
Acornt

rchimedes

PROGRAMMER'S
REFERENCE

MANUAL

Acorn~

• rchimedes

ii

Designed and laser-typeset by Human-Computer Interface Limited, Cambridge.

Copyright© Acorn Computers Limited 1987

Neither the whole nor any part of the information contained in, or the product described in,
this guide may be adapted or reproduced in any material form except with the prior written
approval of Acorn Computers Limited (Acorn Computers).

The product described in this guide and products for use with it are subject to continuous
development and improvement. This applies particularly to the Arthur Machine Operating
System, which will be subject to further development and improvement. All information of a
technical nature and particulars of the product and its use (including the information and
particulars in this guide) are given by Acorn Computers Limited in good faith. However, it is
acknowledged that there may be errors or ommissions in this guide or in the products it
describes. A list of details of any amendments or revisions to the guide can be obtained upon
request from Acorn Computers. Acorn Computers welcomes comments and suggestions
relating to the product and this guide.

All correspondence should be addressed to:

Customer Support and Training,
Acorn Computers Limited,
Cambridge Technopark,
645 Newmarket Road,
Cambridge CBS 8PB.

All maintenance and service on the product must be carried out by Ayorn Computers'
authorised dealers. Acorn Computers can accept no liability whatsoever for any loss or damage
caused by service, maintenance or repair by unauthorised personnel. This guide is intended
only to assist the reader in the use of this product, and therefore Acorn Computers shall not be
liable for any loss or damage whatsoever arising from the use of any information or particulars
in, or any error or omission in, this guide, or any incorrect use of the product.

The British Broadcasting Corporation has been abbreviated to BBC in this guide.

Acorn is a trademark of Acorn Computers Limited.
Econet is a registered trademark of Acorn Computers Limited.
Archimedes is a trademark of Acorn Computers Limited.
Yax is a trademark of the Digital Equipment Corporation.

First published 1987
Issue 1 November 1987
Published by Acorn Computers Limited
Part number 0476,006

ISBN 1 85250 053 0

)

lloNTENTS

INTRODUCTION

FUNDAMENTAL OPERATING SYSTEM CONCEPTS

CHARACTER OUTPUT

THE VDU DRIVERS

CHARACTER INPUT

THE COMMAND LINE INTEPRETER

FILING SYSTEMS

MEMORY MANAGEMENT

THEPROGRAMENV1RONMENT

MODULES
MODULE* COMMANDS
MODULE SWI CALLS
WRITING A MODULE

TIME AND DATE
CENTI-SECOND TIMERS
VSYNC TIMERS
THE REAL-TIME CLOCK/CALENDAR

NUMBER CONVERSIONS
ASCII TO BINARY CONVERSIONS
BINARY TO ASCII CONVERSIONS
SWI NUMBER AND NAME CONVERSIONS
STRING SCANNING ROUfiNES

1

3

51

65

137

183

209

317

333

355
356
358
365

391
391
395
396

403
403
407
410
411

ii i

SPRITES 417
SPRITE VDU COMMANDS 421
THE SPRITE SWI CALL 422
SPRITE INTERNALS 437

THE WINDOW MANAGER 439
INTRODUCTION 439
WINOOW MANAGER SWis 448

THE FONT MANAGER 489
INTRODUCTION 489
THE FONT MANAGER 490
THE FONT PAINTER 505
THE FONT FILES 513

SOUND 519
INTRODUCTION 519
SOFTWARE STRUCTURE 520
SOUNDDMA (LEVEL 0)- SOUND DMA BUFFER HANDLER 523
SOUNDCHANNELS (LEVEL I) -SOUND CHANNEL HANDLER 535
SOUNDSCHEDULER (LEVEL 2)- SOUND SYSTEM SCHEDULER 545

THE DEBUGGER 567
THE DEBUGGER* COMMANDS 567
THE DEBUGGER SWI CALL 572

THE FLOATING POINT EMULATOR 573
INTRODUCTION 573
THE INSTRUCTION SET 578

ECONET, THE TRANSPORT LAYER 585
INTERFACES 585
CONVENTIONS AND VALUES 589
IMPLEMENTATION LIMITS 591

IV

PODULE, THE PODULE SYSTEM MANAGER
INTERFACES

APPENDIX A - ARM ASSEMBLER
INTRODUCTION
USING THE BASIC ASSEMBLER

ON TENTS

FORMAT OF ASSEMBLY LANGUAGE STATEMENTS
REGISTERS
CONDITION CODES
THE INSTRUCTION SET

APPENDIX B- THE LINKER
USING THE LINKER
LINKER PRE-DEFINED SYMBOLS
LINKER KEYWORDS
THE DEBUGGER

APPENDIX C- ARM PROCEDURE CALL STANDARD
INTRODUCTION

APPENDIX D - OPERATING SYSTEM CALLS
INDEX OF SWI CALLS
NUMERIC INDEX OF OS_BYTE CALLS
NUMERIC INDEX OF OS_ WORD CALLS

INDEX

593
593

595
595
595
600
601
602
603

613
613
615
616
617

623
623

641
641
643
646

I

v

vi

ltoDULES

A relocatable module is a piece of software which, when loaded into the machine,
may behave as a normal application program or, more usefully, as an extension to the
operating system. Hence it can contain a language or filing system, receive service
calls, add new • commands etc.

Relocatable modules run in an area of memory designated the Relocatable Module
Area (RMA), which is maintained by the system. Modules are not guaranteed to be
loaded at any particular address. Therefore, their code must be relocatable.

The OS provides facilities to help modules integrate themselves into the system. For
example, the operating system normally responds to the *HELP service call for them,
extracting any relevant help text automatically so they do not need to respond to it
themselves.

Modules are a key feature of the Archimedes software environment. Their discussion
has been left until relatively late in this manual because, for the user, the way in
which modules work is not very important. The facilities they provide are integrated
into the OS using SWis and • commands in a way which makes them appear to be
part of the system.

However, it is dear that any major piece of software written for the A-series
machines should be implemented as a module, so this chapter is included as a guide
for the writer of such software.

There are several • commands provided by the OS to handle modules, including one
to load a module file from the filing system. These commands are described first.
Next the SWis relating to module functions are described. The most important of
these is OS_Module. This provides the machine code interface to the functions
provided by the module • commands. It also enabled modules to claim workspace
from the RMA.

Finally, the internals of the actual module code are described as follows:

- the entry points
- how the entry points are called
- how automatic command and SWI decoding is achieved etc.

355

MODULE • COMMANDS

356

*MODULES

Syntax: *MODULES

*MODULES lists all the system and relocatable modules which are currently present
in the machine. System modules are stored in ROM, but may still be *UNPLUGged,
or replaced by RAM-based modules. The names listed by this command are the
module titles which are supplied to other commands, eg *RMKILL. This command
also lists the base addresses and workspace areas of the modules.

The command *HELP MODULES provides information about the version numbers
and creation dates of the currently installed modules.

*RMCLEAR

Syntax: *RMCLEAR

*RMCLEAR deletes all relocatable modules currently present in the RMA that it
can and frees the work space that they have been assigned. System modules cannot
be cleared in this way.

Syntax: *RMKILL <module title>

*RMKILL deletes just the module whose name is given and releases its workspace.
System modules may be removed by using this command. They are 'removed' until
the next hard break or *RMREINIT.

lloDULES

*RMLOAD

Syntax: *RMLOAD <filename> [<module init string> I

"'RMLOAD loads and initialises the relocatable module whose filename is given.
The module will then declare itself on "'HELP and any of its commands will be
available for use.

The optional initialisation can be used by certain modules to install themselves in a
particular way. For example, it might give the amount of workspace that the module
should claim, possibly overriding configuration information stored in CMOS RAM.

Note that a file loaded by this command (and *RMRUN) must have file type FFA. If
it doesn't, the module handler will refuse to load it.

•RMREINIT

Syntax: *RMREINIT <module title> [<module in it string> J

"'RMREINIT reinitialises the relocatable module, which is named and must be
present in the machine. The module is returned to the same default state as when it
has just been loaded. This command may be used to restore a module which has been
*UNPLUGged or *RMKILLed.

*RMRUN

Syntax: "'RMRUN <filename> [<module init string> I

*RMRUN runs the specified relocatable module. Such a module will typically
contain an application, such as a language or word processor.

*RMTIDY

Syntax: *RMTIDY

"'RMTIDY compacts and garbage collects the workspace used by the relocatable
modules so that all free space is collected into a consecutive chunk of memory. This

357

may affect the operation of certain modules such as causing files to be closed and
sound to be interrupted.

Syntax: *UNPLUG [<module title>)

This command prevents the initialisation of a system (ROM-based) module. Once
unplugged, a module can't be accessed until it is *RMREINITed. Even switching the
machine off and on again won't affect the module's unplugged state. If the command
is issued without an argument, a list of the modules currently unplugged is displayed.

ViODULE SWI CALLS

358

This section describes the functions performed by the OS_Module call, and other
secondary SWis related to module. To understand these calls fully, you may also
have to read the section on module entry points and header formats.

OS_Module &lE (30)- Perform a module operation

On entry: RO = action code
Rl ... as below

On exit: Rl ... as below

The module handler provides OS_Module to manipulate modules. When loading a
module it checks that the code has a load address of the form &FFFFFAxx, ie the file
must be a stamped one with the type FFA. This prevents text files, for example,
being loaded as modules.

The handler also performs simple checks when deleting and moving modules. These
actions give an error if the system 'thinks' you are applying them to a module
currently active, for example, if you try to *RMKILL BASIC from within BASIC.

This check is applied whenever the system is about to call a module's finalise entry.
Hence simple applications need not keep checks on this explicitly. More complex

lloDULES

modules which, for example, run sub tasks, need to keep their own state checks in
order to avoid being removed when they are due to be returned to at some point.

Many of the OS_Module calls refer to a module title. This has some general
restrictions. The name passed is terminated by any control character or space and
can be abbreviated with a full stop. For example, 'Ec.o.' is an abbreviation for
'Econet'. The title field in the module is similarly terminated by control characters
and spaces. The pattern matching ignores the case of both strings, and allows any
characters other than space or full stop. You should restrict your titles, however, to
alphanumerics and'_' for future compatibility.

The particular operations of OS_Module depend on the value of RO as given below.
As usual, errors are indicated by V being set and an error pointer in RO. These errors
may be generated by one of the modules, and the error block addressed by RO might
reside in a module's code. You should therefore not rely on the error block remaining
in the same place across calls to OS_Module.

RO =0 Run

On entry: Rl .. pointer to filename plus optional parameters

On exit: Does not return if module has a start entry

This call is equivalent to loading then entering the module. If the module can be
started as an application, it will be, and so the call will not return. Possible errors are
File not found, No room in RMA, Not a module, Duplicate module
refused to die, and Module refuses to initialise.

RO = l Load

On entry: Rl ,. pointer to filename and optional parameters

On exit: V set on error

This instruction attempts to claim a block of the RMA and *LOADs the file if it has
the correct file type. Then it attempts to kill any existing module of the same name.
It sets the private workspace word to 0, calls the module through its initialise address

359

360

and links it to the end of the module list, or replaces the old module of the same
name.

The filename should be terminated suitably for OS_File. The terminator can be
space, in which case there can be a parameter string after the filename to pass to the
module initialisation. Possible errors are File not found, No room in RMA, Not
a module, Duplicate module refused to die, and Module refuses to
initialise.

RO = 2 Enter

On entry: Rl .. pointer to module name
R2 = pointer to parameters

On exit: normally doesn't return

If the module doesn't have a stan address, then this call simply returns. If it does, this
call resets the supervisor stack, sets user mode and enters the module, hence making
it the current application. The possible error is Module not found.

RO = 3 Relnit

On entry: Rl =pointer to module name plus any parameters for initialisation

On exit: V set on error

This is equivalent to reloading the module. It is intended for use in forcing modules
that have become confused into a sensible state, without having to reload them
explicitly from the filing system. The instruction calls the module through its finalise
address and deletes any workspace. It then calls it through its initialisation address to
reinitialise it. If the module fails to initialise it is removed from the RMA. Possible
errors are Module not found and others dependent on the module.

lloDULES

RO = 4 Delete

On entry: Rl = pointer to name

On exit: V set on error

On entry:

This instruction calls the module through its finalise address, frees any workspace
pointed at by the private word, delinks the module from the module list and frees the
space it was occupying. Possible errors are Module not found and others
dependent on the module.

RO = 5 Describe RMA

On exit: R2 = size of largest block claimable
R3 = total amount free in RMA

This call returns information on the state of the RMA. It does this by calling
OS_Heap with the appropriate descriptor.

RO = 6 Claim

On entry: R3 = contains the size wanted

On exit: R2 =pointer to claimed block
V set if block could not be allocated

This calls the heap manager to claim workspace in the RMA. If it fails and
application workspace is not currently being used then it will attempt to reallocate
this memory and retry. It returns with V set if it is still unsuccessful. This call is
useful for claiming workspace during the module's initialisation, but may also be used
from other module entries. The possible error is No room in RMA.

361

362

RO = 7 Free

On entry: R2 =pointer to block

On exit: V set if block could not be freed

On entry:

This calls the heap manager to free a block of workspace claimed from the RMA.
The possible error is Not a heap block.

R0=8 Tidy

On exit: V set on error

On entry:

This gives each module in tum, from the end of the list and working backwards, a
non-fatal finalisation call. After all the modules have been called, it collects the
RMA together into one large unfragmented block and reinitialises the modules
again. Any private words containing pointers to workspace blocks in the RMA are
relocated. Errors are generated if modules fail to die or reinitialise.

RO = 9 Clear

On exit: V set on error

This deals with each module in tum, removing it from the module list and calling it
through its finalise address, if it isn't a ROM module. Errors are generated if modules
fail to die.

RO = 10 Insert in-store module

On entry: Rl =pointer to start of block of memory

On exit: V set on error

lloDULES

This takes a pointer to a block of memory and links it into the module chain,
without moving it. No checks are made on the validity of a module. Possible errors
are Duplicate module refuses to die and Module refuses to
initialise.

- Note: for future compatibility, the word immediately before the module start (ie at
address Rl - 4) should contain the length of the module in bytes.

RO = ll Make RMA module from store area

On entry: Rl =pointer to start of module
R2 = length of module

On exit: V set on error

This takes a pointer to a block of memory, kills any duplicate module, copies the
block into the RMA, initialises it and links it into the module chain. Possible errors
are Duplicate module refuses to die, No room in RMA and Module
refuses to initialise.

RO = 12 Extract module information

On entry: Rl = module pointer or 0 for first call

On exit: Rl = module base or 0 if no more modules
R2 =private word

This returns pointers to modules and the contents of their private word. It searches
the list of modules to see if the module pointer given in Rl is valid. If it is valid, the
next descriptor in the module chain is referenced, otherwise the first module
descriptor is referenced. Information from the referenced descriptor is then returned.

The information returned is exactly that printed by the *MODULES command.

Note that on versions of the OS after 0.40, this call may change dramatically in its
input and output parameters. It is not recommended that you build it into any
production programs at this time.

363

364

RO = 13 Extend bl.ock

On entry: R2 =pointer to workspace block
R3 = amount to change block by

On exit: R2 = pointer to the allocated block
V set if block could not be altered

This allows modules to extend workspace blocks claimed in the RMA. It calls
OS_Heap with the appropriate descriptor and attempts to enlarge the RMA if this
fails. The possible error is Can ' t extend block.

OS_ServiceCall &30 (48)

On entry: R 1 = service number
RO, R2 - R4 depend on Rl

On exit: -

OS_ServiceCall is used to issue a service call. It can be used by any program
(including a module) which wishes to pass a service around the current module list.
For example, someone wishing to use FIQs might issue the claim/release service calls
described below.

OS_Byte &SF (143)- Issue module service call

On entry: R 1 = service type
R2 = argument for service

On exit: R2 may contain a return argument

This call is provided for compatibility with the BBC series of microcomputers, and is
used for calling the modules' service entries. Only OS_ServiceCall should be used in
new code.

WRITING A MODULE

lloDULES

This section contains the information you will need to write a relocatable module. It
explains the module header fields, and how the code at each module entry point
should behave.

Workspace

The operating system allocates one word of private workspace to each module.
Normally, the module will require more and it is expected that it will use this private
word as a pointer to the workspace which it claims from the RMA. Whenever the
system calls a module through one of itS header fields, it setS R 12 to point at this
private word. Hence, if this word is a pointer to workspace, the module can obtain a
pointer to itS true workspace by performing the instruction: LDR Rl2,[R12].

The system works on the assumption that the private word is a pointer to workspace
claimed in the RMA. It therefore provides suitable default actions on that basis. For
example, if a module has no finalisation entry, the system will attempt to free any
workspace claimed using this pointer, when finalisation would otherwise be called.

Also, the system relocates the value held in a module's workspace pointer when the
RMA is 'shuffled' as a result of an RMTIDY call.

- Note: workspace allocated through OS_Module will always lie on an address
&XXXXXX4. This ensures that code poked into that area will execute as many
consecutive (fast) cycles as possible. This is important for some very time-critical
software, eg sound voice generators and FIQ handlers.

Errors in module code

Any module code which provides system extensions (SWis and • commands) must
behave in a manner which is compatible with the operating system if an error occurs.
This means that if anything goes wrong, the module must:

- Set up RO to point to the error block
- Preserve all appropriate registers
- Return with V set.

365

366

If no error has been encountered, V must be clear on exit (and appropriate registers
preserved, of course).

The above does not apply to application code within the module; this can follow any
convention it wishes.

Module header format

The module indicates to the system if and where it wishes to be called by a module
header. This contains offsets from the start of the module to code and information
within the body of the module.

Offset

&00
&04
&08
&OC
&10
&14
&18
&lC
&20
&24
&28

Contains offset to

Start code
Initialisation code
Finalisation code
Service call handler
Title string
Help string
Help and command keyword table
SWI chunk base number (optional)
SWI handler code (optional)
SWI decoding table (optional)
SWI decoding code (optional)

All modules must have fields up to &18. However, any of these offsets can be zero,
(which means don't use this entry since the module does not contain the relevant
data/code), apart from the title string. This is the offset to the zero-terminated name
and if it is zero, the module cannot be referenced.

The SWI handler fields are optional and are only used if they contain sensible
values.

Full details are given below.

. ODULES

Start Code

Stan code is used by OS_Module with Run or Enter reason codes.

On entry: Entered in user mode with interrupts enabled.
Rll =pointer to the private word

On exit: Exit using OS_Exit, or by starting another application without setting up an exit
handler.

This is the offset to the code to call if the module is to be entered as the current
application. An offset of zero implies that the module cannot be started up as an
application, ie it is purely a service module and contains only a filing system or •
commands, etc.

This field need not actually be an offset. If it cannot be interpreted as such, ie it is
not a multiple of four, or any bits are set in the top byte, then calling this field will
actually execute what is assumed to be an instruction at word 0 in the module. This
allows applications to have a branch at this position and hence be run directly, eg for
testing.

Initialisation code

The Initialisation code is used by OS_Module with Run, Load, Relnit and Tidy
reason codes.

On entry: Entered in Supervisor mode.
Rl3 =supervisor stack
Location pointed to by Rll <> 0 implies reinitialisation
Rll is always 0 or base if loaded from a podule
RIO points at the environment string (ie command tail)

On exit: Must preserve processor mode and interrupt state
Must preserve R7 - Rll and R13
RO- R6, Rl2, R14 and the flags (except V of course) can be corrupted

367

368

Use the link register passed in Rl4 tO return:

MOV PC,Rl4

Return V set or clear depending on whether an error has occurred or not. If an error
has occurred, it returns RO as the error indicator.

This code is called when the module is loaded and also after the RMA has been
tidied (OS_Module with Tidy reason code). It is defined that the module will not be
called via any other entry point until this entry point has been called. Thus the
initialisation code is expected to set up enough information tO make all other entry
points safe.

An offset of zero means that the module does not need any initialisation. The system
does not provide any default actions.

If the module is being re-entered after a OS_Module 'tidy', the private word may
contain a non-zero value. This is the contents of the private word before the
finalisation, relocated (if necessary) by the system.

Typical actions are claiming workspace (via OS_Module) and storing the workspace
pointer in the private word. Other actions may include linking onto vectors,
declaring the module as a filing system, etc.

The module can refuse to be initialised. If an error is generated during initialisation,
the system removes the module from the RMA. Any error should be dealt with by
setting RO to be an error indicator and returning to the module handler with V set.

The module is also passed an 'environment string' pointer in RlO on initialisation.
This points at any string passed after the module name given to the SWI.

. ODULES

Finalisation code

Used on OS_Module with Relnit, Delete, Tidy and Clear reason codes. Also when a
module of the same name is loaded the old one is killed.

On entry: R12 = private word pointer
Rl3 =supervisor stack
RIO = fatality indication

The module is (possibly temporarily) 'de-linked' when called, so you can't, for
example, execute SWis that you recognise yourself.

On exit: Must preserve processor mode and interrupt state
Must preserve R7 - Rll and R13
RO - R6, Rl2, R14 and the flags can be corrupted

The module should not enable interrupts if they are off unless it can cope with being
entered via the service entry at that point.

Use link register given for normal exit. Set RO and rerum with V set if refusing to
die.

This is the reverse of initialisation. This code is called when the system is about to
kill the module either completely or temporarily whilst it tidies the RMA.

If the call is fatal, the module's workspace is freed, and the workspace pointer is set
to zero. If the call is non-fatal (eg the call is due to a tidy operation), the wr.rkspace
(and the pointer) pointer will be relocated by the module handler, assuming they
were allocated using OS_Module's 'claim' entry.

The module is told whether the call is fatal or not by the contents of RIO as follows:

RlO • 0 means a non-fatal final isation
RlO "' 1 means a fatal initialisation

If the module generates an error on finalisation, then it remains in the RMA, and is
assumed to still be initialised.

369

370

If the module has no finalisation entry, its workspace is freed automatically, if the
pointer contains a non-zero value.

Service call handler

The service call handler is used when a service call is issued or via an OS_Byte &8F
(143) or OS_ServiceCall (see above for these calls)

On entry: May be entered in supervisor or interrupt mode depending on the service
Interrupts may be enabled or disabled
Rl =service number
R12 =private word pointer
R13 = a full, descending stack

On exit: Rl can be set to zero if the service is being claimed
R2 can be altered to pass back a result
Rl2 may be corrupted
Other constraints depend on the service

Use the value ofR14 passed to return

This allows service calls to be recognised and acted upon. If the module does not
wish to provide the service it should exit with Rl preserved. If it wishes to perform
the service and to prevent other modules also performing it, it should set Rl to zero
before returning, otherwise it should preserve the registers in order that other
modules may have a chance to deal with the call.

An offset of zero means that the module is not interested in any service calls.

Some service calls can indicate an error condition by the contents of registers on exit
(the V set convention cannot be used). Others, like unknown OS_Byte, can either
claim the service, in which case there is no way of indicating an error, or ignore it, in
which case an error will be given (if all modules ignore it). If you want to provide
things like unknown OS_Bytes, and be able to generate an error for, say, invalid
parameters, you should use the OS_Byte vector instead.

. ODULES

R l = &00 Smrice call claimed

On entry:

On exit: Rl = 0

This is the return code used to indicate that the module is claiming the service. A
module is never called with this reason code. Note that there are some services
which you should never call.

R I = &04 Unknown command

On entry: RO = pointer to command

On exit: Rl = 0 to claim the call the command
RO = 0 for no error, else error pointer
Rl preserved to pass the call on

If you claim the call and execute the command successfully you should set Rl to 0. If
an error occurs during execution then you should return with the pointer to the error
buffer in RO.

Note that this is the 'historical' way of dealing with unknown commands. You
should, in preference, use the command string entry point described below.

Rl = &06 Error

On entry: RO =pointer to error

On exit:

This call is issued after an error has occurred but before the error handler is called. It
is 'for your information', and should not be claimed.

371

372

Rl = &07 Unknown OS_B:yte

On entry: R2 = OS_Byte number
R3 = first parameter
R 4 = second parameter

On exit: R 1 = 0 to claim the call, preserved otherwise
Errors cannot be returned

If the OS_Byte number is one of yours, you should execute it and claim the call by
setting Rl to zero.

If you don't recognise the OS_Byte number, pass the call on by returning with the
registers preserved.

Rl = &08 Unknown OS_ Word

On entry: R2 • OS_ Word number
R3 = OS_ Word parameter

On exit: R 1 = 0 to claim the call, preserved otherwise
Errors cannot be returned

The same action applied as the OS_Byte entry.

R 1 = &09 *Help

On entry: RO =pointer to command

Onexit: -

This is issued at the stan of *HELP. You should claim this call only if you wish to
replace *HELP completely. The usual way for a module to provide help is through its
help text table.

B oouLES

Rl = &OB Release FlQ

On entry: -

On exit:

On entry:

This is issued immediately after the FIQ handler is released. It must only be issued
from foreground tasks. See the chapter FUNDAMENTAL OPERATING
SYSTEM CONCEPTS for information on the hardware vectors.

R l = &OC Claim FlQ

On exit: -

This is issued before the FIQ handler is claimed. It must only be issued from
foreground tasks. See the chapter FUNDAMENTAL OPERATING SYSTEM
CONCEPTS for information on the hardware vectors.

RI = &11 Memory

On entry: R2 =active module pointer

On exit: Rl = 0 if claimed

This is issued when the contents-addressable memory (CAM) in the memory
controller is about to be remapped, which alters the memory map of the machine.
You should claim this call if you don't wish the remapping to take place.

If your module is the current application, and is using the application workspace, it
should claim this call. This is because the remapping of the CAM generally involves
moving memory from the application workspace to the RMA (so a module can be
loaded, for example).

373

374

R2 on entry contains a pointer to the module currently active. BASIC checks this to
see if it lies within its code. If it does (ie BASIC is currently active), BASIC claims
the call.

R I = & I 2 StartUpFS

On entry: R2 = filing system number

On exit:

On entry:

On exit:

This is issued when a new filing system is about to be starred, ie the user has typed a
command such as *ADFS, *NET etc. It shouldn't be claimed.

