the 'hard' (rather than the 'soft') font, so 
redefining these characters will not change the results. 

103 



TilE VDU OS_BYTES 

104 

OS_Byte &09 (9)- Write duration of first colour 

On entry: Rl = duration 

On exit: Rl = old value of duration 
R2 is undefined 

This call sets the duration of the first flash colour. 

Flashing colours are displayed as a sequence of two alternating colours. By default, 
each colour is displayed for 25 video frames at a time, which is approximately 0.5 
seconds in the UK. This command allows you to alter the duration for which the first 
colour is displayed as follows: 

Value Meaning 

0 Set an infinite duration (first colour constantly displayed) 
n Set the duration ton video frames (approximately n/50 seconds) 

This variable may also be set using VDU 23,9. It may be read (but not set) by 
OS_Byte &C3 (195) (see below). 

OS_Byte &C3 ( 195) - Read duration of first colour 

On entry: Rl = 0 
R2 = 255 

On exit: Rl =previous value 
R2 =value of next location (keyboard auto repeat delay) 

OS_Byte &OA (10)- Write duration of second colour 

On entry: Rl =duration 



HE VDU DRIVERS 

On exit: Rl = old value of duration 
R2 is undefined 

This call sets the duration for the second flash colour. 

This variable may also be set using VDU 23,10.lt may be read (but not set) by 
OS_Byte &C2 (194). 

OS_Byte &C2 (194)- Read duration of second colour 

On entry: R1 = 0 
R2 = 255 

On exit: Rl = previous value 
R2 = value of next location (duration of first colour) 

OS_Byte &13 (19)- Wait for vertical sync (vsync) 

On entry: 

On exit: R 1 is undefined 
R2 is undefined 

The video display frame is drawn approximately fifty times a second in the UK. This 
call synchronises a software routine with the signal produced when the electron 
beam reaches the bottom of the displayed area of the picture (ie the start of the 
border). 

From the time that the beam reaches the bottom of the display until the next frame 
starts to be displayed, the electron beam is either 'blanked' or shows the border 
colour. This means that you have this time (3.4ms in modes 0- 17, 0.7ms in modes 
18- 20) to redraw the screen. Because the beam is blanked while this redrawing is 
taking place, there is no flicker. 

If 3ms is not enough time to produce a flicker-free update of the screen, you should 
consider using more than one bank of screen memory and switching between them 
(using OS_Byte &70- &71 for example). 

105 



106 

OS_Byte &14 (20)- Reset font definitions 

On entry: 

On exit: R1 is undefined 
R2 is undefined 

The shape of the character displayed when printing ASCII codes 32 - 255 may be 
redefined using the YOU 13 command. Any such changes remain in force until the 
next hard reset. This command may be used to restore the default character 
definitions for ASCII codes in the range 31- 127. 

Note that you should really only redefine characters in the range 118 - 159. This is 
because all of the other printable characters have 'standard' meanings which should 
be preserved for use in applications such as word processors. 

See OS_Byte &19 (25) for details on how to restore the other codes or how to 
restore a smaller selected group. 

OS_Byte &19 (25)- Reset group of font definitions 

On entry: R1 = group to restore 

On exit: R1 is undefined 
R2 is undefined 

All ASCll characters between 32 and 255 may be redefined using the YOU 23 
command. This call restores all or a particular group of characters to their default 
settings according to Rl, as follows: 

Value 

0 
1 
2 
3 
4 

Meaning 

Restore characters 32- 255 
Restore characters 32- 63 
Restore characters 64 - 95 
Restore characters 96 - 12 7 
Restore characters 128- 159 



5 
6 
7 

Restore characters 160 - 191 
Restore characters 192-223 
Restore characters 224- 255 

HE VDU DRIVERS 

OS_Byte &70 (112)- Write VDU driver screen bank 

On entry: Rl = bank number 

On exit: R 1 = old bank number 
R2 is undefined 

This call selects the bank of screen memory which is to be used by the VDU drivers 
according to R 1, as follows: 

Value 

0 
n 

Bank 

Default for the current screen mode (1 or 2) 
Select bank 'n' 

The maximum value for 'n' is (ScreenSize)/(ModeSize), where ScreenSize is the 
*CONFIGURed screen size, and ModeSize is the size of the current mode. For 
example, in mode 0, a 20K mode with 160K set aside for the screen makes eight 
banks available, so 8 is the maximum value for 'n'. 

The default bank for a non-shadow mode is bank 1; for a shadow mode it is bank 2. 
OS_Byte &FA may be used to read the bank number without writing it (see below). 

OS_Byte &FA (250)- Read VDU driver screen bank number 

On entry: R1 = 0 
RZ = 255 

On exit: Rl = screen bank used by VDU drivers 
RZ = next location (display screen bank) 

107 



108 

OS_Byte &71 (113) - Write display hardware screen bank 

On entry: Rl = bank number 

On exit: Rl =old bank number 
R2 is undefined 

This call selects the bank of screen memory which is to be used by the display 
hardware according to Rl: 

Value 

0 
n 

Bank 

Default for the current screen mode 
Select bank n 

The bank may be read (but not set) using OS_Byte &FB (see below). 

OS_Byte &FB (251) -Read display screen bank number 

On entry: Rl = 0 
RZ = 255 

On exit: Rl = screen bank used by the display 
R2 is undefined 

OS_Byte &72 (114)- Write shadow/non-shadow state 

On entry: R 1 = shadow state 

On exit: Rl = old value 
R2 is undefined 

This call determines whether future MODE commands will be forced into the 
shadow state, depending on Rl: 



Value 

0 
1 

Meaning 

Modes will be shadow 
Modes will be non-shadow 

. HE VDU DRIVERS 

Shadow state requires twice the amount of RAM than the equivalent non-shadow 
mode since two copies of the screen are stored in memory. OS_ByteS & 70 ( 112) and 
& 71 (113) control the use of the banks. 

To select a shadow state temporarily when in non-shadow mode, you can use the 
MODE 128+n convention. Future MODE commands will not be influenced by this. 

OS_Byte &75 (117)- Read VDU status 

On entry: -

On exit: Rl = status byte 

This call returns the content of the VDU status byte. This byte gives information on 
the way in which characters are output according to their bit settings: 

Bit Status when set 

0 Printer output enabled by VDU 2 
1 Unused 
2 Paged scrolling selected by VDU 14 
3 Text window in force (ie software scrolling) 
4 In a shadow mode 
5 In VDU 5 mode 
6 Cursor editing in progress 
7 Screen disabled with VDU 21 

109 



110 

OS_Byte &86 (134)- Read text cursor position 

On entry: 

On exit: Rl = horizontal position 
R2 = vertical position 

On entry: 

This call returns the current text cursor position unless cursor editing is in progress, 
in which case the position returned is that of the input cursor. OS_Byte &AS ( 165) 
reads the position of the output cursor irrespective of cursor editing mode. 

Text is printed at horizontal positions 0 to n-1, where 'n' is the number of characters 
per line in the current text window. Therefore, the value obtained is normally in this 
range. However, if there is a pending newline (see YOU 23, 16), a position of 'n' will 
be returned. 

OS_Byte &A5 (165)- Read output cursor position 

On exit: R 1 = horizontal position 
R2 = vertical position 

On entry: 

This call returns the position of the output cursor, even while cursor editing is in 
progress. 

OS_Byte &87 (135)- Read character at text cursor position and screen mode 

On exit: Rl = ASCII code of character (0 if unreadable) 
R2 = screen mode 

This call returns the screen mode and the ASCII code of the character at the text 
cursor position. If cursor editing is in progress, it returns the character code returned 
by the character at the input cursor position (ie the character that would be copied 
the next time ~ is pressed) . 



IIHE VDU DRIVERS 

Note that the screen mode does not have bit 7 set, even if it is a shadow mode. 

OS _Byte &90 ( 144) - Set vertical screen shift and interlace 

On entry: Rl = vertical screen shift 
R2 = interlace flag 

On exit: Rl =previous screen shift 
R2 = previous interlace flag 

This call specifies the vertical screen alignment and interlace options after the next 
mode change. Rl sets the vertical offset. R2 rums interlace on and off as follows: 

Value 

0 
1 

Meaning 

Interlace on 
Interlace off 

It is equivalent to OS command •lV, to which you should refer for details of the 
arguments. 

OS_Byte &AO (160)- Read VDU variable value 

On entry: Rl = VDU variable number (0- 15) 

On exit: Rl = value of the variable 
R2 = value of next variable (which would be read with Rl + 1) 

The VDU driver uses a number of locations in RAM to store transient information. 
This call allows some of these locations to be examined. Note that the variables are 
not necessarily stored in the order implied by the value ofRl on entry. However, the 
relationship between Rl and the variable read is guaranteed to remain the same for 
all versions of the OS. 

111 



112 

Call 

Rl = 0 
Rl = 1 
Rl = 2 
Rl=3 
Rl = 4 
Rl = 5 
Rl = 6 
Rl = 7 
Rl = 8 
Rl = 9 
Rl = 10 
Rl = 11 
Rl = 12 
Rl = 13 
Rl = 14 
Rl = 15 

Location 

LSB of graphics window left column (ic} 
MSB of graphics window left column (ic} 
LSB of graphics window bottom row (ic} 
MSB of graphics window bottom row (ic} 
LSB of graphics window right column (ic} 
MSB of graphics window right column (ic} 
LSB of graphics window top row (ic) 
MSB of graphics window top row (ic} 
Text window left column 
Text window bottom row 
Text window right column 
Text window top row 
LSB of graphics origin X co-ordinate (ec} 
MSB of graphics origin X co-ordinate (ec} 
LSB of graphics origin Y co-ordinate (ec} 
MSB of graphics origin Y co-ordinate (ec} 

- Note: (ic} means internal co-ordinates: the origin is always the bottom left of the 
screen. One unit is one pixel wide and one pixel high. 

(ec) means external co-ordinates: the screen is 1280 units wide by 1024 units high 
in all modes except 22, where it is 976 units high. 

This OS_Byte is provided mainly for compatibility with the BBC/Master 128 OS. 
You can read many more of the VDU variables using OS_ReadVduVariables &31 
(49} and OS_ReadModeVariable &35 (53). 

OS_Bytc &A3 (163)- Read/ write general graphics information 

On entry: Rl = 242 
R2 = dot-dash repeat length or action code 

On exit: Rl is preserved or contains status information 
R2 is preserved or contains status information 



IIHE VDU DRIVERS 

This call is a general purpose one reserved for Acorn applications. The only value of 
Rl which is guaranteed to perform a useful function is 242. The type of action 
depends on the value of R2: 

Value 

0 
1-64 
65 
66 

Meaning 

Set default dot-dash pattern and length 
Set dot-dash line repeat length to the value given 
Return status information 
Return information on the current sprite 

The status information is returned in R 1 and R2 as follows: 

Rl bits 

Bit 7 = 1 
Bit 6 = 1 
Bits 0-5 

R2 bits 

Bits0-31 

Meaning 

(Sprites are always active) 
(Flood fill is always active) 
Current dot dash line repeat length 

Meaning 

Size of sprite workspace in bytes 
This is 8K/32K times the configuration value SpriteSize 

The information on the current sprite is returned in Rl and R2 as follows: 

Rl =width in pixels (ie internal co-ordinates) 
R2 =height in pixels (ie internal co-ordinates) 

OS_Byte &Cl (193)- Read/write flash counter 

On entry: Rl = 0 
R2 = 255 

On exit: Rl = previous value 
R2 • value of next location (duration of second colour) 

113 



114 

1bis call accesses the location used as a count-down timer for the flashing colours. 
1be location is loaded with the count for the first colour and decremented at a 
YSYNC rate. When it reaches zero, the colours are swapped and the counter is 
loaded with the duration of the second colour. 

OS_Byte &03 (211)- Read/write bell channel 

On entry: Rl = 0 or new channel 
RZ .. 255 or 0 

On exit: Rl = previous channel 
R1 = value of next location (bell sound information) 

1be bell (VDU 7) sound is output on channel 1 by default. 1bis call provides a 
means of determining the current channel or changing it if required. 

OS_Byte &04 (212)- Read/write bell sound volume 

On entry: Rl "' 0 or new value 
R1 = 255 orO 

On exit: R 1 = previous value 
R2 = value of next location (bell frequency) 

This allows you to read or set the volume of the sound used tO make the (QillG bell 
sound. Values for the amplitude are in the range &80 (loudest) tO &F8 (softest) in 
steps of &08. 1be default setting depends on the *Configure LoucVQuiet setting 
(&90/&DO respectively). 

OS_Byte &05 (213)- Read/write bell frequency 

On entry: Rl = 0 or new value 
RZ = 255 or 0 

On exit: Rl = previous value 
RZ .. value of next location (bell duration) 



HE VDU DRIVERS 

This call provides a means of reading or changing the frequency associated with the 
bell sound. The default value is 100, and it has the same interpretation as the third 
parameter of the SOUND statement in BASIC and the *SOUND command. 

OS_Byte &06 (214)- Read/write bell duration 

On entry: Rl = 0 or new value 
R2 = 255 or 0 

On exit: Rl =previous value 
R2 is undefined 

This call provides a means of reading or changing the duration of the bell sound. 
The default value is 6, and the unit is 20ths of a second. 

OS_Byte &09 (217)- Read/write paged mode line count 

On entry: Rl = 0 or new count 
R2 = 255 orO 

On exit: Rl = previous count 
R2 = value of next location (bytes in VDU queue) 

In the paged output mode, the display is prevented from scrolling (awaiting the 
depression of lshHtl} when approximately 75% of the height of the current text 
window has been scrolled. The number of lines printed since the last page halt is 
maintained in the location accessed by this call and it may be either read or changed 
(normally to 0 before requesting user input). 

If you are using OS_ Word &00 or OS_ReadLine to perform the input, this call is 
made automatically. 

OS_Byte &DA (218)- Read/write bytes in VDU queue 

On entry: Rl = 0 or new count 
R2 = 255 orO 

115 



On exit: Rl =previous count 
R2 = value of next location (TAB key code) 

1bis call affects the count of the number of characters which remain to be passed to 
the YOU driver in order to complete the current YOU sequence. 1be value is 
(minus the number of bytes left), and is held in 2's complement notation (eg &FF 
means one byte to go). The call may be used to read the value or to change it 
(normally to zero, which has the effect of abandoning an incomplete YOU 
command). 

When an escape condition is acknowledged, this call is made automatically. 1bis 
prevents the first few characters of an error message from being 'swallowed' by an 
incomplete YOU sequence. 

THE VDU OS_ WORDS 

116 

1bis section describes the OS_ Word calls which affect the YOU drivers. Many of 
these are status-returning calls, rather than being routines which affect the screen. 
They are listed in numerical order ofRO on entry. 

OS_ Word &09 (9)- Read pixel logical colour 

Parameter block size: 5 

On entry: The first four bytes of the parameter block contain the co-ordinate of the pixel: 

Rl +0 = LSB of X co-ordinate 
Rl + 1 "' MSB of X co-ordinate 
Rl + 2 = LSB of Y co-ordinate 
Rl + 3 = MSB of Y co-ordinate 

On exit: Rl +4 = the logical colour of the pixel specified. 

This call determines the logical colour of the pixel at given co-ordinates on the 
graphics screen. If the colour is returned as &FF then either: 

- the screen is in a 256 colour mode and the logical colour was 255 



IIHE VDU DRIVERS 

- the pixel is off the screen 

- the screen is in a non-graphics mode. 

To overcome the ambiguity caused by 256 colour modes, you should use 
OS_ReadPoint &32 (50) instead. This returns both the logical colour and tint. The 
OS_ Word should be used for compatibility purposes only. 

OS_ Word &OA ( 10) -Read a character definition 

Parameter block size: 9 

On entry: The first byte of the parameter block contains the ASCII code of the character 
required: 

Rl +0 = ASCII code of character required 

On exit: Bytes Rl + 1 to Rl +8 contain the definition of the specified character: 

Rl + 1 = top row of definition 

R1 +8 =bottom row of definition 

The characters displayed in all modes other than teletext mode are defined as an 
eight-by-eight matrix of dots. This call enables you to read the definition for a 
specified ASCII code. However, the definitions returned for ASCII codes 0 to 31 
and 127 (ie the non-printing characters) are not meaningful. 

Bits set in each row of the character definition are displayed in the current text 
foreground colour; bits dear in each row are displayed in the current text 
background colour. In VDU 5 mode, bits which are set are plotted in the graphics 
foreground colour and action; bits which are clear are not plotted at all. 

11 7 



118 

OS_ Word &OB (11) -Read the palette 

Parameter block size: 5 

On entry: The first byte of the parameter block contains the logical colour: 

R I +0 = logical colour to read 

On exit: Details of the physical colour are returned in the last four bytes: 

R I+ 1 = physical colour associated with the specified logical colour 
R1+2 =red component 
Rl + 3 = green component 
Rl +4 = blue component 

This call allows you to determine the physical colour associated with a particular 
logical colour. The call can only return one of the colours associated with a flashing 
colour. To read the full information about a logical colour's palette entry, you should 
use OS_ReadPalette &2F (4 7). The OS_ Word is provided for compatibility only. 

OS_ Word &OC (12)- Write the palette 

Parameter block size: 5 

On entry: The parameter block contains details of the logical colour and the new physical 
colour which is to be associated with it: 

R 1 +0 = logical colour to change 
Rt + 1 = new physical colour 
R 1 + 2 = red component 
R 1 + 3 = green component 
Rl +4 = blue component 

On exit: The parameter block remains unchanged. 

This call allows you to change the physical colour associated with a particular logical 
colour. It duplicates the function ofVDU 19 command. However, the OS_ Word 



VDUDRIVERS 

call is faster and may be used in interrupt routines. The five bytes of the parameter 
block are equivalent to the five parameters l,p,r,g,b described in the section on VDU 
19. 

OS_ Word &00 (13)- Read current and previous graphics cursor positions 

Parameter block size: 8 

On entry: The parameter block is unused. 

On exit: The X and Y co-ordinates are rerumed in the parameter block: 

Rl +0 = LSB of previous X co-ordinate 
Rl + 1 = MSB of previous X co-ordinate 
Rl + 2 = LSB of previous Y co-ordinate 
R 1 + 3 = MSB of previous Y co-ordinate 
R1 +4 = LSB of current X co-ordinate 
Rl +5 = MSB of current X co-ordinate 
R1 +6 = LSB of current Y co-ordinate 
Rl + 7 = MSB of current Y co-ordinate 

All the co-ordinates are in external form. You can read points visited before the 
previous one (and many other VDU variables) using OS_ReadVduVariables &31 
(49). 

OS_ Word &16 (22)- Write screen base address 

Parameter block size: 5 

On entry: The parameter block contains the following values: 

Rl+O =Type 
R1 + 1 = Least significant byte of offset 
R1+2 .. . 
R1+3 .. . 
R1 +4 = Most significant byte of offset 

119 



120 

On exit: The parameter block remains unaltered. 

This routine sets up a new screen base address. It is given as the offset from the 
address of the base of the screen buffer to the start of the screen display. This address 
can be used as the area of the buffer which is to be updated, ie written to by the 
VDU drivers, or the area which is tO be displayed by the hardware, or both, 
depending on the bits of the first byte in the parameter block: 

Bit 0 Used by VDU drivers 
Bit 1 Displayed by hardware 

This allows multiple screens to be used. For example, in mode IZ two copies of the 
screen can be kept. One of these can be updated whilst the other is being displayed 
using the following parameter blocks: 

Rl+O 
RI+1 - R1+4 

R1+0 
R1+1-Rl+4 

Contains 2 
Contains &00 

Contains 1 
Contains &14000 

Displayed 

Updated 

Then the two screens can be swapped over (at VSYNC) by changing over the 
addresses so that smooth animation is obtained. 

The size of the screen buffer is given by the *CONFIGURE ScreenSize parameter. 
Thus if this is set to 10 on a 300 series machine, the buffer size is 10*8192 or 81,920 
bytes. This allows for four 20K mode screens, two 40K modes, or one 80K mode 
screen. See the above *CONFIGURE command for more details. 

A slightly simpler way of achieving bank switching is to use OS_Bytes & 70- &71 
(112 - 113). With these, you only have to specify the bank number, not the actual 
offset. 



THE VDU SWI CALLS 

IIHE VDU DRIVERS 

This section describes the OS SWI calls (except OS_Bytes and OS_ Words) which 
affect the VDU drivers. Many of these are status-returning calls, rather than routines 
which affect the screen. They are listed in numerical order of SWI number. 

OS_ReadPalctte &2F (47) 

On entry: RO = logical colour 
RJ = which colour 

On exit: R2 = setting of first flashing colour 
R3 = setting of second flashing colour 

OS_ReadPalctte reads the setting of a particular colour. R1 selects whether the 
normal colour, border colour or cursor colour is read as follows: 

Value 

16 
24 
25 

Meaning 

Read normal colour 
Read border colour 
Read cursor colour 

The settings for the first flash colour and second flash colour are returned in R2 and 
R3 respectively. If these are identical then the colour is a steady, non-flashing one. 
The value contained in each of these is interpreted as follows: 

Bits 

0 - 7 
8 - 15 
16 - 23 
24 - 31 

Meaning 

Value showing how colour was programmed 
Amount of red 
Amount of green 
Amount of blue 

The bottom byte (bits 0- 7) returns the value of the second parameter to the VDU 
19 command which defines the palette. For example: 

121 



122 

Value 

0 - 15 
16 
17 - 18 

Meaning 

Acrual colour (BBC compatible) 
Defined by giving amounts of red, green and blue 
Flashing colour defined by giving amounts of red, green and blue 

OS_ReadVduVariables &31 (49) 

On entry: RO = pointer to the input block 
Rl = pointer to the output block 

On exit: 

OS_ReadVduVariables reads in a series ofVDU variables and places them in 
sequence into a block of memory. The input block consists of a sequence of words. 
Each word is the number of the variable to be read. A value of -1 terminates the list. 
The value of each variable is put as a word into the output block, any invalid 
variables being entered as zero. The output block has no terminator. Both blocks 
must be word-aligned. 

The possible variable numbers are the same as for OS_ReadModeVariable (see 
below) with the following additions: 

GWLCol 
GWBRow 
GWRCol 
GWTRow 
TWLCol 
TWBRow 
TWRCol 
TWTRow 
OrgX 
OrgY 
GCsX 
GCsY 
OlderCsX 
OldcrCsY 

128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 

Left-hand column of the graphics window (ic) 
Bottom row of the graphics window (ic) 
Right-hand column of the graphics window (ic) 
Top row of the graphics window (ic) 
Left-hand column of the text window 
Bottom row of the text window 
Right-hand column of the text window 
Top row of the text window 
X co-ordinate of the graphics origin (ec) 
Y co-ordinate of the graphics origin (ec) 
X co-ordinate of the graphics cursor (ec) 
Y co-ordinate of the graphics cursor (ec) 
X co-ordinate of oldest graphics cursor (ic) 
Y co-ordinate of oldest graphics cursor (ic) 



liRE VDU DRIVERS 

OldCsX 142 X co-ordinate of previous graphics cursor (ic) 
OldCsY 143 Y co-ordinate of previous graphics cursor (ic) 
GCsiX 144 X co-ordinate of graphics cursor (ic) 
GCsiY 145 Y co-ordinate of graphics cursor (ic) 
NewPtX 146 X co-ordinate of new point (ic) 
NewPtY 147 Y co-ordinate of new point (ic) 
ScreenS tart 148 Address of the start of screen used by VDU 

drivers 
DisplayS tart 149 Address of the start of screen used by display 

hardware 
T otalScreenSize 150 Size of configured screen memory 
GPLFMD 151 GCOL action for foreground colour 
GPLBMD 152 GCOL action for background colour 
GFCOL 153 Graphics foreground colour 
GBCOL 154 Graphics background colour 
TForeCol 155 Text foreground colour 
TBackCol 156 Text background colour 
GFTint 157 Tint for graphics foreground colour 
GBTint 158 Tint for graphics background colour 
TFTint 159 Tint for text foreground colour 
TBTint 160 Tint for text background colour 
MaxMode 161 Highest mode number available 

- Note: (ic) means internal co-ordinates, where (0,0) is always the bottom left of 
the screen. One unit is one pixel. 

(ec) means external co-ordinates, where (0,0) means the graphics origin, and the 
size of one unit depends on the resolution. The screen is always 1280 by 1024 
external units. The graphics origin is stored in external co-ordinate units, but is 
relative to the bottom left of the screen. 

The 'new point' is the internal form of the co-ordinates given in an unrecognised 
PLOT command. When the UKPiot vector is called, the internal format co
ordinates (variables 140- 145) have not yet been shuffled down, so the graphics 
cursor ( 144 - 5) contains the co-ordinates of the last point visited. The external co· 
ordinates version of the current point ( 138-9) is updated from the co-ordinate 
given in the unrecognised plot. 

123 



124 

OS_ReadPoint &32 (50) 

On entry: RO = x co-ordinate 
Rl = y co-ordinate 

On exit: R2 = colour 
R3 =tint 
R4 = screen flag 

The co-ordinates are in external units and are relative to the current graphics origin. 

OS_ReadPoint takes a point and returns its colour in R2 and its tint setting (amount 
of white, in the range 0- 255) in R3. R4 returns the following: 

Value 

0 
-1 

Meaning 

Point on the screen 
Point off the screen (R2 = -1 also) 

OS_ReadModeVariable &35 (53) 

On entry: RO =screen mode 
Rl = variable number 

On exit: R2 = value of variable 
Cis set if variable or mode numbers were invalid 

OS_ReadModeVariable allows you to read information about a particular screen 
mode without having to change into that mode. The possible variable numbers are 
given below: 



ModeFlags 0 

ScrRCol 1 

ScrBCol 2 

NCo lour 3 

XEigFactor 4 

IIHE VDU DRIVERS 

The bits of the result have the following 
meanings: 

BitO =0 graphics mode 
= 1 non-graphics mode 

Bitl =0 non-teletext mode 
= 1 teletext mode 

Bit2 =0 non-gap mode 
= 1 gap mode 

Maximum column number for printing text 
ie number of columns- 1 

Maximum row number for printing text 
ie number of rows- 1 

Maximum logical colour 
ieeitherl,3, 15or63 (not255) 

This indicates the horizontal pixel resolution: 

0 1280 pixels 
1 640 pixels 
2 320 pixels 
3 160 pixels 

For values 1, 2 and 3 it is the number of bits by which 1280 must be shifted right in 
order to obtain the number of screen pixels. Note that it gives the physical pixel size, 
which isn't necessarily the same as the number of pixels that appear to be available. 
For example, in mode 4 the value is 1, implying 640 pixels. This is because in terms 
of the hardware mode, mode 4 is really mode 0, with each pixel replicated 
horizontally during drawing. 

125 



On entry: 

On exit: 

126 

YEigFactor 5 This indicates the vertical pixel resolution: 
1 512 pixels 
2 256 pixels 

Again, this is the number of bitS by which 1024 must be shifted right to obtain the 
actual number of vertical pixels. 

LineLength 6 Number of bytes on a pixel row 

This is the same as (characters per row)*(bitS per pixel). For example, in mode 15 it 
is 80*8, or 640. 

ScreenSize 7 Number of bytes one screen buffer occupies 

YShftFactor 8 Scaling factor for start address of a screen row 

The value is LOG base 2 of (Linelength)/5. Thus to work out the address of the first 
byte of a given screen row, y, you perform (y<<YShftFactor)*5. This gives the offset 
from the top of the screen, so this must be added to it to find the actual address. 

Log2BPP 
Log2BPC 

9 
10 

LOG base 2 of the number of bitS per pixel 
LOG base 2 of the number of bytes per character 

It is in fact the LOG base 2 of the number of bytes per character divided by eight. So 
in mode 0, for example, it is LOG base 2 of (8/8), or 0. In mode 15 it is LOG base 2 
of (64/8), or 3. It would be exactly the same as Log2BPP, except for the 'double 
pixel' modes. 

OS_RemoveCursors &36 (54) 

OS_RemoveCursors removes the cursors (output and copy, if active) from the 
screen, saving the old state (their positions, flash rate etc.) on an internal stack so 



On entry: 

On exit: 

IIHE VDU DRIVERS 

that it may be recovered later. This instruction must always be balanced later by a 
OS_RestoreCursors to restore the cursor again. 

OS_RestoreCursors &37 (55) 

OS_RestoreCursors restores the cursor state previously saved on the internal stack 
using OS_RemoveCursors. 

OS_CheckModeValid &3F (63) 

On entry: RO = mode number to check 

On exit: C = 0 if mode is valid, 1 otherwise 
If C=O, RO is preserved, otherwise: 

RO = - 1 if the mode is non-existent 
RO = -2 if there is not enough memory 

Rl = mode that will be used 

OS_CheckModeValid determines whether you can change to a given mode and 
return with the appropriate carry set. RO = -1 on exit implies that the mode you are 
checking isn't available on the current type of monitor. R1 contains the mode that 
will be used if an attempt is made to select the mode which you are checking, using 
VDU22. 

OS_ClaimScreenMemory &41 (65) 

This call allows the screen memory to be used as a temporary buffer area. See the 
chapter MEMORY MANAGEMENT for details. 

127 



THE MOUSE AND POINTER 

128 

The mouse pointer is a hardware sprite or 'cursor' generated by the VIOC video 
controller chip. It differs from the sprites plotted by the Sprite module. These are 
software entities which are displayed by plotting pixels on the screen in the 
appropriate colours. The mouse pointer has its own screen RAM, and is 
superimposed on the main screen. 

To use the mouse pointer, you must define its shape using the appropriate OS_ Word 
call. It may be up to 32 pixels square. The size of the pointer pixels is the same as 
those in current display mode. However, the number of colours available is always 
four. 

The shape is stored with two bits per pixel, so pointer colours are in the range 0 - 3. 
Colour 0 is always transparent. Pixels set to this colour are not displayed, so the main 
screen display can be seen underneath. The other three colours have their own 
palette entries, so may be programmed separately from the other colours on the 
screen. 

OS_Byte and OS_ Word calls control the pointer shape. Because the pointer is so 
often used in conjunction with the mouse, you can tie the two together, so that the 
pointer follows the mouse. In addition, you can set 'scaling factors', which determine 
how much the pointer moves for a given movement of the mouse. 

Because of this close association between the pointer and the mouse, this section 
also describes calls relating to the mouse itself. However, it doesn't cover the 
mouse/pointer support calls provided by the window manager module. These calls 
should be used in programs running under the Wimp environment, in preference to 
those documented here. See the chapter THE WlNOOW MANAGER for details. 

Mouse/pointer OS_Byte calls 

OS_Byte &6A (106) -Select pointer/ activate mouse 

On entry: Rl = pointer shape and linkage flag (sec below) 



On exit: R 1 = old pointer shape number and linkage state 
R2 is undefined 

. HE VDU DRIVERS 

You can define four 'pointer buffers' using OS_ Word &15 (21) (see below), each 
holding a different shape definition for the mouse pointer. The present call allows 
you to select one of these definitions for future use, or to tum off the pointer 
depending on the bottom three bitS of Rl: 

Value 

0 
1 - 4 

Meaning 

Turn off current pointer 
Select given pointer 

If a pointer is selected it can be linked to the mouse so the mouse drives it, 
depending on bit seven ofR1 as follows: 

Value 

0 
1 

Meaning 

Link pointer to mouse 
Pointer unlinked 

For example, a value in R1 of &03 selectS pointer three and links it to the mouse, 
and a value of &82 selectS pointer two but leaves it unlinked. 

OS_Byte &80 (128) - Get buffer/mouse status 

On entry: Rl = action code 

On exit: R1 = low byte of position or number of bytes in buffer/free 
R2 = high byte of position or number of bytes in buffer/free 

The action of this call depends upon the value in R1. lt determines the current x or 
y position of the mouse or the number of bytes in a particular input buffer or the 
number of free bytes in a particular output buffer. In particular, ifR0=246 on entry, 
the call returns the number of bytes in the mouse buffer. 

129 



130 

On entry 

R1 = 7 
R1 = 8 
R1 = 146 

On exit 

Rl = x position MOD 256; R2 = x position DlV 256 
Rl = y position MOD 256; R1 = y position DIY 256 
Rl & R1 contain the number of bytes in mouse buffer 

The mouse buffer is 63 bytes long. An entry is insetted into it every time one of the 
buttons on the mouse changes state. Each entry is nine bytes long. It consists of two 
two-byte co-ordinates, a button state byte, and a four-byte time stamp. Up to seven 
button changes may therefore be buffered at once. 

lt is not recommended that you use this OS_Byte to read the mouse co-ordinates, 
unless you require only one co-ordinate. This is because two calls are required to 
discover both x andy, and the mouse might change position between the two calls. 
The OS_Mouse call is more useful, as it returns both the mouse button state and the 
time-stamp. (See below.) 

Mouse/pointer OS_ Word call 

OS_ Word & 15 ( 21) - Define pointer and mouse parameters 

This provides four different functions associated with the pointer and the mouse. 

Define pointer site, shape and active point 

Parameter block size: 10 

On entry: The parameter block contains all the information: 

Rl+O = 0 
R1 + 1 = Shape number {1- 4) 
R1 +1 = Width (w} in bytes (0- 8) 
Rl + 3 .. Height( h) in pixels (0- 31} 
Rl +4 = ActiveX in pixels from left (0 - w*4- 1} 
Rl +5-= ActiveY in pixels from top (0 - h- 1) 



IIHE VDU DRIVERS 

Rl +6 = Least significant byte of pointer (P) to data 
Rl+7 
Rl+8 
Rl +9 = Most significant byte of pointer to data 

On exit: The parameter block remains unchanged. 

You can define four shapes. These are numbered one to four and may be selected 
using OS_Byte &6A (106). 

As the pointer is always displayed in 2 bits per pixel (four pixels per byte), and the 
maximum width in bytes is 8, the maximum width is 32 pixels. 

The ActiveX and ActiveY entries give the distance of the cursor 'hot spot' from the 
top left comer of the pointer. If these are zero, then positioning the pointer at co
ordinates (x,y) will move the top left corner to that position. Suppose the shape was 
a cross-hair 9 pixels in each direction; then making ActiveX and Active Y (5,5) 
would position the hot-spot at the centre of the cross. 

The data for the shape is pointed to by Rl +6-Rl +9. This data table contains the 
information for each row, from top to bottom, and the data within each row is given 
from left to right. Each byte contains the colours for four pixels. Bits 0,1 hold the 
colour number for the left-most pixel, bits 6, 7 the colour for the right-most pixel. (So 
the pixels are displayed in reverse order to the order in which the byte would be 
written down.) 

Colour zero is always transparent (ie the screen information shows through pixels in 
this colour). The other three colours may be set independently of any other colours 
on the screen using VDU 19 or the equivalent OS_ Word. 

Define mouse co-ordinate bounding box 

Parameter block size: 9 

On entry: The parameter block contains the new co-ordinates of the box: 

131 



132 

Rl+O = 1 
R1 + 1 = LSB of left co-ordinate all treated as 
Rl + 2 = MSB of left co-ordinate signed 16-bit values, 
Rl + 3 = LSB of bottom co-ordinate relative to screen origin at the time 
Rl +4 = MSB of bottOm co-ordinate the command is issued 
Rl + 5 = LSB of right co-ordinate 
R1 +6 = MSB of right co-ordinate 
Rl + 7 = LSB of top co-ordinate 
R1 +8 = MSB of top co-ordinate 

On exit: The parameter block remains unchanged. 

The co-ordinates should be given as signed 16-bit values relative to the screen origin 
at the time the command is issued. 

If (left> right) or (bottOm> top) then the command is ignored. 

An infinite box can be obtained by setting: 

left 
bottom 
right 
top 

&8000 (-32768) 
&8000 (-32768) 
&7FFF (32767) 
&7FFF (32767) 

If the current mouse position is outside the box, it is homed to the nearest point 
inside the box. 

The default box is (0,0) to (1279,1023), ie the same as the default graphics window. 

Defme mouse multipliers 

Parameter block size: 3 

On entry: The parameter block contains the X andY multipliers: 



Rl+O = 2 
Rl + 1 =X multiplier 
R1+2 = Y multiplier 

. HE VDU DRIVERS 

(both treated as 
signed eight-bit values) 

The multipliers control the ratio between the movement of the mouse and the 
change in the co-ordinates of the mouse. The higher each value, the greater the 
amount the pointer moves (if linked to the mouse) for a given movement of the 
mouse. 

The multipliers should both be given as signed eight-bit values. By specifying 
negative values (eg 255 for -1}, you can make the point move in rhe opposite 
direction from usual. 

Both multipliers default to 1. With this setting, a movement of approximately 15cm 
of the mouse will move the pointer across the screen (1280 units). 

Set mouse position 

Parameter block size: 5 

On entry: The parameter block contains the new X andY positions: 

RI+O = 3 
Rl +I = LSB of X position 
R I+ 2 .. MSB of X position 
Rl + 3 = LSB of Y position 
Rl +4 .. MSB of Y position 

The new values for the X andY positions of the mouse are given as two signed 16-bit 
values. If the new position lies outside the bounding box of the mouse, this 
command will be ignored. 

Note that this call sets the position of the mouse rather than the pointer. If the 
mouse and pointer are not linked, the position of the pointer on the screen is left 
unchanged. 

133 



On entry: 

Mouse/pointer SWI call 

You can use the call OS_Mouse to discover the state of the mouse: its co-ordinates 
(and therefore the position of the pointer if it is active and linked), the state of the 
mouse buttons, and a 'time-stamp' for the reading. 

OS_Mouse &lC (28) 

On exit: RO = mouse X co-ordinate 
R1 = mouse Y co-ordinate 
R2 = mouse buttons 
R3 = time of button change 

OS_Mouse reads from the mouse buffer the mouse X andY positions as values 
between - 32768 and 32767. Unless the graphics origin has been changed, the range 
will usually be 0 - 1279 for x and 0- 1023 for y. The call also returns buttons 
currently pressed as a value in the range 0 - 7: 

Bit Meaning when set 

0 Right button down 
1 Middle button down 
2 Left button down 

If there is no entry in the mouse buffer, the current status is returned. R3 gives the 
time the entry was buffered, or the current time if it is not a buffered reading. It uses 
the monotonic timer (see OS_ReadMonotonicTime). 

THE VDU EXTENSION VECTOR 

134 

This section assumes you are familiar with vectors. 

It is possible to replace totally the YOU driver software. This can be useful if you 
want to change the characteristics of screen output in a dramatic way, eg as the Font 
manager does. When you call OS_ WriteC, the OS checks bit 1 of the stream's byte 



. HE VDU DRIVERS 

(see OS_Byte &03). If this is clear, the VDU is enabled. If it is set, the VDU stream 
is disabled, and no attempt is made to use the VDU driver. 

If the VDU is enabled, the OS ten checks bit 5 of the stream's byte. If this is clear, 
the default VDU drivers are called; this is the usual action. If bit 5 is set, the OS 
instead calls the code which is vectOred through the vector VDUXV (number & 1 B). 
If no one is using VDUXV, the default action is to do nothing. 

When VDUXV is called, the character to be printed is in RO, as on entry to 

OS_ WriteC. On exit, this and all other registers should be preserved. The action 
taken by a routine using VDUXV is entirely dependent on that routine. Note that if 
the routine needs to continue to interpret certain multi-byte sequences, it must 
maintain its own VDU queue. It should still use OS_Byte &DA (218) to maintain 
the VDU queue pointer, so that sequences can still be abandoned in the usual way. 