RI = &27 Reset

This is issued at the end of a machine reset. It should never be claimed.

RI = &28 Unknoum *CONFIGURE

On entry: RO = pointer to command tail, or 0 if none given

On exit: Rl = 0 if configure option recognised and no error
RO <= 0 for no error
RO = small integer for errors described below
RO = error pointer for other errors (post 0.40 OS only)
Registers preserved if no command tail or not recognised

IfRO = 0 on entry, you should print your *CONFIGURE syntaxline(s), if any, and
exit with registers preserved.

If RO <> 0, then RO is a pointer to the command tail. If you decode the command
tail, and recognise it, you should claim the call by setting Rl to 0. If an error is
detected, should also return with V set and return the error in RO as follows:

Value

0
1
2
3
4 ...

Meaning

Bad *CONFIGURE option
Numeric parameter needed
Parameter roo large
Too many parameters

B onuLES

RO is an error pointer returned by •CONFIGURE

If you don't recognise the command tail, you should exit with registers preserved.

Note that it is also possible to trap unlcnown *CONFIGURE commands through the
module's command table (see below). Only one of these mechanisms (and not this
one by preference) should be used.

Rl = &29 Unknown •STATUS

On entry: RO = pointer to command tail, or 0 if none given

On exit: Rl = 0 if status option recognised and no error

On entry:

Registers preserved if no command tail or not recognised

If RO = 0, you should list your status(es) and pass on the service call.

If RO <> 0, then RO is a pointer to the command tail. If you decode the command
tail, and recognise it, you should print the associated information and claim the call.
Otherwise you should not claim the call.

Note that it is also possible to trap unlcnown •ST A TUS commands through the
module's command table. Only one of these mechanisms should be used.

&2A - Application about to start

On exit: Rl = 0 to prevent application from starting

375

376

On entry:

On exit:

This service is called when an application is about to stan due to a *GO,
*RMENTER or *RUN-type operation. If you don't want the application to start, you
should claim the call, otherwise pass it on.

&40- Filing system re-initialise

This service is called when the FileSwitch module has been re-initialised (due to an
*RMREINIT, for example). If you are in a filing system, you should make yourself
known to FileSwitch by calling OS_FSControl 'add filing system' as described in the
chapter FILING SYSTEMS. You should not claim this call.

&42- Lookup file type

On entry: R2 = file type (bits 0- 11)

On exit: Rl = 0 if you know the file type:
R2 = first four characters
R3 = last four characters

Rl preserved if you don't know the file type

This call is passed round when FileSwitch would like to convert a twelve-bit file type
into a textual name. If the file type passed in R2 is known to you, you should return
with Rl =0, and R2, R3 containing the eight characters in the name. This might be
loaded as follows:

ADR Rl, nameString
LDMIA Rl, {R2,R3}
MOV Rl, 40
MOV PC, Rl4

.nameString
EQUS "MY TYPE "

lloDULES

If no-one claims the call, FileSwitch will convert the number into a three-digit hex
value padded with spaces.

&43 -International service

On entry: R2 = sub reason code
R3 - R5 depend on R2

On exit: R4 - 5 depend on R2 on entry

This call should be supponed by any modules which add to the set of international
character sees and countries. It is used by the international system module •
command interface, and may be called by applications too.

R2 contains a sub reason code which indicated which service is required:

R2 Service required

0 Convert country name to country number
1 Convert alphabet name to alphabet number
2 Convert country number to country name
3 Convert alphabet number to alphabet name
4 Convert country number to alphabet number
5 Define range of characters

For reason codes 0 and 1, R3 contains a pointer to a null-terminated string. If the
module recognises the country/alphabet name in that string, it should set R4 to the
appropriate number and claim the call.

For reason codes 2 and 3, R3 is the country/alphabet number. R4 is a pointer to a
buffer, and R5 is the buffer's length. If the module recognises the number, it should
convert it to the appropriate string in the buffer, return with R5 as the length of the
string, and claim the call.

For reason code 4, R3 is the country number. If the module recognises this number,
it should set R4 to the alphabet number for that country, and claim the call.

377

378

For reason code 5, R3 contains the alphabet number; R4 and R5 give the inclusive
range of ASCII codes which should be defined from that alphabet (using VDU 23
sequences).

Here is a list of the currently-defined country codes (provided by the international
module), and the alphabets they use:

Code Country Alphabet

0 Default
1 UK 101
2 Master 100
3 Compact 100
4 Italy 101
5 Spain 101
6 France 101
7 Germany 101
8 Portugal 101
9 Esperanto 103
10 Greece 107

Here is a list of the alphabet codes currently defined, provided by the international
module:

Code Alphabet

100 Bfont
101 Latin1
102 Latin2
103 Latin3
104 Latin4

107 Greece

lloDULES

&44- Keyboard handler

On entry: R2 =keyboard id: 0 for 'old style' keyboard, 1 for A300- 400 series keyboard

On exit: Don't claim

On entry:

On exit:

On entry:

This call is made on reset, when the OS has established which type of keyboard is
present, and after an OS_InstallKeyHandler SWI. It is for the information of
keyboard handler modules which need to know what sort of keyboard is present; it
should not be claimed.

&45 -Pre-reset

This call is made just before a software generated reset takes place, when the user
releases I Break I. This gives a chance for podule software to reset its devices, as this
type of reset does not actually cause a hardware reset signal to appear on the podule
bus.

&46

See the chapter FUNDAMENTAL OPERATING SYSTEM CONCEPTS for
information on the hardware vectors.

Mode change

On exit: Don't claim

This call is made whenever a mode change has taken place. It is made for the benefit
of modules which may want to re-read some VDU variables to keep a consistent
view of the world. It should not be claimed; there is nothing a module can do to
prevent the mode change from taking place.

,

379

380

Title string

Used by OS_Module with reason codes Delete, Enter and Relnit. Also printed by
the *MODULES command.

On entry: N/A

On exit: N/A

This is the offset of a null-terminated string which is used to refer to the module
when OS_Module is called. It should not contain spaces or control characters. If a
title string is not required, then a title of spaces is used.

Module names which contain more than one word should follow the convention of
the system modules, eg 'FileSwitch', 'SpriteUtils'. The case of the letters in a module
name isn't significant for the purposes of matching.

The string should be fairly short and descriptive, eg WindowManager or
Disc ToolKit.

Help String

Used when *HELP prints information from the module.

On entry: N/ A

Onexit: N/A

This is the offset of a null-terminated string printed out by *HELP before any
information from the module, eg *HELP MODULES, *HELP COMMANDS. It is
advisable that this string is present to avoid confusion. The string must not contain
any control characters (except Tab, which tabs to the next multiple of eight
column) but may contain spaces.

To make the output of *HELP MODULES look neat, you should adopt the same
spacing and naming conventions as the system modules. The format is as follows:

lloDULES

XT Module name v.vv (DD MMM YYYY) ET

The module name is followed by one or more Tab characters to make it appear
sixteen characters long. The version number contains three digits and a full stop, eg
1.00. The creation date is of the form 06 Jun 1987.

Help and command keyword table

Used when OSCLI, *STATUS, *CONFIGURE and *HELP wish to look for user
supplied keywords.

On entry: Dependent on usc.

On exit: Use the given link register for normal exit.
Return V set and RO = error pointer if anything goes wrong.

This table contains a list of keywords with associated help text and, in the case of
commands, an entry address to the command code. Other associated data provides
information on the type of command, the limits on the number of parameters it can
take, etc.

The table consists of a sequence of entries, terminated by a zero byte. Each entry has
the following format:

381

382

String to match, null terminated

(ALIGN to a word boundary)

Offset of code from module start

Information word

Offset of invalid syntax message
from module start, null terminated

Offset of help text from module
start, null terminated

The string to match should contain only the valid characters for its entry type. For
example, commands matched by OSCLI cannot contain any characters that have a
special meaning in filenames. In general it is best to stick to letters. The case of the
letters does not matter in command matching, but should be chosen for neat output
from *HELP. The standard adopted by the system modules is the form 'Echo',
'SetType' etc.

The code offset is used for commands. A 2ero entry means that the string has help
text only associated with it. The code is entered with RO pointing at the command
tail and Rl set to the number of parameters (as counted by OSCLI, which means
space(s) separate parameters except within double quotation marks).

The information word contains limits on the number of parameters accepted by the
command, and also 16 flags. The format is:

lloDULES

Byte Contents

0 Minimum number of parameters (0- 255)
1 OS_ GST rans map for first 8 parameters
2 Maximum number of parameters (0- 255)
3 Flags

The command can, therefore, accept between zero and 255 parameters. OSCLI
counts parameters by starting at the Start of the command tail and looking for items
(quoted strings or continuous characters) separated by spaces. This is why it is
advisable to use spaces as parameter separators and not commas, as in commands
which are compatible with the BBC series of microcomputers.

Byte 1 works as follows. Each bit corresponds to one parameter (bit zero of the byte =

the first parameter and so on). If the bit is set, the parameter is OS_GSTransed
before being passed on to the module. If the bit is clear, the parameter is passed
directly to the module. This is useful for commands which take filenames which
might contain variable references.

The flags are as follows:

Bit 31 = 1 The match string is a filing system command and is therefore only
matched after OSCLI has failed to find the command in any of the
module tables as a 'normal' command. OSCU only looks at filing
system commands in the filing system currently active. Commands that
need this flag set are, therefore, the filing system-specific ones such as
*BYE, *LOGON, etc.

383

384

Bit 30 = 1 The string is to'be matched by *STATUS and *CONFIGURE. The
code in this case should scan the command tail and return a starus
string or set non-volatile memory as appropriate. The code is called
with RO set as follows:

RO = 0 *CONFIGURE with no option has been received. The
module prints a syntax string and return.

RO = 1 *STATUS <keyword> has been issued. The module should
print the currently configured status for this keyword.

IF RO is neither of the above, it means that the *CONFIGURE
<option> has matched <option> against the keyword and RO is a
pointer to the command tail with leading spaces skipped. The
arguments are decoded and the configuration set accordingly. If the
command tail is incorrect, the module should return with V set and RO
indicating the error as follows:

RO = 0 Bad configure option error
RO = 1 Numeric parameter needed error
RO = 2 Configure parameter too large
RO = 3 Too many parameters
RO > 3 RO is an error indicator for *CONFIGURE to return

Note that this facility duplicates two of the service code entries. You
should use this method in preference, as the OS performs decoding of
the option keywords for you.

B onuLES

Bit 29 = 1 *HELP offset refers to a piece of code to call for that keyword, instead
of the offset of a text string. The code is called with the following entry
conditions:

RO points at a buffer
Rl is the buffer length
Rl - R6 and R12 can be corrupted

On return, ifRO is non-zero, it is assumed to point at a zero-terminated
string to pretty-print (see below).

Other flags should be zero for upwards compatibility.

The invalid syntax message is used by OSCLI as the text of an error message. If the
parameters, which are given, fall outside the range specified. If a zero offset is given, a
default Invalid number of parameters error is given instead.

The help text is used by *HELP. If a keyword in the *HELP command tail matches
the match string, then the help text is pretty-printed. A zero offset means no help
text is to be printed. The string may contain carriage returns to force newlines. Tab
(ASCII 9) is also a special character; it forces alignment to the next multiple of eight
columns. Finally, ASCII 31 is a 'hard space', around which words lines will not be
split.

SWI chunk number and SWI handler code

Used when an unknown SWI is performed.

On entry: Entered in SVC mode with interrupts disabled
Rll = SWI number modulo Chunk Size (ie 0- 63)
Rl2 = private word pointer
Rl3 =supervisor stack

385

386

On exit: RIO- R12 may be corrupted
Interrupts should be enabled if SWI processing will take a long time (say > 20us) and
the routine can cope with lRQs being enabled. The code to enable (and re-disable)
lRQs is:

MOV Rn, Rl4
TEQP Rn, URQ_Bit ;-2

Rl4 contains the flags of the SWI caller. Use MOYS PC,Rl4 to return, having
altered R14 flags as appropriate (eg setting V for an error).

These entries allow a module to ask to be given a range of otherwise unrecognized
SWis. The SWI chunk number is the base of the range to be intercepted. SWis in
the range:

Base to base+ (SWI chunk size- 1)

are passed to the handler code. The module SWI chunk size is defined by the
operating system to be &40 (64). For example, this entry in the window manager
module is &400CO, implying that it can accept SWis in the range &400CO
&400FF.

These fields are optional; if they contain implausible values, the system will ignore
them. The checks made are:

- Base is a multiple of the chunk size and has a 0 top byte

- Code offset is a multiple of four with the top six bits zero

See the chapter FUNDAMENTAL OPERATING SYSTEM CONCEPTS for
more details on how to choose a chunk number.

When the SWI handler code is called, the SWI number reduced to the range 0 to
(chunk size- 1) is passed in Rll. The module then checks whether it is one which it
recognises and if so, deals with it appropriately. The suggested code for doing this is:

.SWientry
LOR
CMP

AD DCC

B

.JumpTable
B

B

B
.EndOfJumpTable

.UnknownSWIError
ADR
ORRS

.errMesg
EQUD
EQUS
EQUB

. ODULES

Rl2, [Rl2) ; get workspace pointer
Rll, t(EndOfJumpTable- JumpTable)/4
PC, PC, Rll, LSL i2 dispatch if in range
UnknownSWierror

MySWI_O
MySWI_l

MySWI_n

RO, errMesg
PC, Rl4, iOverflow_Flag

; unknown SWI

&1E6 ;Same as system message
"Unknown <module> operation"
0

Note that the address calculation on the PC to jump to the appropriate branch
instruction relies on there being exactly one instruction between the ADDCC and
the B MySWI_O instruction.

The Rl4 given to the SWI code contains the flags of the SWI caller, except that V
has been cleared. So, to return without updating the flags, use MOYS PC, Rl4.
Otherwise alter the link register (for example by executing ORRS PC, Rl4,
#Carry_Fiag}. The flags returned to the system are returned to the caller.

Bit 17 in the given SWI number is not significant. The code is called on the
assumption that it is the 'bit 17 set' version of the SWI. This means that the code
must set RO and return V set on encountering an error. Any error is then
automatically dealt with by the system if the user actually asked for the 'bit 17 clear'
version.

387

388

SWI decode table and SWI decode code

The following refers to the SWI decode code entry. These are used by
OS _SWINumberT o/FromString.

On entry: RO < 0 means a request to convert from text to number.

On exit:

In this case, Rl points at the string to convert (terminated by a control character).

RO > = 0 is the offset of the SWI within the module SWI chunk
Rl =pointer to a buffer
R2 = the offset within the buffer at which to place the text
R3 = limit of the buffer
R12 = private word pointer
R13 = supervisor stack

R12 may be corrupted
Rl - R6 may be corrupted if RO < 0 on entry
R4 - R6 may be corrupted if RO >= 0 on entry

If RO < 0 on entry, return RO as the offset (0 - 63) in the module SWI chunk range if
the string was recognized, and return RO < 0 if not recognized.

IfRO >= 0 on entry, add appropriate text to the buffer and update R2 by the length
of the text. A null terminator is added to the text by the system.

Return using MOV PC,R14.

These fields are used by the SWis that convert between SWI numbers and SWI
names. When convening from a number to a name, if a SWI in the chunk range of
the module is to be convened, then the SWI decode table is inspected to see if it
contains a name for the SWI. The table format is:

SWI group prefix
Name of Oth SWI
Name of 1st SWI

Name of nth SWI
0 byte to terminate

. ODULES

All names are null terminated. For example, the debugger's table is:

EQUS "Debugger"
EQUB 0
EQUS "Disal!semble"
EQUB 0
EQUB 0

The OS adds an 'X' if the SWI has bit 17 set, followed by the group prefix, followed
by'_', then the individual SWI name. If the table does not contain enough entries,
then the SWI name field is filled in by the offset from the chunk base (in decimal).

If the table field is zero, then the code field is used (see above). This field is also used
when converting from strings to numbers.

389

390

IIIME AND DATE

This chapter describes the calls provided for dealing with time on the Archimedes.
There are several medium-resolution timers (100 ticks per second), in addition to
the real-time CMOS clock/calendar. Calls are provided to convert between various
date formats.

The real-time clock is used by the filing system manager to time- and date-stamp
files. Stamped files have the time and date encoded into (what is normally) their
load and execution addresses. They also have a twelve-bit file type, which is used by
FileSwitch to determine how a file should be loaded or executed. See the chapter
FILING SYSTEMS for a discussion of file stamping and typeS.

CENTI-SECOND TIMERS

There are four timers which increment at a centi-second rate, ie 100 times a second.
Two of these are read/write timers, which you can alter as well as interrogate. The
other two are read-only timers.

The two read/write timers are accessed through four OS_ Word calls. All of these
calls take a pointer to a five-byte parameter block, which is used to hold the centi
second value. Whether the timer is read or written and which timer is accessed, is
determined by the OS_ Word reason code. The calls are as follows:

OS_ Word &01 (1)- Read system clock

Parameter block size: 5

On entry: The parameter block is unused.

On exit: The parameter block contains the value of the system clock at the instant of the call:

Rl +0 = time (least significant byte)
Rl+l •
Rl+2 =

R1+3 =

Rl +4 = time (most significant byte)

391

392

The system clock is used by the BASIC pseudo-variable TIME. The clock is
incremented every centi-second. The value of the clock is preserved over a soft break
and set to zero after a hard break.

OS_ Word &02 (2)- Write system clock

Parameter block size: 5

On entry: The parameter block contains the new value of the system cloclc.

R 1 +0 = time (least significant byte)
Rl + l =

Rl+2 =

Rl+3 ""
Rl +4 .. time (most significant byte)

On exit: The parameter block remains unchanged.

This call allows the system clock to be set to a specified value.

OS_ Word &03 (3)- Read interval timer

Parameter block size: 5

On entry: The parameter block is unused.

On exit: The parameter block contains the value of the interval timer at the instant of the
call:

Rl +0 = time Oeast significant byte)
Rl+l =

Rl+2 =
R1+3 =

Rl +4 = time (most significant byte)

Like the system clock, the interval timer is incremented 100 times a second. The
interval timer can be made to cause an event when its value reaches zero. To do this,

IIIME AND DATE

it must be set to minus the number of centi-seconds that are to elapse before the
event takes place.

To produce repeated events, the routine servicing the timer event should reload the
timer with the appropriate number. For example, to produce an event every 10
seconds, reload it with -1000 (&FFFFFFFC18). An alternative is to use the special
ticker event, described in the section Events.

OS_ Word &04 (4)- Write interval timer

Parameter block size: 5

On entry: The parameter block contains the new value for the interval timer:

Rl +0 = time (least significant byte)
Rl+l =

Rl+2 =

Rl+3 =

Rl +4 = time (most significant byte)

On exit: The parameter block remains unchanged.

This call resets the interval timer to a specified value.

OS_Byte &F3 (243)- Read/write timer switch state

On entry: Rl • &FF
R2 = 0

On exit: Rl =switch state

In order to protect the centi-second clock against corruption during reset, the OS
keeps two copies. One of them is the one which will be read or written when one of
the OS_ Words is called, the other is the one which will be updated during the next
100Hz interrupt. When the update has been performed correctly, the values are
swapped. This OS_Byte enables you to read the byte which indicates which copy is
being used. Its only practical use is as a location which changes 100 times a second.

393

394

On entry:

The third centi-second timer is read using a SWI. It cannot be written. The SWI is
OS_ReadMonotonicTime.

OS_ReadMonotonicTime &42 (66)

On exit: RO = time

OS_ReadMonotonicTime returns the number of centi-seconds since the machine
was switched on. 'Monotonic' refers to the fact that this timer cannot be written to,
and so provides a value which is always guaranteed to increase with time. It is used,
for example, to time-stamp mouse events.

The final centi-second timer is actually an encoded version of the real-time clock's
value. It gives the number of centi-seconds since 00:00:00 1st Jan 1900. Sec the
section The real-time clock/calendar for details.

In addition to these accessible timers, a program may install itself on one of the
event chains that are called under interrupts. The interval timer zero-crossing event
was mentioned above. There is also a 100Hz event, which is called, if enabled, 100
times second. See the chapter FUNDAMENTAL OPERATING SYSTEM
CONCEPTS for details of these events.

There are also some SWis which can be used to install and remove a routine from a
timer chain. These are independent of the event routines, but are used in a similar
way. The routine can be called once after a given number of centi-seconds have
elapsed, or repeatedly every 'n' centi-seconds. The SWis are:

OS_CallAfter &3B (59)

On entry: RO =time in centi-seconds
R 1 = address to call
R2 =value ofR12 to call code with

On exit:

. IMEANDDATE

OS_CallAfter calls the code pointed to by Rl after the delay specified in RO. The
code should regard icself as an interrupt routine, and behave accordingly.

OS_CallEvery &3C (60)

On entry: RO = interval in centi-seconds
Rl = address to call
R2 =value ofR12 to call code with

On exit: -

OS_CallEvery calls the code pointed to by Rl every RO centiseconds, until
OS_RemoveTickerEvent is executed or IBreakl is pressed. The code should regard
icself as an interrupt routine, and behave accordingly.

OS_RcmoveTickerEvent &3D (61)

On entry: RO = address

VSYNC TIMERS

Rl = R12 value used in OS_CaiiEvery

OS_RemoveTickerEvent takes RO as the address and Rl as the R12 value of the
event to find and remove from its list.

Another regular event that occurs is the YSYNC signal from the video circuitry.
This interrupts the processor every time the electron beam which 'draws' the picture
on the display reaches the bottom of the display area of the screen. This occurs 50
times a second in the UK for modes 0- 20.

Several things happen on this interrupt. A single-byte counter which is accessible
using an OS_Byte is decremented. Any routines on the YSYNC vector are called.
Finally, any foreground program waiting for a YSYNC (having called OS_Byte 19)
will resume.

See the chapter THE VDU DRIVERS for a description ofOS_Byte &13. The
single-byte YSYNC counter is accessed as described below:

395

OS_Byte &BO (176) -50Hz counter

On entry: Rl = 0 or value to write
R2 = 255 orO

On exit: R l = previous ticker value
R2 = value of the next location (input source)

This call reads or writes a one-byte counter which is decremented at a 50Hz rate; or
more precisely at the rate of the VSYNC interrupt.

THE REAL-TIME CLOCK/CALENDAR

396

The OS_ Words described below are used to read and set the time and date held in
the battery-backed clock. This device keeps time even when the machine is switched
off. It is used by the BASIC TIME$ pseudo-variable, and the •TIME command. The
filing system also uses it for file date-stamping.

A variety of formats are available, including a compact five-byte format, which
encodes the time and date as the number of centi-seconds since 00:00:00 1st Jan
1900. A couple of SWis are provided to convert from this format to a textual string.

OS_ Word &OE (14)- Read CMOS clock

This provides four different read functions associated with the CMOS clock.

Read clock in string forrno.t

Parameter block size: 25

On entry: The first byte of the parameter block indicates the function:

Rl+O• O

On exit: The parameter block contains a 24-byte character string in the form:

IIIME AND DATE

where

ddd is a three-character abbreviation for the day
nn is the day number
mmm is a three-character abbreviation for the month
yyyy is the year
hh is the hour (in 24-hr clock notation)
mm is the number of minutes past the hour
ss is the number of seconds

Rl +24 contains a carriage return character (&00).

Read clock in Binary Coded Decimal (BCD) format

Parameter block size: 7

On entry: The first byte of the parameter block indicates the function:

R1+0=1

On exit: The parameter block contains the seven-byte BCD clock value:

Rl+O =year
Rl+l =month
Rl+2 =day of month
R1+3 = day of week
Rl +4"' hours
Rl +5 =minutes
Rl +6 =seconds

(00- 99)
(01- 12; 01 =January etc)
(01-31)
(01- 07; 01 =Sunday etc)
(00- 23)
(00- 59)
(00- 59)

Convert BCD clock value into string format

Parameter block size: 25

On entry: The first byte of the parameter block indicates the function, the following seven
contain the BCD clock value to be converted:

397

398

Convert BCD clock value into string format

Parameter block size: 25

On entry: The first byte of the parameter block indicates the function, the following seven
contain the BCD clock value to be converted:

R1+0 = 2
R1+1=year
R1+2 =month
R1 + 3 = day of month
R1 +4 = day of week
R1+5=hrs
R1 +6 = mins
R1+7=secs

(00- 99)
(01 - 12; 01 = January etc)
(01- 31)
(01- 07; 01 =Sunday etc)
(00- 23)
(00- 59)
(00- 59)

On exit: The parameter block contains the 24-byte clock string (as defined under option one,
above).

Read real.-time in 5-byte format

On entry: The first byte of the parameter block indicates the function.

R1+0=3

On exit: The parameter block contains the 5-byte real time. This number is in centi-seconds
since 00:00:00 1st January 1900. It is used for time/date stamping by the filing
system. It is also useful for utilities which are used for building consistent systems, eg
'Make'.

Rl +0 = LSB of time
R1+1 = .. .
Rl+2 = .. .

Rl+3 = .. .
Rl +4 = MSB of time

. IMEANDDATE

OS_ Word &OF (15)- Write CMOS clock

This call provides three write functions associated with the CMOS clock.

Change the time only

Parameter block size: 9

On entry: The parameter block contains the new time:

Rl+O = 8
R1 + 1 = ASCII code for first hour's digit
R1 + 2 = ASCII code for second hour's digit
R1 + 3 = 58 (ie ASCII code for :)
Rl +4 = ASCII code for first minute's digit
Rl +5 =ASCII code for second minute's digit
R1+6 =58
R1 + 7 = ASCII code for first second's digit
R1 +8 = ASCII code for second second's digit

On exit: The parameter block remains unchanged.