Usually, the routine would claim the call, rather than pass it on. It is unlikely that 
useful results would be obtained by two or more routines intercepting VDUXV. This 
means, of course, that only the most recent routine to OS_Claim VDUXV will get 
to hear about it. 

If, on return, the carry flag is set, then the OS will attempt to send the character to 
the current printer. Whether the character is actually printed depends on bits 2 and 
6 of the stream's byte, and on the printer ignore statUS. 

A typical return sequence for a routine intercepting VDUXV which wants the 
character to be printed too would be: 

LDM R13!, R14 
ORRS PC,Rl4,tcarry 

;Get return address from the stack 
;Set the carry flag and return 

where carry is 2 << 25, ie the carry bit in R15. 

135 



136 



IIHARACTERINPUT 

This chapter describes the ways in which characters may be read into the 
Archimedes. Just as there are several output streams, so there is more than one place 
from which characters may be read. Although there are fewer input streams that 
output streams, there are more ways of reading characters than writing them. In 
particular, you can deal with the keyboard, the principal input stream for many 
applications, at a variety of levels. 

THE INPUT STREAMS 

There are two and a half input streams. That is, there are two selectable streams, the 
keyboard and the RS423 port, and one other, which may override either of these if it 
is active. This last is the *EXEC file, which performs a similar job for input to the 
one performed by the *SPOOL file for output. 

Input streams are mutually exclusive: whereas a character sent to OS_ WriteC finds 
its way to all of the currently enabled outputs, a request to read a character can only 
ever come from a single input source. 

Both the keyboard and the RS423 port are buffered devices. The keyboard input 
bt~fie~ can hold 31 characters. It is often termed a type-ahead buffer, as it enables the 
~r to type in commands ahead of the input requests which will read those 
commands. 

The RS423 input buffer holds 255 bytes. Associated with it is a 'handshake extent'. 
This is a count of the number of spaces which must be left in the buffer before the 
RS423 software in the OS asks the device attached to the RS423 port to stop 
sending. This ensures that characters are never lost as a result of software being 
unable to keep up with incoming characters. 

A number of events are associated with these input devices. In particular: 

- input buffer full 
- character entering keyboard buffer 
- key press/release 
- RS423 error 
- escape pressed events. 

137 



138 

See the chapter FUNDAMENTAL OPERATING SYSTEM CONCEPTS for 
further details. Also, as with all buffers, you can insert characters, remove characters, 
examine the buffer etc. See the section Buffers in the same chapter for further 
details. 

To select one of the two input streams, OS_Byte &02 is used: 

OS_Byte &02 (2) -Specify input stream 

On entry: Rl = action code (0, 1 or 2) 

On exit: Rl = previous device (0 or 1) 
R2 is undefined 

This call selects the device from which all subsequent input is taken. This is 
determined by Rl as shown below: 

Value 

0 
1 
2 

Device 

Keyboard input and disables the RS423 port 
RS423 input 
Keyboard input and enables the RS423 port 

The previous input device is returned in R1 as follows: 

0 
1 

Input was from the keyboard 
Input was from the RS423 port 

The difference between using Rl=O and R1 =2 is that the latter enables characters to 

be received into the RS423 input buffer under interrupts, even though characters 
will be read from the keyboard input buffer. If the input stream is subsequently 
switched to the RS423, using R1 = 1 then those characters received under interrupts 
will be read. 

The input device may be read (but not set) using the OS_Byte &Bl (177) . See 
below. 



. I;IARACTER INPUT 

OS_Byte &Bl (177)- Read input source 

On entry: Rl = 0 
R2 = 255 

On exit: Rl =previous buffer number 
R2 = value of the next location (keyboard semaphore) 

BASIC INPUT ROUTINES 

On entry: 

This section describes the fundamental routines used to read characters from the 
current input stream. For many purposes, these routines are all that is required to 
interact with the user. However, some applications may require a lower-level 
interaction with the input devices, so the next two sections provide more detailed 
information about the keyboard and RS423 input streams respectively. 

To read a single character, you use either OS_ReadC or OS_Byte &81 (129) . The 
difference is that the former will always wait until a character is available (or an 
escape condition arises), whereas the latter will time-out after a predetermined 
number of centi-seconds. 

OS_ReadC &04 -Read Character 

On exit: RO = ASCII code or error type 
C = 0 ifRO is a valid character 
C = I if RO is an error type - RO = & 1 B means escape 

OS_Byte &81 (129)- Read key with time limit 

On entry: Rl = time limit low byte 
R2 =time limit high byte 

139 



LINE INPUT 

140 

On exit: Rl =ASCII code, or &FF ifRl = &FF (timeout) 
R2 = &00 if character read 
R2 = &lB if IEscapel pressed 
R2 = '&FF if timeout 

This call reads a key from the keyboard subject to a specified time limit or performs a 
keyboard scan for a specified key depression. The second use is covered in the 
section below on the keyboard. 

To read a key within a specified time limit, use Rl and R2 to indicate the time limit 
(n) in hundredths of a second as follows: 

Rl = n MOD &100 
R2 = n DIY &100 

The upper limit is 32767 centi-seconds. Information about the first key pressed (if 
one was pressed within the time limit given) is returned in Rl and R2. 

These two routines are equivalent to the BASIC functions GET and INKEY 
respectively. If, having used one of them, you detect an escape condition, you should 
acknowledge it or clear it using one of the OS_Bytes described in the section The 
escape condition. 

While the OS is waiting for a character to appear in the appropriate input buffer 
during one of these calls, it also deals with cursor key presses. That is, if one of the 
arrow keys is pressed, cursor edit mode is entered, indicated by the presence of two 
cursors on the screen. You can copy characters from underneath the input cursor by 
pressing ~. The character read is returned from the routine as if you had typed it 
explicitly. Cursor editing is cancelled when ASCII 13 is sent to the VDU driver. 

A routine is provided to ask for a whole line of input 'in one go'. The line is 

terminated when you press [d, IErterl, (g!j]J, or the current escape key. The routine is 
described below. 



. HARACTER INPUT 

OS_ReadLine &OE (14)- Read line from input stream to memory 

On entry: RO =pointer to the buffer to hold text 
Rl = maximum possible length of line 
R2 = lowest character which will be placed in buffer 
R3 = highest character to be placed in buffer 

On exit: Rl =length of buffer (not including carriage return) 
Cis set if input was terminated by an escape 

- OS_ReadLine reads a line of text from the current input stream 

- RO points to the buffer where the text is to be placed 

- Rl contains the maximum possible length of the line 

- R2 contains the lowest character code which is to be placed in the buffer 
(excluding carriage return) 

- R3 contains the highest character code which is to be placed in the buffer. 

On exit, Rl contains the number of characters in the buffer, not counting the 
carriage return. C is set if the input was terminated by the escape character, and no 
return is stored in the buffer. 

If the input is not terminated by an escape, then the last character in the buffer is 
always ASCII 13 (carriage return), even if you press !Qillj to terminate the input. 

All input characters (with the exception of ASCII 21 or !QillU) are sent to the 
output stream currently selected; only characters within the range specified by R2 
and R3 are actually put into the buffer. 

If you press IDeletel (ASCII 127) and there are characters in the buffer, the IDeletel is 
echoed on the screen and the last character entered into the buffer is removed. If the 
buffer is empty, IDeletel is ignored and not output. 

141 



142 

[QillU (ASCII 21) deletes all the characters placed in the buffer and sends an ASCII 
12 7 to the output stream for each character that was in the buffer, effectively erasing 
the I ine from the screen. 

If the count of the number of characters input reaches the number specified by Rl, 
further characters are ignored and cause ASCII 7 ([QillG) to be sent to the output 
stream, which will usually cause a short beep to be emitted. Note that IDeletel and 
[QillU will still function as described above. 

OS_ReadLine must not be used in an interrupt or event routine. 

Note that OS_ReadLine uses OS_ReadC when reading individual characters, so it 
can be used to read lines from the RS423 stream or the •EXEC file. 

OS_ Word &00 is equivalent to this routine, and is provided for compatibility with 
old programs. It is documented here for completeness. 

OS_ Word &00 (0)- Read line from input stream to memory 

Parameter block size: 5 

On entry: The parameter block contains the details of the buffer into which characters are 
read, the maximum number of characters to be read, and limiting ASCII codes as 
follows: 

R l +0 = LSB of buffer address 
Rl + l = MSB of buffer address 
Rl + 2 = maximum number of characters 
R l + 3 = lowest ASCII code 
Rl +4 =highest ASCII code 

OS_ReadLine RO 

OS_ReadLine Rl 
OS_ReadLine R2 
OS_ReadLinc R3 

On exit: The parameter block is unaltered. R2 and the carry flag are set up as follows: 

c-o 
C=l 
R2 .. 

Line of input was terminated normally 
Line of input was terminated by an escape condition 
length of input line (not including the carriage return) 



THE KEYBOARD 

~~HARACTER INPUT 

The buffer must be in the bottom 64K of memory. 

This section describes in more detail how the keyboard is handled by the 
Archimedes. It also explains how characters which enter the keyboard buffer are 
interpreted once they come to be read by one of the routines documented in the 
previous sections. 

Keyboard interrupts 

When a key is pressed (or released), a code unique to that key is transmitted to the 
Archimedes through the keyboard connector cable. This code is read into a chip 
called the 1/0 controller or IOC, which then causes an interrupt to occur. The OS 
responds to this interrupt by reading the keycode from the IOC, and passing it on to 
the keyboard handler for further processing. 

At this stage, a key press/release event may be generated, which you can handle as 
required. Also, at this level mouse button presses look exactly the same as any other 
key press. They are,' however, treated separately by the OS. The OS doesn't pass on 
mouse button presses to the keyboard handler, although they can be made to 
generate an event. 

It is possible to customise totally the way in which the keyboard works by writing 
your own keyboard handler. However, this is outside of the scope of this discussion, 
as this chapter concentrates on the actions of the built-in key handler. 

The first thing the keyboard handler must do is convert the keycode into a form 
which is more like the ASCII codes the user expects. The keycode sent to the IOC is 
a number which bears a simple relationship to the position of the key on the 
keyboard. These numbers are listed in a table in the section on key press/release 
events. They bear no relationship to the legends on the keyboard. 

If the key pressed (or released) is one of the shifting keys, IShlftl, (gill, [MJ, or one of the 
locking keys leaps locld, INLm Lockl or IScrolllockl is pressed, then the key handler just 
makes a note of this fact by updating its status information; it doesn't cause any 
character to be inserted into the keyboard buffer. 

143 



144 

If the key pressed was one of the other, character-generating keys, then the key 
handler derives a buffer code for the key, and inserts that into the keyboard buffer. 
The code entered into the buffer is derived from a table, which maps keycodes into 
ASCII codes, using the state of the various shifting and locking keys to alter the 
code if appropriate. In addition, the key-press is recorded in a 'last key pressed' 
location. This is to enable auto-repeating keys to be implemented, as described 
below. 

For the standard keys, eg the letters, digits, punctuation marks etc, the buffer code is 
the ASCII code of the symbol. Thus when the code comes to be removed from the 
keyboard buffer (by OS_ReadC, for example), it is returned directly to the user. The 
other keys, such as the function keys and cursor keys, are entered as top-bit set 
characters, in the range &80- &FF. 

Interpreting buffer codes 

When one of the top-bit-set codes is removed, it is not passed back to the caller. 
Instead, it is interpreted in a way determined by one of eight status bytes. Each byte 
controls the interpretation of a range of 16 codes: &80- &SF, &90- &9F, etc. 
Possible interpretations are: 

- Ignore the code altogether 
- Treat the code as a function key 
- Return the key as two ASCII bytes 
- Return the key as one ASCII byte. 

Details of each of these interpretations is given in the appropriate OS_Byte 
descriptions. 

A further complication is involved when the buffer code is that of a cursor key. 
These have codes &XY, where X is 8, 9, A orB (for normal, IShHtled, [Qilled and 
[QilliShHtled cursor keys), andY is B, C, D, E or F for~. and [B, EJ, [I], (I) 
respectively. 

When one of these codes is read, the action depends on the cursor key status byte, 
set by OS_Byte &04. If this is zero, the code is not returned to you but causes the 



HARACTERINPUT 

input cursor to be moved in the appropriate direction, or a character to be read from 
the screen and returned to the caller. 

If the cursor status byte is 1, then an ASCII code is returned, being &80+(Y-4), 
where Y is as above. In effect, the arrow keys return the same codes as back space, 
horizontal tab, line feed and vertical tab, but with the top bit set. ~ returns a top
bit-set version of BELL (ASCII 7). 

If the cursor status is 2, then the cursor key is interpreted as a function key, and is 
dealt with in one of the four ways noted above. 

Before any of the above occurs, the input routine checks for a pending IM). This 
happens when you press [Qill[M]Ishlftl. Such an occurrence is stored as a flag in the 
keyboard's status byte. If this flag is set when a byte is removed from the input buffer, 
the code is ORed with &80, and it is then passed back to the user with no further 
processing. This allows top-bit-set ASCII codes to be entered directly from the 
keyboard, by pressing (and releasing) the three keys, then typing the code which 
obtains the top-bit-set character when ORed with &80. 

How function keys work 

If a top-bit-set buffer code is read (it should be interpreted as a function key 
according to the appropriate status byte), then a special action is taken by the OS. 
First of all, it looks up the value of the OS variable which corresponds to the 
function key. The function key number is the lower nibble of the buffer code. So if 
the buffer code is &81, and codes in the range &81 to &8F are treated as function 
keys, the variable read is Key$1. 

The value is converted into a string (so if it was set using "'SETMACRO, it is 
OS_GSTransed), and stored in a buffer. If the value was a null string (the function 
key wasn't set), the OS starts again, and removes the next character from the input 
buffer. 

If the key variable was set, the first character is removed from the buffer where it was 
stored, and returned to the user. Characters read from this special function key buffer 
are simply returned; they are never interpreted in any way. 

145 



146 

Subsequent calls to OS_ReadC and OS_Byte &81 spot the fact that a function key 
is being read, and remove characters from the function key buffer instead of looking 
in the input buffer. This continues until the last character has been read from the 
key string. Input then reverts to the appropriate input buffer. 

An OS_Byte (&08 or 116) reads the readable number of characters from the 
currently active key string. If this is :zero, then no function key is active. By setting 
this variable to zero, you can 'cancel' a function key, so that the next attempt to read 
a character accesses the input buffer. 

Function key strings are programmed using the *KEY command. Alternatively, you 
can use the variables Key$0 to Key$15, setting them using *SET, *SETMACRO or 
*SETEV AL. *SETMACRO has the advantage that the string returned by the 
function key can be made to vary from call to call. 

Scanning the keyboard 

You can read the status of keys, regardless of what is in the keyboard buffer, using a 
couple of OS_Bytes. These 'scan' the keyboard: they check whether you are pressing 
a particular key at the instant they are called, and return an indication of whether 
the key is down or not. Another related call scans the keyboard for any key presses 
and returns the code of the first key (in scanning order) to be pressed. 

The keycodes used by these calls are neither ASCII nor the ones sent from the 
keyboard and subsequently handed to the keyboard handler. Rather, they are codes 
which are compatible with the internal key numbers on the BBC Micro and Master 
118 series of micros. They take two forms. Internal keycodes are positive numbers, in 
the range 0- 15 for 'special' keys, and 16 - 124 for the rest of the keys. 'Negative 
INKEY' numbers are those quoted when you call OS_Byte &81 to look for particular 
keypress. There is a simple relationship between the two forms: 

negative INKEY code= NOT internal key code 
internal key code= NOT negative INKEY code 

See OS_Byte &78 for a list of keys in internal key code order, and OS_Byte &81 
(below) for a list in 'ASCII' order. 



HARACTER INPUT 

Auto-repeat and two-key rollover 

As noted above, when a key is pressed, its code (the BBC.compatible internal key 
code plus 128) is stored in a location. This is called the 'last key pressed' location. If 
the key is still down two centi-second interrupts later (see below), its buffer code is 
inserted into the keyboard buffer. At the same time, the auto-repeat counter location 
is initialised to the auto-repeat delay value. 

Every centi-second, an interrupt occurs on the Archimedes. During the servicing of 
this interrupt, the OS checks to see if the last key pressed is still held down. If it is, 
the auto-repeat counter is decremented. When it reaches zero, the code for the key is 
inserted into the buffer again. The auto-repeat counter is then reloaded from the 
current auto-repeat rate value. Thereafter, every time the counter reaches zero, the 
buffer code is inserted and the counter reloaded. 

Every time a character is inserted into the keyboard buffer, during the centi-second 
interrupt, the inserted value may be altered according tO the current State of the shift 
and locking keys. 

There are, in fact, two 'last key pressed' locations. If a second key is pressed while the 
first is still down, the more recent one becomes the 'last key pressed', and when the 
original key is released, it does not cause the auto-repeat of the second key to stop. 
This is called two-key rollover. 

The escape condition 

The escape condition is an important state which alters the way in which several OS 
routines behave. This occurs when you press the current escape key, which is usually 
the one marked IEscapel on the keyboard; however, the key which causes an escape 
condition may be programmed. You can also cause an escape condition directly using 
anOS_Byte. 

If enabled, an escape condition is brought about by pressing IEscapel, and results in an 
escape event. Setting the escape flag explicitly will not cause an escape event. 

When an escape condition exists, the input routines OS_ReadC and OS_Bytc &81 
do not wait for a character to appear in the input buffer. Instead, they return 

147 



148 

immediately with some indication of the escape (C .. l and R2=&1 B respectively). 
Similarly, if the screen is in paged mode and is waiting for lshlltl to be pressed, an 
escape condition will abandon the wait so that the screen scrolls freely. Finally, if the 
OS is waiting in a loop for space to appear in an output buffer (eg the printer), this 
wait is abandoned. 

The idea of the escape condition, then, is for control to return as quickly as possible 
to the user, so that he or she can do something about it. There are two main ways of 
handling the escape. The condition can be simply cleared, so that the operation of 
OS_ReadC etc. reverts to normal. Alternatively, the condition can be 
'acknowledged'. This clears the escape, but also performs various side-effect actions, 
such as flushing buffers, closing any *EXEC file etc. 

You can test for an escape condition explicitly, using OS_ReadEscapeState. This is 
important if a program is executing in a loop which the user may want to escape 
from, but isn't performing any input operations which would let it know about the 
escape. It is also possible to disable escape conditions altogther. 

Keyboard OS_Byte calls 

OS_Byte &04 (04)- Cursor key status 

On entry: Rl = action code (0- 2) 

On exit: R l = old value 
R2 is undefined 

This call alters the statuS of the cursor editing keys, ie the four cursor control keys 
and ~, according to the value in R l: 

Value 

0 
1 
2 

Action 

Enables cursor editing. This is the default state 
Disables cursor editing. When pressed the keys return ASCII values 
Cursor keys act as function keys 

The ASCII values returned when R 1 = 1 arc: 



HARACTERINPUT 

Key ASCII code 

~ 135 

El 136 
EB 137 

rn 138 

rn 139 

Note that the values for the arrow keys are the same as the corresponding ASCII 
control codes (line feed etc) with the top bit set. 

lfR1=2, the function key numbers assigned to the keys are: 

Key Function key number 

~ 11 
El 12 
EB 13 rn 14 
rn 1s 

The following OS_Byte also may be used to read or set this variable. 

OS_Byte &ED (237)- Read/write cursor key status 

On entry: R 1 = 0 or new status 
R2 = 255 or 0 

On exit: R1 =previous status 
R2 • value of next location (numeric keypad interpretation) 

OS_Byte &OB (11)- Write keyboard auto-repeat delay 

On entry: R1 = delay period 

On exit: R1 • old delay period 
R2 is undefined 

149 



150 

You must hold down each key on the keyboard for a number of hundredths of a 
second (as set initially by *CONFIGURE Delay) before it begins to auto-repeat. 
This call enables you to change the initial delay from the default (until the next 
reset or power off). The delay is altered by Rl as follows: 

Value Effect 

0 Disable auto-repeat 
n Set the auto-repeat delay to 'n' hundredths of a second 

This variable may also be read and set using OS_Byte &C4 (196): 

OS_Bytc &C4 (196)- Read/write keyboard auto-repeat delay 

On entry: Rl = 0 or new value 
R2 = 255 orO 

On exit: Rl .. previous value 
R2 = value of next location (keyboard auto repeat rate) 

OS_Byte &OC ( 12) -Write keyboard auto-repeat rate 

On entry: Rl = repeat rate 

On exit: R 1 = old repeat rate 
R2 is undefined 

Unless auto-repeat has been disabled, each key on the keyboard will auto-repeat 
(after the auto-repeat delay time has elapsed, see above) at the rate specified by 
*CONFIGURE Repeat. This call enables the auto-repeat rate to be changed (until 
the next reset or power off). One particular use of this is to increase the rate to speed 
up cursor editing. The rate is altered by Rl as follows: 

Value 

0 
n 

Effect 

Reset the auto-repeat and delay rate to their configured settings 
Sets the auto-repeat rate to 'n' hundredths of a second 



. HARACTER INPUT 

This variable may also be read and set using OS_Byte &C5 ( 197). See below. 

OS_Byte &CS (197)- Read/write keyboard auto#repeat rate 

On entry: Rl = 0 or new value 
R2 = 255 or 0 

On exit: Rl = previous value 
R2 = value of next location (*EXEC file handle) 

OS_Byte &12 (18)- Reset function keys 

On entry: 

On exit: Rl is undefined 
R2 is undefined 

On entry: 

The strings assigned to function keys can be cleared individually by typing *KEY n 
[d. The present call clears all the function key definitions at once so that none of 
the function keys returns the strings previously assigned to it. This call also removes 
all of the Key$n variables, so is equivalent to *UNSET Key$*. Finally, it cancels any 
key string currently being read. 

OS_Byte &76 (118)- Reflect keyboard status in LEDs 

On exit: R2 is undefined 

The settings of leaps Lock I, IScron Lock I and lNllll Lock! are held in a location referred to as 
the keyboard status byte (see OS_Byte &CA (202)). 

Under normal circumstances they are shown by the keyboard LEOs which are set 
into the keycaps. However, it is possible to write to the keyboard status byte directly 
without the LEDs changing accordingly. Calling OS_Byte &76 ensures that the 
current contents of the keyboard status byte are reflected in the LEDs. 

151 



152 

OS_Byte &78 (120)- Write keys pressed infonnation 

On entry: R 1 = internal key number of most recent key 
R2 = internal key number of original key 

On exit: -

This call simulates a key being pressed. It writes to the locations used to control 
auto-repeat and two-key rollover described above. 

You can either set the last key pressed, simulating one key press, or the last key and 
original key pressed, ie simulating a second key press while the first is still held down. 
To simulate a single key press, the key's internal (BBC compatible) code plus 128 
should be in R1 on entry, and R2 should contain 0. Alternatively, Rl should contain 
the second key press and R2 the original key code (both plus 128). 

Note that if you set both the original and most recent keys, then subsequent actual 
key presses will be ignored. This is because the OS 'thinks' that there are two keys 
down already and so ignores subsequent actual presses until another OS_Byte & 76 
clears the key press information (with R1 and R2 both 0). 

Below is a table of internal key numbers. You should not use codes below 16 in 
conjunction with the current OS_Bytc. However, these codes do have a use in the 
'scan keyboard' OS_Byte &79 (121). 

Key Internal key number 

I Shift! (either or both) 0 
[Qill (either or both) 1 
[M] (either or both) 2 
IShiftl (left-hand) 3 
[Qill (left-hand) 4 
~ (left-hand) 5 
IShiltl (right-hand) 6 
[gill (right-hand) 7 
[M] (right-hand) 8 



Key 

Left mouse button 
Centre mouse button 
Right mouse button 

Q 
3 
4 
5 
[HI 
8 
llll 

El 
keypad 6 
keypad 7 

@ 

) 
I scroll Locl<l 
I Print II!Q] 
w 
E 
T 
7 
I 
9 
0 
rn 
keypad 8 
keypad 9 
l&eakl 
Back tick/
£/currency 
Back space 
1 
2 

Internal key number 

9 
10 
11 
16 
17 
18 
19 
20 
21 
22 
23 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
41 
42 
43 

. HARACTER INPUT 

44 (but sec OS_Byte &F7 (24 7) -it may cause a RESET) 
45 
46 
47 
48 
49 

153 



154 

Key 

D 
R 
6 
u 
0 
p 
[ 

rn 
keypad+ 
keypad
IEnterl 
llnsertl 
I Home I 
~ 
leaps Lock I 
A 
X 
F 
y 

J 
K 
g 
keypad/ 
keypad. 
INIJll Lock) 
!Page Down! 

'I' 
s 
c 
G 
H 
N 
L 

Internal key number 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
73 
74 
76 
77 
78 
79 
81 
82 
83 
84 
85 
86 
87 
88 



Key 

!Delete I 
keypad# 
keypad • 
[ffi] 
z 
Space Bar 
v 
B 
M 

I 
~ 
keypad 0 
keypad 1 
keypad 3 
I Escape I 
!ill 
1m 
~ 
[!§] 
I!ID 
I!ID 
@] 
\ 
B 
keypad 4 
keypad 5 
keypad 2 

Internal key number 

89 
90 
91 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
112 
113 
114 
115 
116 
117 
118 
119 
110 
121 
122 
113 
114 

HARACTERINPUT 

155 



156 

OS_Byte &79 (121) -Keyboard scan 

On entry: Rl indicates key(s) to be detected 

On exit: Rl indicates if/which key has been detected 
R2 is undefined 

On entry: 

This call enables you to check whether a particular key, or one of a range of keys, is 
currently depressed. The action depends on Rl, as follows: 

Value Check for 

&00- & 7F Lowest key number from Rl (for a range of keys) 
&80 - &FF Internal key number (Rl EOR &80) (for a single key) 

The values returned are: 

Rl > 0 
Rl = 255 
Rl= 

Indicates that the key is depressed (for a single key) 
Indicates no key is depressed (for a range of keys) or 
(lowest) internal key number of the key(s) depressed 

See the table above for the list of internal key numbers. Note that this call doesn't 
stop those key presses that are detected from being entered into the keyboard buffer. 

OS_Byte &?A (122)- Keyboard scan from 16 decimal 

On entry: Rl = internal key number of depressed key 
R2 is undefined 

This call performs a keyboard scan to see if any key is depressed (other than !Shiftl, 
!Qill, [M] and the mouse buttons) and if one is found, returns the internal key number 
of the lowest numbered one found or 255 if none is depressed. It is equivalent to 
OS_Byte &79 (121) with R1=16. 



On entry: 

On exit: 

On entry: 

On exit: 

On entry: 

HARACTER INPUT 

OS_Byte &7C (124)- Clear escape condition 

This call clears any escape condition without further action. 

OS_Byte &70 (125)- Set escape condition 

This call simulates depression of the current escape key, setting the escape flag. 
However, an escape event is not generated. 

OS_Byte &7E (126) -Acknowledge escape condition 

On exit: R 1 indicates if the escape condition has been cleared 
R2 is undefined 

This call attempts to clear an escape condition if one exists. It may or may not need 
to perform various actions to 'tidy up' after the escape condition depending on 
whether the escape condition side effects have been enabled or disabled (see 
OS_Byte &E6 (230)). 

The contents returned in R1 indicate whether or not the escape condition has been 
cleared as follows: 

Value 

255 
0 

Meaning 

The escape condition has been cleared 
There was no escape condition to be cleared 

157 



158 

OS_Byte &81 (129)- Scan a for a particular key 

On entry: R1 NOT (internal key number) 
R2 = &FF 

On exit: R1 = &FF if key pressed, 0 otherwise 
R2 = &FF if key pressed, 0 otherwise 

To perform a keyboard scan for a particular character, the LSB of the negative 
INKEY value of the key is given in Rl (see table below) and R2 is set to 255. If both 
R1 and R1 contain &FF when the call returns, then the key being scanned is 
depressed. 

Key INKEY number 

IPrlnti[!ID -33 
[ill -114 
lrn -115 
1m -116 
1m -21 
!!]) -117 
[!ID -118 
lTil -23 
@] -119 
0] -120 
lllQJ -31 
Iilli -29 
1m) -30 
A -66 
B -101 
c -83 
D -51 
E -35 
F -68 
G -84 
H -85 
I -38 



HARACTER INPUT 

Key INKEY number 

J -70 
K - 71 
L -87 
M - 102 
N -86 
0 -55 
p -56 
Q -17 
R -52 
s -82 
T -36 
u -54 
v -100 
w -34 
X -67 
y -69 
z -98 
0 --40 
1 --49 
2 -50 
3 -18 
4 - 19 
5 -20 
6 - 53 
7 -37 
8 -22 
9 -39 

-103 
- 24 
-104 

I -105 
[ -57 
\ - 121 
1 -89 

-88 

159 



160 

Key 

~ 
rmJ 
leaps Lock I 
IScrolllockl 
IN\Jll Lock I 
IBreakl 
Back tick/
£/currency 
Back space 
!Insert I 
IHomel 

~ 
I Page Downl 

'/' 
IShittl (either or both) 
[Qill (either or both) 
1M) (either or both) 
IShiftl {left-hand) 
[Qill (left-hand) 
[MJ (left-hand) 
IShiftl (right-hand) 
[Qill (right-hand) 
[M] (right-hand) 
Space Bar 
IDeletel 
g 
~ 
rn 
8 
El 
rn 
keypadO 
keypad 1 
keypad 2 
keypad3 

INKEY number 

-113 
-97 
~5 
-32 
-78 
-45 
-46 
-47 
-48 
~2 
~3 

-64 
-79 
-80 
-1 
-2 
-3 
-4 
-5 
~ 

- 7 
-8 
-9 
-99 
-90 
- 74 
-106 
-58 
-26 
-122 
-42 
-107 
- 108 
-125 
-109 



Key 

keypad 4 
keypad 5 
keypad 6 
keypad 7 
keypad 8 
keypad 9 
keypad+ 
keypad 
keypad. 
keypad/ 
keypad# 
keypad • 
IErterl 
Left mouse button 
Centre mouse button 
Right mouse button 

HARACTERINPUT 

INKEY number 

-123 
-124 
-27 
-28 
--43 
--44 
-59 
-60 
-77 
-75 
-91 
-92 
-61 
-10 
-11 
-12 

As noted above, the negative INKEY number for a key can be derived from NOT 
(its internal key number), and vice-versa. 

OS_Byte &B2 (178)- Read/write keyboard semaphore 

On entry: Rl = 0 or new value of semaphore 
R2 = 255 orO 

On exit: Rl = previous value of semaphore 

This call allows you to enable or disable the processing of keyboard interrupts. If the 
flag is set to non-zero, then the OS will process any keyboard interrupts which occur. 
Setting it to zero causes the OS to ignore keyboard interrupts, effectively disabling 
the keyboard. 

Similarly, by reading the status, you can ascertain whether the keyboard is currently 
enabled or not. 

161 



162 

OS_Byte &CS (200)- Read/write Break and Escape effect 

On entry: R1 = 0 or new value 
R2 = 255 orO 

On exit: R 1 = previous value 
R2 = value of next location (keyboard status) 

This call provides a means of reading or resetting the effects of a RESET (including 
resets caused by I Break I) and of IEscapel. 

The bit pattern in R1 determines the effects: 

Setting 

Bit 0 = 0 
Bit 0 = 1 

Bit 1 = 0 
Bit 1 = 1 

Effect 

Normal escape action 
Escape disabled unless caused by OS_Byte & 7D ( 125) 

Normal RESET action 
Memory cleared on RESET (only if bits 2- 7 are zero) 

That is to say, a value of binary 0000001x causes a memory clear on reset, where xis 
the escape enabled/disabled bit. 

OS_Byte &C9 (201) -Read/write keyboard disable flag 

On entry: R1 = 0 or new value 
R2 = 255 orO 

On exit: R1 = previous value 
R2 = value of next location (keyboard status byte) 

This call allows you to read and change the keyboard state (ie whether the keyboard 
is enabled or disabled). When it is enabled, all keys are read as normal. When it is 
disabled, the keyboard interrupt service routine does not place these keys in the 
keyboard buffer. 



. HARACTER INPUT 

The main use of this call is by the NetFS *REMOTE command, which takes over 
the handling of key presses which come from some remote machine. The values for 
Rl are: 

Value 

0 
NotO 

Meaning 

Enable keyboard input 
Disable keyboard input 

OS_Byte &CA (202)- Read/write keyboard status byte 

On entry: Rl = 0 or new value 
R2 = 255 or 0 

On exit: Rl =previous value 
R2 = value of next location (RS423 input buffer space) 

The keyboard statUS byte holds information on the current statUS of the keyboard, 
such as the setting of leaps Lock!. This call enables you to read and change these 
settings. 

The bit pattern in Rl determines the settings: 

Bit Indication when set 

0 Pending~ 
1 !Scroll Lock I engaged 
2 INIITI Lock I disengaged 
3 ~depressed 
4 leaps Lock! disengaged 
5 Alwaysset 
6 !Qii] depressed 
7 I Shift Lock! enabled 

If leaps Lockl is engaged, then all characters are, usually, produced in upper-case 
whether IShlftl is pressed or not . If IShlftlleaps Lock! is enabled, then pressing IShlftl and 
another key reverses the effect of the leaps Lockl and produces a lower-case character. 

163 



164 

See also OS_Byte &76. 

OS_Byte &DS (216) -Read/write length of function key string 

On entry: R 1 = 0 or new length 
R2 = 255 orO 

On exit: Rl = previous length 
R2 = value of next location (paged mode line count) 

The location accessed by this call holds a count of the number of characters left in 
the currently active function key definition. If, on reading, it is non-zero, a function 
key is active. Conversely, it may be set to 0 to cancel any active function key. You 
should never write a non-zero value. 

OS_Bytc &DB (219)- Read/write Tab key code 

On entry: Rl "'0 or new code 
R2 = 255 or 0 

On exit: Rl = previous code 
R2 = value of next location (escape character) 

By default,~ generates ASCII 9. This call provides a means of reading the ASCII 
code currently assigned to~. and of changing it to another value. 

If the code assigned to ~ is greater than or equal to &80, then IShlltl and @l] 
modify the value put into the keyboard buffer as follows: 

IShHtl EORs the value with &10 
@ll EORs the value with &20 

Thus setting the code to &80+n makes the~ key act exactly as function key 'n'. 

If the assigned code is less than &80, then it cannot be modified by IShittl or @l]. 



OS_Byte &DC (220) -Read/write escape character 

On entry: R1 = 0 or new code 
R2,. 255 or 0 

On exit: Rl = previous code 

HARACTER INPUT 

R2 =value of next location (interpretation of values 192- 207) 

~ (ASCII 27) is the default escape character. This call enables you to read and 
redefine the buffer code of the current escape character. Whenever this code is 
inserted into the input buffer, an escape condition arises, if enabled by the various 
flags. 

OS_Byte &DO (221)- Read/write interpretation of input values &CO- &CF 

OS_Byte &DE (222)- Read/write interpretation of input values &DO- &OF 

OS_Byte &OF (223) -Read/write interpretation of input values &EO - &EF 

OS_Byte &EO (224)- Read/write interpretation of input values &FO- &FF 

On entry: Rl = 0 or new value 
R2 = 255 orO 

On exit: Rl = previous value 
R2 = value of next location 

These calls enable you to read and change the way in which four groups of 16 input 
buffer codes in the ranges &CO- &CF, &DO- &OF, &EO- &EF and &FO- &FF 
respectively are interpreted. 

The possible interpretations depend of the value of R 1: 

165 



166 

Value 

0 
1 
2 
3 - &FF 

Interpretation 

Ignore the code 
Code generates the string assigned to function key (code MOD 16) 
Code generates a NULL (ASCII 0) followed by code 
Code generates the value R1 + (code MOD 16) 

These buffer values are obtained either by inserting the code directly into the buffer 
(using OS_Byte &SA), or (in the case ofRS423 input) by sending them to the 
RS423 port. 

Additionally, the following function key presses produce certain codes in the range: 

Key Code +IShii! I +19.ill +1Shlftll9ii) 

[ill) &CA &DA &EA &FA 
[ill] &CB &DB &EB &FB 
[ill] &CC &DC &EC &FC 
I insert I &CD &DD &ED &FD 

The default values for these variables are 1, &DO, &EO, and &FO respectively. This 
means that the first set of codes act as function key presses, and the remainder have 
their input buffer code converted directly to the same ASCII value when read. 

Note that when a reset occurs, the code &CA is inserted into the input buffer. This 
causes the key definition for function key 10 to be used for subsequent input (if key 
10 is defined). 

- Note: if any of these status bytes is set to 2 (to cause the return of a zero followed 
by another byte), then when [gill@ (ASCII 0) is pressed, it is read as two 0 bytes. 
This enables NULL to be detected without confusion with top-bit-set characters. 



HARACTER INPUT 

OS_Byte &El (225) -Read/write function key interpretation 

OS_Byte &E2 (226)- Read/write Shift function key interpretation 

OS_Byte &E3 (227)- Read/write Ctrl function key interpretation 

OS_Byte &E4 (228)- Read/write Ctrl Shift function key interpretation 

On entry: Rl ~ 0 or new value 
R2 = 155 orO 

On exit: Rl = previous value 
R2 = value of next location 

These calls affect the interpretation of four sets of 16 buffer code values, in the 
ranges &80- &SF, &90- &9F, &AO- &AF, &BO- &BF. These codes are those 
produced by the function keys [ill-ffiD, the cursor keys, and the IPrilll key. Therefore, 
with these OS_Bytes you can control the action of those keys when pressed alone 
and in conjunction with IShlftl and @i]. 

The possible interpretations depend of the value of Rl: 

Value 

0 
1 
2 
3 - &FF 

Interpretation 

Ignore the key depression 
Key generates the string assigned to function key (code MOD 16) 
Key generates a NULL (ASCII 0) followed by code (see table) 
Key generates the value R1 +(code MOD 16) 

The codes produced by the function keys are summarised in the table below: 

167 



168 

Key Code +I Shift I +(Qill +IShlfti(Qill 

IPrntl &80 &90 &AO &BO 
liD &81 &91 &A1 &Bl 
I!ID &82 &92 &A2 &B2 

l!ID &89 &99 &A9 &B9 

~ &8B &9B &AB &BB 
El &8C &9C &AC &BC 
B &8D &9D &AD &BD 
rn &8E &9E &AE &BE 
[f) &8F &9F &AF &BF 

!Page Downl &9E &8E &BE &AE 
~ &9F &8F &BF &AF 

The default values for these variables are 1, &80, &90, and 0. This means that 
function key presses return the appropriate key definition, IShiftl plus a function key 
returns an ASCII value between &80 and &8F,(Qill plus a function key returns an 
ASCII value between &90 and &9F, and [Qilllshlftl plus a function key is ignored. 

You should note the use ofRl =2 for software which is capable of dealing with top
bit-set ASCII characters, ie the international character set in the range &AO - &FF 
(160 - 255). It is recommended that you set function keys to return a NULL 
followed by the key code, so that they can be distinguished from actual ASCII 
characters which have been typed using, for example, (QilliShlftll@ followed by 
another character. This also applies to the previous set of four OS_Byte calls. 

- Note: if any of these status bytes is set to 2 {to cause a zero followed by another 
byte to be returned), then when (Qill@ (ASCII 0) is pressed, it is read as two 0 
bytes. This is to enable NULL to be detected without confusion with top-bit-set 
characters. 