Change the date only

Parameter block size: 16

On entry: The parameter block contains the new date:

R1+0 = 15
R1 + 1 = ASCII code for first day character
Rl + 2 = ASCII code for second day character
R1 + 3 = ASCII code for third day character
Rl +4 = 44 (ie ASCII code for',')
R1 +5 = ASCII code for first day digit
Rl +6 = ASCII code for second day digit
Rl + 7 = 32 (ie ASCII code for space)
Rl +8 = ASCII code for first month character

399

400

R1 +9 = ASCII code for second month character
R1 + 10 .. ASCII code for third month character
R1+11 = 32
R1 + 12 = ASCII code for first year digit
R1 + 13 = ASCII code for second year digit
R 1 + 14 = ASCII code for third year digit
R1 + 15 = ASCII code for fourth year digit

On exit: The parameter block remains unchanged.

Change date and time

Parameter block size: 25

On entry: The parameter block contains the new time and date:

Rl+O = 24
Rl + 1 - R1 + 15 = date string (as in 2, above)
R1 + 16 = 46 (ie period)
Rl + 17 - Rl + 24 = time string (as in 1, above)

On exit: The parameter block remains unchanged.

OS_ConvertStandardDateAndTime &CO (192)

On entry: RO =pointer to 5-byte time block
R1 = pointer to buffer for resulting string
R2 = size of buffer

On exit: RO =pointer to buffer (Rl on entry)
Rl = pointer to terminating zero in buffer
R2 = number of free bytes in buffer

OS_ConvertStandardDateAndTime converts a five-byte value representing the
number of centi-seconds since 00:00:00 on January 1st 1900 into a string. It converts
it using a standard format string stored in the system variable 'SYS$DateFormat' and
places it in a buffer.

AND DATE

See OS_ConvertDateAndTime for details of the format string.

OS_ConvertDateAndTime &Cl (193)

On entry: RO =pointer to 5-byte time block
Rl =pointer to buffer for resulting string
R2 = size of buffer
R3 =format string (null terminated)

On exit: RO = pointer to buffer (Rl on entry)
Rl "' pointer to terminating zero in buffer
R2 = number of free bytes in buffer

OS_ConvertDateAndTime converts a five_byte value representing the number of
centi-seconds since 00:00:00 on January 1st 1900 into a string. It converts it using
the format string supplied.

The format string is copied into the buffer for the result. However, whenever'%'
appears in the format string, the next two characters are treated as a special field
name which is replaced by a component of the current time. The field names, which
may use upper or lower case, are:

401

402

Name Value Example

cs Centi-seconds 99
SE Seconds 59
MI Minutes 05
12 Hours in 11 hour format 07
24 Hours in 24 hour format 23
AM "AM" or"PM" PM
PM "AM" or"PM" AM

WE Weekday, in full Thursday
W3 Weekday, in three characters Thu
WN Weekday, as a number 5

DY Day of the month 01
ST "st", "nd", "rd" or "th" st

MO Month name, in full September
M3 Month name, in three characters Sep
MN Month as a number 09

CE Century 19
YR Year within century 87

WK Week of the year, Mon to Sun 52

DN Day of the year 364

0 Insert an ASCII 0 zero byte
% Insert a'%'

To cause leading zeros to be omitted, prefix the field with the letter Z. For example,
%zmn means the month number without leading zeros. %0 may be used to split the
output into several zero-terminated strings.

lnuMBER CONVERSIONS

This chapter describes the SWis which perform conversions between binary and
ASCII number formats. There are two SWis which convert from ASCII to binary:
OS_ReadUnsigned, which reads an unsigned (ie positive) number in any base
between 2 and 36, and OS_EvaluateExpression, which can perform a complex
analysis of a string or numeric expression.

In the other direction, there is the SWI OS_BinaryToDecimal, which converts a 32-
bit signed binary number to decimal. For more general conversions, there is a family
of calls which convert various length signed and unsigned binary numbers into
binary, decimal and hexadecimal representations. Finally, a couple of calls are
provided to convert Econet station numbers into ASCII.

A different type of conversion is from SWI number to name, and vice versa. A
couple of SWis are provided to perform these conversions. Any program which deals
with SWI numbers {egan assembler) should take advantage of these conversion
routines, and allow the user to refer to SWls by their names as well.

Finally, the routines OS_GSlnit, OS_GSRead and OS_GSTrans are described.
These are not ASCII to binary conversions as such, but they do perform a certain
amount of translation on a string which contains special escape sequences. For
example, they will look up a variable name enclosed in angled brackets and
substitute the name for the variable's value.

ASCII TO BINARY CONVERSIONS

OS_ReadUnsigned &21 (33)

On entry: RO = base in the range 2-36 (else 10 assumed)
Rl = pointer to string
R2 = maximum value (if RO bit 29 set- see below}

On exit: Rl = pointer to terminator character or unaltered on error
R2 = value or 0 on error
V is set if the string is unsuitable and nothing is read

OS_ReadUnsigned takes a pointer to a string and tries to convert it into an integer
value which is returned in R2.

403

404

Valid strings may stan with a digit (where 'digits' may also be letters, depending on
the base) or one of the following:

& The number is in hexadecimal notation
base_ The number is in a given base, where 'base' is in the range 2z to 36. For

example, 2_1010 is a base two (binary) number.

These override any base specified in RO. (If RO contains an illegal base, 10 is
assumed.) Characters following them are read until a character is reached which is
not consistent with the base in use. For example, assuming RO= 10 on enrry, the
terminator of 43AZ is A, whereas the terminator of &43AZ is Z.

In addition, RO contains three flags which cause checks to be performed on the
terminator and the range of the number obtained:

Bit Meaning if set

31 Check terminator is a control character, space
30 Restrict value range to 0- 255
29 Restrict range to 0- R2; a Number too big error is given otherwise

If either of these checks fail, a Bad number error is given. This error also occurs if
the first character is not a valid digit. If a base is given at the start of the number and
isn't in the range 2-36, a Bad base error is given.

OS_EvaluateExpression &2D (45)

On entry: RO = pointer to string
Rl =pointer to buffer
R2 = length of buffer

On exit: R 1 indicates type returned
R2 = integer result or length of string in buffer
V is set if buffer overflowed

. UMBER CONVERSIONS

OS_EvaluateExpression takes a string pointed to by RO, evaluates it and places the
result in the buffer which is pointed to by Rl. Its maximum length is R2. The type of
the result is given by Rl as follows:

Value

0
NotO

Meaning

Integer result returned in R2
String is returned in buffer, length returned in R2, RO preserved

If the buffer is not large enough to hold the resulting string, then a Buffer
overflow error is generated.

Any item which cannot immediately be treated as a string or a number is looked up
as a variable. For example, in the expression FRED+ 1, FRED will be looked up as a
variable. If the item isn't an extant variable name, the error Unknown operand is
given.

String operands (enclosed in quotes) are OS_GSTransed. Hence you can obtain
control codes using, for example, "<7>" for ASCII 7. Note however that vertical bar
escape sequences (eg " I G" for ASCII 7) are not recognised.

The operators recognised by the expression evaluator are as follows:

Arithmetic operators

+

•
I
MOD

Add two integers
Subtract two integers
Multiply two integers
Integer part of division
Remainder of a division

405

406

Logical operators

<>
>=
<=
<
>

Equal
Not equal

-1 isTRUE
0 is FALSE

Greater than or equal
Less than or equal
Less than
Greater than

Bit operators

>> Arithmetic shift right
>>> Logical shift right
<< Logical shift left
AND AND
OR OR
EOR Exclusive OR
NOT NOT

String operators

+
RIGHT n
LEFTn
LEN

Conversions

STR
VAL

Concatenate two strings
Take 'n' characters from the right
Take 'n' characters from the left
Return the length of a string

Convert a number into a string
Take the value of a string

eg "HI" + "LO" .. "HILO"
eg "HELLO" RIGHT 2 = "LO"
eg "HELLO" LEFT 3 = "HEL"
eg LEN "HELLO" = 5

eg STR 24 = "24"
egVAL "12d3" = 12

Where appropriate, type conversions arc performed automatically. For example, if an
integer is subtracted from a string, then the string is evaluated and an integer result is
produced ("2" -1 gives the result 1). The null string"" is converted to 0 by both the
implicit and explicit (VAL) conversions.

. UMBER CONVERSIONS

Similarly, integers will be converted to strings if necessary: the expression 1234 LEFT
2 will yield "12".

The operators have the same relative priorities as their equivalents in BBC BASIC,
eg * is higher than + which is higher than >,etc.

BINARY TO ASCII CONVERSIONS

OS_BinaryToDecimal &28 (40)

On entry: RO =signed 32-bit integer
R 1 = pointer to buffer
R2 = maximum length

On exit: RO is preserved, unless V is set
Rl is preserved
R2 = number of characters given
V is set if buffer overflowed

OS_BinaryToDecimal takes a signed 32-bit integer in RO and converts it to a string,
placing it in the b•uter. Rl points to the buffer and R2 contains its maximum length.
Leading zeros are suppressed and the string will start with a minus sign,'-', ifRO was
negative. The number of characters given is returned in R2.

The error Buffer overflow is given if the converted string is too long to fit in
the buffer.

Binary to ASCII conversion SWis &DO- &EA (208- 234)

This group of SWls converts from binary to various ASCll string representations.
They all have similar input and output conditions, as summarised below:

On entry: RO =binary value to be convened
Rl = pointer to buffer for resulting string
R2 = size of buffer

407

408

On exit: RO =pointer to buffer (Rl on entry)
R 1 = pointer to terminating zero in buffer
R2 = number of free bytes in buffer

&DO-&D4

These calls conven from binary to a hexadecimal string. The calls are
OS_ConvertHexN, where N is the number of ASCII digits in the output string. It is
1, 2, 4, 6 or 8. Only enough significant bits to perform the conversion are used, and
leading zeros are always included, so the string is fixed length. No ampersand ('&') is

included in the string.

&D5-&D8

This group converts from binary into an unsigned decimal number. They are called
OS_ConvertCardinalN, where N is 1, 2, 3 or 4, and refers to the numberofbytes to
be used from the input binary value. The string is not padded with leading zeros, and
so is of variable length.

&D9-&DC

This group converts from binary into a signed decimal number. They are called
OS_ConvertlntegerN, where N is 1, 2, 3 or 4, and refers to the number of bytes to be
used from the input binary value. The string is not padded with leading zeros, and so
is of variable length. If the most significant bit of theN bytes used i~ set, the number
is taken to be negative, and a leading'-' is produced.

&DD-&EO

This group converts from binary into an ASCII binary representation. They are
called OS_ConvertBinaryN, where N is 1, 2, 3 or 4, and refers to the number of
bytes to be used from the input binary value. The string is padded with leading zeros,
and so is length N•s.

. UMBER CONVERSIONS

&El-&E4

This group converts from binary into an unsigned decimal number. They are called
OS_ConvertSpacedCardinalN, where N is 1, 2, 3 or 4, and refers to the number of
bytes to be used from the input binary value. The string is not padded with leading
zeros, and so is of variable length. In addition, every three digits from the right, a
space is insened. Thus 65535 would be converted as 65 535.

&E5-&E8

This group (&E5- &E8) converts from binary into a signed decimal number. They
are called OS_ConvertSpacedlntegerN, where N is 1, 2, 3 or 4, and refers to the
number of bytes to be used from the input binary value. The string is not padded
with leading zeros, and so is of variable length. If the most significant bit of theN
bytes used is set, the number is taken to be negative, and a leading'-' is produced. In
addition, every three digits from the right, a space is inserted. Thus
- 1000000 would be converted as -1 000 000.

OS_ConvertFixedNetStation and OS_ConvertNetStation

The final two conversions convert from an Econet station/network number pair into
an ASCil version. The entry condition for these calls is slightly different from the
rest, in that RO points to two words in memory. The first word contains the station
number and the second word contains the network number.

The first call is OS_ConvertFixedNetStation. This always converts into a form
nnn.sss, where nnn is the network number. If it is zero, the first four characters are
spaces. If it is non-zero, leading zeros are converted to spaces. sss is the station
number. If the network was zero, leading zeros in the station number are converted
to spaces, otherwise they are left as zeros.

The second call is OS_ConvertNetStation. This performs the same conversion, but
suppresses zeros and spaces wherever possible, to yield the shortest possible string.

409

SWI NUMBER AND NAME CONVERSIONS

410

These two SWis enable you to convert from a standard format SWI name into the
corresponding SWI number, and vice versa. A standard format name is
[X)module_name. The optional X represents a bit 17-set (error-returning) SWI. The
module part is a prefix appropriate to the module providing the SWI: OS for built-in
operating system SWis, Wimp for window manager SWis etc. The final part is a
descriptive name for the SWI, such as RemoveCursors.

OS_SWINumberToString &38 (56)

On entry: RO = SWI number

On exit:

Rl = pointer to buffer
R2 = buffer length

OS_SWINumberToString converts a SWI number to a SWI name.

The returned string is null-terminated, and starts with an X if the SWI has bit 17 set.

SWis < &200 have an 'OS_' prefix to the main part, and a SWI-dependent end
section (which is 'Undefined' for unknown OS SWis).

SWis in the range &100 to &lFF arec converted in the form OS_ Write+"A", or
OS_ Write!+ 23 if the character is not a printable one.

SWis >= &200 are looked for in modules. If a suitable name is found, it is given in
the form module_name or module_number, eg Wimp_Initialise, Wimp_32. If no
name is found in the modules, the string 'User' is returned.

OS_SWINumberFromString &39 (57)

On entry: Rl =pointer to a name terminated by an ASCII code<= 32

On exit: RO = SWI number

. UMBER CONVERSIONS

OS_SWINumberFromString converts a SWI name to a SWI number. An error is
given if the SWI name is not recognized.

The conversion is as follows:

- A leading X is checked for and stripped. If present, it will cause &20000 to be
added to the number returned. (Bit 17 will be set.)

- System names are checked for. Note that the conversion of SWls is not quite
bidirectional: the name OS_ Writel +" "can be produced, but only OS_ Writel is
recognized.

- Modules are scanned. If the module prefix matches the one given, and the suffix
to the name is a number, then that number is added to the module's SWI 'chunk'
base, and the sum returned. For example, Wimp_&23 returns &400E3, as the
Wimp's chunk number is &400CO.

If the suffix is a name, and this can be matched by the module, the appropriate
number is returned. For example, Wimp_Poll returns &400C7.

See the chapter MODULES for more information on how modules provide the
conversion.

Note that SWI names are case sensitive, so you must spell them exactly as returned
by OS_SWINumberToString.

STRING SCANNING ROUTINES

OS_GSlnit &25 (37) -String input initialisation

OS_GSlnit initialises registers for usc by OS_GSRead.

On entry: RO = pointer to string to translate
R2 =flags

411

412

On exit: RO =value to pass back in to OS_GSRead
Rl = first non-blank character
R2 = value to pass back in to OS_GSRead

OS_GSinit is one of the string routines which are used by the operating system
command line interpreter to process the strings sent to it. One of the advantages of
these routines is that they enable you to use the character ' I ' to introduce control
characters which would otherwise be difficult to enter directly from the keyboard.

See OS_GSRead below for a list of the conversions that are performed by the
routines.

OS_GSinit also returns the first non-blank character in the string. However, this is
not necessarily the same as the output from the first OS_GSRead since OS_GSinit
doesn't perform any expansion.

There are options which can be used to determine the way in which the string is
interpreted. This is done by setting the top three bits in R2 as follows:

Bit Meaning

29 If set then a space is treated as a string terminator
30 If set control codes are not converted (ie 'I' syntax is ignored)
31 Double quotation marks(") are not to be treated specially, ie they are

not stripped around strings.

OS_GSRead &26 (38) -String input

This routine returns a character from a string which has previously been initialised
by OS_GSinit.

On entry: RO from last OS_GSRead/OS_GSinit
R2 from last OS_GSRead/OS_GSinit

On exit: RO is updated
R 1 = next translated character
R2 is updated

~~UMBER CONVERSIONS

V set if bad string (eg mismatched quotation mark)
C set if end of string reached

OS_GSRead reads a character from a string, using registers initialised by a
OS_GSlnit immediately prior to this call. The next expanded character is returned
in Rl. The values in RO and R2 are updated so they are set up for the next call to
OS_GSRead. The characters which OS_GSRead returns are obtained using the
following conventions:

- I c, etc, are converted into the relevant control codes, unless these were disabled
by bit 30 ofRZ, which was set when OS_GSlnit was called.

- an unsigned integer within angled brackets is evaluated using OS_ReadUnsigned
and the corresponding ASCII character is returned, eg <2_1010> returns ASCII
10, <7> ASCII 7 etc.

- a variable name within angled brackets is replaced by the value held by the
variable, or is ignored if the variable does not exist

- Anything else is returned unchanged.

A full list of ASCII codes and how to obtain them is given below. Of course, any
ASCII code may be obtained by enclosing it in angled brackets as described above,
and this may be easier to remember than the symbol encoding.

413

414

ASCII code

0
1 -26

27
28
29
30
31
32-126

<
127
128-255

Symbols used

I@
I <letter> eg I A (or I a)= ASCII I, I M (or I m) ...
ASCII13
I [or I
I
I] or I
I" or 1-
l_or I'
keyboard character, except for:
I"
II
I<
I ?
I ! <coded symbol> eg ASCII 128 = I ! I @ ASCII 129 =
Ill A etc

Note that you must use I< to prevent the'<' from being interpreted as the start of a
number or variable name enclosed in angled bracketS.

To include leading spaces in a definition, the string must be in quotation marks,'"',
which are not included in the definition. To include a single 11 character in the
string, use I 11 or "".

OS_GSTrans &27 (39)- General String Translation

OS_GSTrans is equivalent to a call to OS_GSinit followed by repeated calls to
OS_GSRead until the end of the source string is reached. Each time it obtains a
character and translates it, OS_GSTrans then places it in a buffer.

On entry: RO =string pointer, terminated by 10 or 13 or 0
Rl = buffer pointer
R2 = buffer size (maxlen) and flags in top 3 bitS

. UMBER CONVERSIONS

On exit: RO = pointer to terminator
R2 = number of characters or maxlen+ 1 if it overflowed
Vis set if bad srring (eg mismatched quotation mark)
C is set if buffer overflowed

The flags in R2, on entry, are the same as those supplied to OS_GSinit. On exit, RO
points to the terminator of the source srring, and R 1 + R2 points to the terminator of
the translated string. If C= 1 on exit, R2 is set to the length of the translated string
buffer plus one.

OS_SubstituteArgs (&43)- Substitute command line arguments

This call performs the hard work involved in substituting a list of arguments into a
'template' string. Its main use is in the processing of command Alias$ variables by
the system. As it is also useful in other situations, it has been made available to users.
For example, FileSwitch uses it in the processing of Load$Type_ TIT variables.

The call is only available under OS 0.40 and above.

On entry: RO = pointer to argument list
R1 = pointer to buffer for result string
R2 = length of buffer
R3 = pointer to template string
R4 = length of template string

On exit: R2 = number of characters in result string (inc. terminator)

The argument list is a string consisting of space-separated items which will be
substituted into the template string. Spaces within double quotation marks are not
counted as argument separators. Typically, the argument string will just be the tail of
a • command. It is control-character terminated.

The result of substituting the arguments into the template string is placed in the
buffer. The length of the buffer is given so that the call can check for buffer
overflow.

415

416

The template string is copied into the result buffer character for character. However,
when a'%' appears in the template string (even within quotation marks), it marks
where an argument should be placed into the output buffer. The'%' is followed by a
single digit from 0 to 9. %0 stands for the first argument in the argument list, and so
on. %•n means all of the arguments from number n onwards.%% means a single
'%'.Anything else following the'%' is not treated specially, ie both the'%' and the
character are copied over.

The template string does not have a terminator; instead its length is given. At the
end of the substitution, any arguments after the highest one mentioned in the
template string are appended to the result string.

i!PRITES

Sprites are graphics shapes which can be plotted in any of the graphics display
modes. Sprite plotting is part of the VDU drivers, and is accessed through the SWI
OS_SpriteOp

A system module, called SpriteUtils, provides a • command interface to so-called
system sprites. These can be plotted, saved and loaded, merged with other sprite files,
and defined from rectangular areas of the screen.

A sprite is a rectangular array of pixels. The pixels in the sprite can be set to any of
the logical colours available. When a sprite is created, the numbers of bits per pixel is
given. The sprite can only be plotted in modes which have the same number of bits
per pixel.

The pattern of pixels that make up a sprite can be defined in two principal ways. It
can be 'grabbed' from the screen, so that the sprite is just a copy of a section of the
screen. Alternatively, a sprite can be defined using a sprite editor utility. Such a
program is provided on the Archimedes Welcome disc.

In addition to the pixel pattern, a sprite can have a transparency mask and a palette
table. The transparency mask is an array with the same dimensions as the sprite
itself. Each pixel in the mask can be set to transparent or solid. When the sprite is
plotted with the appropriate GCOL action, the transparency mask is used to
determine which pixels of the sprite are actually plotted. Only those with the
corresponding mask bit set to solid will be plotted.

The palette for the sprite can be used to set up the screen palette when the sprite is
loaded, so that the colours are the same as when the sprite was created. This facility
is used by the sprites which are created by the command *SCREENSA VE. (These
are described below.)

There are two typeS of sprite: system and user. System sprites are held in the system
sprite area. The size of this area is set by a *CONFIGURE option (SpriteSize). It is
given in physical pages (8K or 32K bytes). System sprites are always referred to by
their names, a sequence of up to 12 characters. This makes them ideal for handling
through • commands. Certain system sprites, whose names happen to be the
numbers 0 through 255, are also accessible through a VDU 23 command.

417

418

User sprites are stored in an area allocated by the user, for example the application
workspace or RMA. They can only be accessed through the OS_SpriteOp call.
These sprites can be referenced by name, or directly by a pointer to the sprite itself.
This is the most efficient way of dealing with sprites.

SPRITE • COMMANDS

This section describes the * commands for dealing with system sprites.

•SCHOOSE

Syntax: *SCHOOSE <name>

*SCHOOSE selects a particular sprite for use in subsequent sprite plotting
operations. The sprite is identified by giving the name with which it was created. If it
was created using a YOU 23 command (see below), this will be a number in the
range 0 to 255.

Syntax: *SCOPY <namel> <naiT'e2>

*SCOPY makes a copy of sprite <namel> and names it <name2>.

•SCREENLOAD

Syntax: *SCREENLOAD <filename>

*SCREEN LOAD plots a sprite directly from a file onto the screen, setting the
palette to that held in the file.

If the current mode is the same as that held with the sprite, the sprite is plotted at
the bottom left-hand comer of the graphics window. If the current mode is different,
a mode change is performed and the sprite is plotted at the bottom left-hand corner
of the screen.

PRITES

•SCREENSA VE

Syntax: *SCREEN SAVE <filename>

*SCREENS AVE saves the current graphics window and palette information as a
sprite file. It is given a type FF9, and lists as 'Sprite' in *EX and *INFO commands.
The file contains one sprite, called 'screendump'.

*SDELETE

Syntax: *SDELETE <namel> [<namel> ... <name3>)

*SDELETE deletes one or more sprites from memory.

Syntax: *SFLIPX <name>

*SFLIPX reflects the named sprite about its X axis so it is upside down.

*SFLIPY

Syntax: *SFLIPY <name>

*SFLIPY reflects the named sprite about its Y axis so it faces in the opposite
direction.

•SGET

Syntax: *SGET <name>

*SGET picks up a rectangular area of the screen, defined by the two previously
visited graphics points, and saves it as a sprite with the name given.

419

420

Syntax: SINFO

*SINFO prints out the amount of sprite workspace currently reserved, the amount of
free space in that workspace and the number of sprites defined.

Syntax: *SLIST

*SLIST prints a list of the identifiers of all the sprites currently held in memory, or
the message No sprites defined.

*SLOAD

Syntax: *SLOAD <filename>

*SLOAD loads a file containing sprite definitions into memory so that these sprites
may be edited, plotted, etc. If there is insufficient sprite workspace for all the sprites,
a message is given and nothing is loaded. Any sprites which are in memory when the
command is successfully given are lost.

*SMERGE

Syntax: *SMERGE <filename>

*SMERGE merges the sprite definitions in the file named with those in memory. If
the file contains a sprite with the same identifier as one in memory, the original
version is overwritten.

*SNEW

Syntax: *SNEW

*SNEW deletes all the sprite definitions currently in memory and so frees all the
sprite workspace.

. PRITES

S)'rltax: *SRENAME <namel> <name2>

*SRENAME assigns the new name, <name2>, to the sprite whose current name is
<namel>. A sprite name can contain any sequence of printable characters. Control
characters cannot be used since they terminate the string.

•SSAVE

Syntax: *SSA VE <filename>

*SSA VE saves all the sprites currently in memory to a file which can later be
reloaded, or merged.

*CONFIGURE SpriteSize

S)'rltax: *CONFIGURE SpriteSize <n>

This causes 'n' physical pages to be reserved for the sprite definition. The range of 'n'
is 0 to 255. As with all *CONFIGUREs, the command does not come into effect
until the next hard break.

SPRITE VDU COMMANDS

VDU23,2 7 ,m,n,O,O,O,O,O,O

VDU 23,2 7 is used to select or define a sprite.

m=O

m = 1

The command selects the sprite whose name is 'n'. It can, therefore,
only be used for sprites whose names are 0-255. It is equivalent to
OSCLI"SCHOOSE" + SfR$n in BASIC.

The command defines sprite 'n' to contain the contents of the
rectangular area of the screen whose extents are determined by the
current and previous graphics cursor positions. It is equivalent to
OSCLI"SGET" + STR$n in BASIC.

421

These YOU commands are provided for compatibility with the BBC Micro's
Graphics Extension ROM and Master Compact sprite ROM. In new code, the
*SCHOOSE and *SGET commands, or the corresponding SWI OS_SpriteOp calls,
should be used instead.

VDU 25,232- 239,x;y; (PLOT 232- 239,x,y) Plot a sprite

These calls plot the sprite currently selected. The co-ordinates, and the way in which
the sprite is plotted depend on the plot code:

Plot Meaning

232 Move by x,y
233 Plot sprite by x,y
234 Invert sprite-sized rectangle by x,y
235 Plot sprite mask in background colour by x,y
236 Move to x,y
23 7 Plot sprite at x,y
238 Invert sprite-sized rectangle at x,y
239 Plot sprite mask in background colour at x,y

It is quicker to use OS_SpriteOp to plot a particular sprite.