. HARACTER INPUT 

OS_Byte &ES (229) - Read/write Escape key status 

On entry: Rl = 0 or new status 
R2 = 255 orO 

On exit: Rl = previous status 
R2 = value of next location (escape effects) 

This call allows you to enable or disable the generation of escape conditions, and to 
read the current setting. Escape conditions may be caused by the depression of the 
current escape character or by the insertion of the corresponding buffer code in the 
input buffer, if placed there using OS_Byte &99 (153). 

Values ofRI are as follows: 

Value 

0 
NotO 

Meaning 

Enable escape condition generation 
Disable escape generation 

When escape conditions are disabled, the current escape character generates its 
ASCII code instead. 

The generation of escape conditions can also be disabled by OS_Byte &C8 (200). 

OS_Byte &E6 (230) -Read/write escape effects 

On entry: Rl = 0 or new status 
R2 = 255 orO 

On exit: Rl = previous status 
R2 is undefined 

By default, the acknowledgement of an escape condition produces the following 
effects: 

169 



170 

- Flushes all active buffers 

- Closes any currently open *EXEC file 

- Clears the VDU queue 

- Clears the VDU line count used in paged mode 

- Terminates the sound being produced. 

This call enables you to determine whether the escape effects are currently enabled 
or disabled, and to change the setting if required. 

The interpretation of Rl is as follows: 

Value 

0 
NotO 

Meaning 

Enable side effects 
Disable side effects 

OS_Byte &EE (238)- Read/write numeric keypad interpretation 

On entry: Rl = 0 or new status 
R2 = 255 orO 

On exit: Rl = previous status 
R2 is undefined 

This call controls the code which is inserted into the input buffer when you press 
one of the keypad keys. The inserted buffer code is derived from the sum of a base 
value (set by this call) and an offset, which depends on the key pressed. The inner 
(lighter) keys have two different offsets. The offset used depends on the state of the 
INurn Lockl key. 

By default, the base number is 48, ie they generate codes which are displacements 
from 48 (ASCll '0'). 



~~HARACTER INPUT 

The table below shows the offsets if INI.ITl Lock I is on. In brackets are the characters 
which result when the base for the keypad is its default value of 48. 

- 1 (/) -6 (*) -13 (#) 

+7(7) +8(8) +9 (9) -3 (-) 

+4 (4) +5 (5) +6 (6) -5 (+) 

+1(1) +2(2) +3 (2) 

-35 (Return) 

+0 (0) -2 (.) 

If INI.ITl Lock I is off the offsets are: 

- 1 (/) -6 (*) -13 (#) 

-18 (home) +95 (up) +Il l (page up) -3 (-) 

+92 (left) (ignored) +93 (right) -5 (+) 

+91 (copy) +94 (down) + 110 (page down) 

-35 (Return) 

+157 + 79 (delete) 

The keys labelled 'up' etc. refer to the cursor actions which result when INurn Lockl is 
off. 

Unlike the function keys, you can set the numeric keypad base number to any value 
in the range 0-255. (If a generated code lies outside this range it is reduced MOD 
256.) 

171 



172 

Note that the code produced is modified if either IShlltl or [gill is pressed. See 
OS_Byte &FE (254) for details. 

OS_Byte &F7 (247)- Read/write Break key actions 

On entry: Rl = 0 or new value 
R2 = 255 or 0 

On exit: R l = previous value 
R2 is undefined 

This call controls the result of pressing the IBreakl key ie how it affects the operation 
of the machine. The byte affected by the call consists of 4 two-bit numbers. Bits 0,1 
controliBreakl; bits 2,3 controliShlltiiBreakl; bits 4,5 control [QilliBreakl, and bits 6,7 
control [QilliShlfti!Breakl. 

Each two-bit number may take on one of these values: 

Value 

0 
1 
2 
3 

Effect 

Perform reset 
Perform Escape 
No effect 
Undefined 

The default value is &01, so IBreakl causes an Escape condition, and all other 
combinations cause a reset. 

OS_Byte &FD (253)- Read last break type 

On entry: Rl = 0 
R2 = 255 

On exit: R1 = break type 
R2 ~ value of next location (effect of IShlltl on keypad) 

This call returns the type of the last break performed in R 1 : 



Value 

0 
1 
2 

Break type 

Soft break 
Power-on reset 
Hard break 

IIIHARACTERINPUT 

OS_Byte &FE (254)- Set effect of Shift Ctrl on numeric keypad 

On entry: Rl = 0 or new value 
R2 = 255 or 0 

On exit: R 1 = previous value 
R2 = value of next location (read/write startup options) 

This call allows you to enable or disable the effect of IShtttl and [Qill on the numeric 
keypad or to read which is the current state. These keys may modify the code just 
before it is inserted into the input buffer. 

Rl is interpreted as follows: 

Value 

0 
NotO 

Meaning 

Enable the effect of I shill! and [Qill 
Disable the effect of I shill! and [Qill 

If the effect is enabled then the following actions occur: 

- if the value>= &80: 
lshlltl EORs the value with &10 
[Qill EORs the value with &20 

- if the value < &80: 
IShtttl and [Qill still have no effect 

173 



174 

Keyboard SWl calls 

OS_ReadEscapeState &2C (44} 

On entry: 

On exit: C is set if escape is set, and clear otherwise 

OS_ReadEscapeState sets or clears the carry flag depending on whether escape is set 
or not. Once an escape condition has been detected (either through this call or, for 
example, OS_ReadC returning with C= 1 ), it should be acknowledged using 
OS_Byte &7E (126). 

Note that OS_ReadEscapeState may be called from an interrupt routine. However, 
OS_Byte & 7E may not be, so if an escape is detected under interrupts, the interrupt 
routine should set a flag which is checked by the foreground task, rather than 
attempt to acknowledge the escape itself. 

OS_InstallKeyHandler &3E (62) 

On entry: RO = address of keyboard handler, or 0 for read-only 

On exit: RO = address of old keyboard handler 

OS_InstallKeyHandler installs a new keyboard handler to replace the default code. It 
must be called with IRQs disabled, unless the read-only option is used. 

The RS423 port 

This section describes the operation of the R$423 input port. It also details the OS 
calls (all of them OS_Bytes) which control the general behaviour of the RS423 port 
in both directions. 

As already noted, you can take input from the R$423 input buffer, and ignore the 
keyboard buffer, or read characters from the keyboard buffer and ignore the R$423. 
In the latter case, you have the choice of disabling the RS423 port entirely, so no 
characters are received, or having incoming characters buffered under interrupts. 



. HARACTER INPUT 

When the RS423 port is used as the input stream, the calls OS_ReadC and OS_Byte 
&81 are affected: they cause characters to be removed from the RS423 input buffer 
instead of the keyboard buffer. However, the action of the scanning-type input 
functions, eg OS_Byte &81 with a negative INKEY argument, are not affected; they 
always usc the keyboard. 

Interpretation of RS423 characters 

You can decide whether characters read from the RS423 buffer will be treated 
exactly as those read from the keyboard buffer, or whether all RS423 characters will 
be treated as pure ASCII. 

The difference is important when top-bit-set characters are read. As discussed in the 
previous sections, characters between &80 and &FF read from the keyboard buffer 
may be handled in a variety of ways. This depends on the exact range that the 
character is in, and on the state of the eight interpretation flags. For cursor key 
codes, it also depends on the cursor key interpretation flag. 

Usually, top-bit-set characters read from the RS423 buffer are not treated specially. 
For example, if the remote device sends the code &85, when this is read (using 
OS_Byte &81 or OS_ReadC), that ASCII code will be returned to the caller 
immediately. It is sometimes useful to be able to treat RS423 characters in exactly 
the same way as keyboard characters. OS_Byte &BS (181) allows this. 

Other RS423 functions 

OS_Bytes are also provided to perform the following RS423 functions: 

- Set and read the RS423 data rates 

- Disable the RS423 input processing 

- Read and set the RS423 control register 

- Read and set the RS423 handshake extent value. 

175 



I 

176 

RS423 OS_Byte calls 

These calls are documented below. 

OS_Byte &07 (7)- Write RS423 receive rate 

On entry: R 1 = baud rate code 

On exit: R1 is undefined 
R2 is undefined 

This call sets the RS423 baud rate for receiving data according to R1, as follows: 

Value Rate 

0 9600 baud 
1 75 baud 
2 150 baud 
3 300 baud 
4 1200 baud 
5 2400 baud 
6 4800 baud 
7 9600 baud 
8 19200 baud 

The default speed is the speed set by *CONFlGURE Baud. OS_Byte &08 sets the 
RS423 transmit rate. OS_Byte &F2 (242) may be used to read both the receive and 
transmit data rates. 

- Note: if the receive rate is set differently from the transmit rate, then reception at 
9600 and 19200 baud rates is not guaranteed. This is because these rates are 
generated by a different timer from the transmit ones, and have errors of - 7% and 
+8.5% respectively. The maximum permitted error for reliable RS423 operation is 
+/-5%. 



. HARACTER INPUT 

OS_Byte &9C (156)- Read/ write asynchronous communications state 

On entry: Rl = 0 or new value 
R2 = 255 orO 

On exit: R1 =old value 

This call accesses the control byte of the RS423 port. It acts in a similar fashion to 
the OS_Bytes in the range &A6- &FF, ie performs the operation: 

new value= (old value) AND R2 EOR R1 

and returns the old value in Rl. However, in addition to updating the status byte in 
RAM, it also updates the hardware register which controls the RS423 characteristics. 

The call enables the current settings of the transmitter, receiver, interrupts and the 
RS423 Request To Send (RTS) to be read or altered. 

When writing, the effect depends on the bits in Rl: 

Bit 1 BitO Effect 

0 0 No effect 
0 1 No effect 
I 0 No effect 

1 Reset transmit, receive and control registers 

Bit 4 Bit 3 Bit 2 Word length Parity Stop bits 

0 0 0 7 even 2 
0 0 1 7 odd 2 
0 1 0 7 even 1 
0 1 1 7 odd 1 
1 0 0 8 none 2 

0 1 8 none 1 
0 8 even 1 
1 8 odd 1 

177 



178 

Bit 6 

0 
0 
1 
1 

Bit 5 

0 
1 
0 
1 

Transmission control 

RTS low, transmit interrupt disabled 
RTS low, transmit interrupt enabled 
RTS high, transmit interrupt disabled 
RTS high, transmit interrupt disabled 

Bit 7 Receive interrupt 

0 Disabled 
1 Enabled 

The default setting for bits 2- 4 comes from the *CONFIGURE Data value, shifted 
left by two bits. The current value of this byte may be read (but not set) using 
OS_Bytc &CO (192). 

OS_Byte &CO (192)- Read RS423 control byte 

On entry: Rl = 0 
R2 = 255 

On exit: R1 = previous value 
R2 = value of next location (flash counter) 

OS_Byte &BS (181)- Read/write RS423 input interpretation status 

On entry: Rl = 0 or action code (0 or 1) 
R2 = 255 orO 

On exit: Rl =previous value 
R2 = value of next location (Nolgnore state) 

RS423 input can be altered between two states, either its default state in which: 

- the current escape character is ignored 
- the function key codes are not expanded 
- events are not generated; 



~~HARACTER INPUT 

or the alternative state, in which RS423 input: 

- behaves just like the keyboard 

The value in R1 has the following interpretations: 

Value 

0 
1 

Interpretation 

Simulate keyboard input 
Set default status 

OS_Byte &BF (191)- Read/write RS423 busy flag 

On entry: Rl = 0 or new value 
R2 = 255 orO 

On exit: Rl contains the previous state 
R2 is undefined 

This call provides a means of reading or resetting the RS423 busy flag which is used 
to ensure that the serial interface hardware is not taken over whilst it is currently in 
use. 

It is provided mainly for historical reasons: the cassette interface and RS423 port 
shared the same hardware on the BBC/Master 128 machines. 

Bit 7 ofRI has the following interpretations when read and written: 

Value 

Clear 
Set 

Meaning 

Indicates RS423 is busy (0 <= Rl < &80) 
Indicates RS423 is free (&80 <= R1 < & 100) 

179 



180 

OS_Byte &CB (203)- Read/write RS423 input buffer minimum space 

On entry: Rl = 0 or new value 
R2 = 255 orO 

On exit: Rl =previous value 
R2 = value of next location (RS423 ignore flag) 

By default, the RS423 input routine attempts to halt input (by de-asserting the RTS 
line) when there are 9 free spaces left in the input buffer. This call allows the value 
at which input is halted to be read or changed if necessary. 

OS_Byte &CC (204)- Read/write RS423 ignore flag 

On entry: Rl = 0 or new value 
R2 .. 255 orO 

On exit: Rl = previous value 
R2 is undefined 

This call is used to read or change the flag which indicates whether RS423 input is 
to be ignored. Although this call can stop data being placed in the RS423 input 
buffer, data is still received normally and errors will still generate events (if enabled). 
The flag's meaning is as follows: 

Value 

0 
NotO 

Meaning 

Enable RS423 input 
Disable RS423 input 

OS_Byte &F2 (242)- Read RS423 baud rates 

On entry: Rl = 0 
R2 = 255 

On exit: Rl = encoded RS423 baud rates 
R2 = value of next location (timer switch state) 



HARACTER INPUT 

On exit R1 contains an encoded value which gives the baud rate for RS413 receive 
and transmit. Bits 0- 2 of the result give the transmit baud rate, and bits 3 - 5 give 
the receive rate. Bit six is always set. The two 3-bit values are encoded as follows: 

Value Rate 

0 19100 
1 1100 
2 4800 
3 150 
4 9600 
5 300 
6 1400 
7 75 

Thus a value of &40 means that the transmit rate is 300 baud, and the receive rate 
is 1200 baud. 

THE*EXECINPUTSTREAM 

The *EXEC file is the 'half a stream' mentioned at the start of this chapter. It is not 
a proper stream because you cannot use OS_Byte &02 to select between it and the 
other two input streams. Once a *EXEC file has been activated, it will override any 
other input until it is exhausted or is dosed explicitly. 

To open a *EXEC file, you use the command 

*EXEC filename 

where filename must exist. This file is opened for input. From then, any request for 
characters by OS_ReadC or OS_Byte &81 will read from the file instead of the 
keyboard or RS413. No interpretation is placed on the character at all; it is passed 
directly back to the caller. 

After the last character has been read from a *EXEC file, the file is closed 
automatically and input reverts to the previous input stream. Alternatively, you can 

181 



182 

dose the file by issuing another *EXEC command (with no filename), or by 
acknowledging any pending escape condition. 

The OS determines if there is an active *EXEC file by reading a memory location. 
This contains zero, if there is no *EXEC file open, or the handle of the file if there is. 
You can access this location using the OS_Byte documented below. This enables you 
to: 

- determine for yourself if there is an open *EXEC file 

- control the *EXEC file independently of the command line interface. 

*EXEC file OS_Byte call 

OS_Byte &C6 (198)- Read/write *EXEC file handle 

On entry: R 1 c 0 or new handle 
R2 .. 255 orO 

On exit: R I = previous handle 
R2 ,. value of next location (*SPOOL file handle) 

It can be used to disable a *EXEC file temporarily (by setting the handle to 0) 
without closing it. If you are changing the file handle, the new file must be open for 
input or update, otherwise a Channel error occurs. If an attempt is made to use a 
write-only file for the *EXEC file, a Not open for reading error is given. 



IHE COMMAND LINE INTERPRETER 

As explained in the chapter FUNDAMENTAL OPERATING SYSTEM 
CONCEPTS there are two ways in which you can interact with the OS and the 
various modules which provide extensions to it. The first way is to call one of the 
many SWI routines provided, such as OS_Byte, OS_ReadMonotonicTime, 
Wimp_Init etc. The SWI interface provides an efficient calling mechanism for use 
within programs in any language. 

However, for users wishing to issue commands to the operating system, the SWI 
interface is not so convenient. As it is difficult to remember SWI names, reason 
codes, register contents on entry and exit, etc, the command line interpreter (CLI) 
interface is often used. Using this technique, you enter a textual command string, 
possibly followed by parameters, which is then passed by the application to the OS. 
The OS tries to decode the command and carry out the appropriate action. If the 
command is not recognised by the OS, the other modules in the system try to 

execute the command instead. 

The CLI interface is a powerful one because the OS performs a certain amount of 
pre-processing on the line before it attempts to interpret it. For example, variable 
names may be substituted in the parameter part of the line, and command aliases 
may be used. 

By convention, an application passes commands to the OS if they are prefixed by the 
* character. For example, from the BASIC > prompt, any OS command may be 
issued simply by making * the first non-space character on the line. The * is not part 
of the command; the OS, in fact, strips any leading *sand spaces from a command 
before it tries to decode it. 

Some languages also provide built-in statements which can be used to perform an OS 
command. Again, BASIC provides the OSCLI statement, which evaluates a string 
expression and passes this to the OS command line interpreter. The 'C' language 
provides the system() function for the same purpose. 

CALLING THE COMMAND LINE INTERPRETER 

As with all other interaction with the OS, you call the command line interpreter 
using one of the following SWI instructions: 

183 



OS_CLI &05- Command Line Interpreter 

This routine processes a command which is sent to it as a string terminated by a 
NULL (ASCII 0) or linefeed (ASCII 10) or carriage return (ASCII 13). 

On entry: RO =pointer to string 

On exit: Action performed according to the command 

HE ACTION OF OS_CLI 

184 

This section describes in detail what os_cu actually does tO execute the command 
passed to it. 

Check stack space 

The OS needs a certain amount of workspace to deal correctly with a command. If 
this is not available, the error No room on supervisor stack will be generated. 

Skips *s and spaces 

Stars are skipped because you may sometimes type in a * before a command even 
when it isn't required. For example, all lines typed in response to the Arthur 
Supervisor prompt are passed straight to OS_CU, so there is no need for you to 
prefix the command by *. 

Check for comments 

A comment is introduced by the symbol ' I •. If one is present the OS ignores the 
string and returns immediately. Comment lines are useful in flies of* commands 
which are *EXECed. Anything may follow the ' I' (which must be the first non-space 
character on the line). 

Check command length 

A * command line must be less than or equal to 256 bytes long, including the 
terminating character. If it is not, the line is ignored. No error is generated. 



Check for redirection 

HE COMMAND LINE 
INTERPRETER 

Redirection allows the input or output streams (or both) to be replaced for the 
duration of the command. They are routed to specified filenames instead of the usual 
devices. Output redirection can be viewed as having a *SPOOL file open for the 
duration of the command, and disabling all streams except for that one. Input 
redirection is like having a *EXEC file open for the duration of the command. 

The format of a redirection is: 

{redirection spec} 

where the redirection spec is at least one of: 

> filename Output goes to filename 
< filename Input read from filename 
>> filename Output appended to filename 

This redirection of input and output is terminated at the end of the os_cu call or 
on any error. Redirection can be specified in any part of the command, and after 
being decoded, it is stripped before the rest of the command is interpreted. For 
example: 

*CAT { > mycat } 
*LEX { > printer: 
*BASIC -quit ( < answers } prog 

Note that spaces in the redirection are important. There must be at least one space 
between all elements, otherwise it will not be recognised as redirection. 

185 



186 

Check for single-character prefixes 

These are as follows: 

I 
% 

@ 

Equivalent to RUN 
Skip alias checking 
Filing system name, eg -adfs-
Pcrform command on host processor (ifnJBE fitted) 
Check for Alias$. and use CAT if it doesn't exist 

The use of% at the start of the line enables you to access a built-in command which 
has an alias currently overriding it. See below for an explanation of aliases. 

Giving a filing system name at the start of a command causes that filing system to be 
active for the duration of the command. When the command terminates, the current 
filing system is re-selected. This facility is additional to the ability to specify filing 
system names in pathnames (see the chapter FILING SYSTEMS). 

Check for aliases 

An alias is a variable of the form Alias$cmd, where cmd is the command name to 

match. If an alias exists which matches the current • command, the following takes 
place: the OS obtains the value of the variable and replaces any of %0 to %9 in the 
value by the parameters, separated by spaces, that it reads on the rest of the input 
line. %•n in an alias stands for the rest of the command line, from parameter 'n' 
onwards. 

Any unused parameters, which are given, are directly appended to the alias. The OS 
then recursively calls OS_CLI for all lines in the expanded value. However, it may 
give up at this stage if either the stack or its buffer space becomes full. For example, 
suppose the command 

*SETPS 0.235 

is issued. Suppose further that a variable exists called Alias$SETPS, and that this has 
the value - NET - PS %0 I MCONFIGURE PS %0. The OS will match the command 



HE COMMAND LINE 
INTERPRETER 

name against the alias variable. It will then substitute all occurrences of %0 in the 
variable's value by 0.235. Then, the two lines of the variable will be executed thus: 

- NET-PS 0.235 

CONFIGURE PS 0.235 

So, the net effect of executing the original command is to set the network printer 
server both temporarily, and also in the permanent configuration. 

Another example using the parameter substitution is 

*SET ALIAS$MODE ECHO 1<22> 1<%0> 

The ' I 's before the angle brackets are to stop them from being evaluated when the 
*SET command is entered. Typing *MODE n will then set the display to mode 'n'. 

Look-up the command in the OS table 

The OS recognises several commands which it acts upon to perform a variety of 
tasks. These tasks fall into three main categories: 

- Executing machine code routines 

- Interrogating the settings of various machine parameters. For example, the 
current date and time as stored in the CMOS clock 

- Resetting the values of certain machine parameters. For example, the keyboard 
auto-repeat rate. 

Any command offered to the CLI, which the operating system doesn't recognise, is 
passed around to see if it is recognised by any other module. It will be passed round 
all the modules which are loaded into the machine, including the Filing System 
Manager which recognises general filing system commands such as *DIR. 

Finally the Filing System Manager offers the command to the filing system active for 
this command, which will recognise, for example, *BACK. If the command is still 
unclaimed at this stage an attempt is made to *RUN a file of the name given. 

187 



188 

A list of commands which are recognised by the operating system is given below. 
These commands are listed under the heading 'Arthur' 'MOS Utilities' in response to 
a *HELP COMMANDS command. 

There are more commands recognised by the OS, which are not documented here. 
These are filing system-related commands, such as *SPOOL, and commands to do 
with relocatable modules. Descriptions of these commands may be found in the 
appropriate chapters. 

Finally, there are many commands which aren't recognised by the OS at all, but are 
implemented by the various modules. See the appropriate chapters for descriptions of 
these commands. 

Command 

*CONFIGURE 
*ECHO 
*ERROR 
*EVAL 
*FX 
*GO 
*GOS 
*HELP 
*IF 
*IGNORE 
*KEY 
*SET 
*SETEYAL 
*SETMACRO 
*SHAOOW 
*SHOW 
*STATUS 
*TIME 
*TV 
*UNSET 

Description 

Define non-volatile RAM configuration settings 
Reflect translated string to the screen 
Generate an error with given number and text 
Evaluate an expression and print the result 
Alter OS 'parameters' by calling OS_Byte 
Execute a machine code program 
Enter the • prompt supervisor 
Display help information 
Execute commands conditionally 
Define printer ignore character 
Define soft key string 
Assign a string to a system variable 
Assign a value to a system variable 
Assign an expression to a system variable 
Change screen bank on next mode change 
Display variables 
Display CMOS RAM configuration settings 
Display date and time from CMOS clock 
Specify the vertical alignment and interlace option 
Delete a variable 



OPERATING SYSTEM COMMANDS 

•CONFIGURE 

Syntax: *CONFIGURE [<param 1> [<param 2>)) 

. HE COMMAND LINE 
INTERPRETER 

*CONFIGURE defines the configuration settings held in the battery-backed RAM. 
These are made current on initial power-on and after a hard break ([gill RESET), and 
do NOT take effect immediately. 

If the command is given with no parameters at all, then the configuration options 
are listed. 

If it is given with parameters then it is used to alter a particular setting. <param 1> 
identifies the setting to be changed, as defined below. <param 2> defines the value 
to be stored in the appropriate location in the battery backed RAM. Some settings 
have more than one <param 2>, and sometimes there are none at all. 

Where a number is required, it may be given in decimal, as a hex number preceded 
by &, or a number of the form base_num, where base is the base of the number in 
decimal in the range 2 to 36. For example 2_1010 is another way of saying 10. 

The parameters are described below: 

Baud <n> 

Sets the default RS423 transmit and receive rate according the specified value <n> 
in the range 0- 8: 

189 



190 

Value Baud rate 

0 9600 
I 75 
2 150 
3 300 
4 1200 
5 2400 
6 4800 
7 9600 
8 19200 

Boot 

Reverses the actions of RESET and IShlftl RESET. See also NoBoot. 

Caps 

Sets the keyboard Caps Lock (ie caps lock is on) on reset. See also NoCaps and 
ShCaps. 

Cotmtry <cotmtry> 

Specifies the default country to be set for the International module. The countries 
are: 

Master 
Compact 
UK 
Italy 
Spain 
France 
Germany 
Portugal 
Esperanto 
Greece 



HE COMMAND LINE 
INTERPRETER 

See the documentation on The international module for more details. 

Data<n> 

Specifies the default data format used by the RS423 interface according to the 
specified value, in the range 0 - 7: 

Value Word Parity Stop 
length bits 

0 7 even 2 
1 7 odd 2 
2 7 even 1 
3 7 odd 1 
4 8 none 2 
5 8 none 1 
6 8 even 1 
7 8 odd 1 

Delay <n> 

Sets the keyboard auto-repeat delay to the specified number of hundredths of a 
second, from 0 to 255. This is the length of time for which a key has to be held down 
before auto-repeat starts. A value of 0 disables auto-repeat. The delay can be 
temporarily changed using •FX 11. See also *CONFIGURE Repeat. 

Dir 

Causes the ADFS to initialise with the root directory,$, selected. See also NoDir. 

Drive <n> 

Causes the machine to initialise with drive <n> selected. On a machine with both 
Winchester and floppy drives, <n> has the following meanings: 

191 



192 

n =0-3 
n=4 - 7 

Select floppy drive 0- 3 
Select Winchester drive 0- 3 

DumpFormat <n> 

Selects the format to be used by *DUMP, *LIST, *LIST commands and the VDU: 
output device. <n> is a four-bit number. The bottom two bits define how control 
characters are displayed, as follows: 

Value 

0 
1 
2 
3 

Meaning 

OS_GSTrans format is used (eg I A for ASCII 1) 
Period (.) is used 
<n> is used, where 'n' is in decimal 
<&n> is used, where 'n' is in hex 

If bit 2 is cleared, top-bit set characters are treated as control codes, otherwise they 
are treated as printable characters. 

If bit 3 is set, characters are ANDed with & 7F before being processed, otherwise they 
are left as they are. 

File <n> 

Defines the default filing system, where <n> is the filing system number. The current 
numbers are: 

Number 

5 
8 

Filing system 

NetFS (Econet) 
ADFS 

This options is replaced is OS versions 0.40 and greater by the new setting 
FileSystem: 



FileSystem <n> I <name> 

. HE COMMAND LINE 
INTERPRETER 

If a number is given as the parameter, then the meaning is the same as that for the 
File option. Alternatively, the name of the filing system may be specified instead, eg 
ADFS,NET. 

Floppies <n> 

Causes the machine to initialise believing that <n> floppy drives are attached. 

FontSize <n> 

Reserves <n> • 4K pages for the font cache. If <n> = 0 then no space is reserved for 
fonts. The maximum space allowed is 255*4K. 

FS [<nnn>.]<sss> or <name> 

Selects the number of the network fileserver. <sss> is the station number. <nnn> is 
the network number, which is optional. Alternatively, a file server name may be 
given. 

HardDiscs <n> 

Causes the machine to initialise believing that <n> Winchester discs are attached. 

Ignore £<0 - 255>] 

Defines the 'printer ignore character' (ie the character which is not to be directed to 

the printer), by means of its ASCII code. If the character code is omitted, all 
characters are sent to the printer when it is enabled. The character can be changed 
temporarily by the *IGNORE command. 

This option is only available on OS versions greater than 030. The parameter is the 
module number of the language which should be started on a hard reset. Modules 
numbers are listed along with other information by the *MODULE command. 

193 



194 

LibO I 1 

This option is only available on OS versions greater than 030. If the parameter is 
given as 0, then the default fileserver library will be used when you log on to a 
fileserver (usually $.Library). If 1 is given as the argument, the library $.ArthurLib 
will be used instead. 

Loud 

This sets full volume for the bell ([QillG) sound. 

Mode<n> 

Defines the default screen mode setting to be <n>. 

MonitorType <n> 

The parameter is the type of monitor fitted to the machine, as follows: 

<n> Monitor 

0 50Hz 'lV' standard monitor 
1 Multi-sync monitor 
2 Hi-resolution 64KHz monochrome monitor (400-series only) 

Note that certain modes are only available with certain monitor types. See the 
chapter THE VDU DRIVERS for details. 

No Boot 

Assigns the normal functions to RESET and !ShlftiRESET. 

NoCaps 

Resets the keyboard leaps lockl (ie leaps lock I is off on reset). 



NoDir 

II HE COMMAND LINE 
INTERPRETER 

Causes ADfS to initialise with no directory selected. This prevents the disc from 
being accessed on initialisation. 

NoScroU 

Enables the scroll protect option. This relates to the VDU 23,16 option which 
prevents an auto-newline when a character is printed at the end of a line. 

Print<n> 

Defines the printer driver according to the value specified: 

Value 

0 
1 
2 
3 
4 

Printer type 

Sink (ie no output printed) 
Printer port (ie parallel, Centronics type) 
RS423 pon (ie serial) 
User printer driver 
Network printer - handled through the Econet vector 

PS [<nnn>.]<sss> or <name> 

Selects the number of the network printer server. <sss> is the station number. 
<nnn> is the network number, which is optional. Alternatively you can give the 
name of a printer server. 

Sets half volume for the bell (lQ!ilG) sound. 

RamFsSize <n> 

Sets the number of pages for the RAM filing system (when that module is present). 
The page size is BK on 300 series machines and 32K on 400-series machines. 

195 



196 

Repeat <n> 

Sets the keyboard auto-repeat rate to the specified number of hundredths of a 
second. The rate can be changed temporarily using *FX12. 

RMASize<n> 

Reserves <n> pages (8K or 32K for 300 series and 400 series machines) in the 
relocatable module area (RMA) for modules. For OS versions prior to 0.3, <n> is the 
number of pages in total, with the system always reserving enough for the system 
modules to initialise. 

For OS 0.3 and above, <n> is the number of extra pages to be allocated once the 
system modules have claimed their space. 

The maximum value is 255, though 128 is the current limit imposed by the 
hardware. 

ScreenSize <n> 

Reserves <n> pages for the screen. The page size and default setting (when <n> = 0) 
depend on the series of the machine and its RAM size: 

Model 

305 
310 
410 
440 

ScroU 

RAM 

0.5M 
l.OM 
1.0M 
4.0M 

Page 

8K 
8K 
32K 
32K 

Default 

80K (10 pages) 
160K (20 pages) 
160K (5 pages) 
160K (5 pages) 

Disables the scroll protect option. See NoScroll. 



ShCaps 

. HE COMMAND LINE 
INTERPRETER 

Sets the keyboard IShlflliCaps Lock I option so that alphabetic keys produce upper-case 
chararacters and !Shift led alphabetic keys produce lower-case characters. See NoCaps 
and Caps. 

SourulDefault <spkr> <ool> <ooice> 

Sets the default sound characteristics. The <spkr> parameter is 0 to disable the 
internal speaker on reset, 1 to enable it. The <vol> parameter sets the overall sound 
volume, and is in the range 0 (min) to 7 (max). The <voice> parameter sets the 
voice which will be assigned to channell, and is in the range 1-16. 

SpriteSize <n> 

Reserves <n> (8K or 32K) pages for the sprite system. If <n> • 0 then no sprite 
space is reserved. The maximum allowed is 255 pages. 

Sets the floppy disc drive step rate to <n>. If <drive> is omitted, the step for all 
floppy drives is set, otherwise just the one specified is changed. <n> gives the step 
time in milliseconds. The nearest value greater than or equal to the one requested 
will be used. The current values are 2, 3, 6 and 12ms. 

Sync <n> 

Selects either vertical only ( <n> = 0) or composite ( <n> • 1) sync on the 'VS' 
output of the video connector. The CMOS-RAM default is 1, and shouldn't be 
changed when using the supplied monitors. 

SystemSize <n> 

Reserves <n> pages for the system heap. The page size for a given RAM 
configuration is as for ScreenSize. If <n> .. 0 then the default amount (32K) is 
reserved. The maximum allowed is 255. 

197 



198 

TV <n> [[.J<m>] 

Selects the default setting for the *TV command parameters. See that command's 
description for details of <n> and <m>. 

Synuxx: *ECHO <string> 

*ECHO takes the string following it, translates it using OS_GSfrans and then 
displays it on the screen. 

Example: *ECHO 1 G 

This performs a !QillG and so emits the bell sound. 

Example: *ECHO <Run$Path> 

This types the filing system path used for searching for commands. 

See *SET below for more examples of how *ECHO may be used. 

•ERROR 

Synuxx: *ERROR <own> <string> 

*ERROR generates an error with the specified error number and text. The error 
message starts at the first non-space character after the number. 

Example: *ERROR 100 No such file 

This generates an error with error number 100 and the text No such file. 



*EVAL 

Syntax: *EV AL <expression> 

II HE COMMAND LINE 
INTERPRETER 

*EV AL evaluates the string following the command and prints out the result. The 
string is evaluated by OS_EvaluateExpression (&2D). See the description of that call 
in the chapter NUMBER CONVERSIONS for the full syntax of the expression. 

Exampk: *EVAL (<fred>+532)/10 

•FX 

Syntax: *FX <param 1> [[,]<param 2> ([,]<param 3>)] 

Each *FX call executes the corresponding OS_Byte routine using the parameters 
specified to initialise the RO, Rl and R2 registers respectively. These parameters may 
be separated by commas or spaces. Unspecified parameters are taken to be zero. 

*GO 

Syntax: *GO [<param 1>] [<args>] 

•GO executes a machine code program. 

If <param 1> is specified, *GO takes it to be the 32-bit address of the program's 
entry point, and starts execution of the application which starts at that point, with 
the processor in user mode and with interrupts enabled. The address may be given in 
any form which is acceptable to OS_ReadUnsigned. Note that the code called by 
this command is not expected to return, except perhaps via OS_Exit. 

If <param 1> is not specified the address is taken to be &8000. In either case one or 
more arguments can be passed to the program. 

199 



200 

*GOS 

Syntax: *GOS 

*GOS calls the operating system supervisor, from which* commands may be issued. 
You can return to the previous environment using the *QUIT command. 

The advantage of issuing * commands from this prompt, instead of from an 
application's command mode (eg from the BASIC> prompt) is that when no 
application is active the memory map of the machine may be altered. This means 
that, for example, the RMA may be increased in size in response to a *RMLOAD 
command if it is currently roo small. This can't be done when an application is 
active, and an error such as No room in RMA would be given. 

*HELP 

Syntax: *HELP <string> 

*HELP can provide help information on the operating system commands, filing 
system commands and any commands declared by currently resident modules. The 
parameter can be a single command name, in which case details of the one command 
are given. A list of command names can also be given and information about each 
parameter in the list is displayed. In addition, the command name can be 
abbreviated with a'.', in which case all commands which match it are listed. 

The information is displayed in paged mode, so you may have to press IShlfll to see all 
of the information. 

Example: *HELP ECHO 

This gives the syntax required by *ECHO and a brief description of its function. 

Example: *HELP SLOAD SSAVE 

This gives help information about the two sprite commands *SLOAD and *SSA VE. 

Example: *HELP RM. 



. HE COMMAND LINE 
INTERPRETER 

This gives information about all the commands beginning with the letters RM, ie the 
relocatable module commands. 

Example: *HELP • 

This gives information about all the commands which the system knows about. 

Syntax: *IF <expr> THEN <command1> [ELSE <commandl>) 

*IF executes the first command <command!> if the result of the expression <expr> 
is true (ie non-zero). If the expression is false, it executes the command 
<command1> if the ELSE is present, otherwise, it does nothing. The expression is 
read using SWI OS_EvaluateExpression, and may use any operators and operands 
recognised by that routine. 

•IGNORE 

S)'Tltax: *IGNORE [<param 1>) 

*IGNORE sets the 'printer ignore character'. 

It is sometimes necessary to prevent certain characters from being sent to the printer. 
This facility is most commonly used to 'filter out' line feed characters (ASCII 10) 
sent to printers which perform an automatic line feed when they are sent a carriage 
return. <param 1> is the ASCII code of the character to be ignored. If it is omitted, 
all characters are sent to the printer. 

•KEY 

Syntax: *KEY <key number> [<text>] 

This command allows a string of text (of up to 155 characters in length) to be 
assigned to one of the 16 available function keys. Then, when the function key is 
pressed, its subsequent input from the keyboard is read from that string. This enables 

201 



202 

a commonly used sequence of instructions to be assigned to a key so that just a single 
key press is required to issue them each time. 

In addition to [j) to [@, the function keys are IPTintl (function key 0), ~ (key 11 ), 
and 8. B. rn and [I) (keys 12 to 15 respectively). To use the cursor keys as 
function keys, you must first issue the command *FX4,2 or equivalent. 

The string <text> is transformed by OS_GSTrans before being stored, and so may 
incorporate control characters, etc. If <text> is a null string, the definition for that 
key is reset so that pressing it has no effect on subseqeuent character input. 

Function key definitions are normally unaffected by a soft break but are lost 
following a hard break. 

Using *KEY n <text> is equivalent to *SET KEY$n <text>. That is to say, for each 
function key there is a corresponding variable. This enables a key's definition to be 
read before it is used, and generally manipulated in the way of any other variable. 
Also, because a key string can be set as a macro, it's value may be made to change 
each time it is used. 

Example: *KEY 1 CHAIN "WELCOME" I M 

This makes pressing [j) equivalent to typing: 

CHAIN "WELCOME" Q 

*SET 

Syntax: *SET <varname> <text> 

*SET can be used to assign a string, given by the parameter <text>, to a variable 
<varname>. 

Example: *SET HELLO "Hello and how are you today?" 



IIHE COMMAND LINE 
INTERPRETER 

This will create the variable HELLO whose current value is the string Hello and how 
are you today? Many commands allow you to access a variable by placing its name 
within angled brackets, eg: 

*ECHO <HELLO> 

There are certain 'special' variables which are always present. You may alter the 
string assigned to them but you cannot delete them. These are: 

Sys$Time 
Sys$Date 
Sys$RCLimit 
Sys$RetumCode 
Sys$Year 

Time in the form 12:03:12 
Date in the form Moo, 12 july 
Maximum permitted return code 
Most recent return code 
Year in the form 1987 

The return code variable is set either by a *SET command, or when an application 
uses the routine OS_Exit (see the chapter THE PROGRAM ENVIRONMENT). 

If an attempt is made to set the variable Sys$RerumCode outside of the range 
0- Sys$RCLimit, the error Return code limit exceeded is given. The 'error 
free' return code is 0. 

The operating system extension modules, etc may all set up their own variables in 
this way. For example, the OS command line interpreter recognises the variable 
Cli$Prompt. If this variable has been defined, it will use its value as the operating 
system prompt. If it is not set up, the default prompt will be used. 

If the variable defined is given a name of the form Alias$<name>, and the string 
assigned to it is the name of a command, then 'name' becomes an alternative name 
for the command. See the section above on the way in which the OS deals with 
commands for more details. 

- Note: it is possible to create variables whose names are sequences of digits, eg 
*SET 12 HELLO. This is not recommended as you cannot then access the name 
using the <name> convention. <digits> means the character whose ASCII code 
is 'digits'. 

203 



204 

•SETEVAL 

Syntax: *SETEV AL <vamame> <expression> 

*SETEV AL assigns the value of the variable <vamame> to be the value of the 
expression <expression>. Variables created with this command will be of the type 

number, rather than string. See OS_EvaluateExpression for details of the syntax of 
<expression>. 

Example: *SET rate 12 
*SETEVAL rate rate+l 
*SHOW rate 

•SETMACRO 

Syntax: *SETMACRO <vamame> <value> 

*SETMACRO assigns an expression to a variable. The parameters making up the 
expression are not evaluated when the command is given. Instead, they are re
evaluated each time the variable is used. 

Example: *SETMACRO CLISPROMPT <SYS$TIME> 

This resets the operating system prompt to be the current time whenever the prompt 
is given. This differs from *SET CLI$PROMPT <SYS$TIME> which sets the 
prompt to be the time when the *SET command was given, not when the prompt is 
printed. 

•SHADOW 

Syntax: *SHAOOW <value> 

*SHAOOW is provided for compatibility with the Master-128. If the value is 
omitted, or has the value 2, then bank 2 of screen memory is used by subsequent 
mode changes. If the value is 1 then bank 1 is used. 



SynUJ.X: *SHOW [<[wildcarded] varname>] 

HE COMMAND LINE 
INTERPRETER 

*SHOW gives the name, type and current value of any variables whose name 
matches the string given. These include the 'special' variables listed in *SET above 
or any other variables which have been defined. 

Example: *SHOW CLI$PROMPT 

This produces the following type of response: 

CLI$Prompt : type String, value : Hi There 

Example: *SHOW ALIAS$AID 

After *SET Alias$AID HELP, this command produces the following: 

Alias$AID : type String, value : HELP 

Example: SHOW Alias$* 

Lists all aliases. If no parameter is given, all variables are listed. 

•STATUS 

SynUJ.X: •ST ATUS [<param>] 

•ST A TUS displays a full list of the default values held in the CMOS RAM. If 
<param> is present, it must be one of the settings shown under *CONFIGURE and 
only the corresponding value is displayed. 

Note that changes to the settings held in the battery backed RAM are only 
implemented after a power-on or hard break. *STATUS displays the settings which 
will come into effect when the machine is next switched on or subjected to a hard 
break. These may not be the same as the settings currently operating if 
*CONFIGURE has been used since they were last implemented. 

205 



206 

Syntax: *TIME 

*TIME produces a standard display containing the day, date and time. The format is 
held in the variable Sys$DateFormat. The default value for the variable is: 

%w3,%dy %m3 %ce%yr.%24:%mi:%se 

It is converted into a string using OS_ConvertStandardDateAndTime. See this call 
for a description of the format string syntax. An example of a date printed using the 
default format is: 

Mon,29 Feb 1988.12:34:56 

Syntax: *TV (<0- 255> ([,]<0- 255>]] 

*TV specifies the vertical screen alignment and interlace option. The first parameter 
is interpreted as a signed byte: 1 means a vertical adjustment of one line up, and 255 
(-1) means a venical adjustment of one line down. The second parameter controls 
the use of the screen interlace for future mode changes: 

0 
1 

Switches interlace on 
Switches interlace off 

The default value for the first parameter, if it is omitted, is zero. If the second 
parameter is omitted, the current interlace setting is left unchanged. A *lV 
command doesn't come into effect until the next mode change. 

Syntax. *UNSET <[wildcarded] vamame> 

*UNSET may be used to delete any non-special variables which have been set up 
using *SET, etc. It deletes all those which match the wildcarded name given. 



Exampk: *UNSET ALIAS$* 

Reading CLI parameters 

. HE COMMAND LINE 
INTERPRETER 

If you are writing a module, the chances are that you will want to recognise one or 
more • commands. The chapter MODULES explains how you can cause the OS to 
recognise commands for you, and pass control to your module when one has been 
found. This section describes the OS calls which are available to facilitate the 
decoding of the rest of the command line. 

The calls mentioned here may also be used by • commands activated in other ways, 
eg a transient command loaded from disc. However, the way in which the tail of the 
command line is discovered will vary for these types of commands. See the chapter 
THE PROGRAM ENVIRONMENT for details. 

On entry to your • command routine, RO contains a pointer to the 'tail' of the 
command, ie the first character after the command name itself (with spaces skipped). 
RI contains the number of parameters, where a parameter is regarded as a sequence 
of characters separated by spaces. 

The way in which the command uses the parameters depends on what it is doing. 
First, if there are too many or too few parameters, an error could be given. (A 
module can arrange for the OS to do this automatically.) 

If a parameter is to be regarded as a string, OS_GST rans may be used to decode any 
special sequences, eg control codes, variable names etc. If the parameter is a number, 
OS_ReadUnsigned might be used to convert it into binary. Finally, 
OS_EvaluateExpression could be used to read a whole arithmetic or string 
expression, and return the result in a buffer. 

These calls arc documented in the chapter NUMBER CONVERSIONS, along 
with other useful conversion routines such as OS_ReadUnsigned. 

Note that the convention on the Archimedes is to have parameters separated by 
spaces. Some of the built-in commands which have been carried over from the 
BBC/Master machines also allow commas. You should not support this option. 

207 



208 



IIILING SYSTEMS 

INTRODUCTION 

A filing system is a collection of routines provided for the purpose of organising and 
accessing data held on external storage media. Two complete filing systems are 
provided as standard: 

- Advanced Disc Filing System (ADFS) which is for use with both floppy and hard 
disc drives. 

- Network Filing System (NetFS) for controlling Econet file servers. 

(The presence of the NetFS will only be apparent if the machine has Econet 
hardware installed.) The filing system which is selected when the computer is 
switched on is known as the default filing system and can be set using the 
"'CONFIGURE File (or FileSystem -see the chapter THE COMMAND LINE 
INTERPRETER) command. To configure a filing system as default, type 

*CONFIGURE File <n> 

where <n> is the appropriate filing system number, 8 for ADFS, 5 for NetFS. The 
default configured filing system is ADFS; this is restored whenever a CMOS RAM 
reset is performed. 

You can change the current filing system by issuing one of the following commands: 

*ADFS 
*NET 

to select the Advanced Disc Filing System 
to select the Network Filing System 

You can also switch filing systems for the duration of a • command by prefixing the 
command with the name of the filing system between minus signs: 

*- net- cat 

Programs cannot interact directly with the filing system. Instead, they communicate 
with the filing system manager (called FileSwitch). This layer of software performs 
tasks such as keeping track of which filing system an open file resides on, decoding 

209 



path names etc. It provides many of the filing system-independent commands, such 
as *CAT, *WIPE etc. 

Additionally, the common filing system SWls, such as OS_Find go through 
FileSwitch before being routed to the appropriate filing system module. The presence 
of FileS witch has advantages for both the user and implementer of filing systems. For 
the user, it simplifies the task of remembering command names, as many of them are 
common to all filing systems. Also, FileSwitch allows files on filing systems other 
than the current one to be accessed. Switching between filing systems is done 
invisibly. 

For the filing system writer, the presence of FileSwitch means that less code has to be 
written. This is because many high-level operations are performed by FileSwitch, 
which calls the appropriate lower-level filing system routines. 

Some of the filing system commands, such as "'LOAD and *SPOOL are provided by 
the OS kernel. These are listed under 'Utility commands' when you type a "'HELP 
COMMANDS command. They are listed in this chapter along with the FileSwitch 
commands for completeness. 

Another "'CONFIGURE option is Boot/ NoBoot. This determines whether the 
ADFS will try to access the file called !Boot when the machine is reset. If the 
configuration is set to Boot, the file will be dealt with according to *OPT 4 setting of 
the disc. See the •OPT command for more details. 

The CMOS RAM default setting is NoBoot. 

FILES, DIRECTORIES AND PATHNAMES 

210 

Under both the ADFS and NetFS all programs, data files, documents, etc are saved 
as files which are identified by filenames. The filing systems make no distinction 
between typeS of file. You are, therefore, able to load a word processor file with 
BASIC as the current language; it is only when the file has been loaded that the 
content of the file is found to be inconsistent with the format required by the 
language. 



~~ILING SYSTEMS 

It is up to an application or utility to ensure that a file is of the desired type before 
loading it; for instance, the module handler will only allow files which are 
Relocatable Modules to be loaded into the module area. 

Filenames may be up to ten characters in length on ADFS and NetFS. These 
characters may be digits or letters, with no distinction being made between upper 
and lower case. It is not advisable to use 8-bit characters in fllenames. Other 
characters may be used provided they do not have a special significance. Those that 
do are listed below: 

* 

* $ 
& 
@ 

% 
} 

Separates directory specifications, eg $.fred 
Introduces a drive or disc specification, eg :0, :welcome 
it also marks the end of a filing system name, eg adfs: 
Acts as a 'wildcard' to match zero or more characters, eg prog* 
Acts as a 'wildcard' to match any single character, eg $.ch## 
is the name of the root directory of the disc 
is the user root directory (URD) 
is the currently-selected directory (CSD) 
is the 'parent' directory 
is the currently-selected library directory (CSL) 
is the previously-selected directory (PSD) 

Files may be grouped together into directories. This is particularly useful for grouping 
together all files of a particular type. Files in the directory currently selected may be 
accessed without reference to the directory name. Filenames must be unique within a 
given directory. Directories may contain other directories, leading to a hierarchical 
file structure. 

All files are accessible through the root directory,$. This forms the top of the 
hierarchy.$ does not have a parent directory. Trying to access its parent will just 
access$. 

Files in directories other than the current directory may be accessed either by making 
the desired directory the current directory, or by prefixing the filename by an 
appropriate directory specification. This is a sequence of directory names starting 
from one of the single-character directory names listed above, or from the current 
directory if none is given. 

211 



212 

Each directory name is separated by a '.' character. For example: 

$.Documents.Memos 
BASIC.Games.Adventures 
%.BCPL 

File Memos in dir Documents in$ 
File Adventures in dir Games in dir @.BASIC 
File BCPL in the current library 

Files may also be accessed on filing systems other than the current one by prefixing 
the filename with a filing system specification. A filing system name may appear 
between'-' characters, or suffixed by a':'. For example: 

-net-$.SystemMesg 

adfs:%.AAsm 

In addition to the two filing systems already mentioned, the module 'System Devices' 
provides some device-oriented 'filing systems'. These can be used in redirection 
specifications in * commands, and anywhere else where byte-oriented file operations 
are possible. The devices provided are: 

null 
vdu 
rawvdu 
printer 
kbd 
rawkbd 

Output disappears; input gives EOF 
Output goes to OS_ WriteC; input is 'Not found' 
Output goes to OS_ WriteC; input is 'Not found' 
Output goes to printer; input is 'Not found' 
Output is bad op; input comes from OS_ReadLine 
Output is bad op; input comes from OS_ReadC 

The difference between vdu and rawvdu is that the former is filtered in the same way 
as output from commands such as *TYPE (using OS_GSRead encoding on control 
characters etc), whereas rawvdu characters go straight to the VDU drivers. In 
addition to byte-oriented operations, you are allowed to perform file save operations 
on the output devices. 

You can generate an EOF condition on the kbd device by typing !QillD before 
pressing Q. For example: 



*COPY file vdu: 
SAVE"VDU:" 
*SPOOL printer: 
LIST 
*SPOOL 

~~ILING SYSTEMS 

An error is given if the specified filing system/device is not present. 

FILE TYPES AND DATE STAMPING 

All files have, in addition to their name and length, two 32-bit fields describing 
them. These are set up when the file is created and have two possible meanings: 

Load and execution addresses 

In the case of a simple machine code program these are the load and execution 
addresses of the program: 

Load address 
Execution address 

XXXLLLLL 
GGGGGGGG 

When a program is *RUN, it is loaded at address &XXXLLLLL and execution 
commences at address &GGGGGGGG. Note that the execution address must be 
within the program or an error is given. That is: 

XXXLLLLL <= GGGGGGGG < XXXLLLLL + Length of file 

Also note that if the top twelve bits of the load address are all set (ie 'XXX' is FFF), 
then the file is assumed to be date-stamped. This is reasonable because such a load 
address is outside the addressing range of the ARM CPU. 

Date/time stamp and file type 

In this case the top 12 bits of the load address are all set. The remaining bits hold the 
date/time stamp indicating when the file was created or last modified, and the file 
type. 

213 



214 

The date/time stamp is a five byte unsigned number which is the number of centi
seconds since 00:00:00 on 1st Jan 1900. The lower four bytes are stored in the 
execution address and the most-significant byte is stored in the least-significant byte 
of the load address. 

The remaining 12 bits in the load address are used to store information about the file 
type. Hence the format of the two addresses is as follows: 

Load address 
Execution address 

FFFtttdd 
dddddddd 

where 'd' is part of the date and 't' is part of the type. 

The file types are split into three categories: 

Value Meaning 

&EOO-&FFF 
&800-&DFF 
&000 - &7FF 

Reserved for Acorn usc 
For allocation to software houses 
Free for the user 

The types currently defined are: 

Value 

&FFF 
&FFE 
&FFD 
&FFC 
&FFB 
&FFA 
&FF9 
&FF8 
&FF7 
&FF6 

Type 

Plain ASCII text 
Command 
Data 
Position-independent transient -loaded and run in RMA 
Tokenised BASIC program 
Relocatable module 
Sprite 
Absolute code- runs as an application at &8000 
BBCfont 
Fancy font 



&FEF 
&FEE 
&FED 

&FEO 

Diary 
Note pad 
Palette 

Desktop utility 

. ILING SYSTEMS 

When a date stamped file of type ttt is *LOADed or *RUN, the filing system 
manager looks for the variables Alias$®LoadType_ttt or Alias$@RunType_ttt 
respectively. If these exist, then the string LoadVal filename or Run Val filename 
parameters are passed to the operating system command line interpreter. LoadVal 
and Run Val are the values of the respective Alias$ strings. 

For example, suppose you type 

*LOAD mySprites 

where the type of the file mySprites is &FF9. The file manager will look up the value 
of the variable Alias$@LoadType_FF9. This is SLoad %*0 by default, so the 
command actually passed on would be: 

*SLoad mySprites 

The filing system manager sets several of these variables up on initialisation, which 
you may override by setting new ones. 

In the case of BASIC programs the settings are: 

*SET Alias$@LoadType_FFB Basic -Load %*0 
*SET Alias$@RunType_FFB Basic -Quit %*0 

You can set up new aliases for any new types of file. For example, you could assign 
type &123 to files created by your own wordprocessor. The variables could then take 
the following form: 

*SET Alias$@LoadType_123 WordProc %0 
*SET Alias$@RunType_123 WordProc %0 

215 



216 

- Note: in OS versions 0.40 and greater, the syntax of these variables is different 
from that described above. They now have the form Run$T ype_ TIT and 
Load$T ype_ TIT. The way in which they are used remains the same. 

There are two more important variables used by FileSwitch. These control exactly 
where a file will be looked for, according to the operation being performed on it. The 
variables are: 

File$ Path 
Run$ Path 

for read operations 
for execute operations 

The contents of each variable should be a list of directory names terminated with 
dots, separated by commas. When FileSwitch performs a read operation (eg load a 
file, open a file for input or update), then the directories in File$Path are searched in 
the order in which they are listed. 

Similarly, when FileSwitch tries to execute a file (•RUN, •/ for example), the 
directories listed in Run$ Path are searched in order. By default, File$Path is set to 
the null string, and the only directory searched is the current one. Run$Path is set to 
',%.'.This means that the current directory is searched first, followed by the library. 

It is possible to specify filing system names in the search paths. For example, if it 
can't locate a file on the ADFS you could make FileSwitch look on the fileserver 
using: 

*SET File$Path ,%.,NET:LIB*.,NET:MODULES. 

This would look for: @.file, %.file, NET:LIB• .file and NET:MODULES.file. 

Note that the search paths in these two variables are only ever used when the 
path name passed to FileSwitch does not contain an explicit directory reference. For 
example, •RUN file would use Run$ Path, but •RUN &.file wouldn't. 

Cenain calls also allow you to specify alternative path strings, and to perform the 
operation with no path look-up at all. 



. ILING SYSTEMS 

FILESWITCH AND OS FILING SYSTEM COMMANDS 

The filing system commands given below are those which are common to all the 
filing systems. These commands are recognised and acted upon by the filing system 
manager or utility module, rather than by the individual filing systems themselves. 

Where addresses or offsets are required in these commands, hexadecimal is taken as 
the default base. However, any other base may be specified by using the standard 
OS_ReadUnsigned notation. For example, 10_1000 means 1000 decimal. 

•ACCESS 

Syntax: *ACCESS <[wildcarded]object> [D] [L) [WI [R) [/] [W) [R] 

• ACCESS sets the file attributes according to the presence of absence of one or 
more of the optional parameters: 

- 'L' locks objects so that they may not be deleted, written to or overwritten (for 
example, if a locked file is loaded, it may not be saved again with the same name). 

Both files and directories may be locked. Note, however, that locking does not 
prevent directories or files from being destroyed if the disc is reformatted. Neither 
does it prevent modification of a directory. 

- 'W' sets 'write access' (for files only). This must be set for writing to be allowed. 

- 'R' sets 'read access' (for files only). This must be set for reading and loading to be 
allowed. 

There is a further attribute, 'D', which is set if the object is a directory (see *CDIR 
below), and is unaffected by *ACCESS commands. Similarly, it is not possible to 
tum a file into a directory by attemping to set the 'D' attribute; the 'D' attribute is 
always ignored. 

Attributes specified after the optional slash character relate to the access which 
other users may have to the file (on the Econet); these default to no access. 

217 



218 

The default attributes (ie those which are assigned when an object is first created) 
are: 

Object type 

Files 
Directories 

*APPEND 

Attributes 

WR 
DL 

Syntax: • APPEND <[wildcarded]filename> 

• APPEND opens the named file, which must exist, and sets the file pointer to the 
end of the file. Subsequent lines of keyboard input will be appended to the end of the 
file. Input is terminated by the occurrence of an escape condition, which causes the 
file to be closed. 

*BUILD 

Syntax: "'BUILD <filename> 

"'BUILD opens a new file with the specified name and directs all subsequent lines of 
keyboard input to the file. Input is terminated by the occurrence of an escape 
condition, which causes the file to be closed. If an existing file of the same name 
already exists then it is overwritten, unless it is locked. 

If the file already exists, and has a file type, then its type is unaltered, but the 
datestamp is updated. If the file didn't exist, or was unstamped, it is given type FFD 
(data). To make the file *EXECable, you should set its type to FFE. 

*CAT 

Syntax: *CAT [<directory>] 

•CA T displays a catalogue of the current directory or the specified directory. 



IIILING SYSTEMS 

Syntax: *CDIR <directory> [<size in entries>) 

*CDIR creates a new empty directory with the specified pathname. 

The new directory is assigned DL attributes (see *ACCESS), and the directory name 
is also allocated as the directory title (see *TITLE under ADFS commands). 

NetFS uses the size parameter to request a directory block sufficiently large to 
contain, at least, a given number of directory entries. ADFS ignores it. 

•CWSE 

Syntax: *CLOSE 

*CLOSE closes all open files associated with the current filing system, after first 
ensuring that any modified data held in RAM is written out to the filing system. 

•COPY 

Syntax: *COPY <[wildcarded]object> <[wildcarded)pathname> [options) 

*COPY copies all files matching the specification of the source (first) parameter, to 
the place specified by the second parameter. If necessary, files may be copied from a 
Winchester disc to a floppy disc by including appropriate drive specification 
parameters. The file(s) are added tO the catalogue for the specified directory and it is, 
therefore, possible to encounter Dir full or Disc full error messages. 

If neither of the names contains wildcards, then a single file is copied. If these 
filenames are directories, then the contentS of the source directory will be copied 
into the destination directory. 

219 



220 

If the source contains a wildcard in the final component of the file name, then all 
files which match that will be copied. The destination should have an equivalent 
wildcard name. For example: 

*COPY fred.* jim.* 

copies all of the files in directory fred into jim. Note that wildcards used in directory 
names, in the source, only mean 'first match', rather than 'all matches'. Thus the 
command: 

*COPY adfs : *.fred jim.file 

means copy the file fred from the first directory found on the ADFS into jim.file. 

The options are as follows: 

c Confirm 

D Delete 

F Force 

p Prompt 

Q Quick 

This causes a prompt for confirmation to be made before 
each file is copied. 

This causes the source file to be deleted after it has been 
successfully copied. 

This causes any destination file to be overwritten if it 
already exists. 

This causes prompts to be made to insert the disc into the 
drive when copying between discs. It is useful for single
drive copies between discs. 

This causes the copy routine to use the application area 
(from &8000 to tht.. .:urrent limit) as workspace if possible 
to speed up copying. It is dangerous in that you may lose 
your BASIC program, or even the current application if 
that was loaded at &8000. It is always safe to use this 
option from the supervisor prompt. A copy using 
application workspace will exit from the application when 
it has finished. 



R Rccurse 

v Verbose 

ILING SYSTEMS 

This causes any subdirectories of the source specification 
to be copied. 

This causes information to be displayed on each file being 
copied. 

The default options are held in the variable Copy$0ptions. To cancel an option, 
precede it with'-'. For example: 

*COPY * BAK.* -R. 

Note that it is dangerous to copy a directory into one of itS subsidiary directories. 
This resultS in an infinite loop, which will only stop when the disk is full. 

Syntax: *CREATE <filename> [<size> [<exec addr> [<load addr>lll 

*CREATE provides a means of reserving space for files. The amount of space 
reserved is the number of bytes given after the filename. If this is omitted, zero is 
used. The load and execution addresses to put on the file may be specified. If the 
execution address is given but the load address is omitted, the load address is set to 
zero. 

If both execution and load addresses are omitted, then the file is created with type 

FFD (data) and is date/time stamped. 

•DELETE 

Syntax: *DELETE <object> 

*DELETE deletes the specified object, if it existS, from the current file catalogue, so 
that it cannot be accessed, and the space it was occupying may be overwritten. If the 
file does not exist or is locked against deletion then an error message is given. 
Wildcards may be used in all componentS of the pathname except the last one. 

221 



222 

Syntax: *DIR [<dimame>) 

*DIR changes the current directory. If no parameter is supplied then the current 
directory is reset to the user root directory. Where a parameter is given, the directory 
specified is made current. In either case, the current directory is saved (for use by 
*BACK) as the previously selected directory (PSD). 

*DUMP 

Syntax: *DUMP <[wildcarded)filename> [<file offset> [<start address>JJ 

*DUMP displays a hexadecimal and ASCII dump of the named file in the following 
format: 

Address :00 01 02 03 04 05: ASCII data 

XXXXXXXX : BB BB BB BB BB BB : cccccccc 

The number of bytes displayed per line depends on the number of text columns in 
the current text window: one in 20-column modes, six in 40-column modes, 16 in 
SO-column modes, 24 in 132-column modes, and 32 in the 64KHz-monitor modes. 

The way in which the ASCII data pan is displayed is determined by bits 2 and 3 of 
the *CONFIGURE DumpForrnat value. 

The file offset specifies the point in the file at which the dump is to start; this 
defaults to zero. The stan address is used to determine the address printed on each 
line of the display, and is the address which would be displayed if the file offset were 
zero. If this is not present, then it defaults to the load address of the file unless the 
file is date/time stamped, in which case it is taken to be zero. 



. ILING SYSTEMS 

*ENUMDIR 

Syntax: *ENUMDIR <dirname> <filename> [<wildcard pattern>) 

*ENUMDIR reads filename entries from the given directory and copies them into 
the specified file, if they match the wildcard pattern (the default being*}. Entries are 
separated by ASClllO (line feed} in the output file. For example, the command 
•ENUMDIR $YOU: might produce the output: 

Library 

MAESTRO 
TEST 
TWIN 

TWIN132 

Syntax: *EX [<[wildcarded)dirname>) 

*EX displays file catalogue information for all objects in the current or specified 
directory. The information supplied is as follows: 

filename attributes loadaddress 
or time or date 

executionaddress 
or addr 

size 

All addresses are given in hexadecimal notation and sizes are in bytes. 

*EXEC 

Syntax: *EXEC [<[wildcarded]filename>) 

stan 

*EXEC opens the given filename for reading, and causes the characters from that file 
to be used for subsequent input. The file takes priority over the keyboard or RS423 
input stream. This means that calls to OS_ReadC, OS_Byte &81, OS_ Word &00, 
and OS_ReadLine will read from the file (as if by OS_BGet) instead of the selected 
input stream. When all the characters have been read, the file is dosed 
automatically, and the input reverts to the previous source. 

223 



224 

If no parameter is given to *EXEC then the current *EXEC file is closed. If another 
*EXEC command is issued with a filename parameter when there is already an 
*EXEC file active, the first file is closed and input is taken from the newly-opened 
one. 

*INFO 

Syntax: *INFO <[wildcarded]object> 

*INFO displays the same filing system information as *EX but for either a single 
object or a group of objects. 

For example, *INFO font* will give information about all files beginning with font. 

*LCAT 

Syntax: *LCAT [< [wildcarded]dimame>] 

*LCAT displays the catalogue for the current library directory, or a subdirectory 
thereof, if a parameter is supplied. It is the same as *CAT %. 

*LEX 

Syntax: *LEX [<[wildcarded]dimame>] 

*LEX provides the same facility as *EX, but for the library directory or a subdirectory 
thereof, it does not require you to make the library directory current. It is the same as 
*EX%. 

*LIB 

Syntax: *LIB [<[wildcarded]dimame>] 

*LIB sets the library directory to the directory specified. If it is used with no 
parameters then the default library for the current filing system is selected. 



IIILING SYSTEMS 

Note that unlike *DIR, *LIB does not affect the current directory. It is usual to make 
one component of the Run$Path variable % so that the current library is searched 
for programs which are *RUN. 

Syntax: *LIST <[wildcarded]filename> 

*LIST displays the contents of the named file. The format used for control and 
'international' characters depends on the setting of the *CONFIGURE DumpFormat 
value. 

Each line (ie sequence of ASCII codes terminated by a carriage return, line feed or 
pairs of the above) is preceded with a line number, starting from 1. 

*LOAD 

Syntax: *LOAD <[wildcarded)filename> [<load address>] 

*LOAD loads the specified file into memory. The address at which it is loaded can 
be specified as a hexadecimal (or other given base) value after the filename. 
Otherwise, the load address supplied by the filing system will be used. (See date/time 
section above for load actions of date/time stamped files.) 

*OPT 

Syntax: *OPT <option number> [<option value>) 

*OPT sets up various filing system options: 

*OPT 0 restores the default settings for all options associated with the current filing 
system, except *OPT4. 

*OPT 1 controls the display of file information during load, save and create as 
follows: 

225 



226 

0 
1 
2 

3 

File information is to be suppressed 
The filename is to be displayed 
The filename, load address, execution address and length 
are to be displayed 
The filename and length are to be displayed as above, 
with the load and execution addresses being interpreted as file type and 
date/time stamp if possible 

*OPT 4 controls the auto-start option for ADFS as follows: 

0 
1 
2 
3 

Disable the auto-start facility 
*LOAD the &.!BOOT file 
*RUN the &.!BOOT file 
*EXEC the &.!BOOT file 

*OPT 4 controls the auto-start option for NetFS logon as follows: 

0 
l 
2 
3 

Disable the auto-start facility 
*LOAD the &.!ArmBoot file 
*RUN the &.!ArmBoot file 
*EXEC the &. !ArmBoot file 

Syntax: *PRINT <[wildcarded]filename> 

• PRINT displays the contents of the named file in ASCII format. Each byte is sent 
to the YOU driver regardless of whether it is a printable character or a control 
character. Hence, unless the file is a simple text file, this command can produce 
undesirable results. It may be used to 'replay' *SPOOLed graphics output, or a stream 
of YOU l9s to set-up the palette, for example. 



. ILING SYSTEMS 

•REMOVE 

Syntax: *REMOVE <object> 

*REMOVE is identical to *DELETE with the exception that it does not give the 
error Not found if there is nothing to delete. This makes it most useful in a 
program since it will not cause an unexpected error. 

*RENAME 

Syntax: *RENAME <object> <object> 

*RENAME changes the pathname through which a file is accessed, from that 
specified by the first parameter to that specified by the second. The current directory 
is assumed if either or both directory specifications are omitted from the object(s). 

Note that it is not possible to rename a locked object and that the object defined by 
the second parameter must not already exist. If the object is a directory, all files and 
subordinate directories remain unchanged but will be accessible only via their new 
path name. 

*RUN 

Syntax: *RUN <[wildcarded)filename> [<parameters>) 

*RUN loads the named file into memory and starts execution. It uses the load and 
execution addresses stored by the filing system. The optional parameters may be 
accessed by the program itself. (See date/time section above for run actions of 
date/time stamped files.) 

*SAVE 

Syntax: *SAVE <filename> <start> <end> [<exec> (<load> II 

or: *SAVE <filename> <start>+<length>[<exec> [<load>]] 

*SAVE takes a copy of a designated area of memory and writes it to the named file. 

227 



228 

Start 

end 

length 

exec 

is the address of the first byte to be saved 

is the address of the byte after the last byte to be saved 

is the number of bytes to be saved 

is the execution address to be stored with the file- this defaults to the 
start address 

load is the reload address (which allows the load address stored with the file 
to be different from the actual start address used when saving the file, 
and which is assumed to be the same as start if omitted). 

*SETTYPE 

Syntax: *SETTYPE <filename> <filetype> 

This command sets the file type of the named file. If the filename contains wildcards, 
only the first file accessed by that name is affected. The file type is a number in the 
range 0- &FFF. The default base is hexadecimal, but as usual, may be overridden by 
specifying the base. 

•SHUT 

Syntax: *SHUT 

*SHUT closes all open files, after first ensuring that any unwritten data remaining in 
RAM is written to the filing system. It is similar tO *CLOSE except that it affects all 
filing systems, rather than just the current one. 

•SHUTDOWN 

Syntax: *SHUTOOWN 

This command performs all the actions of *SHUT. Additionally, it logs off all file 
servers and unmounts any ADFS discs (which in turn 'parks' the heads of any 
attached Win chester drives). 



~~ILING SYSTEMS 

Syntax: •sPOOL [<filename>] 

The command *SPOOL <filename> opens the specified file for output. All 
subsequent characters sent to the YOU drivers will also be copied to the file, using 
OS_BPut. This continues until the next *SPOOL command (with or without a file 
name) is issued. 

If the filename is omitted, the current *SPOOL file, if any, is closed, and characters 
are no longer sent to it. 

You can temporarily disable the *SPOOL file, without closing it, using the OS_Byte 
&03 call. 

•SPOOLON 

Syntax: *SPOOLON (<[wildcarded]filename>) 

*SPOOLON is similar to *SPOOL except that it takes the name of an existing file, 
to which all subsequent VDU output is appended. The file may be closed using 
either a *SPOOL or *SPOOLON command without a parameter. 

Syntax: *STAMP <[wildcarded)filename> 

*STAMP sets the date/time stamp of an existing file to the current date/time of the 
computer. If the file is not already date/time stamped, then it is given file type FFD. 
This can be changed using *SETTYPE. 

*TYPE 

Syntax: *TYPE <[wildcarded]filename> 

229 



230 

*TYPE is similar to *LIST in that it displays the contents of the named file in the 
format dictated by the *CONFIGURE DumpFormat parameter. However, it does 
not precede each line with a line number. 

Syntax: *UP [<number of levels>] 

*UP without a parameter is equivalent to *DIR A, ie it selects the parent of the 
current directory. When a parameter is given, it is taken to be the number of steps in 
the directory hierarchy that should be taken upwards, eg *UP 3 is equivalent to 
*DIR A,A,A, 

Note that the parent of'$' is'$', so you can't go any further up than this. 

Syntax: *WIPE <[wildcarded]filename> [<options>] 

This command deletes one or more files given by the ( wildcarded) filename. If the 
filename given is a directory, the contents of that directory are deleted. The options 
are as follows: 

c 

F 

R 

v 

Confirm. This causes a prompt for confirmation before each file is 
deleted. 

Force. This causes objects to be deleted even if they are locked (eg 
directories). 

Recurse. This causes the subdirectories of a directory to be deleted as 
well. 

Verbose. This causes information about what is being deleted (and 
what isn't because of locking) to be printed. 

The default options are held in the variable Wipe$0ptions. To cancel an option, 
precede it with'-'. For example: *WIPE* -R. 



. ILING SYSTEMS 

OS FILING SYSTEM SWI CALLS 

The filing system SWis given below are those which are common to all the filing 
systems. These commands are recognised and acted upon by FileSwitch, which then 
passes the call onto the appropriate filing system. 

Pathname conventions 

Pathnames passed to FileSwitch must terminate with a carriage return, line feed or 
NULL (ASCII 0) byte. Pathnames are OS_GSTransed before use, and so may 
contain references to variables in angled brackets, or may be enclosed within quotes, 
for example: 

<device$prefix>.source.header 

An error is given if the path name is found to contain illegal character sequences. 

In general, filenames, used in read operations, may contain wildcards. Thus, a 
filename being opened for input, or loaded into memory, may be wildcarded. The 
first name which matches will be used. The last component of a filename used in 
save or delete-type operations must not contain wildcards. Opening a file for output 
implies deletion (of any file with the same name), so a name given in one of these 
operations may not be wildcarded. 

In addition to the specialised filing system calls listed from OS_File onwards, two 
OS_Bytes are provided for filing system control: 

OS_Byte &7F (127)- Check for end of file 

On entry: Rl =file handle 

On exit: RI indicates if end of file has been reached 

This call enables you to ascertain whether the end of an open file has been reached. 
See OS_Find below for details of opening a file. The values returned in Rl are as 
follows: 

231 



232 

Value 

0 
NotO 

Meaning 

End of file has not been reached 
End of file has been reached 

OS_Byte &8B (139)- Write filing system options 

On entry: Rl =option number (first *OPT argument) 
R2 = option value (second *OPT argument) 

On exit: Rl is undefined 
R2 is undefined 

This call selects file options. It is equivalent to *OPT which is documented in detail 
in the next section FileSwitch and OS filing system commands. 

In addition to these, there are OS_Bytes to read/write the *SPOOL and *EXEC file 
handles. See the chapters CHARAcrER OUTPUT and CHARACTER INPUT 
respectively for details. 

OS_Byte &FF (255) - Read/write boot option 

On entry: Rl = 0 or new value 
R2 = &FForO 

On exit: Rl previous value 

This call reads the current auto-boot flag setting, or temporarily changes it. The 
auto-boot flag defaults to the value configured in the Boot/NoBoot option. If 
No Boot is set, then, when the machine is reset, no auto-boot action will occur (ie no 
attempt will be made to access the !Boot file on the filing system). If Boot is the 
configured option, then !Boot will be accessed on reset. Either way, holding down 
the IShlft) key while releasing RESET will have the opposite effect to usual. 

With this OS_Byte you can read the current state. On exit, ifRJ .. O then the action 
is Boot. If it is 8, then the action is NoBoot. The effect can be changed by writing to 
the flag, but this only lasts until the next hard reset. 



. ILING SYSTEMS 

OS_File (&08)- Perform action on whole file 

OS_File acts on whole files, either loading a file into memory, saving a file from 
memory, or reading or writing a file's attributes. The call indirects through FileV. 

For calls with R0=&05 (read catalogue) and &FF (load file), the file is searched for 
using the variable File$ Path. If this does not exist, a null path string is used (ie look 
only in current directory). 

Some operations do not allow wildcard characters(* and#) to be used in the 
filename. These are the ones which have a 'destructive' effect, eg deleting a file or 
saving a file (which might overwrite a file which already exists). Non-destructive 
operations, such as loading a file and reading and writing attributes may have 
wildcards in the filename. However, only the first file found (in ASCII order of file 
name) will be accessed by the operation. 

The particular action of OS_File is specified by RO as follows: 

RO = 0 Save a block of memory as a file 

On entry: Rl = pointer to non-wildcarded filename 
R2 = reload address of file 

On exit: 

R3 = execution address of file 
R4 = start address in memory of data 
R5 • end address in memory of data 

An error is given if the object is locked against deletion, or if it is a directory, or is 
already open. 

233 



234 

RO = &0 I Write catalogue infonnation for the named file 

On entry: RO = action 

On exit: 

Rl = pointer to ( wildcarded) filename 
R2 =load address offile 
R3 = execution address of file 
R5 = file attributes 

The load address, execution address and file attributes from registers R2, R3 and R5 
are written to the named file's catalogue entry. An error is given if the object is a 
directory. It is not an error if the file does not exist. 

If the filename contains wildcards, only the first file matching the wildcard 
specification will be affected. 

RO = &02 Write load address only for the named file 

On entry: Rl =pointer to (wildcarded) filename 
R2 = new load address of file 

Onexit: -

An error is given if the object is a directory. It is not an error if the file does not 
exist 

'f the filename contains wildcards, only the first file matching the wildcard 
specification will be affected. 

RO = &03 Write execution address only for the named file 

On entry: Rl =pointer to (wildcarded) filename 
R3 = new execution address of file 

On exit: 



. ILING SYSTEMS 

An error is given if the object is a directory. lt is not an error if the file does not 
exist . 

If the filename contains wildcards, only the first file matching the wildcard 
specification will be affected. 

RO = &04 Write attributes only far tlle named object 

On entry: Rl = pointer to (wildcarded) pathname 
R5 = new file attributes 

On exit: 

It is not an error if the file does not exist or is a directory. 

If the filename contains wildcards, only the first file match ing the wildcard 
specification will be affected. 

RO = &05 Rwd catalogue information for the named object 

On entry: Rl = pointer to (wildcarded) pathname 

On exit: RO = object rype 
R 1 is preserved 
R2 - load address 
R3 = execution address 
R4 = file length 
R5 = file attributes 

The load address, execution address, length and file attributes from the named 
object's catalogue entry are read into registers R2, R3, R4 and R5. On exit, RO 
contains the object type: 

235 



236 

Value 

0 
1 
2 

Type 

Not found 
File found 
Directory found 

The top 14 bits of the file attributes are filing system dependent, eg NetFS returns 
the file server date of creation/modification of the object. The first byte has the 
following interpretation: 

Bit Meaning if set 

0 Object has read access for you 
1 Object has write access for you 
2 Undefined 
3 Object is locked against deletion 
4 Object has read access for others 
5 Object has write access for others 
6 Undefined 
7 Undefined 

On ADFS, bit 4 has the same value as bit 0, and bit 5 is the same as bit l. In calls to 
write attributes on ADFS, only bits 0, 1 and 3 are significant. 

RO = &06 Delete the named object 

On entry: R1 =pointer to non-wildcarded pathname 

On exit: RO = object type 

R 1 is preserved 
R2 = load address 
R3 = execution address 
R4 = file length 
RS = file attributes 



. ILING SYSTEMS 

The information in the named object's catalogue entry is transferred to the registers 
and the object is then deleted from the catalogue. It is not an error if the object does 
not exist. 

An error is given if the object is locked against deletion, or if it is a directory which 
is not empty, or is already open. 