THE SPRITE SWI CALL

422

The most versatile way of dealing with sprites is through SWI OS_SpriteOp (&2E).
This SWI is more powerful than the higher level commands since it may be used to
define user sprite areas, in addition to the system one, and to manipulate sprites in
those areas as well.

The full list of actions performed by SWI OS_SpriteOp is given below. In general:

On entry: RO .. reason code
Rl ... R6 depend on RO

On exit: depends on RO

. PRITES

The reason code, given in RO, falls into one of three distinct ranges, depending on
what sort of sprite operation it is. They are as follows:

Range

0-7
8-23
24-X

Type of operation

High-level sprite operations
Sprite file and get/put operations
Low-level sprite operations

X is the highest sprite operation code, which is 49 currently.

The first group covers screen save/load operations and deals with a new sprite area.
The second group covers many of the operations made available on system sprites
through the SpriteUtils module. The last group deals with manipulating individual
sprites, such as setting their transparency masks, changing the sprite size, etc.

Now, in addition to the three groups of sprite operations described above, there are
three ways in which sprites may be referenced, depending on whether they are
'system' or 'user' sprites, and whether you want to access them by name or address
(user sprites only).

You tell the sprite system which type of access you require by adding a number to the
basic range given above. If you add zero (ie use the base range), then system sprites
are used- these are always accessed by name.

If you add 256 to the operation code, then user sprites will be accessed, and the
access will be by name.

If you add 512, user sprites will again be accessed. This time though, instead of
providing a pointer to the sprite name, you give a pointer to the sprite itself. This
gives very efficient access, and is the fastest way of dealing with a sprite.

To use non-system sprites, you must claim some workspace from the sprite area (eg
by DIMing space in BASIC or claiming it for the RMA if you are a module), then
set up a sprite header at the start of this space. The sprite header format is shown in
the section Sprite internals. (This follows later.)

423

424

The table below summarises how Rl and R2 are used according to the sprite group
you are using (0 - 7, 8 - 23 or 24- X), and the number you add tO the basic
operation code.

RO =O+n

On entry: Rl is unused - sprites are accessed in the system area (operations 8 to X)
R2 =pointer to a sprite name (operations 24 to X)

These allow you to manipulate sprites in the system area. The sprite is identified by
its name which is pointed to by R2.1bis applies ro operation codes in the range 24
to X. The first and second groups of codes do not use R2 to access particular sprites.

RO = 256 + n

On entry: Rl = pointer to user sprite area (operations 8 to X)
R2 = pointer to a name of user area sprite (operations 24- X)

You can set up user sprite areas and manipulate sprites in these areas using these
calls. Sprite operations in the range 8 to X use Rl as the pointer to the sprite area.
Operations in the range 24 to X, which access particular sprites, use R2 to point to
the sprite name.

RO = 512 + n

On entry: Rl = pointer to user sprite area (operations 8 to X)
R2 = pointer to a sprite (operations 24 to X)

You can set up user sprite areas and manipulate sprites in these areas with these calls.
Sprite operations in the range 8 to X use R 1 as the pointer to the sprite area.
Operations in the range 24 to X, which access particular sprites, use R2 to point to
the sprite itself. As some sprite operations can change the address of a sprite (eg the
add sprite mask call), you should re-discover the address using, for example, the
select sprite operation, if you think the address has changed.

PRITES

The full range of operations is given below. The value of the offset, 'n', within each
range is given and the parameters should be set according to the range (ie sprite
type) used:

n = 2 - Screen save

On entry: R2 =pointer to filename
R3 = palette flag

On exit:

This saves the current graphics window as a sprite file. The file contains a single
sprite called 'screendump'. lf R3 is 0, no palette information is saved with the file; if
it is 1, the current palette is saved. It is equivalent to *SCREENSA VE. All versions
of this call have the same effect.

n = 3 - Screen load

On entry: R2 = pointer to filename

On exit:

This plots a sprite directly from a file to the screen. lt changes mode if necessary and
sets the palette to the setting held in the file. The sprite is plotted at the bottom left
of the graphics window. After a mode change, this is the bottom left-hand comer of
the screen. It is equivalent to *SCREEN LOAD. All versions of this call have the
same effect.

Calls described from this point use the operation code to determine whether Rl is
unused (O+n so system sprites are used), or contains a pointer to a user area (256+n
and 512+n).

n = 8 - Read area control block

On entry: Rl = pointer to control block of sprite area

425

426

On exit: Rl = total size of sprite area in bytes
R3 = number of sprites in area
R4 = byte offset to the first sprite
R5 = byte offset to the first free word

This returns all the information contained in the control block of a sprite area.

n = 9 - Clear sprite area

On entry: Rl =pointer to control block of sprite area

On exit:

This reinitialises a sprite area. For system sprites, it is equiva;ent to •SNEW.

n = 10 - Load sprite file

On entry: Rl = pointer to control block of sprite area
Rl = pointer to filename

On exit:

This loads the sprite definitions contained in the file into the sprite area, overwriting
any definitions stored there already. It is equivalent to "'SLOAD for the system area.

n = 11 - Merge sprite file

On entry: Rl = pointer to control block of sprite area
R2 = pointer to filename

On exit:

. PRITES

This merges the sprite definitions contained in the file with those in the sprite area.
For system area sprite, it is equivalent to *SMERGE.

n = 12 - Save sprite file

On entry: Rl = pointer to control block of sprite area
R2 = pointer to filename

On exit:

This saves the contents of a sprite area to a file. It is equivalent to *SSA VE when
used with the system area.

n = 13 - Return name

On entry: Rl = pointer to control block of sprite area
R2 =pointer to buffer
R3 = maximum buffer length
R4 = sprite number (position in workspace)

On exit: R3 = string length

This returns the name of the sprite whose position in the workspace (eg 3 for the
third sprite) is given in R4. The name is placed in the buffer pointed to by R2 and
the string length is returned in R3.

n = 14 - Get sprite

On entry: Rl =pointer to control block of sprite area
R2 = pointer to sprite name
R3 = palette flag

On exit: R2 = address of sprite (if sprite is in a user sprite area)

427

428

This defines the sprite identified to be the current contents of an area of the screen
which is delimited by the current and old cursor positions. The palette flag in R3 has
the following effect:

Value

0
1

Meaning

Exclude palette data
Include palette data

For the system sprite area, this is equivalent to *SGET.

n = 15 - Create sprite

On entry: Rl = pointer to control block of sprite area
RZ .. pointer to sprite name
R3 = palette flag
R4 = width in pixels
R5 = height in pixels
R6 = mode number

On exit: R2 • address of sprite (if sprite is in a user sprite area)

This creates a blank sprite of a given size. The palette flag in R3 has the following
effect:

Value

0
1

Meaning

Exclude data
Include data

. PRITES

n = 16 - Get sprite from user co-ordinates

On entry: Rl =pointer to control block of sprite area
RZ =pointer to sprite name

On exit:

R3 = palette flag
R4 = left-hand edge (external co-ordinates)
R5 = bottom edge (external co-ordinates)
R6 = right-hand edge (external co-ordinates)
R7 = top edge (external co-ordinates)

This picks up an area of the screen, which is delimited by the co-ordinates supplied,
as a sprite. The palette flag in R3 has the following effect:

Value

0
1

Meaning

Exclude data
Include data

Calls described from this point on use the reason code to determine how Rl and R2
are l.l.Sed.

- IfRO=O+n, then Rl isn't used (the system sprite area is assumed) and RZ contains
a pointer to the sprite name.

- IfRO .. z56+n then the user sprite area addressed by Rl is used, and RZ contains a
pointer to a sprite name.

- IfR0•51Z+n, then the user sprite area addressed by Rl is used, and RZ contains
the address of the sprite to be accessed.

The phrase 'sprite pointer' should, therefore, be taken to mean whichever type is
appropriate for the reason code.

429

430

n = 24 - Select sprite

On entry: Rl =pointer to control block of sprite area
R2 = sprite pointer

On exit: R2 = address of sprite (if sprite is in a user sprite area)

lfR0=0+24, this selects a particular sprite for subsequent plotting by PLOT &ED
etc. It is equivalent to *SCHOOSE for system sprites.

IfR0=256+24 or 512+24, this returns the absolute address of the sprite in R2.

n = 25 - Delete sprite

On entry: Rl = pointer to control block of sprite area
R2 = sprite pointer

On exit:

This deletes the definition of a particular sprite; it is equivalent to *SDELETE for
system mode sprites.

n = 26 - Rename sprite

On entry: Rl =pointer to control block of sprite area
R2 = sprite pointer

On exit:

R3 =pointer tO new name

This changes the name of a sprite; it is equivalent to *SRENAME or the system
sprite area. An error is produced if a sprite of the new name already exists.

n = 27- Copy sprite

On entry: Rl =pointer to control block of sprite area
R2 = source sprite pointer
R3 =pointer to new sprite name

On exit:

. PRITES

This copies a sprite within a sprite area, giving the copy a new name. An error is
produced if there is a name clash between the copy and an existing sprite. It is

equivalent to •SCOPY for system sprites.

n = 28 - Put sprite

On entry: Rl =pointer to control block of sprite area
R2 = sprite pointer

On exit:

R5 = GCOL action

This plots the sprite identified at the graphics cursor position given using the GCOL
action specified.

n = 29- Creau mask

On entry: Rl = pointer to control block of sprite area
R2 = sprite pointer

On exit:

This creates a mask for the given sprite with all pixels set to be solid, so the whole
sprite is plotted.

n = 30- Remooe mask

On entry: Rl =pointer to control block of sprite area
R2 = sprite pointer

431

432

On exit:

This removes the mask definition for a given sprite.

n = 31- Insert row

On entry: Rl =pointer to control block of sprite area
R2 = sprite pointer

On exit:

R3 = row number

This inserts a row at the position identified, shifting all rows above it up one. All
pixels in the new row are set to colour zero. Rows are numbered from the bottom
upwards with the bottom row being number zero.

n = 32- Delete row

On entry: Rl = pointer to control block of sprite area
R2 =sprite pointer
R3 • row number

On exit:

This deletes the row given, shifting all rows above it down one.

n = 33 -Flip about x,axis

On entry: Rl =pointer to control block of sprite area
R2 =sprite pointer

On exit:

This takes the sprite identified and reflects it about the x,axis so that it is upside
down. Thus, its previous top row becomes the bottom row, etc.

n = 34 - Put sprite at user co-ordinates

On entry: Rl =pointer to control block of sprite area
R2 = sprite pointer

On exit:

R3 = x co-ordinate (external co-ordinates)
R4 = y co-ordinate (external co-ordinates)
R5 = GCOL action

. PRITES

This plots a sprite at the co-ordinates supplied, using the plot action supplied. See
the section on VDU 18 (GCOL) for details of the various plot actions, how to use
the sprite mask, etc.

n = 40 - Read sprite size

On entry: Rl = pointer to control block of sprite area
R2 =sprite pointer

On exit: R3 = width in pixels
R4 = height in pixels
R5 = mask status
R6 = screen mode in which the sprite was defined

This returns information about the sprite, giving its width and height in pixels, the
screen mode in which the sprite was defined and its mask status which is given in R5
as follows:

Value

0
1

Meaning

No mask
Mask

433

434

n = 41 - Read pixel colour

On entry: Rl =pointer to control block of sprite area
R2 = sprite pointer
R3 = x co-ordinate
R4 = y co-ordinate

On exit: R5 = colour
R6 c tint (ignored for non-256-colour modes)

Given a pair of x andy co-ordinates in R3 and R4 (in pixels from the bottom left of
the sprite definition), this SWI option returns the current colour of the pixel at that
position in R5, and the tint in R6 if applicable.

n = 42 - Write pixel colour

On entry: Rl = pointer to control block of sprite area
R2 =sprite pointer

On exit:

R3 = x co-ordinate
R4 = y co-ordinate
R5 =colour
R6 = tint (ignored for non-256-colour modes)

Given in R3 and R4, a pair of x andy co-ordinates (in pixels from the bottom left of
the sprite definition), and a colour in R5 (and possibly a tint value in R6), this SWI
option sets the pixel at the position given to that colour.

n = 4 3 - Read pixel mask

On entry: Rl c pointer to control block of sprite area
R2 • sprite pointer
R3 = x co-ordinate
R4 • y co-ordinate

On exit: R5 • mask status

. PRITES

Given in R3 and R4, a pair of x andy co-ordinates in pixels from the bottom left of
the sprite definition, this SWI option returns the state for its mask at the position
identified as follows:

R5 = 0
R5 = 1

Transparent
Solid

n = 44 - Write pixel mask

On entry: Rl =pointer to control block of sprite area
R2 =sprite pointer

On exit:

R3 = x co-ordinate
R4 = y co-ordinate
R5 = mask status

Given in R3 and R4, a pair of x andy co-ordinates in pixels from the bottom left of
the sprite definition, this SWI option sets the pixel at the position identified in its
mask definition to be either transparent or solid as follows:

R5 = 0
R5 = 1

Set pixel to be transparent
Set pixel to be solid

n = 45 - Insert column

On entry: Rl = pointer to control block of sprite area
R2 = sprite pointer

On exit:

R3 = column number

This inserts a column at the position identified, shifting all columns after it one
place to the right. All pixels in this new column will be set to colour zero. Columns
are numbered from the left with the left-hand one being number zero.

435

436

n = 46 - Delete column

On entry: Rl =pointer to control block of sprite area
R2"' sprite pointer

On exit:

R3 = column number

This deletes the column given, shifting all columns after it one place to the left.
Columns are numbered from the left with the left-hand one being number zero.

n = 47- Flip about y-axis

On entry: Rl =pointer to control block of sprite area
R2 =sprite pointer

On exit:

This takes the sprite identified and reflects it about the y-a.xis so that it is facing in
the opposite direction, ie the left-most column becomes the right-most one, etc.

n = 48 - Plct sprite mask

On entry: Rl = pointer to control block of sprite area
R2 = sprite pointer

On exit:

This plots in the background colour and action through a sprite mask at the graphics
cursor position. That is, all 1 bits in the mask are plotted in the backgound colour
and action, and all 0 bits are ignored. If the sprite has no mask, a solid rectangle the
same size as the sprite is drawn in the current background colour and action (as if
there was a mask and it was all ones).

. PRITES

n = 49 - Plot mask at user co~ordinates

On entry: Rl • pointer to control block of sprite area
R2 = sprite pointer

On exit:

SPRITE INTERNALS

R3 .. x co-ordinate (external co-ordinates)
R4 = y co-ordinate (external co-ordinates)

This plots in the background colour and action through a sprite mask at the co
ordinates supplied.

The format of a sprite area is as follows:

Control Extension Sprite Sprite
Block Area

(Optional)

The sprite area control block contains the following:

Word

1
2
3
4
5 ...

Contents

Byte offset to last byte+ 1 (ie total size of sprite area)
Number of sprites in area
Byte offset to first sprite
Byte offset to first free word
Extension words

Free Space

The above offsets are relative to the stan of the sprite area control block.

So, to build a user sprite area from BASIC, you might use:

437

438

spriteLen • &4000 REM 16K sprite area

DIM mySprites spriteLen

!mySprites - spriteLen REM I nit length word

mySprites!4 - 0 REM !nit sprite count

mySprites!8 -16 REM Init first sprite pointer

mySprites!12 - 16 REM I nit free space pointer

The format of file created by *SCREEN SAVE command is the same as a sprite area
but without the first word of data (which would be the length). Note that all offsets
are relative to this non-existent word.

The format of a sprite is as follows:

Control Block Palette Area Sprite Image
(Optional)

The Sprite Control Block contains the following:

Word

I
2-4
5
6
7
8
9

Content

Offset to next sprite
Sprite name, up to 12 characters with trailing nulls
Width in words -1
Height in scan lines - 1
First bit used (left end of row)
Last bit used (right end of row)
Offset to sprite image

Plotting Mask
(Optional)

10
11

Offset to transparency mask or offset to sprite image if no mask
Mode sprite was defined in

12 ... Palette data (optional)

IIHE WINDOW MANAGER

INTRODUCTION

- Note: this chapter documents the window manager version 0.18.

The window manager is designed to simplify the task of producing application
programs to run under a 'WIMP' (Windows, Icons, Menus and Pointer)
environment. The manager itself is often referred to as the Wimp.

The window manager cooperates with the application in keeping the screen display
correct by telling the application when something needs to be redrawn. Thus, the
application needs to make as few intelligent decisions as possible. It merely has to
respond appropriately to the messages it receives from the window manager, in
addition to pe.forming its own processing (using the routines supplied to perform
window operations).

The window manager also provides a facility for 'writeable icons', which are clements
inside a window containing text. These elements can be automatically updated by
the window manager when the user clicks on them and presses keys. This feature
simplifies the job of obtaining text input from the user.

Layout of windows

The basic idea is that windows consist of a visible work area, in which the
application can draw graphics, and a surrounding 'system' area, comprising a title bar,
scroll bar indicators and so on. The application is not allowed to draw directly in this
area. The visible work area provides a window into a larger region, called the work
area extent. You can imagine the work area extent to be the complete document you
are working with, and the visible area a window into this.

There are, therefore, two sets of co-ordinates to deal with when setting up a window.
The visible work area co-ordinates determine where the window will appear on the
screen and its size. These are given in terms of graphics co-ordinates, with the origin
in its default position at the bottom left of the screen.

Then, there are the work area extent co-ordinates. These give the minimum and
maximum x and y co-ordinate of the whole document. The extent is specified when
a window is created, but can be altered using the Wimp_SetExtent call.

439

440

Between the extent co-ordinates and the visible region co-ordinates is a final pair
which join the two together. These are the scroll offsets. These indicate which part
of the extent is shown by the visible region. The scroll offsets give the co-ordinates
of a pixel in the work area which is displayed at the top left-hand corner of the
visible window. Say the visible region shows the very top left of the window extent.
Then the x scroll position would be 'extent x min', and they scroll position would be
'extent y max'.

It is common to define the extent work area such that its origin (0,0) is at the top
left of the document. This means that all x scroll offsets are positive (as you can only
ever be to the right of the extent origin), and ally offsets are zero or negative (as you
can only ever be on or below the extent origin).

To summarise, let's consider which part of the workspace extent will be visible, and
where it will appear on the screen, for a typical set of co-ordinates.

The following give the total document size:

extent x min = 0
extent y min= -5000
extent x max= 1000
extent y max = 0

The following give the window position and its sire:

visible x min = ZOO
visible y min = l 00
visible x max = 500
visible y max = 400

The following show which part of the extent is shown:

scroll x = 250
scroll y = -400

visible extent min x = scroll x = 250
visible extent min y =scroll y- height= - 700
visible extent max x =scroll x +width= 550
visible extent max y = scroll y = -400

IIHEWINDOW
MANAGER

So, on the screen at co-ordinates (200, 100) - (500,400) would be a 300 pixel-square
window showing the work area region (250,-700)- (550,-400). Moreover, the scroll
'sausages' drawn by the system have a length proportional to the area that the
window displays. The horizontal sausage would therefore occupy about 300/1000 =
0.3 of horizontal scroll bar, and the vertical one would occupy 300/5000 .. 0.06 of
the scroll bar.

Redrawing windows

As mentioned above, the Wimp and the program co-operate to ensure that the
windows on the screen remain up to date. The Wimp can't do all of the work, as it
does not always know what the contents of a window should be.

The Wimp requests a program to re-draw all or part of one of its windows by passing
back a 'reason code' from the routine Wimp_Poll. This is the central SWI to any
Wimp-based program, and must be called in the program's inner loop to ensure that
all events which the program should know about (eg mouse clicks) are reported by
the Wimp.

When the application receives the reason code Redraw_ Window_Request from
Wimp_poll, it should enter a loop of the following form:

Call Wimp_RedrawWindow for window, returns 'flag'
WHILE 'flag' do

Redraw contents of the appropriate window
CALL Wimp_GetRectangle, returns 'flag'

ENDWHILE
Return to main polling loop

When a window has to be redrawn, often only part of it needs to be updated. The
Wimp splits this area into a series of non-overlapping rectangles. The WHILE loop
above is used to obtain all the rectangles so that they can be re-drawn. The Wimp

441

442

automatically sets the graphics clipping window to the rectangle to be redrawn. The
application can take a simplistic view, and redraw its whole window contents each
time round the loop (relying on the graphics window to clip the unwanted parts
out). Alternatively, and much more efficiently, it can inspect the graphics window
co-ordinates and only draw the contents of that particular rectangular region.

The areas to be redrawn are automatically cleared (to the background colour) by the
Wimp. The application must determine what pan of the workspace area is to be
redrawn using the top-left window extent co-ordinates and the current scroll values.

Updating windows

When an application wants to update a window's contents, it must NOT simply
update the appropriate area of the screen. This is because the application does not
know which other windows overlap the one to be updated, so it could over-write
their contents. As with all window operations, it must be done with the Wimp's co
operation. There are two possible approaches:

- Call Wimp_ForceRedraw so Wimp issues a Redraw_ Window_Request

- Call Wimp_UpdateWindow, and perform appropriate operations.

In both cases, you provide the window handle and the co-ordinates of the
rectangular area to be updated (relative to the window origin). The Wimp works out
which areas of this rectangle are visible, and marks them a.s invalid. If you use the
first method, the Wimp will subsequently return a Redraw_ Window_Request from
Wimp_poll, which you should respond to a.s described above. In the second case, a
list of rectangles to be redrawn is returned immediately.

When Wimp_ForceRedraw is used, the Wimp clears the update area automatically.
This should therefore be used when a permanent change has occurred in the
window's contents, eg a paragraph has been reformatted in an editor. When you call
Wimp_UpdateWindow, no such clearing takes place. This makes this call more
suitable for temporary changes to the window, eg 'dragging' objects, or 'rubber
banding' in graphics programs.

. HE WINDOW
MANAGER

It is simpler to use Wimp_ForceRedraw since, once it has been called, the
application just returns to the central loop, from where the
Redraw_ Window_Request will be received. The code to handle this must already be
present for the program to work at all. On the other hand, the second method is
much quicker as the re-drawing is performed immediately.

Mouse buttons

The Wimp system works with a 3-button mouse, and since it is important that all
applications use the mouse in as consistent a manner as possible, it has been decided
that the buttons shall be used as follows:

left-hand button:
middle button:
right-hand button:

select
menu
adjust

The interpretation of which button should do what depends on the circumstances,
but broadly speaking the select button is used to make new selections, while the
adjust button is used to alter existing selections, or to add selections to existing ones.

Various parts of the Wimp enforce the interpretations given above for the mouse
buttons. For example, icons may be programmed to respond in various ways to the
adjust and select buttons, and the menu system uses the menu button for activation.

Keyboard input and text handling

An application running under the Wimp should perform all of its input using Wimp
routines, rather than calling OS_ReadC or OS_Byte &81 directly. It is permissible
for a program to scan the keyboard if necessary, using the OS_Bytes provided.

One window has what is termed the 'input focus'. For example, the main text
window of an editor might be the current input window, and is highlighted by the
Wimp to show this. Also, a caret (a vertical bar text cursor) is drawn in the input
window at the current 'text insertion point'.

443

444

Two calls are provided- Wimp_SetCaretPosition and Wimp_GetCaretPosition- to
set and read where the text insertion point appears within the window. An
application reads key presses through the Wimp_Poll routine.

The caret can be positioned either inside a window's work area, or inside a writeable
icon within a window. In the first case, all keys typed are passed on to the
application, along with an indication of the caret position. It is up to the application
to process the key presses appropriately.

In the second case, the Wimp will handle many possible key presses automatically
(printable characters, and left and right arrow keys) by updating the contents of the
icon and the caret position appropriately. The rest are passed on to the user. The
Wimp will also respond to select and adjust button-presses over a writeable icon by
positioning the caret inside that icon.

Pop-up menus

The Wimp provides a way in which the application can define multi-level menu
selections. Once a menu has been activated, the Wimp takes care of all mouse
movement over the menus, and when a selection is made, it will inform you through
Wimp_poll.

Because menus can have a complex hierarchical structure (as opposed to the simple
single-level menus on some systems) a call Wimp_MenuDecode is provided to help
translate the selection made into a textual form.

If the built-in menu handling is not suitable, the application can create its own
menus by making selections from icons, and using the automatic icon highlighting
and selection facilties that the Wimp provides.

Dialogue boxes

There is no direct way of setting up 'dialogue' boxes under the Wimp. However,
because icons can be handled in very versatile ways, it is quite straightforward to set
up windows which act as dialogue boxes. The Wimp can be made tO deal with
button clicks within the window, for example automatically highlighting icons.

HE WINDOW
MANAGER

Another feature of the Wimp which is useful in dialogue boxes is 'exclusive selection
groups', where a highlighted icon is automatically de-highlighted if another icon
from the same group is selected. This provides a 'radio button' facility, using the
terminology of some Wimp systems.

Also, because writeable icons are available, it is a simple matter to input text from
the user, again with the Wimp doing most of the work. If required, the application
can restrict the movement of the mouse to within the dialogue box, by defining a
mouse rectangle (using the pointer OS_ Word described in the section
Mouse/pointer OS_ Word call in the chapter THE VDU DRIVERS) which
encloses the box. This ensures that the user can perform no other task until he or she
responds to the dialogue box. The application should always reset the mouse
rectangle to the whole screen once the dialogue is over.

Dragging boxes

One of the recognisable features of most window systems is the ability to 'drag' items
around the screen. The Arthur Wimp is no exception, and provides extensive
facilities for dragging objects.

The call Wimp_DragBox initiates a dragging operation. The user supplies the initial
position and size of the box to be dragged, and a 'parent' rectangle within which the
dragging must be confined. Normally, the initial position of the box will be such that
the mouse pointer is positioned along one of the box's edges. This is not mandatory
though; the Wimp, while performing the dragging, ensures that the relative positions
of the pointer and the box remain constant.

Drag boxes can be fixed size, where the whole of the box is moved along with the
pointer, or variable sized, where the top-left of the box is ftxed, and the bottom-right
moves with the pointer. (The fixed and moveable comers can be reversed by
specifying the box co-ordinates in the reverse order.)

Finally, there is an 'invisible' type of drag box. In this case, the mouse is simply
constrained to the parent rectangle, and the initial box co-ordinates are ignored. It is
up to the application to draw the object being dragged. This usually involves setting
a 'dragging' flag in the main poll loop, and the use ofWimp_UpdateWindow. The

445

446

application must also ensure that the dragged object is redrawn if a
Redraw_ Window _Request is issued.

In all cases, the application is notified when the drag ope.ration ends (when the user
releases all mouse buttons) by Wimp-Poll returning the reason code User_Drag_Box.

Tool windows and 'panes'

A pane is a window which is 'fixed' to another window, but has different properties
from it. For example, consider a drawing program. You might have a scrollable,
movable main window for the drawing area. This is called the tool window. On the
left edge of this might be a fixed window which contains icons for the various
drawing options. This left-hand window (the pane) always moves with the main
window, but does not have scroll bars, or any other control areas.

Dealing with panes is really entirely up to the application program. However, there
are one or two things to bear in mind when using them. If a tool window is closed, all
of its panes must be closed too. Similarly, when a tool window is opened (an
Open_ Window_Request is received), the application must inspect the co-ordinates
of the main window returned by the Wimp, and use them to open the pane in the
appropriate position.

One bit in a window's definition is used to tell the Wimp that this is a pane. This is
used by the Wimp in two circumstances:

- If the pane gets the input focus, the tool window is highlighted

- When toggling the tool window, the Wimp must treat panes as transparent.

Changing the pointer shape

You should not use the standard OS_ Words and OS_Bytes to control the pointer
shape under the Wimp. Instead, use the call, Wimp_SetPointerShape.

Pointer shape 1 is used by the Wimp as its default arrow pointer. Any program
wishing to use a different shape must use shape 2, and program the pixels
appropriately.

HE WINDOW
MANAGER

You should only change the pointer when it is within the work area of one of the
application's windows. The Wimp_Poll routine returns two reason codes for
detecting this: Pointer_Entering_ Window and Pointer_Leaving_ Window.
Whenever the first code is received, the application can change the pointer to shape
2, and then, if required, later change it further, as long the pointer stays within the
window. On receiving the second code, the application should reset the pointer to
shape 1.

Template files

To facilitate the creation of windows, a 'template editor' has been written for the
Wimp system. This allows you to use the mouse to design your own window layouts,
and position icons as required. An extensive set of hierarchical menus provides a
neat way of setting up all the relevant characteristics of the various windows and
icons.

Once a window 'template' has been designed, it can be given an identifier (not
necessarily the same as the window title) and saved (along with any other templates
which have been set up and identified) in a template file. The Wimp provides a
Wimp_LoadTemplate call, which makes it very simple for an application program,
on start up, to load up a set of templates. The application can load a named template
from the file, which can then be passed straight to Wimp_CreateWindow, or it can
look for a wildcarded name, calling Wimp_LoadTemplate repeatedly for each match
found.

There are two problems associated with the loading of window templates from a file.
These concern the allocation of external resources:

- resolving references to 'indirected' icons
- resolving references to anti-aliased font handles.

In the first case, what happens is that the relevant indirected icon data is saved in
the template file. When the template is loaded in, the application must provide a
pointer to some free workspace where the Wimp can put the data, and redirect the
relevant pointers to it. This pointer will be updated on exit from the call to
Wimp_LoadTemplate. If there is not enough room, an error may be reported (the
application must also provide a pointer to the end of the workspace).

447

The problem concerning font handles is more difficult to solve. The template file
provides the binding from its internal font handles to the appropriate font names and
sizes. In addition, the Wimp must also have some way of telling the application to

which fonts handles it actually bound the font references to when the template was
loaded. This is so the application can call Font_LoseFont as required when the
window is deleted (or alternatively, when the application terminates).

To overcome this problem, the application must provide a pointer to a 256-byte
array of font 'reference counts' when calling Wimp_LoadTemplate. Assuming each
element of this array is zero on entry to Wimp_LoadTemplate, then if the template
contains two references to font 3, and one to font 5, the Wimp will have called
Font_FindFont three times altogether, receiving the answer 3 twice and the answer 5
once. On exit, element 3 of the array will contain 2, and element 5 will contain 1.
Thus the application knows that when it has finished with the window (ie. if it
deletes the window or terminates) it must call Font_LoseFont twice for font 3, and
once for font 5. It is a question for the application writer whether it is sufficient to
provide just one array of font reference counts, so that the fonts can be 'lost' only
when all the windows are deleted (or the application terminates), or whether a
separate array is needed for each window. Of course, considerable space
optimisations could be made in the latter case if the array was scanned on exit from
Wimp_LoadTemplate and convened to a more compact form.

If an application is confident that its templates do not contain references to anti
aliased fonts, then the array pointer can be null, in which case the Wimp reports an
error if any font references are encountered.

WINDOW MANAGER SWis

448

Wimp_lnitialise &400CO

On entry:

On exit: RO .. version number*lOO (0 before v. 0.08)

This call initialises the system. It should be called just once, when the application
starts up.

HE WINDOW
MANAGER

Wimp_CreateWindow &400Cl

On entry: Rl =pointer to block

On exit: RO = window handle

The block contains the following:

Rl+O
R1+4
R1+8
Rl+lZ
Rl+l6
Rl+ZO
Rl+24
R1+28
Rl+32
R1+33
R1+34
R1+35
R1+36
R1+37
R1+38
R1+39
Rl+40
R1+44
R1+48
Rl+SZ
R1+56
R1+60
R1+64
R1+68
Rl+72
R1+84
R1+88

initial visible area minimum x co-ordinate
initial visible area minimum y co-ordinate
initial visible area maximum x co-ordinate
initial visible area maximum y co-ordinate
scroll bar x offset
scroll bar y offset
handle to open window behind (-1 means top, - 2 means bottom)
flags/status information
title foreground colour
title background colour
work area foreground colour
work area background colour
scroll bar outer colour
scroll bar inner colour
colour of title background when highlighted
reserved- must be 0
work area extent minimum x co-ordinate
work area extent minimum y co-ordinate
work area extent maximum x co-ordinate
work area extent maximum y co-ordinate
icon flags (type) for the title bar
work area flags- for work area 'button type'
sprite area control block pointer (0 for system area sprites)
4 reserved bytes- must be &00000000
title string
number of icons in initial definition
icon definitions (32 bytes each)

449

450

This call tells the window manager about the characteristics of a window. SWI
Wimp_Open Window should subsequently be called to make it appear on the screen.

The work area button type (R1 +60) determines how clicks over the work area are
handled, in the same way as icon button type described below.

The window flags and starus information are held in the bits of the four bytes R1 + 28
to R 1 + 31 as follows:

Bit Meaning when set

0 Window has title bar
1 Window is moveable
2 Window has venical scroll bar
3 Window has horizontal scroll bar
4 Window can be redrawn entirely by the window manager (no user

graphics)
5 Window is a pane (ie it is on top of a tool window)
6 Window is allowed to go outside the main area
7 Window has no 'back' or 'quit' boxes
8 'Scroli_Request' returned when scroll buttons clicked (auto-repeat)
9 'Scroii_Request' returned when scroll buttons clicked (debounced)
16 Window is open
17 Window is on top (ie not covered). This bit is set by the Wimp
18 Window has been toggled to full size. This bit is set by the Wimp

The handles of any icons defined in this call are numbered from zero upwards, in the
same order that they appear in the block. The icon definitions are as supplied in
SWI Wimp_Createlcon below.

Note that this call may produce a Bad work area extent error, in which case
the specified work area extent specified does not entirely contain the initial visible
portion of the work area (governed by the scroll offsets and the work area co·
ordinates).

Wimp_Createlcon &400C2

On entry: Rl = pointer to block

On exit: RO =icon handle (unique within that window)

The block contains the following:

window handle

HE WINDOW
MANAGER

Rl+ 0
Rl+ 4
RI+ 8
Rl+12
Rl+l6
Rl+10
Rl+14

minimum x co-ordinate of bounding box of icon
minimum y co-ordinate of bounding box of icon
maximum x co-ordinate of bounding box of icon
maximum y co-ordinate of bounding box of icon
flags
icon data

This call provides all the information necessary to create an icon. Once it has been
defined, you can change its flags by means of SWI Wimp_SedconState, but you
cannot alter the other data.

The bounding box of the icon is given relative to the window extent origin.

The flags are held in the bits of the four bytes Rl + 20 to Rl + 23 as follows:

Bit Meaning when set

0 Icon contains text
1 Icon is a sprite
2 Icon has a border
3 Text is centred horizontally within the box
4 Text is centred vertically within the box
5 Icon has a filled background
6 Text is an anti-aliased font
7 Icon requires application's help to be redrawn
8 Icon data is 'indirected' (see below)
9 Text is right-justified within the box

451

452

10

11
11 - 15
16 - 20
11
22
23
24 - 27
28 - 31
24 - 31

If selected with right-hand button don't cancel others in the same
exclusive selection group
Reserved (must be 0)
Button type, way in which icon responds to mouse clicks
Exclusive selection group (ESG)
Icon is selected by the user and is inverted
Icon cannot be selected by the mouse pointer, it is shaded
Icon has been deleted
Foreground colour of icon (if bit 6 is cleared)
Background colour of icon (if bit 6 is cleared)
Font number (if bit 6 is set)

The icon data consists of 12 bytes which contain:

- if text, then up to 12 bytes of text (terminated by <cr>)

- if sprite, then the name of the sprite (11 bytes)

- if icon data is 'indirected', then the following 3 words:

- pointer to buffer to contain the text

- pointer to validation string (-I if none- use this for now)

- length of buffer (bytes)

The button types (bits 11- 15) are as follows:

Value

0
1
2
3
4

5

Type

Ignore mouse clicks
Notify application whenever pointer is over this icon
Click notifies application (auto-repeat)
Click notifies application (debounced)
Click selects, release notifies application
(or deselect if have moved away from icon)
Click selects, double-click notifies application

6
7
8
9
10

11-14
15

. HE WINDOW
MANAGER

As (3), but can also drag (returns button state • 16)
As (4), but can also drag (returns button state • 16)
As (5), but can also drag (rerums button state • 16)
Select when mouse pointer is over icon, notify if clicked
Click rerums button state*256
Drag rerums button state*16
Double click returns button state*1
Reserved
Writeable icon (mouse clicks cause the caret to be positioned inside
the icon)

Once an icor• has been defined, you can change its flags by means of the SWI
Wimp_SetlconState instruction, but the other data (the bounding box and the text)
cannot be altered. If the text is specified as 'writeable' then it can be altered, but the
application must ensure that the icon is redrawn (for example, by using a call to SWI
Wimp_SetlconState which leaves the flags unchanged).

If an icon has a button type of 15, then it is treated as being special by the window
manager. Any mouse clicks on it cause the caret to be automatically positioned
inside the icon, whereupon any key presses cause the text in the icon to be
automatically updated. For further details, see the sections on SWI
Wimp_SetCaretPosition, SWI Wimp_GetCaretPosition, and SWI Wimp_Poll
(Key _Pressed).

The exclusive selection group number (ESG) groups sets of icons such that if any
one of them is selected, then the others are automatically deselected. Another bit in
the icon flags allows the use of the right-hand button (adjust) to select more than
one item in an ESG. If the ESG number of an icon is set to zero, then it is in a group
on its own, so clicking again on such an icon will deselect it.

If it is not possible for the Wimp automatically to select or deselect an icon, because
it requires user-graphics for example, then you can use type 10. This allows the
application to trap single, double clicks, and dragging, and act on them accordingly.
Note that ESG handling is only performed by the Wimp if selection is performed
automatically; it won't turn off other icons in the same ESG if you use
Wimp_SetlconState to highlight an icon. This is to give you total control over
highlighting if you are doing it 'manually'. Wimp_ Which leon helps here: it will give

453

454

you a list of icons in a given ESG, and the handles which are returned can be used to
perform highlighting as required.

Wimp_DeleteWindow &400C3

On entry: Rl =pointer to block

On exit:

The block contains the following:

Rl+ 0 window handle

This call removes the definition of the specified window from the data structure,
along with the definitions of all the icons within it. The memory used is reallocated.

Wimp_Deletelcon &400C4

On entry: Rl = pointer to block

On exit:

The block contains the following:

Rl+ 0
Rl+ 4

window handle
icon handle

This call removes the definition of the specified icon from the data structure. The
icon is marked as deleted if it is not the last one in the list, so that the hndles of the
other icons are not altered. If the icon is the last one in the window's list, the
memory is reclaimed.

Note that this call doesn't affect the screen. To cause the icon to disappear, you must
call Wimp_ForceRedraw with the bounding box of the icon, or the area occupied by
a group of icons if several have been deleted.

Wimp_OpenWindow &400C5

. HE WINDOW
MANAGER

On entry: Rl = pointer to block

On exit:

The block contains the following:

Rl+ 0
Rl+ 4
Rl+ 8
R1+12
R1+16
R1+20
R1+24
R1+28

window handle
minimum x of work a.rea
minimum y of work area
maximum x of work area
maximum y of work area
x offset of top left of visible work area from graphics origin
y offset of top left of visible wrok area from graphics origin
handle of window to go behind (-1 = top, -2 .. bottom)

This call causes the appropriate window to appear on the screen in the specified
position, at the specified size, and with the scroll bars in the appropriate position.
The last parameter controls the position of the window in the window stack.

This call provides a means of moving windows about the screen. Any necessary
redrawing is returned to the application program via SWI Wimp_Poll, unless the
window manager can do it itself, in which case it is done immediately.

When the window manager returns an Open_ Window _Request from SWl
Wimp_Poll, the last parameter is set up according to the nature of the action which
is causing the window to move. For example: 'back window', 'move window', 'resize
window', 'scroll up', etc.

Wimp_CloseWindow &400C6

On entry: Rl = pointer to block

On exit:

The block contains the following:

455

456

Rl+O window handle

This call removes the specified window from the active list. It may cause SWI
Wimp_Poll subsequently to return Redraw_ Window_Requests as appropriate to
update the screen.

Wimp_Polt &400C7

On entry: RO = mask
Rl = pointer to block (used for return data)

On exit: RO = reason code
Rl = pointer to block (data depends on reason code)

This call checks to see whether certain events have occurred.

If the mask is zero on entry, all reason codes are checked for. If non-zero, then the
events, corresponding to the bits that are set, are not checked for. They cannot be
returned by the window manager. These events are as follows:

Bit Meaning when set

0 Disallow Null_Reason_Code
1 Disallow Redraw_ Window _Request
2 Disallow Open_ Window_Request t
3 Disallow Close_ Window _Request t
4 Disallow Point("r_Leaving_ Window
5 Disallow Pointer_Entering_ Window
6 Disallow Mouse_Button_Change
7 Disallow User_Drag_Box t
8 Disallow Key_Pressed
9 Disallow Menu_Select t
10 Disallow Scroli_Request t

t These codes cannot be masked out.

. HE WINDOW
MANAGER

Possible reason codes are checked for in numerical order, so that, for example, a
Redraw_ Window_Request takes precedence over a Mouse_Button_Change (unless
it is masked out).

The following reason codes which may be returned:

Code Reason

0 Null_Reason_Code
1 Redraw_ Window _Request
2 Open_ Window_Request
3 Close_ Window _Request
4 Pointer_Leaving_ Window
5 Pointer_Entering_ Window
6 Mouse_Button_Change
7 User_Drag_Box
8 Key _pressed
9 Menu_Select
10 Scroll_request

According to the reason code returned, the buffer pointed to by Rl contains the
relevant data, allowing the application to respond appropriately. The format of the
data in the block for each of the possible reason codes is as follows:

Redraw_ Window _Request

The block contains the following:

Rl+ 0 window handle

In general, when this code is returned, not all the relevant window needs to be
redrawn, but just the portion of the window which is not up to date. This ponion
consists of a series of rectangles.

On receipt of the Redraw_ Window_Request, the application must first ask the
window manager to redraw the relevant parts of the window outline. Then it must
redraw the work area of the window for each of the rectangles in the 'invalid list'.

457

458

Two SWis are provided to help with this, SWI Wimp_RedrawWindow and SWI
Wimp_ GetRectangle:

- Wimp_RedrawWindow causes the Wimp to redraw any sections of the window
outline which intersect the invalid list, and also to clear any relevant parts of the
window's work area to the background colour specified in the window's definition.
It then works out which portion of the window's work area intersects the invalid
list, and exits via Wimp_GetRectangle.

- Wimp_GetRectangle returns the next rectangle in the list which specifies the
invalid portion of the window's work area. It sets the graphic window to that
rectangle, and returns the relevant co-ordinates in the user's buffer. This allows
the application to redraw only those parts of its work area which it knows
intersect with the given rectangle.

The code needed in response to a Redraw_ Window_Request is of the following type:

<call Wimp_RedrawWindow> - returns flag <more_rectangles>
WHILE
<more_rectangles>
<redraw the work area>
<call Wimp_GetRectangle> - returns flag <more_rectangle>
END WHILE

Open_ Window _Request

The block contains the following:

Rl+ 0
Rl+ 4
Rl+ 8
R1+12
R1 +16
R1+20
R1+24
R1+28

window handle
new minimum x window co-ordinate
new minimum y window co-ordinate
new maximum x window co-ordinate
new maximum y window co-ordinate
new x scroll bar position
new y scroll bar position
handle of window to put this one behind

. HE WINDOW
MANAGER

This reason code is returned as a result of the siz.e change or title box of a window
being selected or either of the scroll bars being dragged to a new position. The
dragging process is performed by the window manager itself. When it has finished,
the 'Open Window' code is returned to the application. SWI Wimp_OpenWindow
should then be called with the desired new attributes. The next call of SWI
Wimp_Poll returns the Redraw_ Window_Request code to instruct the application to

call SWI Wimp_RedrawWindow and redraw the work area.

Note that the data returned with this reason code is in the correct format for SWI
Wimp_ Open Window, so the application can use the same parameter block.

Close_ Window _Rf4uest

The block contains the following:

Rl+ 0 window handle

This reason code is returned when you click (the mouse) on the 'quit' box of a
window.

The application should normally call SWI Wimp_ Close Window. If, however, you do r1ut
want the window to close, the application could do something else instead. For
example, it could open an error box explaining why the window should not be
closed, or ask the user for confirmation. Alternatively, the closing of one window
might cause another one to be closed as well, in which case two calls of SWI
Wimp_ Close Window would be needed.

Pointer _Leaving_ Window

The block contains the following:

Rl+ 0 window handle

This reason code is returned when the pointer has moved away from a window. This
is useful for handling pop-up menus, which can be made to disappear as soon as the
mouse pointer leaves them.

459

460

Pointer _Entering_ Window

The block contains the following:

Rl+ 0 window handle

This reason code is returned when the pointer has moved onto a window. This is
useful for handling windows which are activated without the need for a button being
pressed.

Mouse_Button_ Click

The block contains the following on exit:

Rl+O
R1+4
R1+8
R1+12
R1+16
R1+20

mouse x-co-ordinate
mouse y-eo-ordinate
new state of buttons
window handle (or -1 if none)
icon handle (or -1 if none)
old state of buttons

This reason code is returned when the state of the mouse buttons has been altered.
The new state of the buttons is as follows:

Bit Meaning

0 right-hand button pressed (adjust)
1 middle button pressed (menu)
2 left-hand button pressed (select)
4 drag initiated with the adjust
6 drag initiated with the select
8 single click with adjust (if icon/work area button type .. 10)
10 single click with select (if icon/work area button type= 10)

The window handle indicates which window the mouse pointer was over when the
button change took place, and similarly the icon handle indicates which icon it was
over. Note that the window manager only returns to the application with this reason

. HE WINDOW
MANAGER

code if the conditions demanded by the 'button type' of the icon have been met; for
example if a double-click has occurred on an icon of type 5 (see SWI
Wimp_Createlcon for a full list of button types).

Operations such as highlighting an icon when it is selected and the cancellation of
the other selections in the same ESG are all done automatically by the window
manager, unless the button type is 10, in which case the click type is always returned
to the application.

Note that any system operations performed by clicking the mouse over a window's
scroll bar, for instance, are also transparent to the application and do not cause this
reason code to be returned.

User _Drag_ Box

The block contains the following:

Rl+ 0
Rl+ 4
Rl+ 8
R1+12

drag box minimum x co-ordinate
drag box minimum y co-ordinate
drag box maximum x co-ordinate
drag box maximum y co-ordinate

This reason code is returned when you have finished doing a User_Drag operation.
This operation starts when the application issues a SWI Drag_ Box with a drag type
of 5, 6 or 7. It finishes when you release all the mouse buttons (at which point this
reason code is returned).

During a drag operation (particularly with drag type 7), the application prograM may
wish to keep track of the mouse pointer. To do this, it should use SWI
Wimp_GetPointerlnfo to read the mouse position, returning to the central polling
routine between each reading of the mouse position. When the SWI Wimp_Poll
code 7 is received, the application should cancel its internal 'dragging state' flag.

461

462

Key_Pressed

The block contains the following:

Rl+ 0
Rl+ 4
Rl+ 8
R1+12
R1+16
R1+20
Rl+24

window handle where caret is
icon handle
x-offset of caret (within window)
y-offset of caret
caret height (OS co-ordinates)
index of caret inside string
character code of key pressed

This reason code is returned to the application when a character is pressed which is
relevant to one of its windows, ie the 'input focus'.

The first 5 words in the block are exactly as they would be for the SWI
Wimp_GetCaretPosition call. If the icon handle is - 1, then the key press is always
returned to the application (if it owns the relevant window).

If the caret is inside a writeable icon the Wimp will attempt to process the key itself,
and will only return to the application if it does not know what to do with it. This
approach allows the application to deal with other control keys: for example,
carriage return could cause the caret to move to the start of the next line. The Wimp
understands the following keys:

Normal characters
IDetetel
~
8
B
lShlftiCopyl
lshlftl8
IShtttiB
[Cifi@i)Yl
[Qill8
[Qrt]B

(&20 - & 7E, &80 - &FF). These are printed as usual
delete character to left of caret
delete character to right of caret
move left one character
move right one character
delete word (forwards)
move left one word (returns code if at left of line)
move right one word (returns code if at right of line)
delete forwards to end of line
move to left end of line
move to right end of line

. HE WINDOW
MANAGER

In order to avoid clashes between top bit set characters and function key codes, the
Wimp employs a facility in the OS which allows the function keys to rerum two
character pairs, with the first character being a zero and the second character the key
code. In this way it is possible to distinguish between a function key and the top-bit
set characters, obtained by pressing !QilllShlfii[M] followed by a key. To make things
easier for applications, the Wimp traps the two-character combinations, and
modifies the code returned by adding & 100, so the codes returned for the 'special'
keys are as follows:

~ &18B &19B &lAB &lBB

a &18C &19C &lAC &lBC

8 &180 &190 &lAD &lBO

rn &18E &19E &lAE &lBE

rn &18F &19F &lAF &lBF

®J-ffiD &180-&189 &190- &199 &1A0-&1A9 &1B0-&1B9

WQJ-lml &lCA-&lCC &lDA-&lDC &lEA-&lEC &lFA-&lFC

!ffiJ &18A &19A &lAA &lBA
!Insert I &lCD &1DD &lED &lFD
IPrntl &180 &190 &lAO &lBO (same as !!Q))
!Page Down I &19E &18E &lBE &lAE

~ &19F &18F &lBF &lAF

To tell the operating system to return the appropriate codes, Wimp_lnitialise
programs the soft key expansion and cursor key codes by performing the following
OS_Byte calls:

•FX 4,2 •FX 221,2 up to •FX 228,2

Applications running under the Wimp are not allowed to change any of these
settings. (So soft key expansions are not allowed. This isn't too much of a
disadvantage, as the application can still access the key's expansion string using the
key$n variables.)

463

464

Note

Versions of the Wimp before 0.18 do not use this method. Instead, they use the
*FX4, 1 option to control the codes returned by the cursor keys, and so return the
following values:

[QQQiJ
8
B
rn
rn

&87
&88
&89
&SA
&88

(same code if [Qill or IShlfll are pressed, too)

The soft key settings and the code returned by the ~ key are not defined at all.

The result of this is that if a program needs to access the function/cursor/tab keys,
then it must either specifically complain if the Wimp version number is less than
0.18, or it must perform a series of 'hodges' to maintain compatibility with all
versions. A suitable program listing is given at the end of this document.

Menu_Selea

The block contains the following:

Rl +0 item number in first menu which was selected (starting at 0)
Rl +4 item number in second menu which was selected

(terminated by -1}

To 'pop-up' a set of menus, the application should call SWI Wimp_CreateMenu and
then return to its normal polling routine, having set its own suitable flag so that it
knows which set of menus the Menu_Select code from SWI Wimp_Poll relates to
(when it eventually arrives).

The values in the block indicate which item in each sub-menu was selected by the
user (the first item in each menu is item 0), with a - 1 entry to terminate the list.
Note that it is possible for the user to specify an ambiguous command, by clicking on
an item which itself has sub-menus. In this case, the command may be meaningless,

. HE WINDOW
MANAGER

or it may be possible for the application to use the previously-selected values for the
items which were not specified explicitly.

ScroU_Request

The block contains the following:

Rl+O
Rl+4
Rl+8
R1+12
R1+16
R1+20
R1+24
R1+28
Rl+32
Rl+36

window handle
work area minimum x
work area mininum y
work area maximum x
work area maximum y
scroll bar x position
scroll bar y position
handle of window to open behind
scroll direction x (see below)
scroll direction y (see below)

This reason code is returned if the user clicks on one of the scroll buttons of a
window which has one of the 'Scroll_Request returned' bits set. It indicates which
direction to scroll in, instead of simply returning with an Open_ Window_Request at
the new scroll offset.