RO = &07 Create an empty file 

On entry: Rl =pointer to non-wildcarded filename 
R2 = reload address of file 

On exit: 

R3 = execution address of file 
R4 = start address 
R5 = end address 

The size of the empty file is determined by the start address and end address given in 
R4 and R5, but no data is transferred. It is usually convenient to set the start address 
to zero and use the end address to define the length of the file. 

- Note: a file thus created does not necessarily contain zeros; the contentS may be 
completely random. 

An error is given if the object is locked against deletion, or if it is a directory which 
is not empty, or is already open. 

RO = &08 Create a directory 

On entry: Rl =pointer to non-wildcarded directory name 
R4 = number of entries (0 for default) 

On exit: 

R4 indicates a minimum number of entries that the created directory may contain. 
Zero is used to set the default number of entries. 

237 



238 

- Note: ADFS ignores the number of entries parameter as this is predetermined by 
the disc format. 

An error is given if the object is a file which is locked against deletion. It is not an 
error if it refers to a directory that already exists, in which case the operation is 
ignored. 

RO = &09 Write date/time stamp of file 

On entry: Rl =pointer to (wildcarded) filename 

On exit: 

The named file is date/time stamped using the current time. If the file was already 
date/time stamped, its file type is preserved, otherwise it is given file type &FFD. 

An error is given if the object is a directory. It is not an error if the file docs not 
exist. 

RO = &OA Save a block of memory as a file with current date/time stamp 

On entry: Rl = pointer to non-wildcarded filename 
R2 = file type 

On exit: 

R4- start address in memory of data 
R5 = end address in memory of data 

This operation is the same as the simple save operation except that the load and 
execution addresses of the file are written by the filing system manager to be a 
date/time stamped file of the given type with the current date/time stamp. 

An error is given if the object is locked against deletion, or if it is a directory which 
is not empty, or is already open. 



ILING SYSTEMS 

RO = &OB Create an emp~y file with current date/time stamp 

On entry: Rl = pointer to non-wildcarded filename 
R2 = file type (of form &OOOOOTIT) 

On exit: 

R4 = start address 
R5 = end address 

This operation is the same as the simple create operation except that the load and 
execution addresses of the file are written by the filing system manager to be a 
date/time stamped file of the given type with the current date/time stamp. 

An error is given if the object is locked against deletion, or is a directory which is 
not empty, or is already open. 

RO = &OC Load file with path string 

On entry: Rl - R3 .. as OS_File with RO = &FF 
R4 = pointer to a path string 

On exit: RO- R5 = as OS_File with RO = &FF 

This call loads a file into memory, using a specified path string to look for the file. 
This is used instead of the default path string which is held in the variable File$ Path. 
The string is control character-terminated. 

RO = &OD Read catalogue info of file using given path string 

On entry: Rl = pointer to (wildcarded) pathname 
R4 = pointer to path string 

On exit: RO- R5 .. as OS_File with RO = &05 

This call reads a file's catalogue information. It uses the path specified in the string 
pointed to by R4 instead of the default search path stored in the variable Load$Path. 

239 



240 

RO = &OE Load file with path variable 

On entry: Rl- R3 =as OS_File with RO;. &FF 
R4 = pointer to a path variable 

On exit: RO- R5 = as OS_File with RO = &FF 

This call loads a file into memory, using a path string which is held in the specified 
variable name to look for the file. This is used instead of the default path string 
which is held in the variable File$ Path. The variable name is control character
terminated. 

RO = &OF Read catalogue info of file using given path variable 

On entry: Rl =pointer to (wildcarded) pathname 
R4 =pointer to path variable 

On exit: RO - R5 = as OS_File with RO = &05 

This call reads a file's catalogue information. It uses the path specified in the 
contents of the string variable pointed to by R4 instead of the default search path 
stored in the variable File$Path. 

RO = & I 0 Load file using no path at all 

On entry: Rl - R3 = as OS_File with RO = &FF 

On exit: RO - R5 = as OS_File with RO = &FF 

This call loads a file into memory, using just the path name specified by Rl on entry 
to find the file. No prefixes of any kind are prepended to the pathname given. 

RO = & I I Read catalogue info of file using no path at all 

On entry: Rl =pointer to (wildcarded) pathname 

On exit: RO- R5 = as OS_File with RO = &05 



~~ILING SYSTEMS 

This call reads a file's catalogue information. No search path string is used. Only the 
pathname pointed to by Rl will be tried. 

RO = & 12 Set file t1f>e 

On entry: R1 = pointer to path name to set 
R2 "" file type (bits 0 - 11) 

On exit: -

This call sets the file type of the specified file. If the file is not already date/time
stamped, it is set to the current time. If the file already has a date stamp, this is 
unaltered. 

RO = &FF Load the named file into memory 

On entry: Rl = pointer to filename 
R2 .. load address of file (if R3b=O) 
R3 = load at own /load at given flag 

On exit: RO = 1 (object is a file) 
R 1 is preserved 
R2 = load address 
R3 = execution address 
R 4 = file length 
R5 = file attributes 

The named file is loaded into memory at a location determined by the contents of 
R3: 

- If the least significant byte of R3 is zero, the file is loaded into memory at the 
address specified in R2. 

- If the least significant byte of R3 is non-zero, the file is loaded into memory using 
the file's own load address. 

241 



242 

An error is given if the file does not exist, or is a directory, or does not have read 
access. 

OS_Find (&OD)- Open or close a file for byte access 

OS_Find opens and closes files. Opening a file declares a file requiring byte access to 
the filing system. Closing a file declares that byte access is complete. To use 
OS_Args, OS_BGet, OS_BPut or OS_GBPB with a file, it must first be opened. 
When used to open a file, OS_Find returns a 'handle', which is a unique identifier 
through which the file contents are made available to applications. This handle must 
always be passed to further OS calls in order to reference the file. 

This call indirects through FindV 

On entry: RO =action 
Rl =file handle to close (ifRO = 0) 
Rl =pointer to pathname (ifRO <> 0) 
R2 = pointer to path (optional, for open in and update) 

On exit: RO = file handle, or is preserved if RO=O on entry 

The particular action is determined by the top two bits of RO as follows: 

RO = &00 Indicates that an open file is to be closed 

IfRl is zero then all files which are currently open and associated with the current 
filing system are closed. 

If Rl is non-zero, it is taken to be a file handle. The corresponding open file is 
closed, after any modified data in RAM buffers has been written out (to the disc). 

RO not 0 Indicates that a file is to be opened 

Rl points to the location in memory containing the first character of the pathname. 



. ILING SYSTEMS 

RO = &4X ( 64+n) Indicates that a file is to be opened for input 

The pathname may contain wildcards. If the file does not exist, then a file handle of 
zero is returned in RO; V will be clear, so this is not an error. Otherwise the file is 
opened for reading only, and a unique file handle passed back to the caller in RO. 

The file is searched for using the contents of variable File$ Path. If this does not exist, 
a null path string is used (ie looks only in current directory). In fact, the default 
setting of File$ Path is the null string anyway. If you want to search the current 
directory, then you might use the library: 

*SET File$Path ,%. 

RO = &BX ( 128+n) Indicates that a file is to be created and opened for update 

If the named file already exists, it will be opened for update and its extent (and file 
pointer) set to zero. If the file does not exist, a new file is created, which is then 
opened. It is an error if the object is a directory, or is locked against deletion. The 
filename may not contain wildcards. 

RO = &CX ( 192+n) Indicates that a file is to be opened for update 

If the file does not exist, then a file handle of zero is returned in RO; this is not an 
error. Otherwise the file is opened for update, and a unique file handle passed back to 
the caller in RO. The filename obeys the same rules as OS_Find &40. 

The bottom four bits ofRO indicate how the file will be opened. The bottom two bits 
control where the file be looked for, ie which search path will be followed, as set out 
below: 

Bit 1 

0 
0 

BitO 

0 
l 
0 
1 

Meaning 

Use the contents of File$ Path as the search path 
Use the path string pointed to by R2 
Use the path variable whose name is pointed to by R2 
Use no path at all. 

243 



244 

If bit 2 is set, then an error is given if an attempt is made to open a directory. If it is 
clear, you can open a directory, but no operations can be performed on it. 

If bit 3 is set, then open for input and update calls will return an error if the file 
wasn't found (instead of a zero handle). This obviates the necessity of making 
explicit checks on the file handle. 

OS_GBPB (&OC)- Read/write a group of bytes from/to an open file 

OS_GBPB transfers a number of bytes to or from an open file. 

This call indirects through GBPBY. 

On entry: RO =action 
R 1 - R6 depend on RO 

On exit: RO is preserved 
Rl is preserved 
R2- R4 may be updated, depending on action 

The particular action ofOS_GBPB is determined by RO as follows: 

RO = 1 Write bytes to an open file using specified file pointe:r 

On entry: Rl =file handle 
R2 = start address of data in memory 
R3 = number of bytes to write to file 
R4 =sequential file pointer to use for start of block 

On exit: Rl is preserved 
RZ = memory address of byte after the last one written 
R3 = 0 
R4 = initial R4 + initial R3 =pointer to next byte in file 
C flag is clear 



. ILING SYSTEMS 

Data is transferred from memory to the file at the specified file pointer. If this is 
beyond the end of the file, the file is extended (with zeros) before the bytes are 
transferred. 

The memory pointer is incremented for each byte written, and the final value is 
returned in R2. The sequential pointer of the file is incremented for each byte 
written, and the final value is returned in R4. 

If the next read from the file produces an End of file error, this condition is 
cancelled, though EOF will still be true. The condition that a read from the file 
would produce an EOF error is referred to as EOF-error-on-next-read. 

An error is given if the file is a directory, or does not have write access. 

RO = 2 Write bytes to an open file using file pointer 

On entry: Rl = file handle 
R2 = memory address to take data from 
R3 = number of bytes to write to file 

On exit: Rl is preserved 
R2 = memory address of byte after the last one written 
R3 = 0 
R4 = original sequential pointer + initial R3 
C flag is clear 

Data is taken from memory and written to the file at the current sequential file 
pointer. The memory pointer is incremented for each byte written, and the final 
value is returned in R2. The sequential pointer is incremented for each byte written, 
and the final value is returned in R4. The EOF-error-on-next-read flag is cleared. 

An error is given if the file is a directory, or does not have write access. 

245 



246 

RO = 3 Read bytes from a specified position in a file 

On entry: Rl = file handle 
R2 = start address of data in memory 
R3 = number of bytes to read from file 
R4 = sequential file pointer to use for start of block 

On exit: Rl is preserved 

On entry: 

R2 = memory address of byte after the last one read 
R3 = number of bytes not read 
R4 =initial R4 plus number of bytes transferred 
C flag is clear if R3 =0, else set 

Data is transferred from the given file to memory using the specified file pointer and 
memory address. lf the file pointer is greater than the current file extent then no 
bytes are read, and the sequential file pointer is not updated. Otherwise the 
sequential file pointer is set to the specified file location. 

The memory address is incremented for each byte read, and the final value is 
returned in R2. The sequential pointer is incremented for each byte read, and the 
final value is returned in R4. The EOF-error-on-next-read flag is cleared. 

lfR3 is zero on exit (all the bytes were read), the carry flag will be clear, otherwise it 
is set. 

An error is given if the file is a directory, or does not have read access. 

RO = 4 Read bytes from the current position in the file 

Rl =file handle 
R2 = start address of data in memory 
R3 = number of bytes to read from file 



IIILING SYSTEMS 

On exit: Rl is preserved 
R2 = memory address of byte after the last one read 
R3 = number of bytes not read 
R4 = original sequential pointer plus number of bytes transferred 
C flag is clear if R3 =0, else set 

Data is transferred from the given file to memory using the current file pointer and 
the given memory address. The memory pointer is incremented for each byte read, 
and the final value is returned in RZ. The sequential pointer is incremented for each 
byte read, and the final value is returned in R4. The EOF-error-on-next·read flag is 
cleared. 

IfR3 is zero on exit \all the bytes were read), the carry flag will be clear, otherwise it 
is set. 

An error is given if the file is a directory, or does not have read access. 

RO = 5 Read name and boot (*OPT 4) option of disc 

On entry: R2 =start address of data in memory 

On exit: C flag is undefined 

This call obtains the name of the disc which contains the current directory, and its 
boot option. This data is returned in the area of memory pointed to by RZ, in the 
following format: 

<name length byte><disc name><boot option byte> 

RO = 6 Read current directory name and privilege lryte 

On entry: R2 =start address of data in memory 

On exit: C flag is undefined 

247 



248 

This call obtains the name of the currently selected directory, and privilege status in 
relation to that directory. This data is returned in the area of memory pointed to by 
R2, in the following format: 

<zero byte><name length byte><current directory name><privilege byte> 

The directory name may contain trailing spaces. 

The privilege byte is &00 if the user has 'owner' status (ie can create and delete 
objects in the directory) or &FF if the user has 'public' status (ie is prevented from 
creating and deleting objects in the directory). On ADFS the user always has owner 
status. 

RO = 7 Read library directory name and privilege byte 

On entry: R2 = start address of data in memory 

On exit: R2 is preserved 
C flag is undefined 

This call obtains the name of the library directory, and privilege status in relation to 
that directory. This data is returned in the area of memory pointed to by R2, in the 
following format: 

<zero byte><name length byte><library directory name><privilege byte> 

The directory name may contain trailing spaces. 

RO = 8 Read entries from the current directory 

On entry: R2 =start address of data in memory 
R3 = number of object names to read from directory 
R4 = start offset in directory 



On exit: R2 is preserved 
R3 = number of filenames not read 
R4 = next offset in directory 
C flag is clear if R3=0, else set 

~~ILING SYSTEMS 

R3 contains the number of filenames to read. R4 is the offset in the directory to start 
reading (ic if it is zero, the first item read will be the first file). Filenames are returned 
in the area of memory specified in R2. The format of the returned data is: 

length of first filename 
first filename in ASCII 

(one byte) 
(length as specified) 

... repeated as specified by R3 ... 

length of last filename 
last filename in ASCII 

(one byte) 
(length as specified) 

IfR3 is zero on exit, the carry flag will be cleared, otherwise it will be set. 

RO = 9 Read entries from specified directory 

On entry: Rl = pointer to directory name (null terminated) 
R2 = start address of data in memory 
R3 = number of objects to read 
R4 = offset of first item to read in directOry 
R5 = buffer length 
R6 =pointer to (wildcarded) name to match 

On exit: R3 = number of objects read 
R4 = offset of next item to read (-1 if finished) 
C flag is clear ifR3=0, else set 

This call reads the names of entries in a directory into an area of memory pointed tO 
by R2. If the directory name (which may contain wildcards) is null (ie Rl points tO a 
zero byte), then the currently-selected directory is read. 

249 



250 

The names which match the wildcard name pointed to by R6 are returned in the 
buffer as a list of null terminated strings, and R3 indicates how many were read. R4 
contains the value which should be used on the next call (to read more names), or-
1 if there are no more names after the ones read by this call. 

Note that even ifR3 returns with 0, the buffer area may still have been overwritten: 
it will contain filenames which did not match the wildcard name pointed to by R6. 

RO = 10 Read directory entries and information 

On entry: Rl = pointer to directory name (null terminated) 
R2 = start address of data in memory 
R3 = number of object names to read 
R4 = offset of first item to read in directory 
RS = buffer length 
R6 = pointer to ( wildcarded) name to match 

On exit: R3 = number of records read 
R4 =offset of next item to read (-1 iffinished) 
C flag is undefined 

This call reads the names of entries in the given directory into memory pointed to by 
R2. If the directory name is null, then the currently-selected directory is read. The 
names and information are returned in records, with the following format: 

Offset 

&00 
&04 
&08 
&OC 
&10 
&14 

Contents 

Load address 
Execution address 
Length 
Attributes 
Object type 
Object name (null terminated) 

Each record is word-aligned. For the meanings of the fields, see OS_File. 



. ILING SYSTEMS 

OS_BPut (&OB)- Write single byte to an open file 

OS_BPut writes the byte given in RO to the specified file at the current sequential 
file pointer. The sequential pointer is then incremented, and the EOF-error-on-next
read flag is cleared. 

This call indirects through BPutV. 

On entry: RO =byte to be written 
Rl = file handle 

On exit: 

An error is given if the file is a directory, is not open for update, or does not have 
write access. 

OS_BGet (&OA)- Read single byte from an open file 

OS_BGet returns the byte at the current sequential file pointer position. If the EOF
error-on-next-read flag is set on entry, then an End of file error is given. If the 
sequential pointer is equal to the file extent (ie trying to read at end-of-file) then the 
EOF-error-on-next read flag is set, and the call returns with the carry flag set, RO 
being undefined. Otherwise, the sequential file pointer is incremented and the call 
returns with the carry flag clear. 

This mechanism allows one attempt to read past the end of the file before an error is 
generated. Note that various other calls (such as OS_BPut) clear the EOF-error-on
next-read flag. 

This call indirects through BGetV. 

On entry: Rl = file handle 

On exit: RO = byte read if C clear, undefined if C set 

An error is given if the file is a directory, or does not have read access. 

251 



252 

OS_Args (&09)- Read or write arguments for an open file 

OS_Args reads or writes an open file's arguments or returns the filing system type in 
use. 

This call indirects though ArgsV. 

On entry: RO = action 
Rl = file handle or 0 
R2 = attribute to write or not used 

On exit: RO = filing system number or is preserved 
R 1 is preserved 
R2 = attribute that was read or preserved 

The particular action of OS_Args is specified by RO as follows: 

RO = 0 Read pointer!FS number 

Rl = 0 
Rl = file handle 

RO = I Write pointer 

Rl =file handle 

Return currently-selected filing system number in RO 
Return sequential pointer for file in R2 

Write sequential pointer for file from R2 

If the new sequential pointer is greater than the current extent, then more space is 
reserved for the file; this new space will be filled with zeros. Writing the sequential 
pointer clears the EOF-error-on-next-read flag for this file. 

RO = 2 Read extent 

Rl =file handle Return extent (ie length) of file in R2 

RO = 3 Write Extent 

Rl = file handle Write extent of file from R2 



~~ILING SYSTEMS 

If the new extent is greater than the current extent, then more space is to be 
reserved for the file; this new space will be filled with zeros. If the new extent is less 
than the current sequential pointer, then the sequential pointer will be set back to 
the new extent. Writing the extent clears the EOF-error-on-next-read flag for this 
file. 

RO = 4 Read allocated size 

Rl = file handle Return size allocated to file in R2 

The size allocated to a file will be at least as big as the current file extent; in many 
cases it will be larger. This call determines how many more bytes can be written to 
the file before the filing system has to allocate more space to the file. 

RO = 5 Read EOF status 

Rl = file handle Return end-of-file indication 

If the sequential pointer is equal to the extent of the given file, then an end-of-file 
indication is given, with R2 set to non-zero on exit. Otherwise R2 is set to zero on 
exit. 

RO = 6 ReseYVe spaa 

Rl = file handle Ensure file size of at least R2 bytes 

Th~> filing system is instructed to ensure that the size allocated for the given file is at 
least that requested. Note that this space thus allocated is not yet pan of the file, so 
the extent is unaltered, and no data is written. R2 on exit indicates how much space 
the filing system actually allocated. 

253 



254 

RO = &FF Ensure file/files 

Rl = 0 

Rl - file handle 

Ensure that any buffered data has been written to all files 
open on the current filing system 
Ensure that any buffered data has been written to the 
specified file 

OS_FSControl (&29)- Filing system control 

OS_FSControl controls the filing system manager and filing systems. This call 
indirects through FSCV and the particular action is determined by RO as follows: 

RO = 0 Set current cUrectory 

On entry: Rl "' pointer to wildcarded directory name 

On exit: 

This call sets the current directory to the one identified by the name given. If the 
name is null, the directory is set to the filing system default (typically the same as the 
user root directory). 

RO = I Set library directory 

On entry: Rl = pointer to wildcarded directory name 

On exit: 

This call sets the current library directory to the one identified by the name given. If 
the name is null, the library directory is set to the filing system default (typically 
$.Library, if present). 

RO = 2, 3 

These calls are reserved. 



. ILING SYSTEMS 

RO =4 Run file 

On entry: Rl =pointer to wildcarded filename 

On exit: 

This call runs a file, either as an absolute application (if not time/type stamped) or 
by using the corresponding Alias$@Run Type set up for the given file type, eg 
•EXECing command files (which will return), •RMRunning relocatable modules 
etc. 

Transient code modules (type &FFC) are loaded into the RMA and executed there. 
Transient calls are nestable; when a transient returns to the filing system manager 
the RMA space is freed. The RMA space is also freed (on the reset service or filing 
system manager death) if the transient execution stopped abnormally, egan 
exception occurred or RESET was pressed. 

See the chapter THE PROGRAM ENVIRONMENT for details on writing 
transient utilities. 

The file is searched for using the variable Run$ Path. If this does not exist, a path 
string of',%.' is used (ie looks first in current directory, then in the library directory). 

An error is given if the file does not exist, or is a directory, or does not have read 
access, or is a date/time stamped file without a corresponding alias set up for the 
given file type. 

RO = 5 Catalogue directory 

On entry: Rl =pointer to wildcarded directory name 

On exit: 

This call catalogues the directory identified by the name given. If the name is null, 
the current directory is catalogued. 

255 



256 

RO = 6 Examine current directory 

On entry: Rl =pointer to wildcarded directory name 

On exit: 

This call prints information on all the objects in the directory identified by the name 
given. If the name is null, the current directory is examined. 

RO = 7 Catalogue library directory 

On entry: Rl = pointer to wildcarded directory name 

On exit: 

This call catalogues the specified subdirectory relative to the current library 
directory. If the name is null, the current library directory is catalogued. 

RO = 8 Examine library directory 

On entry: Rl = pointer to wildcarded directory name 

On exit: 

This call prints information on all the objects in the specified subdirectory relative to 
the current library directory. If the name is null, the current library directory is 
examined. 

RO = 9 Examine object(s) 

On entry: Rl = pointer to wildcarded pathname 

On exit: 

This call prints information on all the objects matching the wildcarded pathname 
given, in the same format as for Examine directory. 



ILING SYSTEMS 

RO = I 0 Set filing system options 

On entry: Rl =option 

On exit: 

R2 = parameter 

This call sets filing system options. An option of 0 means reset all filing system 
options to their default values. See the *OPT command. 

RO = 11 Set filing system from named prefix 

On entry: Rl = pointer to string 

On exit: Rl points past the filing system specifier if present 
R2 = -1, no filing system was specified 
R3 = pointer to special field 0 or 0 

This call sets the filing system from a filing system prefuc at the start of the string if 
one is present. 

RO = I 2 Add flUng system 

This call is described in the section Writing your own filing system. 

RO = 13 Lookup fiUng system 

On entry: Rl = filing system number or name 
R2 = depends on Rl 

On exit: Rl =filing system number 
R2 = pointer to filing system control block or 0 if not found 

This call can be used to check for the presence of a filing system. IfRl is less than 
256 then it points to the filing system number; if, however, it is over 255 then it 
points to the filing system name. If R2 is 0, the filing system name is taken to be 

257 



258 

On entry: 

On exit: 

terminated with any control character or the characters:'#',':' or'-'. IfR2 is not 0, 
then the filing system name is terminated by any control character. 

RO = I4 FiUng system selection 

This call is described in the section Writing your own filing system. 

RO = I 5 Boot fiUng system 

This call is used by the operating system after IShiftiiBreakl. The call uses the currently
selected filing system. 

RO = I6 FiUng system removal 

This call is described in the section Writing your own filing system. 

RO = 17 Add secondary module 

This call is described in the section Writing your own filing system. 

RO = I 8 Decode file type into text 

On entry: R2 = file type 

On exit: R2, R3 = textual form offile in registers 

This call issues a look-up file type service(&42 or decirnal66). If the service is 
unclaimed, then it builds a default file type. For example if the file type is: 

TEXT 

the call returns: 



~~ILING SYSTEMS 

&TEXT 

The string is padded on the right to a maximum of 8. 

RO = 19 Restore current filing s,stem 

This call forces the temporary filing system to become the current one. 

On entry: 

On exit: 

R0=20 

This is reserved for operating system use. 

RO = 21 Returns filing system handle 

This call returns the filing system handle associated with the file manager handle. 

On entry: Rl =file handle 

On exit: Rl = filing system handle 

On entry: 

On exit: 

R2 = filing system information word 

If the file manager handle is invalid, then it returnS 0 as the filing system handle. 

RO = 22 Shut 

Closes all open files, after first ensuring that any unwritten data remaining in RAM 
is written to the filing system. You can either use this call or the command •SHUf, 
the effect is identical. 

259 



260 

On entry: 

On exit: 

RO = 23 Shuulown 

This call performs the actions of Shut as well as logging off all file servers and 
unmounting any ADFS discs. You can either use this call or the command 
•SHUTOOWN, the effect is identical. 

RO = 24 Set attributes of object(s) 

On entry: Rl = pointer to wildcarded pathname 
R2 = pointer to attribute string 

On exit: 

This call gives the requested access to all objects matching the wildcardcd name 
given. This call is used by the command • ACCESS. 

RO = 25 Rename object(s) 

On entry: Rl = pointer to first pathname 
R2 = pointer to second pathname 

On exit: 

This call renames an object. It is a 'simple' rename, implying that the source and 
destination are single files which must reside on the same physical device. This call is 
used by the command *RENAME. 



IIILING SYSTEMS 

RO = 26 Copy object(s) 

On entry: Rl = pointer to first wildcarded pathname 
R2 =pointer to second wildcarded pathname 
R3 = mask describing the action 

On exit: 

R4 =optional start time 
R6 = optional start time 
R 7 = optional end time 
R8 = optional end time 

This call copies an object, optionally recursing. The filing system manager performs 
the copy. 

The action mask contains 9 bits. These can be set in the following ways: 

Bit 8 If set, this allows printing during copy. Printing is otherwise disabled. 

Bit 7 If set, this deletes the source after copy. You can use this delete option 
to rename files across media. 

Bit 6 If set, this prompts the user to change media during the copy operation. 

Bit 5 If set, copy uses application workspace as well as the relocatable module 
area. This is, in fact, equivalent to the 'Q' option of the *COPY 
command. 

Bit 4 If set, maximum information is printed during copy. 

Bit 3 If set, this displays a Yes/No message prompting the user for each object 
to be copied. 

Bit 2 If set, this copies only files with a time/date stamp falling between the 
specified start and end time/date. Unstamped files will also be copied. 

261 



262 

Bit 1 If set, this automatically unlocks and overwrites the specified file. No 
warning message is given. 

Bit 0 If set, this allows recursive copying down directories. 

RO = 2 7 Wipe object( s) 

On entry: Rl =pointer to wildcarded pathname to delete 
R2 = not used 

On exit: 

R3 = mask describing the action 
R4 = optional start time 
R6 = optional stan time 
R 7 = optional end time 

This call is used to delete files. You can modify the effect of the call with the action 
mask in R3. The function of the 9 bits is as for the Copy object(s) call above. 

RO = 28 Count object( s) 

On entry: Rl = pointer to wildcarded pathname to count 
R2 =not used 
R3 = mask describing the action 
R4 = optional stan time 
R6 = optional stan time 
R 7 = optional end time 

On exit: R2 = total number of bytes of all files that were counted 
R3 = number of files counted 

You can use this call to obtain information on the number and size of files. You can 
modify the effect of the call with R3, the action mask. The 9 bits are described in the 
Copy object(s) call above. 



SYSTEMS 

RO = 29,30 

These calls are reserved for operating system use. 

THE ADVANCED DISC FlUNG SYSTEM 

The Advanced Disc Filing System (ADFS) is for use on both Winchester hard disc 
drives and 80 track double-sided floppy disc drives. On the floppy drives the 
following recording formats are available: 

Format 

L 
D 

Tracks 

80 
80 

Density 

Double 
Double 

Sectors/track Bytes/sector Storage 

16 
5 

256 
1024 

640 Kbytes 
800 Kbytes 

Using the L format you can create 4 7 entries in each directory. Top-bit-set 
characters arc not allowed in pathnames; using the D format, 77 entries may be 
created, and top-bit-set characters are allowed in pathnames. 

Files stored on ADFS are sequences of bytes which always begin at the start of a 
sector and extend for the number of sectors necessary to accommodate the data 
contained in the file. The last sector used to accommodate the file may have a 
number of unused bytes at the end of it. The last 'data' byte in the file is derived from 
the file length stored in the catalogue entry for the file, or if the file is open, from its 
extent. 

When ADFS is initialised on [QillRESET or power on, CMOS RAM is interrogated 
to find the values of configured information pertaining to ADFS. This comprises the 
following information: 

Dir/ NoDir 

This determines whether ADFS will access information from the configured drive on 
initialisation. If Dir is configured, then the root directory of the disc in the 
configured drive is made the currently selected directory. If a directory called 
$.Library exists on that disc, it is made the library directory, otherwise the library 
directory remains "Unset". The user root directory always starts "Unset". 

263 



264 

IfNoDir is configured, then the disc is not accessed, and all three main directories 
are made "Unset". 

To set this, type *CONFIGURE Dir or *CONFIGURE NoDir (CMOS default is 
NoDir) 

Drive <n> 

This is the drive that ADFS will use by default until overridden. To set this, type 
*CONFIGURE Drive 4 (or similar). (CMOS default is 0) 

Floppies <n> 

This informs ADFS how many floppy drives are connected to the system (minimum 
0, maximum 4) in order that references to invalid drives may be trapped and so that 
ADFS can search these drives for named discs. To set this, type *CONFIGURE 
Floppies 2 (or similar). (CMOS default is 1) 

HardDiscs <n> 

This informs ADFS how many Winchester drives are connected to the system 
(minimum 0, maximum 4). Note that if a Winchester drive is present, then the first 
Winchester drive is known as drive 4. To set this, type *CONFIGURE 
HardDiscs 1 (or similar). (CMOS default is 0) 

Srep <delay> [<drive>] 

This informs ADFS what step rates to use for the floppy drives. The delay is given in 
milliseconds, and the nearest value available on the current hardware will be used. 
Values supported by the built-in drives are 2, 3, 6 and 12ms. If the drive is given, 
only that drive's step will be configured, otherwise all of them will. 



. ILING SYSTEMS 

Entering the ADFS 

*ADFS 

Syntax: * ADFS 

This command selects ADFS as the current filing system. The currently-selected 
directory, library directory and user root directory all refer to those last used when 
ADFS was active. 

The user root directory 

The NetFS has the concept of a user root directory; this is the directory in which the 
user finds him or herself upon logging on to a fileserver. The ADFS also has the 
concept of a URD. It may set to any directory on any disc that the filing system 
knows about. 

URDs are useful, as they allow a 'home' directory on the disc in which all of your 
files (and directories) are kept. This is important if the disc is being shared with 
other people. If the URD is unset, the ADFS treats references to it (using&) as 
equivalent to$. You can set the URD using the *URD command. 

Disc specifiers 

Many of the commands described below allow discs to be specified. Generally, you 
can refer to a disc by its physical drive number (eg 0 for the built-in floppy), or by its 
name. This is set using *NAMEDISC. If the named disc is in a drive, it will be used. 
Otherwise a Disc not present error will be given. 

It is possible for machine code programs to trap Disc not present errors before 
they are issued. This allows the user to be prompted to insert the disc into the drive. 
See the section on upcalls for details. 

ln fact, disc names may be used in any pathname given to the system. When used in 
a pathname, the disc name (or number) must be prefixed by a colon. Examples of 
pathnames with disc specifiers are: 

265 



266 

*CAT :welcome.fonts 
*INFO :4.LIB*.* 

Note that :drive really means :drive.$. 

A note about changing discs. When you eject a floppy disc from the drive under the 
ADFS, the system still 'knows' about it. This means that if there are any directories 
set on that disc (the current directory, user root directory, or library), they will still 
be associated with it. Thus any attempt to load or run a file will result in a Disc 
not present error. 

However, this means that you can replace the disc and still use it, as if it had never 
been ejected. The same applies to open files on the disc; they remain open and 
associated with that disc until they are closed. 

You can cause the old directories to be overridden by *MOUNTing a new disc once 
it has been inserted. This resets the CSD etc. Alternatively, if you unset the 
directories (using *NODIR, *NOLIB and *NOURD), then the ADFS will use 
certain defaults when operations on these are required. 

If there is no current directory, the ADFS will use$ on the default drive. This is the 
configured default, or the one set by the last *DRIVE command. 

If there is no library set, then the ADFS will try &.Library, $.Library and then the 
current directory, in that order. 

If there is no user root directory set, then references to that directory will use $ on 
the default drive. 

ADFS intrinsic commands 

These commands are implemented directly by the ADFS, instead of through 
FileSwitch. They are only available when the ADFS is the current filing system. For 
example, if the NetFS is currently selected, you can access ADFS commands using 
the -ADFS- or ADFS: prefix: 



*-adfs-forrnat 0 1 
*ADFS:BACK 

. ILING SYSTEMS 

The ADFS has the concept of the default disc, which is used in some commands if 
an explicit disc reference is omitted. This default is the one on which the current 
directory (CSD} resides, if one is set, or is the disc in the default drive if not. 

Syntax: *BACK 

*BACK swaps the previously selected directory (PSD} and the currently selected 
directory. A common use is for switching between two frequently used directories. 
You can access the PSD in a pathname, without actually selecting it, by using as the 
first component. 

Syntax: *BACKUP <source drive> <destination drive> [Q] 

This command backs up the whole contents of a disc onto another one of identical 
size. If the source drive is the same as the destination, you will be prompted to swap 
the disc, as necessary. 

If you specify the Q option, the application work area is used as a buffer in the 
backup operation. This allows the backup to be completed with fewer disc accesses, 
but will corrupt the application program, and control will return to the supervisor (* 
prompt} when the backup is complete. 

Syntax: *BYE 

*BYE ends an ADFS session. It ensures that any currently open sequential files are 
closed, with any data remaining in the associated buffer written to the file(s}. In 
addition, *BYE moves the read/write heads to a 'transit position'. With a Winchester 
disc unit this operation is vital if the unit is to be moved, otherwise the heads or disc 

267 



268 

surface may be damaged. It is advisable to use it at the end of every session to 
prevent damage should the drive be knocked accidentally. 

•COMPACT 

S)'ntax: *COMPACf [<disc_spec>] [Q] 

This command reduces the number of entries in the disc's free space map by moving 
files around on the disc. The result is that there are fewer and larger areas of 
contiguous free space. This is imponant as files have to be stored contiguously on the 
ADFS. 

The drive may be specified as a name, eg peteDisc or : peteDisc, or as a drive 
number, eg 0 or : 0. If the drive is omitted, the default disc is used. 

If you specify the Q option, the application workspace will be used during the 
operation, making it faster. The command will then return to the supervisor prompt. 

*DISMOUNT 

Syntax: *DISMOUNT [<disc_spec>] 

*DISMOUNT closes all currently open sequential files on either the current or 
specified drive. In addition, if the current directory, library directory or user root 
directory is on the dismounted drive, it is unset. Any that are not on the dismounted 
drive remain intact. 

If the dismounted disc is not in a drive, it is forgotten about, so future references to it 
result in a Disc not found error. References to a mounted drive which is not 
present in a drive cause Disc not present errors. 

If no drive is specified, the default disc is used. A new disc may be made known to 
the system using *MOUNT or by setting the current directory by means of *DIR. 



ILING SYSTEMS 

Syntax: *DRIVE <drive> 

*DRIVE sets the drive number that ADFS will use if the currently-selected directory 
is (or becomes) unset. This is known as the default drive. 

*Syntax: *FORMAT <disc_spec> L I D 

*FORMAT prepares a floppy disc for use with ADFS. ADFS supportS two floppy 
formats called 'L' and 'D'. The 'L' format is the same as used on the BBC Master 
Compact ADFS which stores 640 KBytes per floppy, and the 'D' format is a new 
higher-density format which can store 800 KBytes. 

- Note: formatting a floppy destroys all data contained on the disc; locking a file is 
no protection against reformatting! However, you can prevent a floppy from 
being formatted by moving its write-protect slider to the open position. 

Syntax: *FREE (<disc_spec>) 

*FREE displays the total amount of free space left and the amount of space used on 
the given (or default) current disc. The format of the display is: 

Bytes free &HHHHHHHH - DDDDDDDD 
Bytes used &HHHHHHHH - DDDDDDDD 

Note that the values for the free space are totals and do not take the fragmentation 
of the free space into account (see *MAP). This means that although there might 
be, for example, 10240 free bytes on a disc, you can't save a file of that length, 
because the free space is split into several smaller areas. 

269 



270 

•MAP 

Syntax: *MAP (<drive>] 

*MAP displays a map of the distribution of the total amount of free space, in terms 
of start sector numbers and lengths as shown below. If the drive is omitted then the 
current drive is assumed. 

5tart, length) 

<aaaaaa>, <11111>) ( <aaaaaa>, <11111>) ... 

where: 

<aaaaaa> is the byte address of a free space 
<111111> is the length of the space in bytes 

Both numbers are shown in hexadecimal. 

The number of entries in the free space map displayed by *MAP is a good guide to 

the likely need for compaction. The message Compaction required is output if 
the number of entries in the free space map reaches 80 although it is recommended 
that a disc be compacted if the free space map contains more than 60 entries. 

Compaction required is also given if you try to save a file which will fit on the 
disc, but which cannot be saved because no one area of free space is large enough. 

•MOUNT 

Syntax: *MOUNT (<disc_spec>] 

*MOUNT initialises an ADFS disc, ie it reads the free space map and the root 
directory catalogue into memory and makes the specified drive current. If no disc 
specificiation is specified, *MOUNT remounts the current drive. 

If the library is unset, it is set to $.Library, if this exists. The user root directory is 
unset. 



. ILING SYSTEMS 

If a disc is uninitialised, *MOUNT is performed automatically when it is necessary in 
order to perform another operation. 

•NAMEDISC 

Syntax: *NAMEDISC <disc_spec> <disc name> 

*NAMEDISC renames the disc identified by either the drive number or its current 
name to the new name given. The disc name can contain between two and ten 
characters. 

You can also spell the command *NAMEDISK. 

*NODIR 

*NO LIB 

•NOURD 

These commands allow each of the three main directories to be 'unset'. They 
perform the opposite functions from the corresponding commands without the 'NO' 
prefix. 

*TITLE 

Syntax: *TITLE [<title string>) 

*TITLE enables the title string associated with each directory to be changed. By 
default (ie when it is created), a directory is untitled. The directory title has no 
significance to the filing system. 

<title string> is a sequence of characters which will be written to the title field of the 
current directory and which will subsequently be displayed for every *CAT 
command. 

271 



272 

The string is terminated by a control character and may contain spaces if required. 
The title stored in the directory is either truncated or space filled (at the right) to 19 
characters. 

Syntax: *URD [<[wildcarded]directory name>] 

If the name is given, *URD sets the user root directory to that name. If no name is 
given, the user root directory is set to$ on the current disc. The user root directory 
may be referenced in pathnames using &. 

•VERIFY 

Syntax: *VERIFY [<disc_spec>] 

*VERIFY checks that the nominated (or default) disc is readable without error. 

ADFS SWI calls 

This section lists the SWI calls which are provided by the ADFS module. These calls 
generally perform very low-level operations, and will not be of interest to the 
majority of users. 

ADFS_DiscOp (&40240) ~Perform a miscellaneous disc operation 

On entry: Rl =reason code 
R2 = disc address 
R3 = pointer to memory 
R4 = length in bytes 

On exit: RO = 0 if successful, else error pointer 
R 1 preserved 
R2 = address of next byte to be transferred 
R3 = pointer to next byte to be transferred 
R4 = number of bytes not transferred 
V = 1 if there was an error 



IIILING SYSTEMS 

The reason code is divided into several fields. Bits 0- 3 give the operation required. 
Bits 4 - 7 are flags. Bit 8 - 31 are zero if the format of the disc is to be identified by 
the filing system. Otherwise, they give the word address (ie the actual address DIY 4) 
of a 64-byte disc record described below. 

The disc address in R2 is also divided into fields. Bits 0 - 28 contain the byte address 
on the disc of the first byte to be accessed. This must be on a sector boundary for 
commands 0- 2, and a track boundary for the rest. In addition, it must take into 
account the defective sector list for Winchester drives. Bits 29-31 contain the drive 
number. This is 0- 3 for floppy drives and 4- 7 for Winchesters. 

You can calculate the disc address of the first byte given its head/sector/track number 
from this formula: 

addr = ((track*heads + head)*sectorsPerTrack +sector- x)*bytesPerSector 

Track, head and sector are all counted from zero. X is the adjustment factor for the 
defective sector list, and is the number of defective sectors before the required sector. 

Below is a list of the commands available, given by bits 0- 3 of Rl. 

Value Command Parameters used 

0 Verify R2,R4 
1 Read sectors Rl,R3,R4 
2 Write sectors R2, R3, R4 
3 Read track/id R2,R3 
4 Write track R2,R3 
5 Seek R2 
6 Restore R2 
7 Step in (floppy only) 
8 Step out (floppy only) 
15 Specify (hard only) R2 

Command 3 is read track for floppy drives, and read ID on hard discs. Note that only 
commands 0- 2 are guaranteed to remain the same for different versions of the 
hardware. The other calls should be used with caution. 

273 



274 

Bit 4 ofRl is usually 0. If it is set, then an alternative defect list for a hard disc 
transfer is to be used. This list follows the disc record, and may, therefore, only be 
used if a disc record is specified (bits 8 - 31 are non-zero). 

Bit 5 ofR1 is usually O.lf it is set, then the meaning ofR3 is altered. It does not 
point to the area of RAM to or from which the disc data is to be transferred. Instead, 
it points to a word-aligned list of memory address/length pairs. All but the last of 
these lengths must be a multiple of the sector siz.e. These word-pairs are used for the 
transfer until the total number of bytes given in R4 has been transferred. On exit, R3 
points to the first pair which wasn't fully used, and this pair is updated to reflect the 
new start address/bytes remaining. This bit may only be set for commands 0- 2. 

If bit 6 is set, then escape conditions are ignored during the operation, otherwise 
they cause it to be aborted. 

If bit 7 is set, then the usual time-out for floppy discs of 1 second is not used. Instead, 
the ADFS will wait (forever if necessary) for the drive to become ready. 

The disc record pointed to by bits 8-31 (if non-zero) has the following format: 

Byte 

0 
1 
2 
3 

4 - 15 

16 - 19 

20-63 

64 ... 

Contents 

Log2 of the sector size 
Number of sectors per track 
Number of heads ( 1 for L format, 2 for D format discs) 
1/2/4 for single/double/quad density 

Zeros - these are reserved 

Disc size in bytes 

Zeros - these are reserved 

Alternative defect list, if supplied 

A defect list is a list of words. Each word contains the disc address of the first byte of 
a sector which has a defect. This address is an absolute one, and does not take into 



. ILING SYSTEMS 

account preceding defective sectors. The list is terminated by a word whose value is 
&200000XX. The byte XX is a check-byte calculated from the previous words. 
Assuming this word is initially set to &20000000, it can be correctly updated using 
this routine: 

;R2 points to defect list 
MOV R1, to ;Init check 

.loop LOR R2, (RO], 14 ;Get next word 

CMP R2, t&20000000 ;Last o ne? 

EORCC R1, R2, R1, ROR t13 ;No, so accumulate check 

BCC loop ;Again 

EOR R1, Rl, R1, LSR U6 ;EOR high and low 16-bit words 

EOR Rl, R1, Rl, LSR 48 ;EOR high and low bytes 

AND R1, R1, t&FF ;Mask out bits 24-31 

ORR R2, R2, R1 ;Merge check byte 

STR R2, (RO, t-4] ;Save it back 

Winchester discs contain a &200-byte 'boot block', which contains important 
information. This occupies sectors &OC and &OD on the disc, and has the following 
format: 

Offset 

&000-&lAF 
&lBO-&lBF 
&lCO-&lFF 

Contents 

Defective sector list 
Hardware parameters 
Disc record (see above) 

275 



276 

For the HD63463 controller, the hardware parameters have the following contents: 

&100-&182 
&183 
&184 
&IB5 
&1B6 
&187 
&188-&189 
&18A-&188 
&1BC-&18F 

Unused 
Step pulse low 
Gap2 
Gap3 
Step pulse high 
Gap 1 
Low current cylinder 
Pre-compensation cylinder 
Unadjusted parking disc address 

The 'specify disc' command (&OF) sets up the defective sector list, hardware 
information and disc description from the disc record supplied. Note that in memory, 
this information would be stored in the order disc record, then defect list/hardware 
parameters. 

ADFS_HDC (&40241)- Set address of hard disc controller etc. 

On entry: RO =address of HOC 
Rl = address of poll location for IRQ/DRQ 
R2 = bits for IRQ/DRQ 
R3 = address to enable IRQ/DRQ 
R4 =bits to enable IRQ/DRQ 

On exit: -

This call (ADFS 0.04 and above only) sets up the address of the hard disc controller 
to be used by the ADFS. It can supply an alternative controller to the one normally 
used on a podule. 



ILING SYSTEMS 

ADFS_Drivcs (&40242)- Read drive configuration 

On entry: 

On exit: RO =current drive 
Rl =*CONFIGURE Floppies value 
R2 = *CONFIGURE HardDiscs value 

ADFS_FreeSpace (&40243)- Read free space 

On entry: RO =pointer to disc/drive name 

On exit: RO = total free space on disc 
Rl = largest single area of free space 

ADFS error messages 

Errors generated by the ADFS have error numbers in the range &90- &FF. This is 
given in the bottom byte of the error number (as returned by BASIC's ERR function, 
for example). The upper three bytes have the value &00010800, this being the code 
for ADFS errors. You should mask these bytes out when checking against the error 
numbers given below. 

The following errors may be returned by the Advanced Disc Filing System: 

Access violation- Error &BD (189) 

This error is given when you try to read a file which doesn't have read access, or 
write a file which doesn't have write access. 

ADFS in use- Error &AO (160) 

This error is given when an attempt is made to call the ADFS when that, or another, 
ADFS routine is already being used. It can occur, for example, if RESET was pressed 
during an ADFS operation, preventing it from completing properly. It can be cured 
by performing a hard reset. 

277 



278 

ADFS Workspace corrupt- Error &A6 (166) 

This error occurs if the ADFS finds that its workspace has been corrupted, for 
example by a program overwriting the wrong addresses. Perform a hard reset to 
correct the problem. 

Already exists- Error &C4 (196) 

This is given when the destination of a *RENAME already exists, and the force 
option wasn't specified. 

Ambiguous disc name- Error &9E (158) 

This is given when a wildcarded disc name matches more than one disc that the 
ADFS currently knows about. 

Bad command- Error &FE (254) 

This is a FileSwitch error. It is given when an attempt is made to load and run a file, 
whose name has been given as a * command, and the file does not exist, or is a 
directory. 

Bad disc- Error &9A (154) 

This is given when an attempt is made to use a disc which is not in ADFS furmat. 

Bad drive- Error &AC (1 72) 

This is given if you specify a drive number which is too big for the number of 
configured floppies or Winchester drives, cg :1 on a single floppy system. 

Bad free space map- Error &A9 (169) 

This is a 'fatal' error indicating either a corruption in RAM (which may normally be 
cleared by a hard break) or corruption of sectors 0 and 1 on the current disc. 



ILING SYSTEMS 

Bad (file) name - Error &CC (204) 

This indicates that a filename component longer than ten characters or containing 
illegal characters was detected in a filename. 

Broken directory- Error &AS ( 168) 

This indicates that the filing system has detected corruption in the format of a 
directory on the disc. The implication is that either memory has been corrupted or 
the disc is in an inconsistent state and should be reformatted if possible. 

Can't delete current directory- Error &96 (150) 

This indicates an attempt to delete the current directory. 

Can't delete library- Error &97 ( 151) 

This indicates an attempt to delete the current library directory. 

Can't delete user root directory- Error &A2 ( 162) 

This indicates an attempt to delete the current user root directory. 

Channel on FileSwitch handle nn - Error &DE (222) 

This is a FileSwitch error which is produced when a file handle has been specified 
which does not correspond to an open file. There is an ADFS version of the error, 
simply Channel, but this should never occur. 

Compaction required- Error &98 (152) 

This indicates that the free space on the disc has become too fragmented, ie there 
are 80 entries in the free space map, or there is not enough contiguous space to 
perform an operation, but enough total space. The disc must be compacted using 
*COMPACT. 

279 



280 

Directory full - Error &B3 ( 179) 

This message indicates an attempt to create a new entry in a directory which already 
contains 4 7 (L) or 77 (D) entries. 

Directory not empty- Error &B4 (180) 

This message indicates an attempt to delete a directory which still contains objects. 

Disc error <nn> at :<d>/<ss>- Error &C7 ( 199) 

This message indicates that the disc controller detected a fault during the last 
operation: 

<nn> is the fault number (in hexadecimal) 
<d> is the drive number 
<ss> is the sector number <in hexadecimal> 

The value <nn> is also given in bits 24-29 of the error number. 

Disc full- Error &C6 (198) 

This message indicates that there is insufficient free space on the disc to allow 
completion of the current operation. 

Disc not found- Error &D4 (212) 

This is given when a specified disc name is not known to the system, ie has never 
been mounted, or has been dismounted since it was used. 

Disc not present- Error &D5 (213) 

This error is given when an attempt is made to access a disc which is not in any of 
the drives, although it has been mounted. 



ILING SYSTEMS 

Drive empty - Error &D3 (211) 

This is given when the ADFS attempts to read a disc (for example to read in a 
directory), but there is nothing in the drive. 

File' . .' not found- Error &D6 (214) 

This is the FileSwitch version of the Not found error; see below. 

File open - Error &C2 ( 194) 

This error occurs if an attempt is made to open, delete or overwrite a file which is 
already open. *CLOSE or *SHUT may be used to close the file if necessary. 

Free space map full- Error &99 (153) 

This message indicates that, although there may be free space on the disc, there is no 
more space available to extend the free space map. The disc must be compacted. 

Illegal use of"- Error &9C (156) 

Self-explanatory. 

' . .' is a directory - Error &AS (168) 

This is given when an attempt is made to perform a byte access operation on a 
directory. For example, *TYPEing a directory would cause this. It is given by 
FileSwitch, rather than ADFS. 

Locked- Error &C3 (195) 

This message indicates an attempt to delete, overwrite or rename a file for which the 
'L' attribute is set. 

281 



282 

Not found- Error &D6 (214) 

This error occurs when a file specified, for example as the source file in a 
*RENAME, is not found. FileSwitch also generates a similar error. 

Not same disc- Error &9F (159) 

This is given when you try to rename a file across discs. The new and old name must 
be on the same disc. 

Protected disc- Error &C9 (201) 

This message indicates an attempt to write to a (floppy) disc which is protected by 
means of a write protect tab. 

Sizes don't match - Error &AD ( 17 3) 

Same disc- Error &AE (174) 

These both refer to errors during a *BACKUP command. Both discs must be of the 
same format (both L or both D). The second error occurs when, on a single drive 
backup, you attempt to backup a disc onto itself. 

Too many discs- Error &9B (155) 

This error is given when an attempt is made to use a new disc when there are already 
eight discs known to the system which can't be 'forgotten' (because they have 
current directories or files open on them). 

Too many open files- Error &CO (192) 

This error is given when the ADFS cannot allocate enough space to open a file. It is 
more likely that the FileSwitch limit of 24 files will be exceeded before this happens. 
FileSwitch gives the same error message and number, except that the top bytes are 
zero. 



. ILING SYSTEMS 

Types don't match- Error &C4 (196) 

This error occurs when you try to perform an operation on a directory which only 
applies to files, or vice versa. 

Wild cards- Error &FD (253) 

This message indicates the illegal use of the wildcard characters in parameters to 
commands which require explicit references. 

THE NETWORK FILING SYSTEM 

The Econet is a system which enables several types of computer (including the 
Archimedes series) to communicate over a low-cost network. File operations are 
performed on remote 'file server' machines. The NetFS communicates with the file 
server on the user's behalf. All of the generic filing system commands already 
described are available to a NetFS user. In addition, the commands listed below are 
specific to the NetFS. 

NetFS intrinsic commands 

These commands may only be used when NetFS is the currently-selected filing 
system, or by prefixing them with -net- or net: when some other filing system is 
current. 

For example: 

nettOZ: 
nett42.253 

Syntax: *BYE [[:]<file server>] 

*BYE sends a logoff command to the nominated (or currently-selected) file server. 
You must have already logged on to the nominated file server. Your context (current 
directory, user root directory and library) on that file server is invalidated. All files 

283 



284 

belonging to that file server are flushed to the disc and closed and all handles 
associated with those files are invalidated. 

Syntax: *FREE [<user name>] 

*FREE displays your free space currently remaining as well as the total free space for 
the disc(s) on the currently-selected file server. If an argument is supplied, the free 
space for the user of that name will be printed out instead. 

*FS 

Syntax: *FS [[:)<file server>) 

*FS changes your currently-selected file server, restoring your previous context. If no 
argument is supplied your current file server name and number are printed out, 
followed by any non-current contexts. This allows you to be logged on to two or 
more file servers at one time and to change between them. Any open files will be 
ensured to the current file server before the number is changed. If the argument is a 
named file server, it must already have been logged onto. 

*LOGON 

Syntax: *LOGON ((:)<file server>] <user name>[: [;l]] [<password>] 

*LOGON sends a logon command to the nominated (or currently-selected) file 
server, which validates the supplied user name and password against those known. If 
this succeeds, the file server returns the context appropriate for the user who is 
logging in. A':' followed by g may be used in the middle of the command in order 
to hide user name or passwords. See *PASS. 

*I AM may be used as an alternative to *LOGON. The former also selects NetFS as 
the current filing system. 



. !LING SYSTEMS 

Syntax: *MOUNT [[:]<disc name>] 

*MOUNT reselects your user root, current directory and library directory on the 
named (or current) disc. 

•PASS 

Syntax: *PASS[: (d] <old password> <new password> 

*PASS allows you to change your password on the currently-selected file server. A':' 
followed by (d may be used in the middle of the command to hide the password. It 
should be noted that although the':' may appear anywhere in the line it would be 
most useful to have it before both the the old and new passwords. Whilst the 
'invisible' part is being ryped !QillU deletes the entire 'invisible' part and !Delete I 
deletes the last character. 

Naming 

As well as being able to supply a filing system name as part of a file name, such as 
'Net:&.Fred' it is possible to supply, as part of the filing system name the name or 
number of a file server, for example 'Net#253 :&.Fred' or 'Net#Maths:Program'. This 
will cause the file to be found (or saved, or whatever) on the given file server. If a 
name is quoted, that file server must currently be logged on to. If a number is given 
then the resulting file server must be logged on to, if only part of the number is given 
then it will be defaulted against the current file server number. 

CONFIGURATION COMMANDS 

*CONFIGURE FS 

This command is used to change the value stored in the configuration memory 
controlling which file server determines which file is to be the default when the 
machine is turned on. This value can be either a name of up to sixteen characters or 
a full network address. 

285 



INTERFACES 

286 

•STATUSFS 

This shows the current stored configuration of the file server; it will be either a 
number or a name. If it is a name then it will be printed between double quotation 
marks. 

•CONFIGURE LIB 

The state stored in the 'Lib' configuration is used at logon time to decide whether 
the default library found by the file server is to be used or the alternate library 
'$ .ArthurLib' is to be searched for and used if it exists. Setting this value to 0 uses the 
default, setting it to 1 uses '$.ArthurLib'. The search order for the alternate library is 
the same as the normal search order for a library, ie the lowest physical disc first. 

•STATUS LIB 

The status stored in the 'Lib' configuration is displayed as either <default> or 
ArthurLib, in single quotation marks. 

There are three ways to interface with the NetFS: through the fil ing system, through 
star commands, and by SWI calls. These SWI calls are listed below. 

SWI NctFS_ReadFSNumber 

RO <= Station 
Rl <= Net 

SWI NctFS_SctFSNumber 

RO => Station 
Rl =>Net 



SWI NetFS_ReadFSName 

Rl => Buffer 
R2 •> Size of the buffer 
RO <=Buffer 
Rl <=Updated buffer 
R2 <= Updated size of the buffer 

SWI NetFS_SetFSName 

RO "">Buffer address 

SWI NetFS_ReadCurrentContext 

RO <= User root directory 
Rl <= Currently selected directory 
R2 <= Currently selected library 

SWI NetFS_SetCurrentContext 

RO •> User root directory 
Rl • > Currently selected directory 
Rl => Currently selected library 

SWI NetFS_ReadFSTimeouts 

RO <= Transmit count 
Rl <=Transmit delay 
R2 <= Machine peek count 
R3 <= Machine peek delay 
R4 <= Receive delay 
R5 <= Broadcast delay 

IIILING SYSTEMS 

287 



288 

SWI NetFS_SetFSTimcouts 

RO .. >Transmit count 
Rl =>Transmit delay 
R2 .. >Machine peek count 
R3 • > Machine peek delay 
R4 - >Receive delay 
R5 => Broadcast delay 

SWI NetFS_DoFSOp 

RO • > Function 
Rl • > Buffer address 
R2 • > Send size 
R3 =>Receive sire 
RO <• Command code 
R3 < = Received size 

Note that this interface enables interrupts and so cannot b.~ called from within 
interupt service code. 

Conventions and values 

- Station numbers and network numbers are as per Econet. 

- Delays are in centi-seconds, and repeat counts are cardinals. 

The DoFSOp SWI is for calling the file server. An example is given below. 

ReadFileServerVersion 
MOV rO, 125 

ADR rl, Buffer 
MOV r2, 0 

MOV r3, t(?Buffer 
SWI XNetFS_DoFSOp 
BVS Error 
MOV rO, to 

- 1) 

Command 

Nothi ng to send 
Lots to receive 

Terminate string returned 



STRB rO, [ rl, r3 
MOV rO, rl 
SWI xos WriteO 
BVS Error 

PrintStationNumberOfUser 
ADR rl, Buffer 
MOV r2, tO 

I,oop LDRB r3, [ rO ) , il 
CMP r3, i" " 
MOVLT r3, t13 
STRB r3, [ rl, r2 
ADD r2, r2, il 
BGT Loop 
MOV rO, i24 
MOV r3, i?Buffer 
SWI XNetFS_DoFSOp 
BVS Error 
LDRB r3, [ rl, il ) 
LDRB r4, [ rl, f2 ] 
STMFD r13!, { r3, r4} 
MOV rO, r13 
MOV r2, t?Buffer 
SWI XOS ConvertNetStation 
ADD r13, r13, ta 
SWIVC XOS WriteO 
SWIVC XOS NewLine 
BVS Error 

Implementation limits 

. ILING SYSTEMS 

One byte past the return size 

Print it 

User name pointed to by RO 

Initial value of index 

Check for termination 
Translate to what the FS wants 
Copy into transmit buffer 
Update index, and size to send 

Command 

Pickup station number 
Pickup network number 
Deposit in stack frame 
Pointer to value for conversion 
Destination size 

Dispose stack frame 
Display output 

There is no machine peek prior to logon so these timeouts are ignored. 

There is no mechanism for manipulating context, so the SWis 
NetFS_ReadCurrentContext and NetFS_SetCurrentContext are not implemented. 

289 



NETPRINT, THE NETWORK PRINTING SYSTEM 

290 

Naming 

The network printing system is actually a filing system, and as such it can be used by 
giving it's name as part of a file name, for example: 

*save Netprint:fred 

although with currem implementations the file name is ignored and the 'NetPrint:' 
part is used to send the data to the network printer. As well as save operations the 
NetPrint filing system is also capable of opening files and taking data. This means 
that the operating system can spool to NetPrint:. 

Whenever a file is opened or saved onto NetPrint: the current printer server is used. 
This printer server can be set using a star command, as well as be defaulted from a 
stored configuration. This default can also be overridden by supplying the printer 
server number, or name, as part of the file name. For example: 

NetPrinti234:. 

This example would then send the print to the printer server at station 234. As usual 
a full network number can be specified. For example: 

Netprintf2.235: 

Also since printer servers can be named, you can supply the printer name, rather 
than the number. For example: 

NetPrintiEpson: 

NetPrintiDaisy: 

The NetPrint filing system supports the OS_File operation Save and the OS_Find 
operation OpenOut as well as OS_BPut and OS_GBPB writes (but not backwards). 



I ILING SYSTEMS 

Star commands 

The PS command takes a single argument, either a name or a network address, and 
this is then the current printer server number. If a name is given then the name is 
'looked up' immediately and the current printer server is set to the number of the 
first named printer of that name to reply. If the lookup fails the number will not 
change. 

*SetPS 

The PS command takes a single argument, either a name or a network address, and 
this is then the current printer server name or number. If a name is given then the 
name is stored as the current printer server. Only when the file is actually saved or 
opened is the name 'looked up' and bound to a number. 

Configuration demands 

•Configure PS 

This is used to change the value stored in the configuration memory, ie printer is to 
be the default when the machine is turned on. This value can be either a name of up 
to six characters or a full network address. 

•Status PS 

This shows the current stored configuration of the printer server. It will be either a 
number or a name. If it is a name then it will be printed between double quotation 
marks. 

Linking NetPrint to *FX 5 4 and VDU 2 

There are system variables that connect the VDU print streams to files; an example 
of this is the default value set up by NetPrint upon it's initialisation. This is 
PrinterType$4 and it's value is NetPrint:. This value could be changed to indicate a 
particular printer: 

291 



NTERFACES 

292 

NetPrintfEpson: 

and another variable set up tO contain a different value: 

PrinterType$3 - NetPrintl2.235 

so that swapping between printers is done with an FX call eg *FX 54 or *FX 53. 

There are three ways to interface with the NetPrint: through the filing system, star 
commands or by SWI calls. These SWI calls are listed below. 

SWI NetPrint_ReadPSNumber 

RO < = station 
Rl <=net 

SWI NctPrint_SctPSNumber 

RO =>station 
Rl =>net 

SWI NetPrint_ReadPSName 

Rl =>buffer 
R2 => size of buffer 
RO <=buffer 
Rl <= updated buffer 
R2 <= updated size of buffer 

SWI NetPrint_SetPSName 

RO => buffer address 



SWI NetPrint_ReadPSTimeouts 

RO <= transmit count 
Rl <= transmit delay 
R2 <= machine peek count 
R3 <"' machine peek delay 
R4 <- receive delay 
R5 <= broadcast delay 

SWI NctPrint_SetPSTimeouts 

RO => transmit count 
Rl => transmit delay 
R2 => machine peek count 
R3 =>machine peek delay 
R4 =>receive delay 
R5 "'> broadcast delay 

Conventions and values 

Station numbers and network numbers are as per Econet. 

Delays are in centi-seconds, and repeat counts are cardinals. 

Implementation lim:ts 

G SYSTEMS 

There is no machine peek prior to connect, so these timeouts are ignored. 

WRITING YOUR OWN FILING SYSTEM 

Relocatable modules, which are described in more detail later in this manual, can be 
used to provide operating system extensions, including filing systems. Both the 
Advanced Disc Filing System and Net Filing System are implemented as modules. 
This section describes the low level calls which are used by the filing system manager 
(FileSwitch) and which have to be implemented by anyone wishing to write his or 
her own filing system. Before using this information, you need to be familiar with the 
assembler and use of modules which are described in the following chapters. 

293 



294 

Declaring, selecting and removing an FS 

OS_FSControl &29 (41)- Filing system control 

This SWI performs the fundamental operations of declaring a module to be a filing 
system and selecting or deselecting it. The reason codes to do these are as follows: 

RO = &OC (12) Add filing system 

On entry: R1 =pointer to module base address 
R2 = offset of the filing system information block 
R3 = private word pointer 

On exit: V set on error 

This should be called from the initialisation code of your relocatable module to 
inform the operating system that your module contains a filing system. 

The filing system information block, pointed to by R1 + R2 contains the following: 

Offset Contains 

&00 Offset of filing system name (null terminated) 
&04 Offset of filing system startup text (null terminated) 
&08 Offset of routine to open files (FSEntty_Open) 

&OC Offset of routine to get bytes from media (FSEntty _ GetBytes) 

&10 Offset of routine to put bytes to media (FSEntty _putBytes) 

&14 Offset of routine to control open files (FSEntty_Args) 

&18 Offset of routine to close open files FSEntry_Close) 



. ILING SYSTEMS 

&lC 
&20 
&24 

&28 

Offset of routine to do file operations 
Word of filing system type information 
Offset of routine to do various FS operations 

Offset of routine to do multi-byte opertions 

(FSEntry_File} 

(FSEntry_Func} 

(FSEntry_GBPB) 

The GBPB entry (&28} is only required if the filing system supports non buffered l/0 
(eg the vdu: device uses this). 

The information word (&10} tells the filing system manager various things about the 
filing system: 

Bit Meaning if set 

31 Special fields are supported 
30 Streams are interactive 
29 Filing system supports null length filenames 

Special fields stan with#. They start at the end of the filing system name and end 
with the character which marks the end of the name. For example, a NetFS 
pathname might be: 

-nett1.254-discl.fred 

or 

neti40.::discl.jim 

The special field here is 1.254, and gives the network and station number of the 
fileserver to use. Special fields are passed to the filing system as null-terminated 
strings, with the'#' and':' stripped off. If no special field is specified in a pathname, 
the appropriate register in the FS routine is set to zero. See below for details of which 
calls may take special fields. 

In addition, bits 0- 7 contain the filing system identification number. Currently 
used ones are: 

295 



296 

,. 
' (J ) 

~<c( S 
~ \C 

File system Number \! ( s 
NetFS 5 ~ 

ADFS 8 ' 
VFS 10 
NetPrint 12 
Null 13 
Printer 14 
Serial 15 
Vdu 17 
RawVdu 18 
Kbd 19 4 ~ 

• 
RawKbd 20 1 .; t l 

DeskFS ~ 01 
,\. ~ 

21 \~ 

For an allocation, contact Acorn Computers in writing. 

The private word pointer passed to the SWI in R3 is the value which will be passed 
in R12 on entry to any of your filing system entry points or filing system star 
command code entries. 

RO = &OE (I 4) Filing system selection 

On entry: R1 =pointer to filing system name, or FS number 

On exit: V set on error 

If R1 is< &100 it is taken to be a number. Otherwise, it is assumed to be a pointer to 
a control character-terminated name. To be able to select a filing system as the 
current filing system, one of your module's star command handlers must use this call 
in response to a suitable utility star command, such as • ADFS or •NET. 

Possible errors are Filing system 'xxx' not present and Bad filing 
system name. 



. ILING SYSTEMS 

RO = & 10 ( 16) Filing system removal 

On entry: Rl = pointer to filing system name 

On exit: 

This call removes the filing system from the list held by the filing system manager. 
You may wish to use it in the finalise entry of your module. 

Modules should not complain about errors in filing system removal. Otherwise, it 
will not be possible to reinitialise the module after reinitialising the filing system 
manager. 

Filing system interface calling conventions 

Routines called by the filing system manager are always entered in supervisor mode. 
This enables them to access hardware devices directly and to set up FIQ registers as 
necessary. 

R13 in supervisor mode is used as the system stack. This may be used by the filing 
system. It is only guaranteed to be 1024 bytes deep. When the filing system is 
entered, take care not to push too much onto it. The stack base is on a lMbyte 
boundary. Hence, to determine how much stack space there is left for your use, use 
the following code: 

MOV 

SUB 
RO, Rl3, LSR 120 

RO, Rl3, RO, LSL 120 

;Get Mbyte value of SP 

;Sub it from actual value 

You may move the stack pointer downwards by a given amount and use that amount 
of memory as temporary workspace. However, interrupt processes are allowed to use 
the supervisor stack so you must leave enough room for these to operate. Similarly, if 
you call any operating system routines, you must give them enough stack space. 

R12 on entry to the filing system is set to the value ofR3 passed to the filing system 
manager in the SWI OS_FSControl call to initialise the filing system. 
Conventionally, this is used as a pointer to your private word. In this case, module 
entries should contain the following: 

297 



298 

LOR Rl2, [Rl2] 

to load the actual address into the register. 

Filing system routines do not need to preserve any registers other than Rl3. 

If a routine wishes to return an error, it should return ro the filing system manager 
with V set and RO pointing to a standard format error block. 

RO = 17 Add secondary module 

On entry: Rl = filing system name 
R2 = secondary system name 
R3 = secondary module workspace pointer 

This call enables you to locate and search another module. 

The filing system interface calls 

FSEntry_Open 

On entry: RO = what file is being opened for 
Rl .. pointer to filename (null terminated) 
R3 = handle to this file 
R6 = pointer to special field if present, otherwise 0 

On exit: RO = information word 
Rl = handle returned by filing system (0 if not found) 
R2 = buffer size to use (0 if file unbuffered) 
R3 =file extent (buffered files only) 
R4 = space currently allocated to file (buffered files) 

This call is used to open a file for read or write, and can create it if necessary. The 
value given in RO has the following meaning: 



Value 

0 
1 
2 

Meaning 

Open for read 
Create and open for update 
Open for update 

. ILING SYSTEMS 

The pointer to the filename is passed in R1. If the file is being created and opened 
for update (R 1 = 1), then this filename may not be wildcarded. 

On entry, R3 contains the FileSwitch handle for the file, which is a small integer 
(typically in the range 1- 24). The filing system may want to make a note of it when 
the file is opened, in case it needs to refer to files by their FileSwitch handles (eg files 
are automatically closed on a •DISMOUNT). It is the FileSwitch handle that the 
user sees. 

The filing system manager treats any 32-bit handle (except 0 and - 1) which is 
returned by the filing system as being valid. It uses this handle for any further calls to 
the filing system regarding this particular file. A handle of zero means that no file is 
open; a handle of -1 is used to indicate 'unset' directory contexts (see 
FSEntry _Func). 

If the object is a directory, it may only be opened for reading. However, bytes will 
not be requested from it. The use of this is for compatibility with exisiting programs 
which use this as a method of testing the existence of an object. This is also used to 
open new directory contexts which may be written via FSEntry_Func. 

The information word returned in RO contains the following bits: 

Bit Meaning if set 

31 Write permitted to this file 
30 Read permitted from this file 
29 Object is a directory 
28 Unbuffered OS_GBPB supported (streams-type devices only) 
27 Stream is interactive 

299 



300 

FSEntry_GetBytcs 

This call is used to get a single byte or a group of bytes from an open file. There are 
two distinct cases to consider, depending on whether the file was opened as buffered 
or unbuffered: 

Get bytes from a buffered file 

On entry: Rl =file handle 

On exit: 

R2 = memory address to put data 
R3 = number of bytes to read 
R4 = file offset to get data from 

This call reads a number of bytes (which must be a multiple of the buffer size for this 
file) and places them in memory. The file offset from which to read data should also 
start at a multiple of the buffer size for this file. 

Get byte from an unbuffered file 

On entry: Rl = file handle 

On exit: RO = byte read, C clear 
RO = undefined, C set if attempting to read at end of file 

This call is used to get a single byte from an unbuffered file from the position given 
by the file's sequential pointer. The pointer must be incremented by one, unless the 
end of the file has been reached. 

FSEntry_putBytes 

This call is used to put a single byte or group of bytes to a file. Again, there are two 
distinct cases to consider: 



. ILING SYSTEMS 

Put bytes to a buffered file 

On entry: Rl = file handle 
R2 = memory address to take data from 
R3 = number of bytes to put to file 
R4 = file offset to put data to 

On exit: -

This call is used to take a number of bytes, which will be a multiple of the buffer size 
for this file, and place them in the file at the specified file offset. The offset at which 
to put the data will also stan at a multiple of the buffer size for this file. 

Put byte to an unbuffered file 

On entry: RO =byte to put to file (top 24 hies zero) 
Rl =file handle 

On exit: 

This call is used to put a single byte to an unbuffered file at the position given by the 
file's sequential file pointer. The sequential file pointer must be advanced by one. 

FSEntry _Args 

Various calls are made through this entry point to deal with controlling open files. 
The actions are specified by RO as follows: 

RO = 0 Read sequential file pointer 

On entry: Rl = file handle 

On exit: R2 = sequential file pointer 

This call is used to read the sequential file pointer for a given file. Only filing systems 
which use unbuffered files should support this call. 

301 



302 

RO = 1 Write sequential file pointer 

On entry: Rl = file handle 

On exit: 

R2 = new sequential file pointer 

This call is used to alter the sequential file pointer for a given file. The file must be 
extended with zeros if the new pointer is greater than the current file extent. Only 
filing systems which use unbuffered files should support this call. 

RO = 2 Read file extent 

On entry: Rl =file handle 

On exit: R2 = file extent 

This call is used to read the extent of a given file. Only filing systems which use 
unbuffered files should support this call. 

RO = 3 Write file extent 

On entry: Rl = file handle 

On exit: 

R2 =new file extent 

For buffered files, this call is only issued internally by the filing system manager in 
order to set the real file extent just prior to closing an open file. 

For unbuffered files, this call is passed directly through from the user. The file must 
be extended with zeros if the new extent is greater than the current file extent. 

RO = 4 Read size allocated to file 

On entry: Rl =file handle 



. ILING SYSTEMS 

On exit: R2 = size allocated to file by filing system 

This call is used to read the size allocated to a given file. All filing systems must 

support this call. 

RO = 5 EOF check 

On entry: Rl .. file handle 

On exit: R2 <> 0 if file pointer is at end of file, 0 otherwise 

This call is used to determine whether the sequential pointer for a given file is at the 
end of the file or not. Only filing systems which use unbuffered files should support 
this call. 

RO = 6 Flush file buffer 

On entry: Rl =file handle 

On exit: -

This call is used to flush any buffered data for a file. Only filing systems which use 
unbuffered files should support this call. 

RO = 7 Ensure file size 

On entry: Rl = ftle handle 
R2 = size of file to ensure 

On exit: R2 = size of file actually ensured 

This call is used to ensure that a file is of at least the given size. If the file is extended 
by this call, no data need be transferred unless the file is unbuffered or ignores the 
write zeros call, in which case the file must be zero-extended. All filing systems must 
support this call. 

303 



304 

RO = 8 Write zeros to file 

On entry: Rl = file handle 
R2 = file address to write zeros at 
R3 = number of zero bytes to write 

This call is used to add a number of zeros to a file. It is only issued by the filing 
system manager when extending a file. Filing systems may ignore this call if they 
make sure that ensuring a file size adds zeros to the end. Only filing systems which 
use buffered files should support this call. 

RO = 9 Read file datestamp 

On entry: Rl = file handle 

On exit: R2 = load address of file (or 0) 
R3 = execution address of file (or 0) 

This call is used to read the date/time stamp for a given file. The bottom four bytes of 
the date/time stamp are stored in the execution address of the file. The most 
significant byte is stored in the least significant byte of the load address. All filing 
systems must support this call. If a filing system cannot stamp an open file given its 
handle, then it should return R2 and R3 set to zero. 

FSEntry _Close 

On entry: Rl = file handle 

On exit: 

R2 = new load address to associate with file 
R3 = new execution address to associate with file 

This call is used to close an open file and put a new date/time stamp on it. If the load 
address and execution address are zero then the file should not be restamped. 



ILING SYSTEMS 

Note that •CLOSE (ie close all open files) is performed by the filing system manager 
which passes the handles, one at a time, to the filing system for closing. Filing 
systems should not try to support this themselves. 

FSEntry_File 

This call is used to perform operations on whole files depending on the value of RO 
as follows: 

RO = &FF U>ad file 

On entry: Rl =pointer to wildcarded filename (null terminated) 
R1 = address to load file 
R3 = instructions for loading 
R6 = pointer to special file if present; otherwise zero 

On exit: RO is corrupted 
R2 = load address 
R3 = execution address 
R4 = file length 
R5 = file attributes 
R6 = pointer to a filename for printing •OPT 1 info 

The filename pointed to by Rl must be the name of an existing file. If the file does 
not exist or is a directory then an error should be given. 

The address at which to load the file is passed in R2. Whether or not this is used 
depends on R3 as follows: 

Value 

0 
NotO 

· Meaning 

Load file at address given by R1 
Load file at its own address 

The filename pointed to by R6 on exit should be the non-wildcarded 'leaf name of 
the file. That is, if the filename given on entry was $ . ! b *, and the file accessed was 
the boot file, R6 should point to the filename !BOOT. 

305 



306 

RO = 0 Sooe file 

On entry: Rl = pointer to filename (null terminated) 
R2 = load address to associate with file 
R3 = execution address to associate with file 
R4 =start address in memory of data 
R5 = end address in memory plus one 
R6 = pointer to special field if present, otherwise 0 

On exit: R6 = pointer to a filename for printing *OPT 1 info 

This call saves an area of memory to a file. An error such as File 
locked should be returned if the specified file could not be saved. 

RO = 1 Write catalogue infO'fTTl(ltion 

On entry: Rl =pointer to wildcarded filename (null terminated) 
R2 = new load address to associate with file 

On exit: 

R3 = new execution address to associate with file 
R5 = new attributes for file 
R6 = pointer to special file if present, otherwise 0 

This call updates the catalogue information. An error occurs if the object is a 
directory but not if the object does not exist. 

RO = 2 Write load address 

On entry: Rl =pointer to wildcarded filename (null terminated) 
R2 = new load address to associate with file 

On exit: 

R6 = pointer to special file if present, otherwise 0 

This call alters the load address for a file. An error occurs if the object is a directory, 
but not if the object does not exist. 



RO = 3 Write execution address 

On entry: Rl =pointer to wildcarded filename (null terminated) 
R3 = execution address to associate with file 
R6 = pointer to special field if present, otherwise 0 

On exit: 

ILING SYSTEMS 

This call alters the execution address for a file. An error occurs if the object is a 
directory, but not if the object does not exist. 

RO = 4 Write attributes 

On entry: Rl .. pointer to wildcarded filename (null terminated) 
R5 = new attributes to associate with file 
R6 = pointer to special field if present, otherwise 0 

On exit: R6 = pointer to a filename for printing *OPT l info 

This call alters the attributes of a file. An error occurs if the object is a directory, but 
not if the object does not exist. 

RO = 5 Read catalogue in[OTTI1lltion 

On entry: Rl =pointer to filename (null terminated) 
R6 = pointer to special field if present, otherwise 0 

On exit: RO .. object type 
R2 .. load address 
R3 = execution address 
R4 .. file length 
R5 = file attributes 

This call returnS the catalogue information for a file. An error does not occur if the 
object does not exist. 

307 



308 

RO = 6 Delete object 

On entry: Rl = pointer to filename (null terminated) 
R6 = pointer to special field if present, otherwise 0 

On exit: RO = object type 
R2 = load address 
R3 = execution address 
R4 =file length 
R5 = file attributes 

This call deletes an object. An error occurs if the object is locked against deletion, 
but not if the object does not exist. The results refer to the object that was ddeted. 