It returns the old scroll bar positions, as the amount to scroll is up to the application.
The scroll directions have the following meanings:

Value Meaning

- 2 Page left/up (v. 0.18 and above)
- 1 Left/up
0 No change
+1 Right/down
+2 Page right/down (v. 0.18 and above)

Page scrolls are returned when the user clicks in the scroll bar outside of the scroll
'sausage'.

465

466

When this reason code is received, the application should decide how much to scroll
by (by scaling the scroll directions appropriately), update the scroll offsets by these
amounts, and issue an Wimp_ Open Window command.

Wimp_RcdrawWindow &400C8

On entry: Rl = pointer to block

On exit: RO = flag

The block contains the following on entry:

Rl+ 0 window handle

The block contains the following on exit:

Rl+ 0
Rl+ 4
Rl+ 8
R1+12
R1+16
Rl+20
Rl+24
R1+28
R1+32
R1+36
R1+40

window handle
work area minimum x co-ordinate
work area minimum y co-ordinate
work area maximum x co-ordinate
work area maximum y co-ordinate
x scroll position
y scroll position
current graphics window minimum x co-ordinate
current graphics window minimum y co-ordinate
current graphics window maximum x co-ordinate
current graphics window maximum y co-ordinate

This call redraws the window, whose handle is passed in Rl +0- Rl + 3, in its current
position, where any visible parts of it intersect with the invalid rectangle list. The
border area is drawn automatically. The routine exits via Wimp_GetRectangle so
that the first rectangle of the work area to be drawn (if any) is returned. On exit, RO
contains a flag as follows:

Flag ~eanJng

. HE WINDOW
MANAGER

True First rectangle to be drawn has been set up
False There are no rectangles to be drawn

The application program should call this routine after a SWI Wimp_Poll call has
returned a code requesting a redraw. The relevant graphics dip window is set up
when the routine is called and on each subsequent call to SWI
Wimp_GetRectangle. Note that although the application could just redraw its entire
work area for each of the rectangles returned, it is much more efficient for it to take
note of the graphics dip window co-ordinates when working out what it must
redraw.

Note that any redrawing must use VDU 5 mode to print characters, since any
graphic operations must be dipped to the current graphics window (set up by SWI
Wimp_GetRectangle). The window manager performs a VDU 5 when SWI
Wimp_RedrawWindow is called automatically.

Wimp_ Update Window &400C9

On entry: Rl =pointer to block

On exit: RO .. flag

The block contains the following on entry:

Rl+ 0
Rl+ 4
Rl+ 8
Rl+12
Rl+l6

window handle
work area extent minimum x co-ordinate
work area extent minimum y co-ordinate
work area extent maximum x co-ordinate
work area extent maximum y co-ordinate

These co-ordinates give the area of the work area which is to be marked as 'invalid'
and therefore must be updated.

The block contains the following on exit:

467

468

Rl+O
R1+4
R1+8
R1+12
R1+16
Rl+20
Rl +24
Rl+28
R1+32
R1+36
Rl +40

window handle
work area minimum x co-ordinate
work area minimum y co-ordinate
work area maximum x co-ordinate
work area maximum y co-ordinate
x scroll position
y scroll position
current graphics window minimum x co-ordinate
current graphics window minimum y co-ordinate
current graphics window maximum x co-ordinate
current graphics window maximum y co-ordinate

This call is similar to Wimp_RedrawWindow. However, it returns all visible
rectangles of the window, regardless of whether or not they are invalid.

When calling this routine, the application can assume that the data inside the
window is intact and can be modified.

As with SWI Wimp_RedrawWindow, the application should perform its updating
inside a WHILE loop, calling Wimp_GetRectangle to ge t subsequent rectangles.
Also, as with SWI Wimp_RedrawWindow, the application must use VDU 5 mode
when printing characters (or use the anti-aliased font system) .

Wimp_GetRectangle &400CA

On entry: Rl .. pointer to block

On exit: RO = flag

The block contains the following:

R l +O
R1+4
R1+8
R1+12
Rl+16
R1+20

window handle
work area minimum x co-ordinate
work area minimum y co-ordinate
work area maximum x co-ordinate
work area maximum y co-ordinate
x scroll position

R1+24
R1+28
R1+32
R1+36
R1+40

y scroll position

. HE WINDOW
MANAGER

current graphics window minimum x co-ordinate
current graphics window minimum y co-ordinate
current graphics window maximum x co-ordinate
current graphics window maximum y co-ordinate

This call returns the details of the next rectangle of the work area to be drawn (if
any). The details returned are in exactly the same format as those returned by
Wimp_RedrawWindow and Wimp_UpdateWindow above.

Note that the window handle will be faulted by the window manager if it differs from
the one last used when Wimp_RedrawWindow or Wimp_ Update Window was
called. This means that an application must redraw the whole of a window before
performing any other operations.

Wimp_GetWindowState &400CB

On entry: Rl • pointer to block

On exit:

The block contains the following on entry:

Rl +0 window handle

The block contains the following on exit:

Rl+O
R1+4
Rl+8
Rl+l2
Rl+l6
Rl+20
R1+24
Rl+28
Rl+32

window handle
work area minimum x co-ordinate
work area minimum y co-ordinate
work area maximum x co-ordinate
work area maximum y co-ordinate
x scroll position
y scroll position
handle of window in front of this one (-1 if on top)
flags/status information

469

470

This call is used to find out the current values of transient variables associated with
the window whose handle is given. Usually, the co-ordinates of the window can be
ascertained without using this call, since SWI Wimp_RedrawWindow and SWI
Wimp_ Update Window return the window co-ordinates anyway. However, this call
is useful for finding out if a window is on top, by looking at the appropriate bit in the
flags/status word at Rl +32.

The window flags and status information held in the bits of the four words R1 + 32 -
R1 +35 are as follows:

Bit Meaning when set

0 Window has title bar
1 Window is moveable
2 Window has venical scroll bar
3 Window has horizontal scroll bar
4 Window can be redrawn entirely by the window manager (no user

graphics)
5 Window is allowed to go outside the screen
16 Window is open
17 Window is on top (ie not covered)

Wimp_GetWindowlnfo &400CC

On entry: R1 = pointer to block

On exit:

The block contains the following on entry:

R1 +0 window handle

The block contains the following on exit:

Rl+O
R1+4
R1+8
Rl+l2
R1+16
R1+20
R1+24
R1+28
R1+32
R1+36
R1+37
R1+38
R1+39
R1+40
R1+41
R1+42
R1+43
R1+44
R1+48
R1+52
R1+56
Rl+60
R1+64
R1+68
R1+72
R1+76
R1+88
R1+92

window handle
work area minimum x co-ordinate
work area minimum y co-ordinate
work area maximum x co-ordinate
work area maximum y co-ordinate
x scroll position
y scroll position

HE WINDOW
MANAGER

handle of window in front of this one (- 1 if on top)
flags/status information
title foreground colour
title background colour
work area foreground colour
work area background colour
scroll bar outer colour
scroll bar inner colour
colour of title background (highlight colour)
reserved
work area extent minimum x co-ordinate
work area extent minimum y co-ordinate
work area extent maximum x co-ordinate
work area extent maximum y co-ordinate
icon flags for the title bar
work area flags
sprite area control block pointer
reserved
title string
number of icons in initial definition
icon definitions (32 bytes each)

You can use this to find out information about the window whose handle is given.

Wimp_SetlconState &400CD

On entry: Rl =pointer to block

On exit:

471

472

The block contains the following:

Rl+O
R1+4
Rl+8
Rl+l2

window handle
icon handle
word to EOR with old icon state
word to BIC with old icon state (mask)

This call allows the icon status to be set as follows:

<new state> = (<old state> BIC <mask word>) EOR <EOR word>

The mask word allows the application to change certain parts of the icon status
without affecting others, simplifying the process of changing colours, for example.
This call also results in the updated state of the icon being reflected on the screen, if
appropriate.

Note that it is not possible to change the co-ordinates or textual data associated with
an icon with this call. To do this, the icon must first be deleted and then recreated.

Wimp_Getlconlnfo &400CE

On entry: Rl = pointer to block

On exit:

On entry the block contains the following:

Rl+ 0
Rl+ 4

window handle
icon handle

On exit the block contains the following:

Rl+O
R1+4
R1+8

R1+12

R1+16

R1+20

R1+24
Rl+28

window handle
icon handle

HE WINDOW
MANAGER

minimum x co-ordinate of bounding box of icon (relative to extent
origin)
minimum y co-ordinate of bounding box of icon (relative to extent
origin)
maximum x co-ordinate of bounding box of icon (relative to extent
origin)
maximum y co-ordinate of bounding box of icon (relative to extent
origin)
flags
icon data (sprite name or text)

lbis call may be used to find out information about an icon.

lbe flags are held in the bits of the four words R1 + 16 - Rl + 19 as follows:

Bit

0
1
2
3
4
5
6
7
8
9
10

11
12-15
16-20
21
22
23

Meaning when set

leon contains text
Icon is a sprite
Icon has a border
Text is centred horizontally within the box
Text is centred vertically within the box
Icon has a filled background
Text is an anti-aliased font
Icon requires application's help to be redrawn
Icon contains a 'writeable' text field
Text is right-justified within the box
If selected with right-hand button don't cancel others in same exclusive
selection group
Reserved
Button type, ie way in which icon responds to mouse clicks
Exclusive selection group (ESG)
Icon is selected by the user
Icon cannot be selected by the mouse pointer
Icon is deleted

473

474

24 - 27
28 - 31

Foreground colour of icon (or font number if bit 6 is set)
Background colour of icon (or font number if bit 6 is set)

The icon data consists of 12 bytes which contain text if the icon contains text, or a
sprite name if the icon is a sprite.

If you want to search for an icon with panicular flag settings, for example, to find out
which icon in a group has been selected), you should use SWI Wimp_ Whichlcon.

Wimp_GetPointerlnfo &400CF

On entry: R 1 • pointer to block

On exit:

The block contains the following:

R1+ 0
R1+ 4
Rl+ 8
R1+12
R1+16

mouse x co-ordinate
mouse y-eo-ordinate
mouse button state
window handle (-1 if not over a window)
icon handle (-1 if not over an icon)

This call returns information about the state of the pointer and the mouse buttons. It
enables the application to find out where the mouse pointer is independently of the
buttons being pressed or released, for example, for tracking purposes.

The status of the bunons as returned in Rl +8 - R1 + 11 is indicated by the bit
pattern as follows:

Bit Meaning if set

0 Right-hand button pressed (adjust)
I Middle button pressed (menu)
2 Left-hand button pressed (select)

Wimp_DragBox &40000

.HE WINDOW
MANAGER

On entry: Rl <= 0 to cancel draw_box, otherwise:

On exit:

Rl = pointer to block

On entry the block contains the following:

Rl+ 0
Rl+ 4
Rl+ 8
Rl+l2
R1+16
R1+20
R1+24
Rl+28
Rl+32
Rl+34

window handle
drag type
minimum x co-ordinate of initial position of drag box
minimum y co-ordinate of initial position of drag box
maximum x co-ordinate of initial position of drag box
maximum y co-ordinate of initial position of drag box
minimum x co-ordinate of parent box (for codes 5 - 7)
minimum y co-ordinate of parent box (for codes 5 - 7)
maximum x co-ordinate of parent box (for codes 5- 7)
maximum y co-ordinate of parent box (for codes 5-7)

This call causes the defincled box to move as the pointer moves until all the mouse
buttons are released. The action depends on the drag type as follows:

Drag type Meaning

1 Change position of window
2 Change size of window
3 Drag horizontal scroll bar
4 Drag vertical scroll bar
5 User drag box -fixed size box
6 User drag box - 'rubber' box
7 User drag box - invisible box

Typesl - 4

These are the 'system' types since they relate to picking up a window, changing its
size and scrolling it respectively. ln these cases, the bounding box for pointer

475

476

movement is worked out by the window manager. In the case of type 2, the bounding
box is determined by the maximum and minimum sizes of the window as defined
when it was created. These are calculated automatically by the Wimp.

When all the buttons are released, an Open_ Window_Request is returned.

Types5 -7

These are 'user' typeS, where the application decides what the significance of the
dragging will be. In these cases, you supply the co-ordinates of the parent box. In the
case of type 7, where there is no inner box to be dragged, the initial drag box
position is ignored and the mouse co-ordinates are used instead.

When all the buttons are released, a User_DragBox is returned.

Wimp_ForceRedraw &40001

On entry: RO .. window handle (-1 = whole screen)
R1 .. minimum x co-ordinate of area to redraw
R2 ~ minimum y co-ordinate of area to redraw
R3 .. maximum x co-ordinate of area to redraw
R4 = maximum y co-ordinate of area to redraw

This call forces an area of a window or the screen to be marked as invalid.

IfRO is - 1 on entry, then that area of the screen specified in absolute co-ordinates is
marked invalid. This causes it to be redrawn later.

If RO is not - 1, then it indicates a window handle, and the area of the window
specified relative to the window's work area origin is marked invalid (if it is visible).

This call is useful either for reconstructing the screen if for some reason it has been
corrupted, or for reinstating a particular area after, for example, an error box has
been drawn over the top of it. Other uses include redrawing the screen after
redefining one or more of the soft characters, which could affect any part of the
screen.

. HE WINDOW
MANAGER

Two strategies are possible when the application is required to change the contents
of a window. These are:

- Call this routine, which causes the specified area to be redrawn later

- Call Wimp_UpdateWindow, followed by the necessary graphic operations (and
calls to Wimp_GetRectangle).

The latter method is generally quicker, but involves more code.

Wimp_SetCaretPosition &40002

On entry: RO = window handle (-1 if caret is to be turned off)
R1 .. icon handle (-1 if none)
R2 = x-offset of caret (relative to window origin)
R3 = y-offset of caret (relative to window origin)
R4 -= height of caret (if-1, then R2, R3, R4 are calculated from RO,Rl,R5)
R5 =index into string (if -1, then R4, R5 are calculated from RO,Rl,R2,R3)

This call sets up the new data for the caret position. It also removes the caret from its
old position and redraws it in the new position.

The exact meaning ofR4 is as follows:

Bits

0-23
24
25

Meaning

Height of caret in OS co-ordinates
If set, a YOU 5-type caret is used, else anti-aliased caret
If set, the caret is invisible; the application must draw it

By setting R4 (height) to -1, it is possible to make the window manager calculate
the x,y co-ordinates of the caret, and its height (R2, R3, R4) from the data in RO, Rl
and R5. This is only possible ifRl contains an icon handle.

Similarly, by setting R5 (the index) to - 1, it is possible to make the window manager
calculate the index into the string, and the caret height (R4, R5) from RO- R3.

477

478

In each case, the height of the caret is determined from the bounding box of the font
used in the icon (if the icon contains normal text, the caret height is determined
appropriate! y).

Hence, to set up a 'writeable icon', you should create it with the following flag
settings:

- choose either normal text or an anti-aliased font

- choose between left-justified, centred or right-justified text

- set the 'button type' to 15, ie a writeable icon

- set the 'indirected' bit if you want to supply the text buffer address- if not, the
text is limited to 12 chars (including terminator)

- the icon does not have to have a filled background, but it is treated as filled when
the window manager updates the text inside it.

Wimp_GetCaretPosition &40003

On entry: Rl = pointer to block

On exit:

The block contains the following:

Rl + 0
Rl+ 4
Rl+ 8
Rl+l2
Rl+l6
Rl+20

window handle (-1 if caret is turned oft)
icon handle (-1 if none)
x-offset of caret (relative to window origin)
y-offset of caret (relative to window origin)
height of caret
index into string

The parameters returned by this call correspond to those supplied by SWI
Wimp_SetCaretPosition, and are also the same as the first five parameters returned
by the Key_Pressed return from SWI Wimp_poll.

Wimp_CreateMenu &400D4

. HE WINDOW
MANAGER

On entry: Rl = -1 means close all menus, or
Rl -= pointer to block

On exit:

R2 = x co-ordinate of top-left of top menu
R3 = y co-ordinate of top-left of top menu

The block contains the following:

Rl+ 0
R1+12
R1+13
R1+14
Rl+l5
R1+16
R1+20
R1+24
R1+28

menu title (if null, then menu is untitled)
menu title foreground colour
menu title background colour
menu work area foreground colour
menu work area background colour
width of following menu items
height of following menu items
vertical gap between items (and at top and bottom of menu)
menu items (each 24 bytes):

0 - 3 menu flags:
&01 Wimp will display a 'tick' to the left of the item
&02 Dotted line following (separates sections)
&04 Item is 'writeable' for text entry (v.0.14 and above)
&80 This is the last item in this menu

4 - 7 sub-menu pointer or sub window handle (-1 if none)
8 - 11 menu icon flags- as for a normal icon
12 - 23 menu icon data (12 bytes) - as for a normal icon

The most important flags are the 'shaded' bit, which can be used to make an item
non-selectable, and the 'tick' bit, which should be used to show which, if any, are the
default values. For example, for a font selection, the font and size previously set up
for the appropriate piece of text.

479

480

Having made this call, the application should return to its normal polling routine.
The window manager creates the top menu described by the structure, and, while the
application is calling SWI Wimp_Poll, maintains the various operations that can
occur in connection with the menu structure. The sub-menu pointer for a menu
item, if not -1, points to a similar data structure describing a sub-menu which is
automatically popped-up by the window manager if the user positions the mouse
pointer over the appropriate icon. Menu items with a non-null sub-menu pointer
have a right arrow displayed to the right of them, which activates the sub-menu.

If the pointer is in fact a window handle, this window is opened (as if it were a
menu) when the mouse pointer moves over the arrow. It is restored to its original
state afterwards.

If the user moves the mouse pointer onto a menu item which is marked as
'writeable', then the caret will be automatically positioned inside the appropriate
item, whereupon the user can enter data as required. If g is pressed when the caret
is inside such an icon, it will be treated by the Wimp as though a mouse button had
been pressed, ie the item is selected.

The window manager takes care of the menus until the user makes a click with any
of the mouse buttons. If the click was outside the menus, then the window manager
closes all the menus and treats the mouse click as if they had not been there. If the
mouse is clicked inside the menus, then a Menu_Select reason code is returned from
SWI Wimp_Poll, along with a list of selections.

If the application creates more than one type of menu, it must set up a flag when
Wimp_CreateMenu is called in order to determine what to do next. It must also scan
down its data structure to determine which sub-menus the numbers relate to.

It is recommended that applications provide a 'shorthand' for defining menus, which
is translated into the full form required by the window manager when needed.

Wimp_DecodeMenu &40005

On entry: Rl = pointer to menu data structure
R2 = pointer to a list of menu selections
R3 = pointer to a buffer to contain the answer

. HE WINDOW
MANAGER

On exit: R3 "' pointer to a string, being menu items separated by '.'

On receipt of a Wimp_Poll: Menu_Select reason code, there are at least two main
approaches:

- use a series of nested CASE statements to decode the result

- use SWI Wimp_DecodeMenu to provide a string equivalent, and decode that.

It is also possible to use a combination of these methods, for instance if one of the
possible sub-menus from the main menu is to select a font with a hierarchical name.

Wimp_ Whichlcon &400D6

On entry: RO .. window handle
Rl .. pointer to block to contain the list of icon handles
R2 =bit mask (bit set==> consider this bit)
R3 .. desired bit settings

On exit: R 1 • pointer to a list of icon handles (1 word each, terminated by - 1)

This call can be used to detect which of a group of icons has been selected, or other
things depending on how the mask is set. For example:

SYS "Wimp_Whichicon",<handle>,buffer\,&00200000,&00200000

On exit the list of selected icon handles will be in the buffer.

To see which is the first icon in a particular ESG to be selected, perform a SWI
Wimp_ Whichlcon. For example, if the ESG number is 1:

SYS "Wimp_Whichicon",<handle>,buffer\,&003F0000,&00210000

!buffer% now contains the handle of the required icon, or - 1 if none is selected.

481

482

Wimp_SetExtent &40007

On entry: RO .. window handle
R 1 = pointer to block

On exit:

On entry, the block contains:

Rl+ 0
R1+ 4
Rl+ 8
Rl+ 12

new work area extent minimum x
new work area extent minimum y
new work area extent maximum x
new work area extent maximum y

This call sets the work area extent of the specified window, and usually causes the
window's scroll bars to be redrawn (to reflect the new total size of window). The
work area extent may not be changed so that any part of the visible portion of the
work area lies outside the extent, so this call cannot change the current size of a
window, or cause it to scroll.

Wimp_SetPointerShape &40008

On entry: RO = shape number (0 for pointer off)

On exit:

R1 =pointer tO shape data (-1 for no change)
R2 = width in pixels (must be multiple of 4)
R3 = height in pixels
R4 = active point x offset from top-left in pixels
R5 = active pointy offset from top-left in pixels

The shape data is a series of bytes giving the pixel colours for the shape. Each row of
the shape is given as a whole number of bytes (eg 3 bytes for a 12-pixel wide shape).
Bytes are given in left to right order. The least significant two bits of each byte give
the colour of the left-most pixel in that group of four.

. HE WINDOW
MANAGER

This convention should be used when programming the pointer shape under the
Wimp:

- shape one is the default 'arrow' shape (set-up by *POINTER)

- to usc an alternative, define and use shape 2

- when the pointer leaves the window where it was changed, it should be re-set to
shape 1.

The reason codes Pointer_Entering_ Window and Pointer_Leaving_ Window
returned from Wimp_Poll are very useful for deciding when to reprogram the pointer
shape.

It is important that when selecting shape 1, you provide a shape data address of
-1, so that no attempt is made to redefine the shape. On the other hand, you should
always supply shape data when programming shape 2, in case that shape's definition
has been changed since the last time you used it (by another program, perhaps).

Wimp_OpcnTemplate &400D9

On entry: Rl .. pointer to template filename to open

On exit:

On entry:

On exit:

This causes the Wimp to open the file template file given, and to read in some
header information from the file. Only one template may be open at a time; this is
the one used by Wimp_LoadTemplate when that SWI is called.

Wimp_CloseTemplate &400DA

This doses the template file currently open.

483

484

Wimp_LoadTemplate &400DB

On entry: Rl = pointer to user buffer for template
R2 = pointer to workspace for 'indirected' icons
R3 = pointer to end of workspace
R4 = 256-byte font reference array (-1 for no fonts)
R5 = (wildcarded) name to match
R6 = position to search from (0 for first call)

On exit: R2 = pointer to remaining workpace
R6 = position of next entry (0 if no match found)
The template is at Rl
The font array is updated if fonts were used
The string at R5 is overwritten by the actual name (so at least 12 bytes must be
available there)

Window templates are created by the template creation utility. They are stored in a
file, and each template has a name associated with it. Because the search name may
be wildcarded, it is possible to search for all templates of a given form (eg 'text*') by
calling Wimp_LoadTemplate with R6=0 the first time, then using the value passed
back for subsequent calls. R6 will be returned as 0 when the last template is found.
As the wildcarded name is overwritten by the actual one found, it must be re·
initialised before every call.

The 'indirected' icon workspace pointer is provided so that when the window
definition is read into the buffer addressed by Rl, its icon fields can be set correctly.
An indirected icon's data is read from the file into the workspace addressed by R2,
and the icon fields in the window definition are set appropriately. R2 is updated, and
if it becomes greater than R3, an error is given.

The font reference count array is used to overcome the problem caused with font
handles. When a template file is stored, font information such as size, font name etc.
is stored along with the font handle that was used to reference the font . When a
template is subsequently loaded, the Wimp calls Font_FindFont using the
appropriate font handle, and increments the entry for that handle in the reference
array. This array should be initialised to zero.

IIHEWINDOW
MANAGER

When a window is deleted, you should call Font_LoseFont the number of times
given by that font's reference count. This implies that a separate 256-byte array is
needed for each template loaded. However, this can be stored a lot more compactly
(eg using handle/count byte pairs) once the array has been set up using
Wimp_LoadTemplate.

An alternative is to have a single reference count array for all the windows in the
application, and only call Font_LoseFont the appropriate number of times for each
handle when the application terminates.

Wirnp_ProcessKey &4000 C

On entry : RO • character code caret data is as set up by Wimp_SetCaretPosition, or by clicking
in a writeable icon

On exit : RO = reason code (as would be returned from Wimp_Poll)

On entry :

On exit:

This call can be used to make the Wimp think that a given key has been pressed by
the user. It is most useful in programs where a menu of characters corresponding to
those not immediately available from the keyboard is presented to the user, and
clicking on one of them causes the code to be entered as if typed from the keyboard.

Note that this call should only be used if the caret is inside a writeable icon, since
otherwise the caret is under the control of the application, rather than the Wimp
itself.

Wimp_CloseDown &40000

From Wimp version 0.18 onwards, this call must be made immediately before the
application is about to terminate (ie go back to command mode, or run the DeskTop
program, or whatever). At this point the Wimp will reset the soft key settings to
their original values (ie as they were before Wimp_lnitialise was called), and may

485

486

also not return to the application (ie if the Wimp is currently running other client
applications).

Note that if a program is to be compatible with Wimp 0.17 and earlier, it must
perform a series of 'hodges'; see the 'Note' above. If it is not intended to work with
early Wimps, then it must specifically check for it on entry, and complain.

Error

&280
&281
&282
&283
&284
&286
&287
&288
&289

Messages

Wimp unable to claim work area RMA area full!
Unknown Wimp operation Invalid SWI number called
Rectangle area full Screen display is too complex
Too many windows Maximum 32 windows allowed
Window definition won't fit No room in internal tables
Wimp_GetRectangle called incorrectly
Input focus window not found
Illegal window handle
Bad work area extent

You've got it wrong!
t

t See the sections Introduction in the chapter FUNDAMENTAL OS
CONCEPTS and The output streams in the chapter CHARACTER OUTPUT.

Most of these errors are provided as debugging aids to development programmers,
and should not occur when the system is working properly, except for Too many
windows, which can happen if an application program allows the user to bring up
more and more windows. The error is not serious, as long as the application
program's error trapping is written properly- when creating a window, any data
structures relating to it should only be updated once the window has been
successfully created.

The Wimp SWis conform to the usual OS standard: it is possible to suppress error
reporting when calling them. However, it is normally more sensible to install an
error handler, since it is not usually possible to continue processing after an error
more often, the application should tidy up and report the error to the user.

Compatibility with Wimp 0.17 and earlier

IIHEWINOOW
MANAGER

As a result of certain incompatible changes made between Wimp versions 0.17 and
0.18, application programs wishing to be compatible with either version must invoke
a series of 'hodges' to make this happen. If this is considered too much trouble, then
it is acceptable for the application to complain specifically if it is asked to work with
Wimp 0.17 or earlier, but it is not acceptable for it to refuse to work with Wimp 0.18
or later.

The bodged parts of the application program should loolc like this (if it is written in
BBC BASIC V, that is!):

SYS "Wimp_Initialise" TO version%
bodgeit% - (version% < 18)
IF bodgeit% THEN

DIM oldfx% (8)
FOR I%- 1 TO 8:SYS "OS_Byte",I%+220,2,0 TO ,oldfx%(1%) :NEXT
SYS "0S_Byte",219,2,0 TO ,oldfx219\

END IF

create windows etc. as normal

REPEAT
SYS "Wimp_Poll",,block% TO action%
CASE action% OF

etc.
WHEN 8:

key%-block%!24
IF bodgeit% THEN

IF key%-0 THEN key%-INKEY(0)+&100
IF key%>-&87 AND key%<-&88 THEN

key%-key%+&104-&10*INKEY(-1)-&20*INKEY(-2)
END IF
PROCdecodekey(key%)

etc.
ENDCASE
UNTIL FALSE

487

488

at point where program is about to exit:

IF bodgeit\ THEN
FOR I\-1 TO S:SYS "OS_Byte",I\+220,oldfx\(I\),O:NEXT
SYS "OS_Byte",219,oldfx219\,0

ELSE SYS "Wimp_CloseDown"
END IF

The first part of the program ensures that the soft keys return the appropriate codes,
while the second part, inserted at the point where the program processes a 'key
pressed' return from Poll_ Wimp, translates the cursor keys into their appropriate
forms. Note that it is not possible to use the •FX 4,2 setting for the cursor keys, since
the Wimp itself uses the codes when decoding cursor key presses within writeable
icons.

On exit, the program must reset the soft key settings to their appropriate values,
otherwise the soft keys will not produce their normal effects (ie. whatever setting
they had when the program was entered). On Wimp version 0.18 and later,
Wimp_CloseDown will achieve the desired effect: otherwise, it must be done
explicitly.

Note that Wimp_CioseDown (on Wimp versions 0.18 and later) should always be
the last thing the program calls before it terminates. This is so that when the Wimp
supports multiple clients, it can retain control if the task exiting is not the last task it
knows about.

IIHE FONT MANAGER

INTRODUCTION

- Nore: this chapter documents version 0.19 of the font manager.

The font system provides facilities for painting characters of various sizes and type

styles on the screen.

To allow characters to be printed in any size, pixel definitions of fonts in various sizes
are provided, as well as a facility to scale fonts to the desired size automatically if the
exact size is not available explicitly. The fonts are, in general, proportionally spaced,
and there is a facility to print justified text.

An anti-aliasing technique is used to print the characters. This technique uses shades
of grey to represent pixels that should only be half filled-in. The fonts are defined
with 16 shades of grey. However, they may be printed with fewer, to allow for modes
with fewer colours or the use of coloured text. Text can also be printed in modes of
varying resolution, by using the scaling algorithm on the pixel definitions.

The structure showing how the parts of the system fit together is given below:

Application

I I
I I

Font Manager Font Painter

I I
I I I I

Metrics Pixel Font cache screen
files

489

The font manager

The application calls the font manager to find out information such as which fonts
have been cached, how wide a particular piece of text is, and so on.

The font manager reads the data about the various fonts from disc, and is responsible
for caching this data, in order to speed the process up.

The me tries of characters are held in a format independent of the output device or
the size in which the font has been set up. When the metrics information is cached,
the font manager scales the metrics according to the required character size, so that
the numbers are held in 1/72000ths inch (ie 1/lOOOth of a point).

The font painter

To paint characters on the screen, the application calls the font painter. It can do
this either by calling the relevant SWls, or by means of a VDU sequence, whichever
is more convenient.

Note that it is necessary for the font painter to have some kind of translation/scaling
function to go from 1/72000 inch to screen external co-ordinates. This scaling factor
has been fixed, by assuming that one screen unit is equivalent to l/180th of an inch
(ie there are 90 pixels per inch horizontally in mode 0).

fHE FONT MANAGER

490

The font manager acts as an intermediary between an application and the font files,
returning data such as the sizes of characters and the actual data making up the
definitions. lt is responsible for caching the font data, so that disc accesses will not
be required for every character.

The font files

The information pertaining to a given font is held in two files; one for the metrics
and one for the pixel information. These are contained in a directory whose
pathname is determined by the name of the font. The components of the font name
are separated by '.'s, so the directory structure can be several levels deep.

. HE FONT MANAGER

To provide some flexibility about the location of the fonts, any font access is prefixed
by the system variable Font$ Prefix. Hence, the font manager will access a font file by
a name of the following type:

<Font$Prefix>.Times.Roman.IntMetrics <Font$Prefix>.Timee.Roman.x90y45

There are two types of file in the font directories:

- Metrics files, defining the sizes of characters
- Pixel files, defining the shape of characters.

In a given font directory, there should only be one metrics file, which defines the
sizes of the characters in a given fonrlscyle as ratios of the point size selected.

Different sections of the pixel file contain the same font in different sizes. When
asked to cache a font, the font manager looks for the best approximation to the
required size, and scales the font if necessary. Since the scaling algorithm is
necessarily fast, it is not able to perform the kind of image-enhancement that the
original font generation program does, so the scaled output looks slightly worse than
the original 'exact' sizes.

Accessing fonts

To allow the font manager to perform automatic caching and uncaching, as well as
sharing data, you must perform the following in order to access a font:

- To define the font, you specify the font name, together with the point size and
screen resolution (dots per inch). The font manager returns a handle to the user,
which is a number between 1 and 255 which identifies the font.

- To use the font, you specify the font handle in the relevant command.

- When you have finished with the font, you must call Font_LoseFont to tell the
font manager that the font is no longer required.

491

492

When you ask for a given font, the font manager look.s in its font cache to see what
is already available. If the font is already present, its handle is returned to you, so in
this way applications can share fonts in memory.

If the font is not available, the data is loaded from the relevant filing system, and a
previously unused handle returned.

Since the font manager always knows which fonts are still in use, it can throw away
any font which is no longer used. In practice, however, unused fonts are not thrown
away until the font cache becomes full.

It is also possible for fonts which are still in use to be thrown away, if the font cache
is too small to house all the required fonts at once. In this case, all but the font
header information is deleted, so that the font can be automatically recached if
requi~d later. The font manager also knows how long ago each of the fonts was last
used, so it will throw away the oldest available font if it has a choice.

To see which fonts are currently held in the font cache, type

*FONTLIST.

Font manager SWis

When the font painter wishes to access the data cached by the font manager it can
do so directly, since the two are integrated together. However, the application
program is required to call the font manager in an orderly manner to read the data.
An interface has been designed for this purpose.

The font manager module provides a range of SWis from & 40080 onwards, which
are allocated as follows:

IIHE FONT MANAGER

Font_CacheAddress &40080

On entry: RO = 0

On exit: RO = version number (v 0.06 and later)
R 1 = amount of font cache used (bytes)
R2 = total size of font cache (bytes)

The version number returned is the actual version*lOO, so v. 1.07 would return 107.
Versions prior to 0.06 will return 0 (ie RO is preserved).

The call returns details about the font cache size and the amount of space used.

Font_FindFont &40081

On entry: Rl • pointer to font name (terminated by a ctrl char)
R2 • x point size • 16 (ie in 1/16ths point)
R3 .. y point size • 16 (ie in l/16ths point)
R4 • x resolution in dots per inch (0 = use default)
R5 .. y resolution in dots per inch (0 = use default)

On exit: RO = font handle

This call returns a handle to a font whose name, point size and screen resolution are
given.

Font_LoseFont &40082

On entry: RO - font handle

On exit:

Thi.s call tells the font manager that a particular font is no longer required.

493

494

Font_ReadDefn &40083

On entry: RO = font handle
R1 = pointer to buffer to hold font name

On exit: R1 =pointer to buffer (now contains font name)
R2 = x point size • 16
R3 = y point size • 16
R4 = x resolution (dots per inch)
R5 = y resolution (dots per inch)
R6 = 'usage' count of font
R 7 = 'age' of font

This call returns a number of details about a font. The usage count gives the number
of times that Font_FindFont has found the font, minus the number of times that
Font_LoseFont has been used on it. The age is the number font accesses made since
this one was last accessed.

Font_Readlnfo &40084

On entry: RO =font handle

On exit: R1 = minimum x co-ordinate in pixels (inclusive)
R2 = minimum y co-ordinate in pixels (inclusive)
R3 = maximum x co-ordinate in pixels (exclusive)
R4 = maximum y co-ordinate in pixels (exclusiveO

This call returns the minimal area covering any character in the font. This is called
the font bounding box.

Font_StringWidth &40085

On entry: R1 = pointer to string
R2 = maximum x offset before termination (1/72000th inch)
R3 = maximum y offset before termination (l/72000th inch)
R4 = 'split' character
R5 = index of character to terminate by

II HE FONT MANAGER

On exit: R2 = x offset after printing string (up to termination)
R3 = y offset after printing string (up to termination)
R4 =no of'split' characters in string (up to termination)
R5 = index into string giving point at which it terminated

The string is allowed to contain font-change and colour-change sequences (26,
 or 17, <colour>). After the call, the current font foreground and background
call are unaffected, but a call can be made to Font_FutureFont to find out what the
current font would be after a call to Font_Paint.

IfR4 contains -1 on entry, then on exit it contains the number of printable (as
opposed to 'split') characters found.

The string width function terminates as soon as R2, R3 or R5 are exceeded, or the
end of the string is reached. It then returns the state it had reached, either:

- just before the last 'split' char reached

- if the 'split' char is -1, then before the last char reached

- ifR2, R3 or R5 are not exceeded, then at the end of the string.

By varying the entry parameters, the string width function can be used for any of the
following purposes:

- finding the cursor position in a string if you know the co-ordinates

- finding the cursor co-ordinates if you know the position

- working out where to split lines when formatting (set R4=32)

- finding the length of a string (eg. for right-justify)

- working out the data for microspacing (as the font painter does).

495

496

Font_Paint &40086

On entry: Rl =pointer to string
R2 = plot type

On exit:

R3 "' x co-ordinates (either OS co-ordinates or 1/72000th inch)
R4 = y co-ordinates (either OS co-ordinates or 1/72000th inch)

The plot type is given by the bits ofR2 as follows:

Bit Action if set

0 Justify text
1 Rub-out box required
2 Absolute co-ordinates
4 OS co-ordinates supplied (otherwise 1/72000th inch)

The string is allowed to contain font-change and colour-change sequences:

,<dxO>,<dxl>,<dx>
ll,<dyl>,<dyl>,<dy2>
17,<foreground colour>
17,<&80+background colour>
18, <background>, <foreground>,
21, <comment string> ,<terminator (any ctrl char)>
25,<underline pos>,<underline height>
6,

After the call, the current font and colours are updated.

To provide a rub-out box, or to justify text, you must supply a bounding box by a
couple of previous MOVE commands. The section on font YOU sequences explains
this.

Characters 9 and 11 allow for movement within a string. This is useful for printing
superscripts and subscripts, as well as tabs, in some cases. They are each followed by a

II HE FONT MANAGER

3-byte sequence specifying a number (low byte first, last byte sign-extended), which
is the amount to move by in 1/72000ths of an inch.

The <underline position> following a 25 is the position of the top of the underline
relative to the baseline of the current font, in units of 1/256th of the current font
si~e. It is sign-extended by the font manager, so an underline below the baseline can
be achieved by setting the underline position to a value'>' 127. The underline
height determines its thickness, and is in the same units, although it is not sign
extended.

Note that when the underline position and height are set up, the position of the
underline remains unchanged thereafter, even if the font in use changes. For
example, you do not want the thickness of the underline to change just because some
of the text is in italics! If you actually want the thickness of the underline to change,
then another underline-defining sequence must be inserted at the relevant point.
Note that the underline is always printed in the same colour as the text, and that to
tum it off you must set the underline thickness torero.

Font_Caret &40087

On entry: RO • colour (EORed onto screen)
Rl = height (OS co-ordinates)

On exit:

R2 = flags: (bit 4 set implies OS co-ordinates otherwise 1/72000th inch)
R3 .. x co-ordinate
R4 .. y co-ordinate

The 'caret' is a symbol used as a text cursor when dealing with anti-aliased fonts. The
height of the symbol, which is a vertical bar with 'twiddles' on the end, can be varied
to suit the height of the text, or the line spacing.

Font_ConverttoOS &40088

On entry: Rl • x co-ordinate (in 1/72000th inch)
R2 • y co-ordinate (in 1/72000th inch)

497

498

On exit: R 1 = x co-ordinate (in OS units)
R2 = y co-ordinate (in OS units)

This call converts a pair of co-ordinates from l/72000th inch to OS units.

Font_ Converttopoints & 40089

On entry: Rl • x co-ordinate (in OS units)
R2 .. y co-ordinate (in OS units)

On exit: Rl • x co-ordinate (in 1/72000th inch)
R2 • y co-ordinate (in 1/72000th inch)

This call converts a pair of co-ordinates from OS units to 1/72000th inch.

Font_SetFont &4008A

On entry: RO • handle of font to be selected

On exit:

On entry:

This call sets up the font which is used for subsequent painting or size-requesting
calls (unless overridden by a 26, sequence).

Font_CurrentFont &4008B

On exit: RO • handle of currently-selected font
Rl • current background logical colour
R2 = current foreground logical colour
R3 =foreground colour offset (v. 0.18 onwards)

This call returns the state of the font painter's internal characteristics which will
apply at the next call to Font_Paint.

On entry:

IIHE FONT MANAGER

The value in R3 gives the number of colours that will be used in anti-aliasing. The
colours are f, f+ 1. .. f+offset, where 'f' is the foreground colour returned in R2, and
offset is the value returned in R3. This can be negative, in which case the colours are
f, f- 1 ... £-offset. Negative offsets are useful for inverse anti-aliased fonts.

Offsets can range between -14 and+ 14. This gives a maximum of 15 foreground
colours, plus one for the font background colour. If the offset is 0, just two colours
are used: those returned in R 1 and Rl.

The font colours, and number of anti-alias levels, can be altered using
Font_SetFontColours, Font_SetPalette, Font_SetThresholds and Font_Paint.

Font_FutureFont &4008C

On exit: RO = handle of font which would be selected
Rl = future background logical colour
R2 - future foreground logical colour
R3 = foreground colour offset (v 0.18 onwards)

This call can be made after a Font_StringWidth to discover the font characteristics
after a call to Font_Paint, without actually having to paint the characters.

Font_FindCaret &40080

On entry: Rl = pointer to string
R2 = x offset (1/72000")
R3 = y offset (1/72000")

On exit: Rl - R5 = as exit from Font_StringWidth

On exit, the registers give the nearest point in the string to the caret position
specified on entry. This call effectively makes two calls to Font_StringWidth to
discover which character is nearest the caret position. It is recommended that you
use this call, rather than perform the calculations yourself using Font_StringWidth,
though this is also possible.

499

500

Font_CharBBox &4008E

On entry: RO =font handle
Rl = ASCII character code
R2 = flags (bit 4 set=> OS coords, else 1/72000")

On exit: Rl = minimum x of bounding box (inclusive)
R2 =minimum y of bounding box (inclusive)
R3 = maximum x of bounding box (exclusive)
R4 = maximum y of bounding box (exclusive)

On entry:

You can use this call to discover the bounding box of any character from a given
font. If OS co-ordinates are used and the font has been scaled, the box may be
surrounded by an area of blank pixels, so the size returned will not be exactly
accurate. For this reason, you should use 1/72000th inch for computing, for example,
line spacing on paper.

Font_RcadScaleFactors &4008F

On exit: Rl = x scale factor
R2 = y scale factor

The x andy scale factors are the numbers used by the font manager for converting
between OS co-ordinates and 1/72000th inch. This calls allows the current values to
be read.

Font_SetScaleFactors &40090

On entry: Rl = x scale factor
R2 = y scale factor

On exit:

An application should set the scale factors to the desired values when it starts, as
they may have been changed by a previous application. The usual value is 400 in

IIHE FONT MANAGER

each direction. A well-designed application reads the current value on entry and
restores them when it terminates.

The following calls are available from versions 0.18 onwards only.

Font_ListFonts &40091

On entry: R1 = pointer to 40-byte buffer for font name
R2 =count (0 on first call)
R3 = pointer to directory prefix (-1 => use <font$prefix>)

On exit: R 1 preserved
R2 updated (-1 if no more names)

This call searches the directory named by the variable Font$ Prefix, and its sub·
directories, for files ending in' .lntMetrics'. When such a file is found, the full name
is put in the buffer, terminated by a carriage return. A simple program can be written
using this call to list the available fonts, for example:

DIM buffer\ 40
c%-0
REPEAT

SYS "Font_ListFonts",,buffer%,c%,"$.fonts" TO ,,c%
IF c%<>-1 THEN PRINT $buffer%

UNTIL c%--1

The font manager command *FONTCAT performs the same function as this
program.

Font_SetFontColour &40092

On entry: RO = font handle (0 for current font)
Rl = background logical colour
R2 = foreground logical colour
R3 = foreground colour offset (- 14 to + 14)

On exit:

501

502

This call is used to set the current font (or leave it as it is), change the foreground
and background colours, and offset (number of foreground colours- 1) for that font.

In 256-colour modes, the background colour is ignored, and the foreground colour is
taken as an index into a table of pseudo-palette entries (see below).

Font_SetPalette &40093

On entry: Rl =background logical colour
R2 = foreground logical colour
R3 = foreground colour offset

On exit:

R4 =physical colour of background
R5 = physical colour of last foreground

This sets the anti-alias palette. The physical colours in R4 and R5 are of the form
&BBGGRROO. That is, in memory they would consist of four bytes, being 0 followed
by the palette entry for the red, green and blue gun respectively (see VDU 19).

In non-256-colour modes, the palette is programmed so that there is a linear
progression from the colour given in R4 to that in R5, using logical colours Rl, R2,
R2+ 1... R2+R3.

In the 256-colour modes, Rl is ignored. R2 is used as an index in the range 0- 15 of
a pseudo-palette table. This table contains the closest logical colours, under the
default palette, to the required physical colours given in R4 and R5. When painting
takes place, these 'best fit' logical colours are used.

Also in 256-colour modes, the font offset (R5) of the font manager is used only in
versions 0.18 onwards.

Font_ReadThresholds & 40094

On entry: Rl = pointer to result buffer

On exit: Rl preserved, buffer contains threshold data

HE FONT MANAGER

This call reads the list of threshold values that the font manager uses when painting
characters. Fonts are defined using 16 anti-aliased levels. The threshold table gives a
mapping from these 16levels to the 2- 16 logical colours actually used to paint the
character.

The format of the data read is:

Offset

0
1
2
3
n

Value

Foreground colour offset
1st threshold value
2nd threshold value

&FF

The table is used in the following way. Suppose you want to use eight colours for
anti-aliased colours, one background colour and seven foreground colours. Thus the
foreground colour offset is 6 (there are 7 colours). The table would be set up as
follows:

Offset Value

0 6
1 2
2 4
3 6
4 8
5 10
6 12
7 14
8 &FF

When this has been set-up (using the next call), the mapping from the 16 colours to
the eight available will look like this:

503

504

Threshold 2 4 6 8 10 12 14

Input 0 1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15

Output 0 0 2 2 3 3 4 4 5 5 6 6 7 7

Where the output colour is 0, the font background colour is used. Where it is in the
range 1 - 7, the colour f+o-1 is used, where 'f' is the font foreground colour, and 'o' is
the output colour.

You can view the thresholds as the points at which the output colour 'steps up' to
the next value.

Font_SetThresholds &40095

On entry: Rl =pointer to threshold data

On exit:

This call sets up the threshold table for a given number of foreground colours. The
format of the input data, and its interpretation, is explained in the previous section.

Note that some of the above calls are duplicated as VDU sequences, since in some
circumstances it may be more convenient to access them this way.

The following calls are available from 0.20 onwards only.

Font_FindCaret) &40096

On entry: Rl- R3 as Font_FindCaret
R4 = x justification offset
R5 .. y justification offset

On exit: As Font_FindCaret
(they point to the nearest point where the caret can go)

IIHE FONT MANAGER

The 'justification offsets', R4 and R5, are calculated by dividing the extra gap to be
filled by the justification of the number of spaces in the string. If R4 and R5 are both
zero, then this call is exactly the same as Font_FindCaret.

Font_StringBBox &40096

On entry: Rl = pointer to string

On exit: Rl = bounding box minimum x {1/72000")
R2 .. bounding box minimum y (1/72000")
R3 .. bounding box maximum x (1/72000")
R4 = bounding box maximum y {1/72000")

THE FONT PAINTER

This call measures the size of a string without acually printing it. The string can
consist of printable characters and all the usual control sequences. The bounds are
given relative to the start point of the string (they might be negative due to
backward move control sequences, etc).

The font painter is responsible for 'painting' characters of a given font on the screen.
Requests to select a font, to paint text in a given font or to select the colour for
painting are sent to the font painter by means of VDU sequences. The font painter is
separate from the rest of the operating system, and communicates with the VDU
queue handler via an interface involving unrecognised VDU sequences.

Converting from pixel data to the screen

The font painter must go through various conversions before outputting the text,
depending on the resolution of the screen, the number of colours used for anti·
aliasing and the colour of text required. You can specify some of these conversions,
whilst others are performed automatically by the font painter in an attempt to
overcome the limitations of the output device (the screen). For example, pixels are
effectively averaged to give an approximate representation of text in a lower
resolution mode.

In summary, the text output to the screen depends on the following:

505

506

- The font and font size selected
The resolution of the screen mode

- The number of bits used for anti-aliasing
- The colour of the text to be output.

The conversion process is done in the order above, so that text can go through
several conversions before being output.

The font painter provides calls to define and select fonts, to set up the palette for
anti-aliasing, and to define transfer functions for converting from four-bits per pixel
to less bits.

Co-ordinate units

Since the numbers in the metrics files are held in units of 1/lOOOths em, which are
subsequently scaled to 1/1000 point sizes (l/72000th inch), it follows that the logical
units to use throughout are 1/72000th inch. This has the advantage that rounding
errors are minimal, since co-ordinates are only converted for the screen at the last
moment.

Unfortunately, the co-ordinates provided for plot calls are only 16 bits, so this would
mean that text could only be printed in an area of about 6/7ths of an inch.

Because of this, the font painter takes its initial co-ordinates from the user in the
normal screen external co-ordinates (1280x I 024 units). To make the conversion
from screen units to points, the font painter assumes that there are 180 screen units
to the inch (ie 90 pixels per inch horizontally in 80-column modes).

When the font painter moves the graphics point after printing a character, it does
this internally to a resolution of 1/72000 inch, to minimise the effect of cumulative
errors. Unfortunately, it is not possible to specify co-ordinates to this resolution,
which may cause problems when trying to justify text on the screen, for example. For
this reason, the font painter provides a justification facility, so the problem does not
arise.

IIHE FONT MANAGER

The application can obtain the widths of characters to a resolution of 1/72000 inch
by calling the font manager, so its internal representation of co-ordinates can be to
this resolution.

VDU sequences

Define font

- Note: the VDU form of Find font is included in the latest releases for
compatibility with earlier versions of the font manager only. You are strongly
advised to use the SWI interface in all programs; the VDU version may
eventually disappear. This applies to all VDU sequences which duplicate SWI
calls.

To ask the font manager for a particular font at a specified size, the application can
either call Font_FindFont (see earlier), or use the following VDU sequence:

VDU 23, 26,

,
<point size>,

<x ppi>,

<y ppi>,
<x scale>,

<y scale>,

O,O,,<carriage return>

(The entries are shown on separate lines for clarity.) The font name is given as a
string sent to the VDU immediately after the VDU 23 sequence, and is termiated by
a carriage return.

Note that whereas Font_FindFont causes the font manager to choose an appropriate
font handle and return it to the application, the VDU sequence specifies an absolute
font handle which is to be used for that font. For this reason it is preferable to use
Font_FindFont to define fonts.

<x ppi> and <y ppi>, if non-zero, specify the number of pixels per inch horizontally
and vertically in the screen mode in which the font will be painted. If zero, the

507

508

values are chosen depending on the current screen mode (90 by 45 in mode 0, for
instance).

<x scale> and <y scale> are provided to allow for non-integer point sizes, and also to

allow the horizontal and venical point sizes of a font to be different.

The size of the font is calculated in 1/16ths of a point, by multiplying the 'point size'
by the x andy scales respectively. To specify a 12 by 10 point font, you should set
the 'point size' to 1, and the x and y scales to 12 and 10 respectively. Note that the
maximum value of point size, x scale or y scale is 255.

Note also, that there is no byte to set the palette or to define the transfer function,
since these relate to the screen as a whole, not to each font individually. They are
done instead by the VDU 23,25 sequence.

Set transfer function

The anti-aliased fonts are defined in the font files with four bits being allocated for
each pixel, ie 16 grey levels are possible. When painting to the screen, however, it
may be more convenient to use less grey levels, so that, for instance, text can be
painted in different colours, or some of the logical colours in the palette could be
used for other graphics. For this reason, the set transfer function call is provided to
allow the initial16 grey levels to be translated into eight, four or two levels:

VDO 23,25,<bits per pixel>,<threshold 1> ... ,<threshold 7>

<bits per pixel> specifies the number of bits per pixel used for anti-aliasing. It must
be less than or equal to four. If it is four, the rest of the bytes are ignored, as there is a
one-to-one mapping from the anti-aliased colours onto the logical colours used.