RO = 7 Create file 

On entry: Rl = pointer to filename (null terminated) 
R2 = load address to associate with file 
R3 = execution address to associate with file 
R4 = start address in memory of data 
R5 = end address in memory plus one 
R6 =pointer to special field if present, otherwise 0 

On exit: R6 = pointer to a filename for printing *OIYr 1 info 

This call creates a file with a given name. R4 and R5 are used only to calculate the 
length of the the file to be created. If the file currently exists and is not locked, the 
old file is first discarded. An error occurs if the file could not be created. 

RO = 8 Create directory 

On entry: Rl =pointer to directory name (null terminated) 
R4 = number of entries (0 for default) 
R6 = pointer to special field if present, otherwise 0 

On exit: 



. ILING SYSTEMS 

This call creates a directory. If the directory already exists then it is kept intact and 
nothing happens. An error occurs if the file could not be created. 

FSEntry_Func 

Various calls are made through this entry point to deal with assorted filing system 
control. The actions are specified by RO as given below. Note that 'dimame' means 
'directory name'. 

RO = 0 Set current directory 

On entry: Rl .. pointer to wildcarded dimame (null terminated) 
R6 = pointer to special field if present, otherwise rero 

On exit: 

This call is used to set the current directory to the one identified by the dimame 
given. If the dimame is null, the directory should be set to the filing system default 
(typically the same as the user root directory). 

RO = I Set library directory 

On entry: R 1 = pointer to wildcarded dimame (null terminated) 
R6 - pointer to special field if present, otherwise zero 

On exit: 

This call is used to set the current library directory to the one identified by the 
dimame given. If the dimame is null, the library directory is set to the filing system 
default. 

RO = 2 Catalogue directory 

On entry: Rl =pointer to wildcarded dimame (null terminated) 
R6 = pointer to special field if present, otherwise zero 

On exit: 

309 



310 

This call is used to catalogue the directory identified by the dimame given. If the 
dimame is null, the current directory should be catalogued. (This corresponds to the 
•CAT command.) 

RO = 3 Examine current directory 

On entry: Rl = pointer to wildcarded dimame (null terminated) 
R6 = pointer to special field if present, otherwise zero 

On exit: 

This call is used to print information on all the objects in the directory identified by 
the dimame given. If the dimame is null, the current directory should be examined. 
(This corresponds to the •EX command.) 

RO = 4 Catalogue library directory 

On entry: Rl - pointer to wildcarded dimame (null terminated) 
R6 = pointer to special field if present, otherwise zero 

On exit: 

This call is used to catalogue the specified subdirectory relative to the current library 
directory. If the dimame is null, the current library directory should be catalogued. 
(This corresponds to the •LCAT command.) 

RO = 5 Examine library directory 

On entry: Rl =pointer to wildcarded dimame (null terminated) 
R6 = pointer to special field if present, otherwise zero 

On exit: 

This call is used to print information on all the objects in the specified subdirectory 
relative to the current library directory. If the dimame is null, the current library 
directory should be examined. (This corresponds to the •LEX command.) 



ILING SYSTEMS 

RO = 6 Examine object( s) 

On entry: Rl =pointer to wildcarded pathname (null terminated) 
R6 = pointer to special field if present, otherwise zero. 

On exit: 

This call is used to print information on all the objects matching the wildcarded 
pathname given, in the same format as for Examine directory. (This corresponds to 
the *INFO command.) 

RO = 7 Set filing system options 

On entry: Rl =option (or 0) 
R6 = parameter 

On exit: 

This call is used to set filing system options. An option of 0 means reset all filing 
system options to their default values. (This corresponds to the *OPT command.) 

RO = 8 Rename object 

On entry: Rl = pointer to first pathname (null terminated) 
R2 = pointer to second pathname (null terminated) 
R6 =pointer to first special field if present, otherwise 0 
R 7 = pointer to second special field if present, else 0 

On exit: R 1 = 0 if rename performed ( <>0 otherwise) 

This call is used to attempt to rename an object. If the rename is not 'simple', (ie just 
changing the file's caclogue entry) R 1 should be returned with a value other than 
zero. In this case, the filing system manager copy/delete will be used to do the 
rename. 

311 



312 

RO = 9 Access object(s) 

On entry: Rl = pointer to wildcarded pathname (null terminated) 
R2 = pointer tO access string (null terminated) 

On exit: 

On entry: 

On exit: 

This call is used to give the requested access to all objects matching the wildcarded 
name given. (This corresponds to the *ACCESS command.) 

RO = 10 Boot filing system 

The filing system should perform its boot action on this call. For example, ADFS 
examines the boot option (as set by *OPT 4) of the disc in the configured drive and 
acts accordingly, for example *RUN !BOOT if boot option 2 is set; whereas NetFS 
attempts to logon as the boot user to the configured file server. 

RO = 11 Read name and boot (*OPT 4) option of disc 

On entry: R2 = memory address to put data 

On exit: 

This call is used to obtain the name of the disc and its boot option. This data should 
be returned in the area of memory pointed to by R2, in the following format: 

<name length byte><disc name><boot option byte> 

RO = 12 Read current directory name and privilege byte 

On entry: R2 =memory address to put data 

On exit: 



IIILING SYSTEMS 

This call is used to obtain the name of the currently-selected directory, and privilege 
statuS in relation to that directory. This data should be returned in the area of 
memory pointed to by RZ, in the following format: 

<zero byte><name length byte><current directory name>< privilege byte> 

The privilege byte is &00 if you have 'owner' statuS (ie you can create and delete 
objects in the directOry) or &FF if you have 'public' statuS (ie are prevented from 
creating and deleting objects in the directory). On ADFS, you always have owner 
status. 

RO = 13 Read library directory name and privilege byte 

On entry: RZ = memory address to put data 

On exit: 

This call is used to obtain the name of the library directory, and privilege statuS in 
relation to that directory. This data should be returned in the area of memory 
pointed to by RZ, in the following format: 

<zero byte><name length byte><library directOry name><privilege byte> 

RO = 14 Read directory entries 

On entry: Rl =pointer to wildcarded dimame (null terminated) 
RZ = memory address to put data 
R3 - number of object names to read 
R4 = offset of first item to read in directory 
R5 = buffer length 
R6 = pointer to special field if present, otherwise zero 

On exit: R3 = number of names read 
R4 = offset of next item to read in directory (-1 if end) 

This call is used to read the names of entries in a directory into an area of memory 
pointed to by RZ. If the directory name is null, then the currently-selected directory 

313 



314 

should be read. The names are returned in the buffer as a list of null terminated 
strings. 

RO = 15 Read directory entries and information 

On entry: Rl =pointer to wildcarded dimame (null terminated) 
R2 "' memory address to put data 
R3 = number of object names to read 
R4 .. offset of first item to read in directory 
R5 = buffer length 
R6 = pointer to special field if present, otherwise zero 

On exit: R3 = number of records read 

On entry: 

On exit: 

R4 =offset of next item to read in directory (-1 if end) 

This call is used to read the names of entries (and their file information) in the given 
directory into an area of memory pointed to by R2. If the directory name is null, 
then the currently-selected directory should be read. The names and information are 
returned in records, with the following format: 

Offset 

&00 
&04 
&08 
&OC 
&10 
&14 

Contents 

Load address 
Execution address 
Length 
Attributes 
Object type 

Object name (null terminated) 

Each record is word-aligned. 

RO = 16 Shut down 



On entry: 

On exit: 

~~ILING SYSTEMS 

On this call, the filing system should attempt to go into as dormant a state as 
possible. For example, it should place Winchester drives in their transit positions, 
etc. All files will have been closed by the filing system manager before this call is 
issued. 

RO = 17 Print srart up runner 

This call is used when the filing system is started, and the filing system start up text 
offset value (in the filing system information block) is -1. This is to allow filing 
systems to print a message that may vary, such as Acorn Econet or Acorn 
Econet no clock. 

RO = 18 Set directory contexts 

On entry: Rl = new currently-selected directory handle (0"' no change, -1 for 'Unset') 
R2 = new user root directory handle (0 = no change, -1 for 'Unset') 
R3 = new library handle (0 = no change, -1 for 'Unset') 

On exit: Rl =old selected directory handle (-1 if 'unset') 
R2 =old user root directory handle (-1 if'unset') 
R3 =old library handle (-1 if 'unset') 

This call is used to redefine (or read) the currently-selected directory, user root 
directory and library handles. 

RO = 19 Read directory entries and infoTT'fUltion 

On entry: Rl = pointer to wildcarded dimame (null terminated) 
R2 = memory address to put data 
R3 = number of object names to read 
R4 = offset of first item to read in directory 
RS = buffer length 
R6 = pointer to special field if present, otherwise zero 

315 



316 

On exit: R3 = number of records read 
R4 =offset of next item to read in directory (-1 if end) 

This call reads the names of entries (and their file information) in the given 
directory into an area of memory pointed to by R2. If the directory name is null, 
then the currently-selected directOry should be read. The names and information are 
returned in records, with the following format: 

Offset 

&00 
&04 
&08 
&OC 
&10 
&14 
&18 
&ID 

Contents 

Load address 
Execution address 
Length 
Attributes 
Object type 

S.I.N 
Data in 5-byte format 
Object name (null terminated) 

Each record is word-aligned. 



IIEMORY MANAGEMENT 

This chapter describes the Archimedes' memory usage. In many environments, such 
as BASIC and C, you can use the language's intrinsic memory allocation routines, 
and you won't have to worry about where your next byte is coming from. Similarly, 
small, transiently loaded utilities may not require any memory over the 1024 bytes 
they are automatically allocated. 

Other programs, though, such as filing systems, specialised VDU drivers (such as the 
font manager), etc. will require arbitrary amounts of memory, which can be freed 
after use. The memory manager provides simple allocation and deallocation 
facilities. Relocatable modules can use this manager either directly or indirectly 
using the OS_Module call. 

In addition to the 'heap' RAM allocated by the memory manager, there are other, 
less important memory resources. One of these is the battery-backed CMOS RAM 
used to hold default system parameters. The user interface to this RAM is provided 
by the *CONFIGURE and *STATUS commands. Modules, applications and users 
may usc spare locations in CMOS RAM for their own purposes. Application and 
module writers should request allocations in writing from Acorn Computers. 

The screen RAM is also available as a temporary buffer. There are quite severe 
restrictions on when the RAM may be used: see the call OS_ClaimScreenMemory 
for details. 

Logical RAM 

This chapter is concerned only with the bottom 32 Mbytes of the memory map since 
this is the area which contains the logically mapped RAM. 

The physical memory of the machine cannot be accessed directly in user mode. 
Instead it is mapped onto pages of the 'logically addressed' RAM and it is these 
logical pages which the user accesses. The physical RAM is always divided into 128 
pages. As the amount of RAM in the machine varies, the size of the page or the 
numbers of pages used changes as shown below. 

317 



318 

300 Series 

RAM (Mbytes) 

0.5 
1 

400 Series 

RAM (Mbytes) 

1 
2 
4 

Pages used 

64 
128 

Pages used 

32 
64 
128 

Size of page (Kbytes) 

8 
8 

Size of page (Kbytes) 

32 
32 
32 

The MEMC contains a 'logical to physical address translator'. This has a table of 128 
entries, one for each page of physical RAM, showing where the page is mapped to in 
logical RAM. Whenever a logical page is accessed, this translator attempts to 
convert the logical page number into a physical page number by looking for the 
address given in each of the table entries. 

Since there are 32 Mbytes of logical RAM and a maximum of 4 Mbytes of physical 
RAM, the area of logically mapped RAM obviously contains far more than 128 
pages, so it is possible to attempt to access memory which is not mapped to physical 
RAM. If this happens, an error message is displayed, such as Abort on data 
transfer at <addr>. 

Logical memory map 

The organisation of the logical address space is as follows: 



IIIEMORYMANAGEMENT 

0-480K Configured 

Cursor I system space I sound DMA 32K 
31M~------------------------~ 

System heap & supervisor stack 32K-3M Configured 

28M ~--------------------------~ 
Relocatable Module area (RMA) 0-4M Configured 

24M ~------------------------~ 
Sprite area 0-4M Configured 

20M ~------------------------~ 
RAM Disc 0-4M Configured 

16M ~------------------------~ 
Application workspace Dynamic 

32K ~--------------------------4 
System workspace 32K 

0 

The memory map is set up on hard reset as follows: 

- The permanent 32K allocations for system workspace at addresses &0000000 and 
31M are made. 

- Then the configured amounts of space for the various adjustable size regions are 
allocated: the screen, the system heap, the RMA, etc. Note that some of these 
have minimwn values that will be used regardless of the configured value. For 
example, the RMA will always have enough pages to support all the built-in 
ROM modules. 

- When all of the dynamic allocation is complete, the rest is allocated to the 
application workspace, from address &8000 up. While no application is running 
(ie in the supervisor prompt), the memory map can be altered as required. For 
example, if you load a module from disc and the RMA isn't big enough to hold it, 
the size of the RMA will be increased by an appropriate amount. The OS can 
only do this when there is no application active, as the extra memory has to be 

319 



320 

taken from the application workspace. Most proJlams don't react too kindly to 
large areas of their memory allocation disappearing. 

Here is an example of how memory might be allocated given some typical RAM size 
allocations on an A310 (8K page size): 

Area Pages Page size Total 

FontSize 20 4K 0 
RamFsSize 0 8K 0 
RMASize 16 8K 128K 
ScreenSize 20 8K 160K 
SpriteSize 10 8K 80K 
SystemSize 4 8K 32K+32K 
System workspace 32K 
Cursor etc. workspace 32K 

Total 496K 

Application area 1024K- 496K = 528K 

- Note: the FontSize doesn't add anything to the total as the font manager takes the 
required space from the RMA. If the configured RMA size isn't enough to claim 
the font space, the RMA will be made bigger, as no application is numing when 
the font manager makes its claim. 

A configured screen size of 0 means 'default for this machine', which is 160K on 
an A310 (see *CONFIGURE ScreenSize). The size of the system area (at 28M) is 
always at least 32K. 8K of this is used for the system stack. The rest is for OS 
variable storage (eg alias variables) and module information. The configured 
amount is added to the 32K initially allocated. 

Memory protection 

You have read/write access to the whole of the logically mapped RAM. However, 
only the application workspace and RMA should be accessed directly. It is very 
dangerous to write to any other areas, or rely on certain locations containing given 



EMORY MANAGEMENT 

information, as these are subject to change. You should always use OS routines to 
access operating system workspace. 

Screen memory 

Hardware scrolling is implemented by having the screen workspace at the end of 
logical memory, adjacent to the corresponding physical RAM banks which are 
mapped onto those addresses. This means that there are two adjacent copies of the 
screen memory as follows: 

PhysRam + ScreenSize Vend 

PhysRam (32M) 

______ + ______ _ 
I 

Vi nit 

Vstart (MEMC registers) 

VDU writes to this area 

-------~------ Vstr 

PhysRam - ScreenSize 

The screen can, therefore, be scrolled vertically by altering the VDU driver screen 
start address as shown above. This is usually performed automatically and you don't 
have to concern yourself with it. 

The screen-size is configurable in units of one page (8K or 32K). Hence for a 20K 
screen on a 400 series machine, 32K will have tO be used since it is the next highest 
multiple of 32K. For an 80K screen, 96K should be used, etc. In addition, if you want 
to use multiple banks of screen memory (eg for animation), enough memory must be 
reserved for each bank. 

Because the total screen memory is often much less than what is required at a given 
time, a facility is available whereby the 'extra' RAM can be claimed for short 

321 



periods. It can be used as a buffer, in a data transfer operation, for example. The SWI 
documented below is used to claim and release the screen memory. 

OS_ClaimScreenMemory &41 (65) 

On entry: RO = 0 for release, 1 for claim 
Rl = length required 

On exit: C=O means memory was claimed successfully 
Rl =length available 
R2 = start address 
C= 1 means memory could not be claimed 
Rl = length that is available 

There are several restrictions to the use of screen memory. It can only be claimed by 
one 'client' at a time, who gets all of it. It can only be claimed if no bank other than 
bank 1 has been used. You can't claim it, for example, if the shadow bank has been 
used. 

While you have claimed the screen memory, you must not perform any action which 
might causes the screen to scroll. This means avoiding the use of routines which 
might cause screen output. 

It is important to release the memory after it has been used. 

NON,VOLATILEMEMORY (CMOS RAM) 

322 

240 bytes of non-volatile memory are provided. Some of these are reserved since 
they hold default values for certain parameters and are set using *CONFIGURE. 
The full list is given below: 



Location 

0 
1 
2 
3 
4 
5 
6-9 
10 

11 

12 
13 
14 
15 

16 

17-29 
30-45 
46 - 111 
112 - 117 

EMORY MANAGEMENT 

Function 

Econet station number 
Econet file server station ID (0 =>name configured) 
Econet file server net number (or first char of name) 
Econet primer server station id (0 => name configured) 
Econet printer server net number (or first char of name) 
Default filing system number 
Reserved for Acorn use 
Screen info: 

Bits 0-3 screen mode number. This is held in 5 bits. The fifth 
bit is bit 133 

Bit 4 TV interlace (first *TV parameter) 
Bits 5-7 TV vertical adjust (signed three-bit number) 

Shift, Caps mode: 
Bits 0- 2 reserved 
Bits 3- 5 ShCaps (001), NoCaps (010), Caps (100) 
Bit 6 - 7 reserved 

Keyboard auto-repeat delay 
Keyboard auto-repeat rate 
Printer ignore character 
Printer information: 

Bit 0 reserved 
Bit 1 0 => Ignore, 1 => Nolgnore 
Bits 2- 4 serial baud rate (0• 75, ... , 7•19200) 
Bits 5 - 7 printer type 

Miscellaneous flags 
Bit 0 reserved 
Bit 1 0 =>Quiet, 1 =>Loud 
Bit 2 reserved 
Bit 3 0 => Scroll, 1 => NoScroll 
Bit 4 0 => NoBoot, 1 => Boot 
Bits 5 - 7 serial data format (0 .. 7) 

Reserved for Acorn use 
Reserved for the user 
Reserved for applications 
Reserved for operating system software 

323 



324 

Location Function 

128 Current year 
130 Last month 
131 'We've-had-the-29th-of-feb-this-year-already' flag 
132 DumpFormat 
133 Sync, monitor type, some mode information 

Bit 1 SyncBit 
Bit 2 top bit of mode 

configuration number 
Bits 3 - 4 monitor type 

134 Fontsize 
135 ADFS use 
138 Set *CAT format 
140 Set *EX format 
142 Twin's CMOS byte 
143 Screen size in units of 8K on A1s 
144 RAM disc size in units of 8K 
145 System heap size 
146 RMAsize 
14 7 Sprite size 
148 SoundDefault parameters 
149 For the BASIC Editor 
153 Printer server name 
158 File server name 
173 CMOS used by *Unplug for ROM modules 
177 Bits for unplugged modules 
181 Wild card CMOS 
185 Configured language 
186 Configured country 
187 VFSCMOS 
239 One byte for CMOS RAM checksum; not used currently 

If you want to use one or more bytes in an application program, you should request 
an allocation in writing from Acorn Computers. 



~~EMORY MANAGEMENT 

Two OS_Bytes are provided for reading and writing the CMOS RAM. They are as 
follows: 

OS_Byte &Al (161)- Read battery-backed RAM 

On entry: Rl = RAM location 

On exit: R2 = contents of RAM location 

This call provides read access to any of the locations in the battery-backed RAM. 
For example, this call may be used by a module to read a default configuration 
parameter. Moreover, this parameter could be examined by the user using the 
•ST A TUS command, if the module provides a suitable entry in its command 
decoding table. See the chapter MODULES for more details. 

OS_Byte &A2 (162)- Write battery-backed RAM 

On entry: Rl = RAM location 
R2 - value to be written 

On exit: R2 is undefined 

HEAP MANAGER 

This call provides write access to any of the locations in the battery backed RAM 
with the exception of location zero, which is protected. 

The OS contains a heap management system. This is used by the operating system to 
allocate space within the relocatable module area and also to maintain the system 
heap. A heap is just an area of memory from which bytes may be allocated, then 
deallocated for later use. An area can also be reallocated, meaning that its size 
changes. 

The heap manager is also available to the user. You provide an area of memory 
which is to be used for the heap, which can be any size you require. Then, at the start 
of this area, the heap manager sets up the heap descriptor, which is a block 

325 



326 

containing information on the limits of the heap, etc. This descriptor is updated by 
the heap manager when necessary. 

When a block within this heap is required, a request is made to the heap manager, 
which returns a pointer to a suitable block of memory. The heap manager keeps a 
record of the total amount of memory which is free in the heap and the largest 
individual block which is available. 

The heap management system does not provide garbage collection and will never 
attempt to move a block within the heap, since it has no knowledge of whether the 
block contains pointers that need to be relocated, or whether there are any pointers 
to the block which need updating. Hence, unless an area of contiguous free space of 
the size requested is available, a request for a block will fail. 

The heap manager SWI call 

OS_Heap &lD (29)- Heap manager 

The heap manager provides SWI OS_Heap (&10) to permit use of all its features: 

On entry: RO =reason code 
Rn depends on RO, as described below 

On exit: V is set if there was an error 

As usual, an error causes the error handler to be called if OS_Heap is used. For the 
call to return with V set and an error pointer in RO, XOS_Heap is used. 

The particular action depends on the value of RO as follows: 

RO = 0 Initialise heap 

On entry: Rl points to heap descriptor block to initialise 
R3 = size of heap 

On exit: V is set if heap could not be initialised 



IIIEMORYMANAGEMffiNT 

This call takes the area passed for the heap descriptor and places in it the 
information necessary to transform it into a valid descriptor. The heap is then ready 
for use. The value given for Rl must be word-aligned and less than 32Mbytes (ie 
must point to an area of logical RAM). R3 must be a multiple of four and less than 
16Mbytes. 

RO = 1 Describe Heap 

On entry: Rl =heap descriptor pointer 

On exit: R2 = largest available block size 
R3 = total free 
V is set if heap is invalid 

This call returns information on the space available in the heap. V is set if the heap 
is invalid. This may be for any of the following reasons: 

- the heap descriptor is corrupt 
- the information within the heap is not sensible 
- Rl is not a heap descriptor pointer. 

RO = 2 Get heap block 

On entry: Rl =heap descriptor pointer 
R3 = size wanted 

On exit: R2 = pointer to claimed block or 0 if allocation failed 
V is set if allocation failed 

This allocates a block from the heap. V is set if the allocation failed which may be 
for any of the following reasons: 

- there is not a large enough block left in the heap 
- the heap has been corrupted 
- R 1 is a nonsensical value. 

327 



328 

RO = 3 Free heap block 

On entry: Rl =heap description pointer 
R2 = block pointer 

On exit: V is set if deallocation is not successful 

This checks that the pointer given refers to an allocated block in the heap, and 
deallocates it. Deallocation tries to join free blocks together if at all possible, but if 
the block being freed is not adjacent to any other free block it is just added to the list 
of free blocks. Vis set if the deallocation failed which may be because Rl was 
invalid, the heap descriptor or heap was corrupted or R2 did not point to an 
allocated block in the heap. 

RO = 4 Extend heap block 

On entry: R 1 =heap descriptor pointer 
R2 = block pointer 
R3 =size to change by (signed 32-bit number) 

On exit: R2 = new block pointer 

This attempts to enlarge or shrink the given block in its current position if possible, 
or, if this is not possible, by reallocating and copying it. Note that if the block has to 
be moved, it is your responsibility to note this (by the fact that R2 has been altered), 
and to perform any necessary relocation of data within the block. 

RO = 5 Extend heap 

On entry: Rl =heap descriptor pointer 

On exit: 

R3 =size to change by (signed 32-bit number) 

This updates the heap size information to take account of the new size. V is set if it 
cannot shrink far enough, because of data that has already been allocated. 



. EMORY MANAGEMENT 

Internal format of the heap 

A description of the structure used by the heap manager is given below. It should be 
noted that this structure is not guaranteed to be preserved between releases of the 
software and should not be relied upon. It is given purely for advanced readers who 
may want to interpret the current state of the heap when testing and debugging their 
own code. 

The heap descriptor is a block of four words: 

&00 Special heap word 

&04 Free list offset -
&08 Heap base offset 

&OC Heap end offset 

The 'special' heap word contains a pattern which distinguishes correct heap 
descriptors. The pattern is made up of the characters 'Heap' - which is & 70616548 
in hex. 

All other words are offsets into the heap. This means that the heap is relocatable 
unless you place non-relocatable information in it. 

The free list offset is an offset to the first free block in the heap, or zero if there are 
no free blocks. If the word is non-zero, the first free block is at address: 

heap start + free list offset + 4 

The other entries are offsets from the start of the heap which refer to boundaries 
within the heap structure. The heap is delimited as follows: 

329 



heap stan 

low memory heap blocks 

internal information 

free list points into here 
somewhere, or is nil 

unused space 

heap base 

high memory 

heap end 

Blocks in the free list have information in the first two words as follows: 

- Word 0 is the link to the next free block or 0 if at the end 

- Word 1 is the size of this block (including these two words). 

Allocated blocks start with a word which holds the size of the allocated block. The 
pointer returned by SWI OS_Heap when a block is allocated actually points to the 
second word which is the stan of the memory available. 

Allocation forces the block size to be at least eight to ensure that it can contain the 
information necessary to free it. Therefore, the minimum size of area that can be 
initialised is 24 bytes (16 for the fixed information and 8 for a block). 

MISCELLANEOUS MEMORY SWis 

330 

This section brings together three SWis which are connected with memory 
management. 

OS_UpdateMEMC &lA (26) 

On entry: RO = new bits in field 
Rl .. field mask 

On exit: previous state of MEMC register 



. EMORY MANAGEMENT 

The memory controller (MEMC) chip is a write-only device. The operating system 
maintains a software copy of its current state and OS_ UpdateMEMC updates 
MEMC from the software state. To allow the programming of individual bits the call 
takes a field and a mask. The new MEMC value is: 

newMemC := (oldMEMC AND NOT Rl) OR (RO AND Rl) 
RO := olch\1EMC 

So to read the contents without altering them, Rl and R2 should both be rero. To 
set them to 'n', Rl=&FFFFFFFF and R2=n. 

OS_ChangeDynamicArea &2A (12) 

On entry: RO - area to alter 
R 1 = amount to move 

On exit: Rl .. bytes moved 
V is set if not all bytes moved, or application workspace is 
being used (ie an application is active) 

OS_ChangeDynamicArea allows the system heap or RMA to be altered in size by 
removing or adding workspace form the application workspace. 

The area to be altered depends on RO as follows: 

RO = O 
RO- 1 

alter system heap 
alterRMA 

The amount to move is given by the sign and magnitude ofRl: 

+ve means enlarge RMA/heap 
- vc means give space back to application workspace 

Note that this cannot be used while the application work area is being used, eg when 
a language is active. An attempt to do so will result in a Memory in use error. (In 
fact, when this call is made, the OS passes a service call round to modules, which can 

331 



332 

veto the change if they can't handle it correctly. See the chapter MODULES for 
more details.) 

Example: MOV RO, U 
MOV Rl, t&SOOOOOOO 
SWI OS_ChangeDynamicArea 

OS_ ValidatcAddrcss &3A (58) 

On entry: RO =minimum address 
R 1 = maximum address 

On exit: C = 0 if OK, 1 otherwise 

select RMA 
largest negative number 
shrink RMA as far as possible 

SWI OS_ ValidateAddress checks the address range between RO and Rl minus 1 to 
see if they are valid. Validity in this case means that the addresses are in logical 
RAM (0- 32M) and have a mapping into physical RAM throughout the range. 



IHE PROGRAM ENVIRONMENT 

This chapter describes how the application program, which is currently running, can 
read and set important aspects of its 'environment', such as the highest location 
available to it, the addresses of various 'handlers' and so on. It also summarises the 
various ways in which you can execute a program, and what the program can and 
can't do while running. 

Operating system variables are also described in detail in this chapter. 

RUNNING AN APPLICATION 

There are several ways in which a program becomes the current application. At 
present, Arthur is a single tasking environment, and only one foreground (ie non
interrupt) program may be active at once. However, it is possible to run an 
application from another program, and have the first program restart when the 
application terminates. 

Here are the ways in which a program can become the current application: 

- By *RMRUNning the program from the filing system 
- By OS_Module 'Enter'ing (for modules) 
- By *RUNning the program from the filing system 
- By executing the program using •GO 

The first and second cases are really the same thing. When a ftle is *&\1RUN, it is 
loaded into the relocatable module area. Its initialisation code is called, so that it can 
claim workspace etc, then its start code is called. 

A module can also call its own start entry point (using OS_Module) if it wants to 
become the current application. BASIC is an example of this. The *BASIC 
command is recognised by the OS using the BASIC module's * command table. The 
OS calls the routine which handles the *BASIC command, and this routine calls 
OS_Module with the reason code 'enter'. See the next chapter for details on calling 
modules. 

The third case applies to files which have no file type, or have type FF8. In the first 
case, the file is loaded at its load address, then it is started as an application through 

333 



its execution address. If the file type is FF8, the file is loaded at address &800J and 
started as the application there. 

Finally, if you call a machine code program using the •GO command, it becomes the 
current application. (This implies that you shouldn't use •GO to call RAM-based 
routines from a language, as the routine can't return - R 14 contains no return 
address at this point.) 

In all of these cases, the program is called in user mode, with interrupts enabled. 
Where a module is called, R12 points to the module's private word. 

The running application has the application workspace available to it. This starts at 
&8000 and extends to an upper limit which depends on: 

- the amount of RAM in the machine 
- the number of active modules 
- various configuration parameters, etc. 

See the previous chapter for an example of how the application area's size is 
determined using these factors. 

Application workspace is always contiguous. lt is guaranteed not to change while the 
application is active. (Actually, if the application is a module, it can decide whether 
to let the workspace change or not by responding appropriately to a service call.) 

Within the Arthur Supervisor prompt, the size of the RMA is dynamically alterable, 
and any changes caused by, for example, the loading of a module, will be reflected in 
the amount of RAM available to the next application to run. 

LEAVING AN APPLICATION 

334 

Before describing the calls which control the application program's environment, it 
is worth explaining how to leave an application. In general, a simple 'return from 
subroutine' using MOV PC,R14 won't suffice. Instead, you should usc a routine 
called OS_Exit. This passes control back to a well-defined place, which defaults to 
the supervisor * prompt, but could equally be a location in the previous application. 



OS_Exit &11 (17) 

. HE PROGRAM 
ENVIRONMENT 

On entry: RO = pointer to error block 
Rl = "ABEX" (&58454241) if return code is to beset 
R2 .. return code 

On exit: never returns 

Example: 

When OS_Exit is called, control returns to the most recent exit handler address (see 
below). The BASIC statement QUIT performs an OS_Exit. Before executing 
OS_Exit, however, you should restore any of the handlers changed in starting the 
application. 

If the exiting program wishes to return with a result code, it must set Rl to the hex 
value shown above, and R2 to the desired value. Non-error results must be in the 
range 0 to the value of the variable Sys$RCLimit. The return value is assigned to the 
variable Sys$RetumCode, which can be interrogated by any program using 
OS_ReadVarV alue. 

To return with an error, exit with a value less than zero or greater than Sys$RCLimit 
(having restored the previous error handler, as indicated above). This gives the error 
Return code limit exceeded (&1E2), but still sets the variable to the 
required value. 

MOV R2,terrorResultCode 

LOR Rl,returnString 
SWI "OS Exit" 

.returnString 

EQUS "ABEX" 

THE ENVIRONMENT SWis 

This section listS the SWls which are used to control the various handlers and other 
addresses used by the system. Note that the error and event handlers are called by 
the default owners of the respective vectors. These are used if no routine on the 
vector intercepts it (which should never happen). 

335 



336 

OS_Control &OF (15)- Set/read handler addresses 

On entry: RO = address of error handler 
Rl =pointer to buffer for the error handler 
R2 = address of escape state change handler 
R3 = address of event handler 

On exit: RO = previous error handler address 
R 1 = previous buffer address 
R2 = previous escape routine address 
R3 = previous event handler address 

OS_Control sets some of the exception handlers. The addresses of the error handler, 
error handler buffer, escape state change handler and event handler are passed in RO 
- R3. Zero for any of these means no change, ie a read-only operation. 

When a handler is called, only registers RIO- Rl2 should be relied upon to contain 
meaningful values. 

The error handler is called after any error has been generated. It is called by the 
default owner of the error vector; thus any routines using this vector should always 
'pass it on'. Continuing after an error is not generally recommended. You should 
always use the X form SWis if you wish to stay in control even when an error occurs. 
Note that if the error handler is set up using OS_ChangeEnvironment, the 
workspace pointer is passed in RO, not Rl2 as usual. 

The error buffer (whose address should be set along with the handler address) 
contains the following: 

Rl+O-R1+3 
R1+4-R1+7 
R1+8 ... 

PC when error occured 
Error number provided with the error. 
Error string, terminated with a 0 

The escape handler is called when the escape status changes. The routine is entered 
with the following: 

Rll bit 6 is escape state. 1 => escape condition. 



R12 does not contain 1 
R13 is a full, descending stack pointer 

IIHE PROGRAM 
ENVIRONMENT 

To continue after an escape, the handler should reload the PC with the contents of 
R 14. If R 12 contains 1 on return then CallBack will be used. CallBack should be 
used if the handler wishes to do a lot of work or wishes to enable interrupts or to 
execute an OS_GenerateError. Typically (eg BASIC), the handler will set an 
internal flag which is checked by the foreground program. 

The event handler is called when an event occurs, and is called by the default owner 
of EventV with the following: 

RO event reason code 
Rl... parameters according to event code 
R12 does not contain 1 
R13 is the IRQ handler routine stack pointer 

To continue after an event, the handler should reload the PC with the contents of 
R14. IfR12 contains 1 on return then the CallBack handler is used. 

You should take care not to corrupt R14_SVC during handler code. This implies 
saving it on the stack if you use SWis. See the section Interrupts in the chapter 
Fundamental operating system concepts for details. 

The handlers are initialised by the OS within the supervisor • prompt. The error 
handler reports the error message and number. The escape handler and event 
handler do nothing. BASIC sets up its own error handler and escape handler and 
leaves the event handler alone. 

Note that the call OS_ChangeEnvironment provides more control over the handlers 
than this call, and should be used in preference. (OS_Control actually uses 
OS_ ChangeEnvironment.) 

337 



338 

Example: ADR RO, errorHandler 

MOV Rl, fwork+&300 

MOV R2, tO 
MOV R3, tO 

SWI "OS Control" ; control errors 

OS_GetEnv &10 (16) - Read environment parameters 

On entry: 

On exit: RO = address of the * command string 
Rl = permitted RAM limit (ie highest address available) 
R2 = address of 5 bytes - the time the program started 

OS_GetEnv reads the program environment. 

The value returned in RO is the address of the • command which caused the 
application to stan. It skips spaces and •, but not the command name which it uses 
to read command line parameters. (Note, however, that the string pointed at is 
corrupted by any OS_CLI calls.) 

Rl returns the address of the byte above the last one available to the application. 
From &8000 to this address minus one is available to the application. 

BASIC uses &8000 to &86FF as workspace, and from &8700 to the RAM limit for 
program as variable storage. HIMEM defaults to the value returned in Rl, and 
BASIC's stack starts from the last word of application workspace and grows down. 

The five bytes pointed to by R.2 give the time in centi-seconds since 1899, and can 
be convened to a string using, for example, OS_ConvenStandardDateAndTime. 

Example: swr 
SWI 

OS GetEnv 

OS WriteO ;write environment string to terminal 



IIHE PROGRAM 
ENVIRONMENT 

OS_SetEnv &12 (18)- Set environment parameters 

On entry: RO =address of the routine for OS_Exit above to go to 
Rl =address of the end of memory limit for OS_GetEnv to read 
R2, R3 are undefined 
R4 = address of routine to handle undefined instructions 
R5 = address of routine to handle prefetch abort 
R6 = address of routine to handle data abort 
R 7 = address of routine to handle address exception 

On exit: RO - R 7 = previous values of the above 

Example: 

OS_SetEnv sets the program environment. Most applications will not need to 

change these handlers. The debugger is an example of one that would. 

Undefined, abort and exception handlers are initialised in the operating system 
supervisor(* prompt). Giving zero instead of an address indicates no change, so the 
previous value can be read. The addresses set by this instruction are simply stored in 
system workspace locations where they can be accessed by code at the hardware 
vectors. For further details, see section Hardware vectors in the chapter 
RJNDAMENT AL OPERATING SYSTEM CONCEPTS for details. All of the 
default handlers simply generate error messages. 

- Note: the call OS_ChangeEnvironment provides a superset of the facilities that 
this call provides, and should be used in preference. 

ADR RO,ExitRout 
MOV Rl,i&lOOOO 
MOV R4,i0 
MOV RS,iO 
MOV R6,i0 
MOV R7,i0 
SWI "OS SetEnv" simulate a small machine 

339 



340 

OS_CallBack &15 (21)- Set•up CallBack handler 

On entry: RO = address of the register save block 
Rl = address of the CallBack handler 

On exit: previous values of the above 

OS_CallBack sets up the address of the CallBack handler and the register save block, 
zero for either value meaning no change. 

This CallBack code provides a method of calling a routine on exit from the 
operating system. As the thread of control leaves the system, instead of returning to 
the original caller, the OS saves the registers in a save block and a different routine is 
entered. Control can be resumed later by reloading from the register save block. 

Entry to the CallBack code is performed whenever the OS's internal CallBack flag is 
set. This may be done explicitly, by OS_SetCallBack (see below). Alternatively, an 
escape or event handler returning with 1 in R12 will set the CallBack flag. (See 
OS_ Control). 

Having set the flag, the CallBack routine is then entered when the system next exits 
to user mode code with interrupts enabled. Whenever the CallBack handler is 
called, the CallBack request flag is cleared. 

The CallBack code is called in IRQ or supervisor mode with interrupts disabled. The 
PC stored in the save block will be a user mode PC with interrupts enabled. Note 
that if the currently active program has interrupts disabled or is running in supervisor 
mode, CallBack is not used. 

In the simple case the CallBack routine should be exited by: 

ADR R14, saveblock get address of saved registers 
LDMIA R14, {RO - Rl4}" load user registers from block 
LOR Rl4, [Rl4, U5*41 load user Rl4 into SVC Rl4 
MOVS PC, R14 return using it 



Example: 

On entry: 

On exit: 

ADR 
ADR 
SWI 

.nullroutine ADR 
LDMIA 
LOR 
MOVS 

RO,saveblock 
Rl,nullroutine 
"OS CallBack" 
.............. 
R14,saveblock 
R1 4, {RO - R14}" 
R14, [R14,tl5*4) 
PC, R14 

II HE PROGRAM 
ENVIRONMENT 

- Note: as you might want to call this SWI from IRQ code, you should take the 
precautions necessary to preserve R14_SVC shown in section Interrupts in the 
chapter FUNDAMENTAL OPERATING SYSTEM CONCEPTS. 

OS_SetCallBack &lB (27) 

OS_SetCallBack sets the CallBack flag and so causes entry to the CallBack handler, 
set up by OS_CallBack, when the system next exits to user mode code with 
interrupts enabled (apart from the exit from this SWI). This SWI may be used if the 
code linked into the system (via a vector or as a SWI handler, etc) is required to do 
things on exit from the system. 

OS_BreakPt &17 (23) 

On entry: -

On exit: 

OS_BreakPt forms a break point trap. See OS_BreakCtrl below. 

Example: SWI "OS BreakPt" 

341 



342 

OS_BreakCtrl &18 (24) 

On entry: RO = address of the register save block; 0 for no change 
R 1 = address of the control routine; 0 for no change 

On exit: RO, Rl = previous values of the above 
V is always clear 

When OS_BreakPt is executed, all the user mode registers are saved in a block and 
execution is continued at the break control routine which is set up by 
OS_BreakCtrl. The saved registers are only guaranteed to be correct for user mode. 

The default handler prints the register contents from the save block and enters the 
Arthur Supervisor. 

The handler is entered in SVC mode. To restore user registers from the save block 
and return, the code given above for returning from a CallBack routine may be used. 

See also OS_ChangeEnvironment for an alternative way of setting up the break 
point handler, so that the handler's R12 is set up. 

Example: ADR RO,saveBlock 
ADR Rl,controlRoutine 
SWI "OS BreakCtrl" 

OS_UnusedSWI &19 (25) 

On entry: RO = address of the unused SWI handler; 0 for no change 

On exit: RO = previous value of the above 

If the OS can't decode the number of a SWI into one which it supports directly, or 
which can be handled by a module, the OS calls the vector SWIV. This allows a user 
routine on that vector to try to deal with the SWI. If there is no such routine, or the 
one(s) that is present passes the call on, then the Unused SWI handler is called. 

The entry conditions for the handler are: 



- Entered in supervisor mode 
- Interrupts are disabled 
- Rll contains the SWI number (Bit 17 clear) 
- Rl3 is the SVC stack pointer 
- R 14 is the user PC with V cleared 

. HE PROGRAM 
ENVIRONMENT 

- RIO, Rll and R12 are stacked and are free for your own use. 

This handler may also be set up using OS_ChangeEnvironment. 

OS_ChangcEnvironment &40 (64) 

On entry: RO = handler number 
Rl • new address, or 0 for no change 
R2 = Rl2 with which to call the routine, or 0 for no change 
R3 =buffer pointer, if appropriate 

On exit: Rl = previous address 
R2 =previous R12 
R3 = previous buffer pointer 

OS_ChangeEnvironment is a single routine which performs the actions of 
OS_Control, OS_SetEnv, OS_Cai!Back, OS_BreakCtrl, and OS_UnusedSWI. In 
fact, all of those routines use this call. 

On entry, RO contains a code which determines which particular handler's address is 
to be set up. The new address is passed in R 1. RO also determines whether R2 and R3 
are relevant or not. This is summarised in the table below. 

343 



344 

RO Handler R2 R3 

0 MemoryLimit Ignored Ignored 

1 Undefined ins. Ignored Ignored 
2 Prefetch abon Ignored Ignored 
3 Data abort Ignored Ignored 
4 Address exception Ignored Ignored 

5 Other exception Ignored Ignored 

6 Error RO when called Error buffer address 
7 CallBack R12 when called Register buffer address 
8 BreakPoint R12 when called Register buffer address 

9 Escape R12 when called Ignored 
10 Event R12 when called Ignored 
11 Exit R 12 when called Ignored 
12 UnusedSWI Rl1 when called Ignored 

13 Exception regs. Ignored Ignored 

'Other exceptions' (handler 5) is for future expansion. 

Handler 13 sets the address of the area in memory where the registers are dumped 
when one of the exceptions 0-5) occurs, if the default handlers are used. 

Note that in order to perform its function, OS_ChangeEnvironment vectors through 
ChangeEnvironmentV. A routine linked onto this vector can stop the change from 
happening by setting Rl (and if appropriate R2, R3) to zero and passing the call on. 
See also Software vectors in the chapter FUNDAMENTAL OPERATING 
SYSTEM CONCEPTS. 

In new programs, you should always usc this call in preference to the earlier ones. 



OPERATING SYSTEM VARIABLES 

. HE PROGRAM 
ENVIRONMENT 

The variables, maintained by the operating system in the system heap, provide a 
convenient way by which programs can communicate. OS_Exit (above) shows how 
the variable Sys$ResultCode is set up on exit from a program while the command 
line interface to handling variables is described in the chapter COMMAND LINE 
INTERPRETER. This section describes the SWis which handle the creation, 
setting, reading and deletion of variables. 

Variables are accessed by their textual name. The name may contain any non-space, 
non-control character. When a variable is created, the case of the letters is 
preserved. However, when names are looked up, the case is ignored. Variable names 
act much like filenames in this respect. 

You should avoid the use of wholly numeric names for variables, such as 123, as this 
causes difficulties when OS_GSTrans is used to look up a variable's contents. In 
particular, OS_GSRead will always take <123> to mean the ASCII code 123, and 
will not attempt to look up the name as a variable. 

There are several types of variable. String variables contain ASCII characters only, 
which are returned when the string is read. Integer variables are four-byte signed 
integers. Macros are like string variables, but when they are read, the string is 
OS_GSTransed. This means that if the macro contains references to variables or 
other OS_GSReadable items, the appropriate translation takes place whenever the 
variable is accessed. 

A classic example of using a macro is to set the Arthur supervisor prompt 
Cli$Prompt to the current time using: 

*SETMACRO cli$prompt <sys$time><&20> 

Every time the prompt is displayed, it shows the current time, followed by a space. 

The final type of variable is machine code routines. A routine is called whenever the 
variable is to be read, and another when it is set. This allows great flexibility in the 
way in which such variables behave. For example, you could make a variable directly 
control a CMOS RAM location using this technique. 

345 



346 

OS_ReadVarVal &23 (35) -Read a variable's value 

On entry: RO =pointer to name, may be wildcarded (*and#) 
R1 =pointer to buffer 

On exit: 

R2 = maximum length of buffer 
R3 = name pointer (or 0 for first call). 
R4 = 3 if an expanded string is to be returned 

R2 = number of bytes read 
- ,-

R3 = new name pointer, string is null-terminated 
R4 = type of variable (string, number or macro) 
Vis set if can't find (R2=0), or buffer overflowed 

I 

, ,~ ... 

OS_ReadVarVal reads a variable and returns its value and its type. On entry, R3 
should be 0 the first time the call is made for a wildcarded name, and thereafter 
preserved from the previous call. This enables all matches of a wildcarded name to be 
found. On exit, R3 points to the name of the variable found. The XOS_ReadVarVal 
form of the call should be used if you don't want an error to occur after the last name 
has been found. 

You can call XOS_ReadVarVal to check for the existence of a variable by setting R2 
to a value less than zero (bit 31 set) on entry. If it is still negative on exit, the 
variable exists; if it is zero, the variable does not exist. 

The type of the variable read is returned in R4 as follows: 

Value 

VarType_String (O) 
VarType_Number (1) 
VarType_Macro (2) 

Type 

String 
4 byte (signed) integer 
Macro 

R4, if set to 3 on entry, indicates that a suitable conversion to a string should be 
performed. String variables are unaltered, numbers are converted to (signed) decimal 
strings, and macros are OS_GSTransed. 

' 



Example: 

. HE PROGRAM 
ENVIRONMENT 

If R4 isn't 3 on entry, the un-OS_GSTransed version of a macro is returned, and the 
four-byte binary of a number is returned. 

;Print all sys$ variable names \ 
ADR Rl, valBuffer ;Buffer to place value 

MOV R3, tO ;Initial context 

.loop 
ADR RO, strName ;Wildcarded name to find 

MOV R2, tbufferLen ;Length of value buffer 

SWI "XOS ReadVarVal" ;Non-error reporting one 

MOWSS PC, Rl4 ;Return and clear V 

MOV RO, R3 ;Get address of name 

SWI "OS WriteO" ;Print it 

SWI "OS NewLine" ;and new line 
B loop ;again 

.strName EQUS "SYS$*" + CHR$0 

OS_SetVarVal &24 (36)- Set/create a variable 

On entry: RO =pointer to name (can be wildcarded for update/delete) 
Rl = pointer to value 
R2 = length of value. Negative means destroy the variable 
R3 = name pointer (or 0 for first call) 
R4 = type (see below) 

On exit: R3 = new context pointer 
R4 = type created if expression is evaluated 
V is set if an error occurred (X version) 

OS_SetVarVal either creates, updates or destroys a variable. The name may be 
terminated by any character whose ASCII value is 32 or less and may be wildcarded 
if it is to be updated or deleted (ie if it already exists). 

The pointer to the value to be assigned in the case of create/update is given by Rl. If 
it is a string then it must be terminated by a linefeed (ASCII 10) or carriage return 

347 



348 

(ASCII 13). The interpretation of the value depends on the type given in R4 as 
follows: 

VarT ype_String 
VarT ype_Number 
VarType_Macro 
VarType_Expanded 

VarType_Code 

(0) 
(l) 
(2) 
(3) 

(16) 

OS_GSTrans the given value 
Value is a 4 byte (signed) integer 
Copy value (may be OS_GSTransed on use) 
The value is a string which should be evaluated 
as an expression using OS_EvaluateExpression, 
and assigned to a number or string variable, 
depending on the expression type 
Special case (see below) 

If the call is successful, R3 is updated to point to the new context so allowing the 
next match of a wildcarded name to be obtained on a subsequent call. R4 returns the 
type created if an expression was evaluated (ie ifR4 was 3 on entry). 

R2 must be negative on entry to delete a variable. Also, to delete a type-16 variable, 
R4 should contain 16 on entry. 

When R4 is set to 16 on entry (and R2 >= 0) a code variable may be created. In this 
case Rl is the pointer to the code fragment associated with the variable, and R2 is 
the length of the code fragment. This code must be word-aligned and takes the 
following format: 

Offset 

0 
4 
8 ... 

Contents 

Branch instruction to entry point for write operation 
Entry point for read operation 
Body of code 

The entry for the write operation is called whenever the variable is to be set. It is 
. I .t..._ L called as follows: 

On entry: Rl • pointer to the value to be used 
R2 • length of value 



On exit: 

On entry: 

Rl, R2, R4, RlO- R12 may be corrupted 

IIHE PROGRAM 
ENVIRONMENT 

The entry for the read operation is called whenever the variable is to be read. It is 
called as follows: 

On exit: RO = pointer to value 
Rl may be corrupted 
R2 =length of value 

Both entries arc called in SVC mode. Therefore if any SWls are used, R14 must be 
saved on the stack so that it does not become corrupted. Below is a complete 
example of a program to create a variable called Mode. The read action is to rerum 
the current display mode, and the write action to to set the mode. 

. start 

. code 

.readCode 

ADR 
ADR 
MOV 
MOV 
MOV 
SWI 
MOV 

RO, varName 
Rl, code 
R2, tendCode-code 
RJ, to 
R4, 4&10 

"OS SetVarVal" 
PC, Rl4 

B writeCode 
STMFD Rl3!, {Rl4} 
MOV RO, t&87 

SWI 
MOV 
ADR 
MOV 

"XOS_Byte" 
RO, R2 
Rl, buffer 
R2, t4 

;Pointer to the name 
;Start of code body 
;Length of code body 
;Context pointer 
;'special' type 
;Create it 
; Return 

;Branch to write code 
;Save return address 
;OS_Byte read mode number 

;Mode in RO for conversion 
;Buffer for ASCII conversion 
;Max len of buffer 

SWI "XOS_l3inaryToDecimal " 
MOV RO, Rl ; Pointer in RO 

;length already in R2 
LDMFD Rl3!, {PC} ;Return 

349 



350 

.writeCode STMFD R13!, {R14) ;Save return address 

SWI "XOS_ReadUnsigned" ;Rl set correctly already 

SWI &100+22 ;VDU mode change 

MOV RO,R2 ;Get integer read in RO 

SWI "XOS WriteC" ;Do mode change 

LDMFD R13!, {PC) ;Return 

.buffer EQUD 0 ;Buffer for string conversion 

.endCode 

.varName EQUS "Mode " ;Name of variable 

The routine at 'start' creates the variable. Obviously as the code body is copied into 
the system heap, it must be position independent. The two routines 'readCodc' and 
'writeCode' are called whenever an access to the variable is made. For example, a 
*SET Mode command will call the write code entry, and •SHOW sys$modc or 
*ECHO <Mode> will call the read entry. 

Notice that in the body of the code variable, only XOS_ SWls are used. This is 
because it is important that errors are not generated when the read or write code 
executes. A more rigorous version of the code above would check V after each SWI 
and return if it was set. 

- Note: when a function key is input, the appropriate variable key$n is read using 
OS_ReadVarVal. Therefore by creating your own code variables with these 
names, you can cause the reading of a function key to cause a routine to be called 
instead of just a string being read. 

OS_SetVarVal can return the following errors: 

- Badname Wildcards/control characters in name when creating 

- Bad string OS_GSTrans unable to ttanslate stting 

- Bad macro value Control characters in the value string (Rl) 

- Bad expression Expression cannot be evaluated 



- Variable not found 

- No room for variable 

- Variable value too long 

- Bad variable type 

SUMMARY OF EXECUTION MODES 

IIHE PROGRAM 
ENVIRONMENT 

For deletion or update 

Not enough room to create/update it (system heap 
full) 

Variables are limited to 256 bytes 

This section summarises the ways in which control may be passed to user's code, 
apart from the case of the code being the current application, which is described 
above. 

Vectors are called in SVC or IRQ mode - it is difficult to predict which sometimes. 
In view of this, you should assume nothing about the mode you are in. If you want to 
execute a SWI, you should enterSVC mode explicitly, push R14_SVC, call the 
SWI, restore R14_SVC and finally restore the processor mode. The code to do this is 
shown in section Interrupts in the chapter FUNDAMENTAL OPERATING 
SYSTEM CONCEPTS. 

Module entries 

If a program is a module loaded into the fu\1A, there are several ways in which is can 
be called. At the start of the module, there are several offsets which are used by the 
OS to call the module at various times. These include an initialisation entry and a 
service code entry. See the next chapter for a full description. 

Additionally, a module may have a SWI and • command table. These are used to 
enable the OS to pass control automatically to the module if it can handle an 
unrecognised SWI or command. Also, the OS can recognise a module's 
*CONFIGURE and *STATUS options for it. 

351 



352 

Vectors and handlers 

There are many vectors and other 'hooks' to which user code can attach itself (see 
above and the chapter FUNDAMENTAL OPERATING SYSTEM 
CONCEPTS.) These are usually called in supervisor or IRQ mode, as they are an 
indirect result of the user executing a SWl, or some interrupt event occurring. 

In general, all extensions to the system should be implemented as modules. 
T herefore the SWl vector should not be used, as SWis can be passed to modules 
automatically. Also, the OS_CLI vector should only be used if a module wants to 
replace totally the command line interpreter. This is not very wise. It can be useful 
to use CliV if you want to know about every • command that is issued (for debugging 
purposes, for example). In this case, the vector would always be passed on. 

Handlers tend to be taken over by applications to ensure that control returns to a 
well-defined point in the program. See the example above of the way BASIC uses 
the escape and error handlers. 

Code called by vectors and handlers which are set-up using 
OS_ChangeEnvironment can always rely on the workspace pointer in Rl2 being set 
up. (The exception is the error handler- the workspace pointer is in RO.) Similarly, 
a full, descending stack pointer will be in Rl3; this may be the SVC or lRQ stack, 
depending on what routine is called. Vector code should always take care to obey the 
appropriate register conventions - preserving register where necessary and passing 
back results in the correct registers/flags. 



Transient programs 

. HE PROGRAM 
ENVIRONMENT 

A file with type FFC (utility) must contain position independent code. When such a 
file is *RUN, it is loaded into the RMA and executed. The following entry 
conditions exist: 

On entry: RO =pointer to command line (OS 0.03 onwards) 
Rl = pointer to command tail 
R 12 = pointer workspace 
R13 = pointer to workspace end (stack) 
R 14 = return address 
User mode, interrupts enabled 

The workspace is 1024 bytes located directly after the loaded program file. If more is 
required, it may be allocated from the RMA. The utility should return using MOV 
PC,R14 (freeing any extra workspace first). It does not become the current 
application and should not call OS_Exit. 

Note that RO points to the first character of the command name, and Rl points to 
the first character of the command tail (with spaces skipped). This will be a control 
character if there were no parameters. 

When a utility returns, the space it occupies is freed. Utilities are nestable- you can 
execute one utility from within another. 

Note that utilities are viewed as system extensions. This means that they should only 
use the X form SWls, so that the error handler is not called by their actions. 
Alternatively, the utility can set up its own error handler, as long as it restores the 
previous value before returning. A utility can return with an error by setting V and 
pointing RO at an error block as usual. 

353 



354 



NDEX 

ADFS209 
ADFS error messages 277 
ADFS intrinsic commands 266 
ADFS SWI calls 

perform a miscellaneous disc 
operation 2 72 

read free space 2 77 
set address of hard disc controller etc. 

276 
ADFS_DiscOp 2 72 
ADFS_Drives 277 
ADFS_FreeSpace 277 
ADFS_HDC 2 76 
advanced disc filing system 263 
aliases 186 
anti-aliasing palette 509 
application, leaving 334 
ArgsV 24 
argument passing in external procedures 

626 
arithmetic instructions 604 
ARM assembler 595 
ARM instruction set 603 
ARM procedure-call standard 623 
ArthurOS3 
ASCII to binary conversions 403 
assembler 595 
assembly language statementS, format 

600 
auto-repeat 14 7 

banks 67 
BASIC assembler 595 
battery-backed RAM 325 
BGetV 24 
Binary to ASCII conversion SWls 407 
binary to ASCII conversions 407 

BPutV 24 
branching instructions 607 
buffer OS_Byte calls 

examine buffer status 46 
flush buffer 44 
flush selected buffer 45 
get buffer/mouse status 45 
get character from buffer 46 
insert character code into buffer 46 
insert character into buffer 47 

buffer codes, interpreting 144 
buffer numbers and sizes 43 
buffers 42 
ByteV 23 

ChangeEnvironmentV 29 
character output routines 

perform a plot command 53 
print a formatted string 52 
write a counted string 53 
write an immediate byte 53 
write an in-line string 51 
write an indirect string 51 
write character 51 
write newline 52 

character input event 38 
character output 51 
chunk numbers 7 
CLI183 
CLI parameters, reading 207 
CliV23 
clock/calendar 396 
CMOSRAM322 
CnpV 26 
co-ordinate unitS 506 
command keyword table 381 
command line interpreter 12, 183 



II 

comparisons 606 
condition codes 602 
control codes 69 
conventions 1 
country flag, read 49 
cursor editing 68 

date 391 
date stamping 213 
debugger* commands 567 
debugger 567,617 
Debugger_Disassemble 572 
defect list 274 
define pointer and mouse parameters 

130 
define font 507 
dialogue boxes 444 
directories 210 
disc specifiers 265 
Double Extended Precision (E) 574 
dragging boxes 445 

Econet 585 
Econet conventions 589 
Econet event 40 
environment SWis 

read environment parameters 338 
set environment parameters 339 
set-up CallBack handler 340 
set/read handler addresses 336 

error handling, SW18 
error numbers 9 
errors, generating 11 
ErrorV 22 
escape condition 14 7 
escape condition event 39 

event OS_Bytes 
disable event 36 
enable event 3 7 

event dispatcher 550 
event queue 549 
events 36 
EventV 25 
execution modes 351 
expression evaluator 405 

file types 213 
fileswitch 217 
FileV 24 
filing system 

interface calling conventions 297 
interface calls 298 
writing your own 293 

filing systems 209 
floating-point emulator 573 
floating-point instruction set 578 
floating-point statuS register 576 
font files 490,513 
font manager 489 
font manager SWis 492 
font painter 490, 505 
Font_CacheAddress 493 
Font_ Caret 497 
Font_CharBBox 500 
Font_ConverttoOS 497 
Font_Convemopoints 498 
Font_CurrentFont 498 
Font_FindCaret 499 
Font_FindCaret} 504 
Font_FindFont 493 
Font_FutureFont 499 
Font_ListFonts 501 
Font_LoseFont 493 



Font_Paint 496 
Font_ReadDefn 494 
Font_Readinfo 494 
Font_ReadScaleFactors 500 
Font_RcadThresholds 502 
Font_SetFont 498 
Font_SetFontColour 501 
Font_SetPalette 502 
Font_SetScaleFactors 500 
Font_SetThresholds 504 
Font_StringBBox 505 
Font_StringWidth 494 
fonts, accessing 491 
format of the heap 329 
FSCV25 
FSEntry_Args 301 
FSEntry_Close 304 
FSEntry_File 305 
FSEntry_Func 309 
FSEntry_GetBytes 300 
FSEntry_Open 298 
function keys 145 
function-key codes 166 

GBPBV 24 

hardware vectors 30 
heap descriptor 329 
heap manager 325 
heap manager SWI call 326 
help keyword table 381 

IEEE Double Precision (D) 574 
IEEE Single Precision (S) 574 
inputbufferevent38 
input routines 139 

read character 139 

NDEX 

read key with time limit 139 
read line from input stream to 

memory 141, 14 2 
input stream OS_Bytes 

read input source 139 
specify input stream 138 

input streams 13 7 
instruction set 603 
InsV 25 
interrupts 31 
interrupts 

devices handled under 3 
disabling 35 
intercepting 32 

interval timer event 39 
lrqV 23 

key up/down event 41 
keyboard input 443 
keyboard interrupts 143 
keyboard OS_Byte calls 

acknowledge escape condition 157 
clear escape condition 157 
cursor key status 148 
keyboard scan 156 
keyboard scan from 16 decimal 156 
read last break type 172 
read/write Break and Escape effect 

162 
read/write Break key actions 1 72 
read/write Ctrl function key 

interpretation 167 
read/write Ctrl Shift function key 

interpretation 167 
read/write cursor key status 149 
read/write escape character 165 
read/write escape effects 169 

Ill 



IV 

read/write Escape key status 169 
read/write function key interpretation 

167 
read/write interpretation of input 

values &CO- &CF 165 
read/write interpretation of input 

values &DO- &OF 165 
read/write interpretation of input 

values &EO- &EF 165 
read/write interpretation of input 

values &FO- &FF 165 
read/write keyboard auto-repeat delay 

150 
read/write keyboard auto-repeat rate 

151 
read/write keyboard disable flag 162 
read/write keyboard semaphore 161 
read/write keyboard status byte 163 
read/write length of function key 

string 164 
read/write numeric keypad 

interpretation 1 70 
read/write Shift function key 

interpretation 16 7 
read/write Tab key code 164 
reflect keyboard status in LEOs 151 
reset function keys 151 
scan a for a particular key 158 
set effect of Shift Ctrl on numeric 

keypad 173 
set escape condition 157 
write keyboard auto-repeat delay 149 
write keyboard auto-repeat rate 150 
write keys pressed information 152 

keyboard scanning 146 
keyboard SWI calls 1 74 

layout of windows 439 
Level 1 sound channel handler 531 
Level 2 sound scheduler 534 
line input 140 
linker 613 
linker keywords 616 
linker symbols 615 
load/save instructions 608 
logical instructions 604 
logical memory map 318 
logical RAM 31 7 

memory management 31 7 
memory protection 320 
memory SWls 330 
metrics files format 513 
miscellaneous OS_Byte calls 

display OS version information 48 
read country flag 49 
read/write user flag 48 
write user flag 48 

modes, screen 65 
module * commands 356 
module code, errors in 365 
module header format 366 
module help string 380 
module SWI calls 

issue module service call364 
perform a module operation 358 

module title string 380 
module workspace 365 
module, writing 365 
modulcs355 
mouse and pointer 128 
mouse button event 40 
mouse buttons 443 



mouse/pointer OS_Byte calls 
get buffer/mouse status 129 
select pointer I activate mouse 128 

mouse/pointer OS_ Word call 
define pointer and mouse parameters 

130 
MouseY (&1A) 28 
multiply instructions 607 

NetFS 209 
NetFS intrinsic commands 283 
netprint 290 
network filing system 283 
network filing system 

configuration 285 
interfaces 286 

network printing 290 
non-volatile memory 322 
Num Lock, effect of 171 
number conversions 403 
number conversions, SWl 409 

OpenY24 
operating system commands 189 
operating-system variable calls 

read a variable's value 346 
set/create a variable 34 7 

operating-system variables 345 
OPT assembler directive 599 
OS filing system commands 21 7 
OS filing system SWI calls 

check for end of file 231 
filing system control 254 
open or close a file for byte access 242 
perform action on whole file 233 
read or write arguments for an open 

file 252 

read single byte from an open file 251 
read/write a group of bytes from/to an 

open file 244 
read/write boot option 232 
write filing system options 232 
write single byte to an open file 251 

OS table 187 
OS vectors 

l OOHz pacemaker vector 29 
buffer insert vector 25 
buffer remove vector 25 
command line interpreter vector 23 
count/purge buffer vector 26 
error vector 22 
event vector 25 
file arguments read/write vector 24 
file byte block get/put vector 24 
file byte put vector 24 
file byte read vector 24 
file open vector 24 
file read/write vector 24 
filing system control vector 25 
mouse vector 28 
OS_Byte indirection vector 23 
OS_ Word indirection vector 24 
read character vector 23 
read line vector 25 
unknown interrupt vector 23 
unknown SWI vector 2 7 
unknown YOU 25 vector 2 7 
unknown YOU23 vector 27 
YOU extension vector 28 
warning of change in environment 29 
warning vector 29 
write character vector 23 

OS version information, display 48 
OS_Args 252 

v 



VI 

OS_BGet 251 
OS_BinaryToDecimal407 
OS_BPut 251 
OS_BreakCtrl 342 
OS_BreakPt 341 
OS_Byte 13 
OS_Byte calls 

buffers 44 
index of643 
mouse/pointer 128 
RS423 176 
VDU 104 

OS_CaiiAfter 394 
OS_CaiiAVector 18 
OS_ CallBack 340 
OS_CaiiEvery 395 
OS_ChangeDynamicArea 331 
OS_ChangeEnvironmem 343 
OS_CheckModeValid 127 
OS_Ciaim 17 
OS_ClaimScreenMemory 127,322 
OS_CLI 184 
OS_Control336 
OS_ConvertDateAndTime 401 
OS_ConvertStandardDateAndTime 400 
OS_EvaluateExpression 404 
OS_Exit335 
OS_File 233 
OS_Find 242 
OS_FSControl 294 
OS_FSComrol 254 
OS_GBPB244 
OS_GenerateError 11 
OS_ GenerateEvent 3 7 
OS_GetEnv 338 
OS_GSinit 411 
OS_GSRead 412 

OS_GSTrans 414 
OS_Heap326 
OS_InstaiiKeyHandler 1 74 
OS_Module 358 
OS_Mouse 134 
OS_NewLine 52 
OS_Piot53 
OS_pretryPrim 52 
OS_RcadC 139 
OS_ReadEscapeState 174 
OS_ReadLine 141 
OS_ReadModeVariable 124 
OS_ReadMonotonicTime 394 
OS_ReadPalette 121 
OS_ReadPoint 124 
OS_RcadUnsigned 403 
OS_ReadVarVal346 
OS_ReadVduVariables 122 
OS_Release 18 
OS_RemoveCursors 126 
OS_RemoveTickerEvent 395 
OS_RestoreCursors 127 
OS_ServiceCall364 
OS_SetCaliBaclc 341 
OS_SetEnv 339 
OS_SetVarVal 347 
OS_SetVarVal errors 350 
OS_SpriteOp 422 
OS_SubstituteArgs 414 
OS_SWINumberFromString 410 
OS_SWINumberToString 410 
OS_UnusedSWI 342 
OS_UpCall19 
OS_UpdateMEMC 330 
OS_ ValidateAddress 332 
OS_ Word 13 



OS_ Word calls 
mouse/pointer 130 
index of646 
VDU 116 

OS_ WriteO 51 
OS_ WriteC 51 
OS_ WriteC, using 69 
OS_ Write! 53 
OS_ WriteN 53 
OS_ WriteS 51 
Output stream OS_Bytes 

read printer driver type 61 
read/write *SPOOL file handle 63 
read/write character destination status 

55 
read/write NO IGNORE state 62 
read/write printer ignore character 62 
specify output streams 54 
write printer driver type 60 
write printer ignore character 62 
write RS423 transmit rate 56 

outputbufferevent38 
output streams 54 

Packed Decimal (P) 575 
palette 67 
panes 446 
pathname conventions 231 
pathnames 210 
pixel data, converting to screen 505 
pixel files format 514 
plot a sprite 422 
podule system manager 593 
pointer shape, changing 446 
pop-up menus 444 
printer ignore character 61 
printer stream 57 

procedure-call standard 623 
program environment 333 

RdchV 23 
ReadlineV 25 
redrawing windows 441 
registers 60 1 
registers, names for referring to 625 
RemV25 
RS423 characters, interpretation of 175 
RS423 error event39 
RS423 OS_Byte calls 

read I write asynchronous 
communications state 177 

read RS423 baud rates 180 
read RS423 control byte 178 
read/write RS423 busy flag 179 
read/write RS423 ignore flag 180 
read/write RS4 23 input buffer 

minimum space 180 
read/write RS423 input interpretation 

status 178 
write RS423 receive rate 176 

RS4 23 output stream 55 
RS4 23 port 1 74 

sample rate 528 
SCCB 544 
screen memory 321 
screen RAM 67 
single-character prefixes 186 
software vectors 16 
Sound Voice Generators 520,522,550 
sound channel control block 544 
sound channel handler 535 
sound channel interface 521 
sound DMA buffer handler 521, 523 

VII 



Vlll 

sound event 41 
sound event scheduler 522 
sound Level 0 • commands 524 
sound Level 0 SWI calls 

configure the sound system 525 
loudspeaker control 526 
set stereo image position 52 7 
sound system control 526 

sound Level 1 SWI calls 
attach a channel to a named voice 

generator 539 
attach channel to voice generator 539 
convert pitch to internal 

representation 541 
foreground (immediate) control of 

channel541,542 
install voice generator 538 
internal audio logarithm scaling 541 
linear to audio logarithm 540 
read channel control data 543 
remove goice generator 538 
set the overall loudness 540 
set the sound system tuning 541 
write channel control data 543 

sound Level 2 SWI calls 
check free slots 54 7 
flush and initialise the event queue 

546 
reserved Level2 call547, 548 
schedule a sound event 546 
set the sound system tempo 548 
set/read the tempo beat counter 548 

sound Level 2 • commands 535, 545 
sound system 519 
sound system scheduler 545 
Sound_AttachNamedVoice 539 
Sound_ Configure 525 

Sound_Control541 
Sound_ControlPacked 542 
Sound_Enable 526 
Sound_InstaliVoice 538 
Sound_LogScale 541 
Sound_Pitch 541 
Sound_QBeat 548 
Sound_QDispatch 548 
Sound_QFree 54 7 
Sound_Qlnit 546 
Sound_QRemove 54 7 
Sound_QSchedule 546 
Sound_QTempo 548 
Sound_ReadContro!Block 543 
Sound_RemoveVoice 538 
Sound_SoundLog540 
Sound_Stereo 527 
Sound_ Tuning 541 
Sound_ Volume 540 
Sound_ WriteControlBlock 543 
SoundChannels (Levell) 521 
SoundChannels Level 1 control block 

543 
SoundDMA 521 
SoundScheduler(Level2)522 
sprite • commands 418 
sprite area format 43 7 
sprite VDU commands 421 
sprites 417 
SpriteUtils module 41 7 
stack space, checking 184 
string scanning calls 

General String Translation 414 
string input 412 
string input initialisation 411 
substitute command line arguments 

414 



string scanning routines 411 
SWI calls 

ADFS 272 
environment 335 
mouse/pointer 134 
sprite 422 
debugger 572 
Econet585 
heap manager 326 
index of 641 
modules358 
OS filing system 231 
podule593 
sound Level 0 525 
sound Levell 538 
sound Level 2 546 
VDU 121 
window manager 448 

SWI chunk number 385 
SWI decode code 388 
SWI decode table 388 
SWI error handling 8 
SWI handler code 385 
SWI instruction 4, 611 
swr number conversions 409 
SWI numbers 6 
SWI Sound_AttachVoice 539 
SWI Sound_Speaker 526 
SWIV 27 

template files 44 7 
text and graphics 66 
text handling 443 
TickerV 29 
time391 

time and date OS_Byte calls 
50Hz counter 396 
read/write timer switch state 393 

time and date OS_ Word calls 
read CMOS clock 396 
read interval timer 392 
read system clock 391 
write CMOS clock 398 
write interval timer 393 
write system clock 392 

tool windows 446 
transfer function, setting 508 
transient programs 352 
two-key rollover 14 7 

UkPlotY 27 
UKVDU23V 27 
UpCallY 29 
updating windows 442 
user event 40 
user flag, read/write 48 
user root directory 265 

VDU codes 
back space 73 
bell 73 
carriage return 74 
change display mode 82 
clear graphics window 75 
define graphics window 98 
define text window 102 
delete 103 
disable printer 71 
disable screen display 81 
enable printer 71 
enable screen output 72 
form feed/clear screen 74 

IX 



X 

general PLOT command 99 
home text cursor 103 
horizontal tab 73 
join cursors 72 
line feed 73 
miscellaneous commands 85 
next character to printer only 70 
no operation 102 
null operation 70 
page mode off 75 
page mode on 7 4 
position text cursor 103 
restore default colours 81 
restore default windows 102 
set graphics colour and action 76 
set graphics origin 102 
set palette 78 
set text colour 75 
split cursors 71 
vertical tab 7 4 

YOU control sequences 70 
YOU drivers 65 
YOU extension vector 134 
YOU OS_Byte calls 

read / write general graphics 
information 112 

read character at text cursor position 
and screen mode 110 

read display screen bank number 108 
read duration of first colour 104 
read duration of second colour 105 
read output cursor position 110 
read text cursor position 110 
read YOU driver screen bank number 

107 
read YOU status 109 
read YOU variable value 111 

read/write bell channel114 
read/write bell duration 115 
read/write bell frequency 114 
read/write bell sound volume 114 
read/write bytes in YOU queue 115 
read/write flash counter 113 
read/write paged mode line count 115 
reset font definitions 106 
reset group of font definitions 106 
set vertical screen shift and interlace 

111 
wait for vertical sync (vsync) 105 
write display hardware screen bank 

108 
write duration of first colour 104 
write duration of second colour 104 
write shadow/non-shadow state 108 
write YOU driver screen bank 107 

YOU OS_ Word calls 
read a character definition 11 7 
read current and previous graphics 

cursor positions 119 
read pixel logical colour 116 
read the palette 118 
write screen base address 119 
write the palette 118 

YOU sequences 507 
YOU stream 56 
YDUXY28 
vector code, writing 20 
vector SWI calls 1 7 
vectors 21 
vectors and handlers 351 
vectors, hardware 30 
voice generator header block 551 
YSYNC timers 395 
Y sync event 39 



WIMP environment 439 
WIMP error messages 486 
Wimp_CloseDown 485 
Wimp_ CloseT em plate 483 
Wimp_CloseWindow 455 
Wimp_Createlcon 451 
Wimp_CrcateMenu 4 79 
Wimp_ Create Window 449 
Wimp_DecodeMenu 480 
Wimp_Deleteicon 454 
Wimp_DeleteWindow 454 
Wimp_DragBox 4 75 
Wimp_ForceRedraw 4 76 
Wimp_GetCaretPosition 478 
Wimp_Gedconlnfo 472 
Wimp_GetPointerlnfo 474 
Wimp_GetRectangle 468 
Wimp_GetWindowlnfo 470 
Wimp_GetWindowState 469 
Wimp_Initialise 448 
Wimp_LoadTemplate 484 
Wimp_OpenTemplate 483 
Wimp_OpenWindow 455 
Wimp_poll456 
Wimp_ProcessKey 485 
Wimp_RedrawWindow 466 
Wimp_SetCaretPosition 4 77 
Wimp_SetExtent 482 
Wimp_SetlconState 471 
Wimp_SetPointerShape 482 
Wimp_UpdateWindow 467 
Wimp_ Whichlcon 481 
window manager 439 
WordV24 
WrchV23 

I in YOU sequence 70 

•ACCESS 217 
•ADFS 265 
•APPEND218 
•AUDIO 524 
•BACK 267 
•BACKUP 267 
•BREAKCLR 567 
•BREAKLIST 568 
•BREAKSET 568 
•BUILD 218 
•BYE 267,283 
•CAT 218 
•CDIR 219 
•CHANNEL VOICE 536 
•CLOSE219 
•COMPACT 268 
•CONFIGURE 189 
•CONFIGURE FS 285 
•CONFIGURE LIB 286 
*CONFIGURE SoundDefault 53 7 
•CONFIGURE SpriteSize 421 
•CONFIGURE PS 291 
•CONTINUE 568 
•COPY 219 
•CREATE221 
•DEBUG 569 
•DELETE 221 
•DIR222 
•DISMOUNT 268 
•DRIVE269 
•OUMP222 
*ECHO 198 
•ENUMDIR 223 
*ERROR 198 
•EVAL 199 
•Ex 223 
•EXEC 223 

XI 



XII 

*EXEC file OS_Byte call182 
*EXEC file OS_Byte calls 

read/write *EXEC file handle 182 
*EXEC input stream 181 
*FORMAT269 
*FREE 269 
*FREE 284 
*FS 284 
*FX 15, 199 
*GO 199 
*GOS 200 
*HELP 200 
*IF 201 
*IGNORE 201 
*INFO 224 
*INITSTORE 569 
*KEY 201 
*LCAT224 
*LEX 224 
*LIB 224 
*LIST225 
*LOAD 225 
*LOGON 284 
*MAP 270 
*MEMORY 569 
*MEMORY A 570 
*MEMORY! 571 
*MODULES 356 
*MOUNT 2 70, 285 
*NAMEDISC 271 
*NAMEDISK 271 
*NOOIR271 
*NOLIB 271 
*NOURD271 
*OPT225 
*PASS 285 
*PRINT 226 

*PS 291 
*QSOUND546 
*QUIT 571 
*REMOVE227 
*RENAME227 
*RMCLEAR 356 
*RMKILL356 
*RMLOAD357 
*RMREINIT 357 
*RMRUN357 
*RMTIDY 357 
*RUN 227 
*SAVE227 
*SCHOOSE418 
*SCOPY 418 
*SCREENLOAD 418 
*SCREEN SAVE 419 
*SDELETE 419 
*SET 202 
*SETEV AL 204 
*SETMACRO 204 
*SETPS 291 
*SETTYPE 228 
*SFLIPX 419 
*SFLIPY 419 
*SGET419 
*SHAOOW204 
*SHOW205 
*SHOWREGS 571 
*SHUf228 
*SHUTDOWN 228 
*SINF0420 
*SLIST 420 
*SLOAD420 
*SMERGE420 
*SNEW420 
*SOUND537 



*SPEAKER 524 
*SPOOL229 
*SPOOL stream 63 
*SPOOLON 229 
*SRENAME 421 
*SSAVE 421 
*STAMP 229 
*STATUS 205 
*STATUS fS 286 
*STATUS LIB 286 
*STATUS PS 291 
*STERE0524 
*TEMP0545 

*TIME206 
*TITLE 271 
*TUNING 537 
*TV 206 
*TYPE 229 
*UNPLUG358 
*UNSET206 
*UP 230 
*URD 272 
*VERIFY 272 
*YOICES536 
*YOLUME536 
*WIPE 230 

XIII 