The threshold values are used to decide which output bits are produced from the
original values (0 to 15). There are either one, three or seven of them depending on
the number of bits per pixel.

. HE FONT MANAGER

For example:

VDU 23,25,3,2,4,6,8,10,12,14

tranSlates the values 0- 15 to: 0,0,1 ,1 ,2,2,3,3,4,4,5,5,6,6,7 ,7.

Set anti-aliasing palette

The principle of anti-aliasing relies on the colours of the pixels being painted to be a
linear interpolation between the 'background' and 'foreground' colours required. To
facilitate the setting up of the palette registers, this call is provided to set up the
relevant palette registers:

5VDU23,25,
&80+<background logical colour>,
<foreground logical colour>,
<start R>,<start G>,<start B>
<end R>, <end G>, <end B>

<start> and <end> bytes are physical components, one for each of the red, green and
blue guns (as in the VDU 19,n,16,r,g,b sequence).

The <background logical colour> is set to <start phys col>. The n-1 colours starting
from the <foreground logical colour> are set to the intermediate values between the
start and end physical colours. The value of 'n' is determined from the transfer
function setting, and is equal to the number of colours used for anti-aliasing (2,4,8 or
16, corresponding to 1, 2, 3 or 4 bits per pixel).

As a concrete example, suppose these VDU 23s were used:

VDU 23, 25, 2, 4, 8, 12, 0, 0, 0, 0

VDU 23,25, &80, 4, 0,0,0, 255,255,255

The first command indicates that there are two bits per pixel, so four logical colours
are used for anti-aliasing. The threshold values are 4, 8 and 12. Thus the sixteen
anti-aliased colours will map as follows:

509

510

A- A colour Logical colour

0 - 3 background 0
4-7 foreground 4
8 - 1 foreground+ 1 5
12 - 15 foreground+ 2 6

The second command says that the background logical colour is 0. The red, green,
blue entry (RGB) for this is 0,0,0, so the background will be black. The first logical
colour for the foreground is 4, so colours 4, 5 and 6 are used for the three remaining
colours. These are set to the interpolation of the physical colours between 0 and 255
on each gun. That is, the RGB components for the logical colours are set to 85, 1 70
and 255. Of course, if the start and end RGB components were different, then each
gu~ would have its own interpolated value.

Several of these sequences may be required to define the palette for all text. Note
that by using the same background logical colour for different sets of colours, it is
possible to pack more sets of anti-aliasing colours into the palette. For example:

VDU 23,25,2,4,8,121 :REM set 2 bits per pixel output

VDU 23,25,&80, 1, &00,&00,&00, &FO,&OO,&OO

VDU 23,25,&80, 4, &00,&00,&00, &OO,&FO,&OO

VDU 23,25,&80, 7, &00,&00,&00, &OO,&FO,&FO

VDU 23,25,&80, 10, &00,&00,&00, &FO,&OO,&FO
VDU 23,25,&80, 13, &00,&00,&00, &FO,&FO,&FO

However, sharing the background logical colour in this way means that the different
text colours must all have the same background colour.

Note that, because fonts are painted onto the screen by ORing them in, there is a
restriction on the logical colours that can be used for the background colour, namely,
that whenever a foreground colour is ORed with the corresponding background
colour, it is unaffected. Normally this does not matter, since the background logical
colour is usually zero, but it can be important if several sets of background and
foreground colours are used. It is a much more important restriction in 256-colour
modes, since it usually means that the background colour has to be black.

Set anti-aliasing palette (256-colour modes)

YOU 23,25,&FF,
<logical colour>,
<start R>, <stan G>, <stan B>
<end R>, <end G>, <end B>

IIHE FONT MANAGER

Because the 256-colour modes have been set up to use a specific palette, the font
painter should not change the actual palette in these modes as it would in the others.

Instead, a special call is provided for these modes. To facilitate changing colours
within painted text, the font painter maintains a 'pseudo-palette' of 16 items, each of
which can be set up individually by using the above call, with <logical colour>
indicating the entry which is to be set up.

For each of the 12-bit physical colours that the font painter requires to set up for
anti-aliasing, a translation occurs that attempts to select the closest colour available
under the default palette. The top two bits of each gun can be represented exactly
using this palette, but the bottom two bits of the output colour represent the tint
value, which is an amount of white to add to the colour. The formula used to
compute the closest approximation to the required colour is as follows:

tint value= (2*green + red+ blue) /4

where red, green and blue are the lowest two bits of the red, green and blue guns
respectively.

Paint characters

This call is equivalent to the Font_Paint command detailed earlier, and is used to
display a string of anti-aliased characters on the screen. The string can contain font
changes and colour changes, along with automatic justification and rub-out:

PLOT &00 .. &07 ,<x co-ordinate> ,<y co-ordinate> <textual string>

The least significant three bits of the plot code have the following meanings:

511

512

Bit Meaning

2 Relative/absolute co-ordinates (as normal)
1 Rub out background as well (use previous cursors)
0 Justify text within a box (use current cursor)

Note that if rub out and justify are both specified, then justify uses the current and
new graphics cursors, whilst rub-out uses the old cursor and the one before that. If
rub-out only is specified, then the rub out box is determined from the current and
old cursor positions.

For example:

MOVE 0,0 : MOVE 1000,100
MOVE 800,40
PLOT &07,200,40:PRINT "Hello"

REM set up rub-out box
REM set up justification
REM paint text

MOVE 0,0 : MOVE 1000,100
PLOT &D6,200,40:PRINT "Hello"

REM set up rub-out box
REM paint text

The <textual string> is terminated by any character less than ASCII 32, unless it
occurs in one of the control sequences documented above in SWI Font_Paint.

For example, consider the following program segment:

VDU 23,26,1,141:PRINT "Times.Roman"
VDU 23,26,2,141:PRINT "Times.Italic"
VDU 23,25,3,2,4,6,8,10,12
VDU 23,25,&80,1,&00,&FO,&FO,&OO,&OO,&FO
VDU 23,25,&88,9,&E0,&60,&80,&FO,&OO,&OO

MOVE 0,0 : MOVE 1000,100
PLOT &06,100,30
VDU 26,1:PRINT "Some Times.Roman text, ";
VDU 26,2:PRINT "and some Times.Italic ";
COLOUR &80:COLOUR 1:PRINT "in blue";
COLOUR &88:COLOUR 9:PRINT " and in pink"

:REM 14 point Times.Roman
:REM 14 point Times.Italic
:REM 3 bits per pixel
:REM blue on cyan
:REM red on pink

:REM set up rub-out box
:REM start painting sequence

THE FONT FILES

. HE FONT MANAGER

Some points to note:

- The font painter will not do anything on the screen until the final <cr> is sent, so
the text is painted (and the background rubbed out) in one go.

- When a call is made to set up the palette, the current text colour is also set up to
use it, so the first pan of the string is painted in red on a pink background.

- When repainting a portion of a line of text, it is not sufficient to plot the text
starting at the point on the screen that the portion appears to be at. As a result of
the fact that the font painter holds the text co-ordinates to a higher resolution
than the screen co-ordinates, the 'phase' of the internal counter is different,
causing certain characters to be printed in a slightly different position than last
time. The solution is to repaint the entire line of text, having set a graphics
window to cover the part that you are expecting to change.

The font files are held in a machine-readable form rather than as text, for the
following reasons:

- The files are smaller, allowing more fonts to be supplied
- The data is easier for the font painter to handle
- It is a simple matter to translate the files into this form.

The format of these files is as follows:

Format of the metrics files

For any given font in a particular style, there is only one metrics file. The dimensions
held in the metrics file are in 1/lOOOths em, so to obtain the value in points,
multiply by the point size of the font.

The format of the internal metrics file is as follows (offsets are in bytes):

513

514

Size Offset Meaning

40 0 Name of font, terminated by <cr>
4 40 16
4 44 16
1 48 n = number of defined characters
3 49 reserved
256 52 character mapping (ie. indices into following arrays)
2n 308 xO- bounding box of character (in 1/lOOOths em)
2n 308+2n yO -co-ordinates are relative to the 'origin point'
2n 308+4n x 1 - 2 bytes per entry
2n 308+6n yl-
2n 308+8n x-offset after printing this character
2n 308+10n y-offset after printing this character

308+12n

The character mapping is used to conserve space, since it is assumed that not all of
the characters will be defined. Any character not defined should have an index of
zero in the character mapping, and the first item in each of the arrays should contain
data for the 'undefined' character.

This arrangement does save space as long as 260+ 12n < 12x256, ie. n < 235. Note
that it also allows data to be shared between characters if appropriate, thereby saving
more space.

Format of the pixel files

The pixel files hold the actual pixel-by-pixel definition of each of the characters in a
particular font. This varies with the point size of the font, so the pixel file holds data
for a font in a variety of sizes. Not all sizes are defined explicitly, but the font painter
is able to generate intermediate sizes itSelf (with slight reduction in quality).

Index

Size

1
1
4
4
4

Offset

0
1
2
3
4
8
12

II HE FONT MANAGER

Meaning

point size
bits per pixel (ignored)
pixels per inch (x-direction)
pixels per inch (y-direction)
check sum
offset of pixel data in file
si2.e of pixel data (needed as blocks may not be
consecutive).
more of the same 4-word blocks (as many as you
like)

The index is terminated by a rero byte.

Pixel data: (word-aligned)

Size

4
4
4
4
1
1
1
1
512

Offset

0
4
8
12
8
9
10
11
12

Meaning

x-si:z:e in 1/16ths point • pixels per inch (x)
y-size in 1/16ths point • pixels per inch (y)
pixels per inch (x-direction)
pixels per inch (y-direction)
xO - maximum bounding box for any character
yO-
xl-xO- ie the width in pixels
y 1-yO- ie the height in pixel rows
Z-byte offsets from table start of character data
(pixel data in fUe is limited to 64K per block)

515

516

Character data: (word-aligned)

Size Offset

0
1
2
3
4

Meaning

xO- xO,yO,x 1,y 1 is the bounding box (in pixels)
yO - (signed, ie -128 to 12 7)
x 1-xO - ie the width in pixels
y1-y0- ie the height in pixel rows
each nibble= pixel colour (rows from bottom to
top)
number of nibbles c (xl-xO)*(yl-yO)
word-aligned after pixel nibbles
(rows are not necessarily byte-aligned)

Note that the format of the pixel data may be different if a different number of bits is
used per pixel. The same principle applies, however- the data is compacted, and
word-aligned at the end.

Fonnat of the font cache

The first 5K of the font cache consists of the following tables, which act as an indices
into the cache area:

Size

&400

&400
&400
&400
&400

Offset

&0000

&0400
&0800
&OCOO
&1000

Meaning

pointers to metrics information (scaled to font
size)
pointers to pixel definitions
sizes of me tries information
sizes of pixel definitions
table of ages, usage and 'uncached' flags

Note that the entry for font 0 is unused (since 0 is not a valid font number).

The format of the metrics and pixel data in the font cache is similar to that in the
files, but with some important differences:

IIHE FONT MANAGER

Format of metrics data in the font cache

Size Offset Meaning

40 0 name of font (terminated by <cr>)

4 40 x-size of font (in l/16ths of a point)

4 44 y-size of font (in l/16ths of a point)
1 48 n (= number of defined characters)

3 49 reserved
256 52 character map
4n &134 xO -
4n &134+4n yO - bounding box (words)
4n &134+8n xl -
4n &134+12n yl -
4n &134+16n x-offset after printing this character

4n &134+20n y-offset after printing this character

Note that the numbers stored in the font cache have been multiplied by the point
size of the font to give the appropriate values, and that they are stored in four bytes
each, rather than two bytes as they are in the internal metrics files.

Format of Pixel Data in the font cache

Pixel data: (word-aligned)

Size

4
4
4
4
1
1
1
1
8
8

Offset

0
4
8
12
16
17
18
19
20
28

Meaning

point size • 16 • x-resolution
point size • 16 • y-resolution
x-resolution
y-resolution
xO- maximum bounding box for any character
y0-
x1-x0- ie the width in pixels
y1-y0- ie the height in pixel rows
Offset/size (words) in file of first 32-char chunk
Offset/size of second 32-character chunk in file

517

518

8
4

4
4

76
84

88
112

Offset/size of eighth 32-character chunk in file
Start of character data for 1st chunk (0 =>not
cached)
Start of character data for 2nd chunk
Start of character data for 8th chunk

The first two wotds indicate the scaling factor that is relevant to the font scaling
algorithm. The factor of 16 is due to the way in which the 'define font' VDU
sequence is specified, you can ask for a non-integer point size by changing the x or y
'scale factors' from their default values of 16.

Character data: (word-aligned)

Size Offset

0
1
2
3
4

Meaning

xO- xO,yO,x l,y 1 is the bounding box (in pixels)
yO- (signed, ie-128 to 127)
x1-x0- ie the width in pixels
y1-y0- ie the height in pixel rows
each nibble - pixel colour (rows from bottom to
top)
number of nibbles • (xl-xO)•(yl-yO)
word-aligned after pixel nibbles
(rows are not necessarily byte-aligned)

l!ouND

INTRODUCTION

The Sound System software is designed to provide a real-time polyphonic audio
signal synthesis and playback system which is able to support music and speech
applications and to provide simple sound effects. The overall objective in the design
of the system software has been to provide features which allow the processing power
of the A-series machines to be exploited in complex real-time sound synthesis, a
feature normally only attainable with custom hardware.

The special purpose hardware provided on ARM-based systems simply provides a
DMA output channel and analogue output circuitry to allow up to eight
independent high quality stereo imaged sound or music voices to be output at a
programmed sample rate; filters and mixing circuitry are provided on the main board,
and both a stereo output (suitable for driving personal hi-fi stereo headphones
directly, or connecting to an external hi-fi amplifier) and monophonic output to the
loudspeaker are built into the system.

All sound synthesis is accomplished in software; the harmonic content and
amplitude envelope characteristics for a voice are entirely programmable. A sign and
logarithm number system is used in order to allow the ARM CPU to execute simple
signal processing algorithms efficiently; thus complex operations such as Frequency
Modulation algorithms are possible entirely in software.

The Sound System software is segmented into three levels; a range of synthesis
algorithms can be loaded as Relocatable Modules to support music and speech
applications, and the layered structure allows powerful expansion and customisation
for particular applications.

Features of the sound system include:

- The power and speed of the ARM processor, which is exploited to make sound
synthesis possible entirely in software.

- One, two, four or eight independent audio channels can be supported, each with
associated programmable stereo image position.

519

- Programmable data sample rates with high-quality audio sampling at a 20kHz
default rate per voice but with the capability to support rates up to 32kHz per
voice.

- Support for Sound Voice Generators. High-speed synthesis algorithms provide
streams of data samples (which can be shared by one or many sound channels}.
Standard built-in generators are provided for simple tone generation, and filtered
wavetable algorithms for plucked string or percussive effects. External voice
generator interface provided for external user-supplied algorithms.

- Applications Interface, the system interface as seen by the applications
programmer. Facilities are provided for:

- Sound system configuration. (Sample rates, Channel allocation, etc.}

- Event Queue and Synchronisation facilities.

- Voice assignment and allocation.

SOFTWARE STRUCTURE

520

The sound system is envisaged as a hierarchical layered structure in which the raw
DMA system provided by the Video Controller activates services in the higher layers
to generate blocks of sound data samples for output to the Digital to Analogue
Convertor. Given that the sound system requires all tone generation to be performed
in software (whether raw mathematical synthesis or simpler interpolation of
precompiled tables) considerable attention must be given to the demands on
processor bandwidth assigned for synthesis for more powerful or complex sound
production. Rather than providing built-in operating system support for very
complex sound generation directly, the approach taken provides a number of levels
of support with 'hooks' availabie to external applications programs which wish to
perform especially complex sound synthesis. Usually, the system level interfaces
would be used to generate sounds using one of a number of provided synthesis
algorithms.

The three main levels of sound system software are briefly summarised below and
then described in depth in the following sections.

lllouND

SoundDMA (Level 0)- the sound DMA buffer handler

The DMA Buffer Handler is activated every time a new buffer of sound samples is
required, and is responsible for manipulating the physical address pointers to the
blocks of memory that the memory controller cycles through at the programmed
sample rate. Level 0 is the essential service that has to be provided in firmware
requiring privileged supervisor status to program the system devices.

This level of the sound system basically implements a double-buffered output
channel. Level 0 activates the higher levels of sound system software to cause the
next DMA buffer of sound samples to be filled; because buffer filling demands fairly
large amounts of processor bandwidth, the Voice Generators have to run
interruptable. All code must be resident in main memory (must be directly
executable in order to fill in real-time) .

Level 0 provides the facility to handle sound system overload, when the peak
demands of many complex voice algorithms exceed the available processor
bandwidth. (This is a function of the video mode, IRQ and FIQ bandwidth.) The
offending channel is marked as Overrun and the real-time buffer filling is aborted
and restarted.

Level 0 also performs all the hardware-dependent programming services for the
applications programmer which require privileged-mode access. The stereo image
position registers in the Video controller, and the built-in loudspeaker enable
interfaces are both provided, as well as the master Audio On/Off control which
disables or enables the entire sound system DMA and Interrupt system.

SoundChannels (Levell)- the sound channel interface

The sound DMA hardware in the video controller allows programming of both
sample rate and number of stereo positioned channel outputs. The physical channels
imply the way in which data samples must be interleaved throughout the buffers
which must be built up. The number of physical channels is constrained to one, two,
four or eight; however, Level 1 manages any unassigned channels directly. A simple
unified interface to whatever voice is assigned to a particular channel is provided
which allows direct real-time control of musical parameters.

521

522

Channels are allocated in descending priority order, and may be de-activated by
Level 0 if the time-out period for real-time buffer filling is exceeded. Levell provides
automatic Channel flushing as channels are allocated and deallocated.

This level also provides the system services to Voice Generators: internal tables are
built and maintained for both volume and musical pitch, and the interface to allow
you to attach channels to installed voice generators. The system-maintained volume,
in fact, maintains internal linear and logarithmic lookup tables which Voice
Generators would normally use in order to scale their amplitude to the current
volume setting.

SoundScheduler (Level 2)- sound event scheduler

The Sound Event Scheduler provides a time-ordered event queue manager and data
structures to allow multiple channel music or sound to be produced and synchronised
under simple program control. Notes, timbral changes or even user-supplied code
routines may be scheduled in arbitrary time order. These are activated, as events, at
the appropriate tempo-dependent time in the future. This level provides the system
maintained services for both tempo and beats (per bar); events may be queued
relative to the start of a bar (or relative to the last event schedule period). and tempo
may be dynamically changed whilst maintaining note synchronisation.

Sound voice generators

Each sound channel must be assigned a particular Voice Generator. The sound
system Level 1 software provides interfaces to install and remove loadable Voice
Generator modules. These essentially generate the next series of signal data samples
requested by the sound channel handler (as well as provide entry points to start up,
and close down the channel). At this level the efficiency of the code for each of the
generators is paramount; wavetable synthesis can be performed very efficiently by the
ARM processor once all the working variables have been loaded up into registers,
and is well suited to fast sequential buffer filling. An interface is again provided at
this level to external user-supplied generators which may be called up by the channel
handler. The library of internal generators includes:

- simple waveform oscillators
- a speech data interpolator
- simple plucked-string and percussive table-filtering algorithms.

More complex facilities such as frequency modulation could be provided if
implementation of the more essential features allows time for such developmentS.

Each Voice Generator would normally be allocated in resident System Heap space
and may provide workspace for one or more instantiations in order to allow one or
more channels to use the algorithm.

SOUNDDMA (LEVEL 0) -SOUND DMA BUFFER HANDLER

The sound system DMA hardware basically requires two (or more) physical buffers in
main memory. Two sers of START/END register pairs are provided in the sound
DMA Address Generator (DAG): the CURRENT set provides the start and end
pointS through which the sound DMA pointer incrementS, whilst the NEXT start
and end are available to the programmer to set up once the buffer-filling software has
filled the new sound sample data buffer.

The DMA buffer handler is entered upon an interrupt from the 10 Controller
indicating that the DAG sound pointer in the Memory Controller has switched
physical memory buffers. (The programmed NEXT start and end become the current
values and the original pair are scrapped ready for reprogramming.) It should be
noted that if the buffer-filling software does not fill and make available the next
buffer whilst the DMA occurs, then the Interrupt Service Routine is re-entered. In
order to fix up re-entrancy, and to mark as overrun the channel which failed to fill in
time, a semaphore is maintained and a mark left on the IRQ mode Stack. So on re
entrancy:

- the known stack contentS are used to determine which channel did not fill in
time:

- the previous Levell is aborted
- the offending channel marked as overrun
- the next DMA buffer fill initiated.

523

524

This prevents the situation where the DMA pointer recycles within the CURRENT
start/end addresses which causes the last chunk of sound samples to be re-output,
resulting in bad audible discontinuities.

Level 0 • commands

Commands are provided as follows:

*AUDIO

The *Audio command controls the sound system.

Syntax: *Audio ON I OFF

Turning Audio Off silences the sound system completely, and stops all Sound
Interrupt and DMA activity. Turning Audio back on restores the sound DMA and
interrupt system to the state it was in immediately prior to turn-off. All Level 1 and
Level2 activity is effectively frozen during the time the Audio system is off, but
software interrupts to all levels are still permitted, even if no sound results!

•SPEAKER

The *Speaker command controls the loudspeaker.

Syntax: *Speaker ON I OFF

This command only affects the internal loudspeaker built into the system and not
the external stereo headphone/amplifier output on the machine. It mutes the
monophonic mixed signal to the internal loudspeaker amplifier.

*STEREO

*Stereo sets the stereo position of a sound channel.

Syntax: *Stereo <channel> <position>

<channel> is 1 - 8
<position> is -127(fullleft) to + 12 7(full right), 0 for centre

This command sets the stereo image position of a sound channel.

Level 0 SWI calls

A series of software interrupt service entries are provided which allow you to
configure and extend the layered sound system.

Sound_ Configure- Configure the sound system

This software interrupt is used to configure the number of sound channels, the buffer
sample period and the number of sound samples per buffer for each channel (and for
specialised applications to replace the Level 1 and Level 2 handlers which are called
by Level 0). All current parameters may be interrogated by using zero input
parameters, and the actual values programmed are, in fact, subject to a number of
criteria such as DMA buffer length and minimum and maximum sample periods.

On Entry: RO = no. of channels (n) rounded up to 1 ,2,4 or 8 (N)
Rl = samples per buffer
R2 = uS per sample
R3 = Levell Handler (normally 0 to preserve system Level 1)
R4 = Level2 Handler (normally 0 to preserve system Level2)
(all parameters 0 for don't change)
Constraints:
1 <= RO <• 8 (rounded up to 1, 2, 4 or 8)
16 <• Rl * N <= Sound DMA Buffer Limit
3 <= R2 * N <= 255

On Exit: previous RO,Rl,R2,R3,R4

- Note: multiple channels are built up by multiplexing channels into what is
effectively one half, one quarter or one eighth of the sample period, and thus the
signal level per channel is scaled down by the same amount. Thus the overall
signal peak level for all multi-channel modes is the same, but the signal level per
channel is scaled. Levell software could, of course, scale amplitudes for the one,

525

526

two and four channel modes down to the the same perceived loudness, at the
expense of signal-to-noise.

Sound_Enable - Sound system control

This software interrupt is used to enable or disable the DMA and Interrupt requests
from the system. This guarantees to inhibit all sound system bandwidth consumption
once a successful disable has been completed.

On Entry: RO =new state:
bit 1 is one to update state
bit 0 is I for ON, 0 for OFF

(0 for don't change)

On Exit: RO = previous state
3 for active On
2 for closedown in progress
1 for closedown imminent!
OforOFF

SWI Sound_Speaker -Loudspeaker control

This software interrupt is used to enable or disable the internal loudspeaker channel.
The stereo output socket is always enabled but the mono-mix of the left and right
audio channels is switchable to the built-in amplifier and loudspeaker.

On Entry: RO =new state:
bit I is one to update state
bit 0 is 1 for ON, 0 for OFF

(0 for don't change)

On Exit: RO = previous state
1 for ON
OforOFF

Sound_ Stereo -Set stereo image position

This software interrupt is used to program the stereo image position. Depending on
the number of physical channels programmed, this software call may be used to
program the position of a logical channel (the normal use) or may be used for special
effects to map interleaved samples for one channel to alternate positions.

On Entry: RO =channel (C) to program
Rl "' image position:

0 is centre
12 7 for max right
-127 for max left
-128 for don't change (read previous)

On Exit: RO preserved
Rl • previous image position

For N physical channels enabled, this call will program stereo registers C, C+ N,
C+ZN up to image reg 8.

To help clarify the above, if four channels are currently in use, and it is desired to
program channel 2 as a 'stereo' voice, then programming must be performed as
follows:

if it is desired to preserve old slot 6 then:
MOV RO,t6
MOV Rl,tO
SWI Sound Stereo
then re-program as follows:
MOV Rl,tpos
SWI Sound Stereo
ADD RO,RO, t4
MOV Rl,taltpos
SWI Sound Stereo

programs slot 2,6 (returns old slot 2)

programs slot 6

527

528

This Software call only updates RAM copies of the stereo image registers and the
new positions, in fact, take effect on the next sound buffer interrupt. (The software
interrupt may be called from IRQ code directly for scheduled image movement.)

Operational considerations

DMA buffer site and sample rate

The length of buffer is an important consideration from two points of view. The
sample rate and number of channels interact together to consume sound sample
bytes at a variety of rates, and the resulting buffer request interrupt rate must be
chosen such that the processor is interrupted at a 'sensible' rate. A default buffer
period of the order of a centi-second is selected as a value which allows reasonable
temporal resolution of note lengths. Conceivably, some user tasks might wish to
work V.:ith longer blocks (i.e. replaying pre-compiled speech or music from disc) so
the length parameter should be extendible.

The sample rate constraints arise because of the DMA request conflicts that arise
from the Video Controller when operating at high resolution screen modes. This
imposes a limit of a 4 microsecond minimum sample period to DMA correctly with
all screen modes, and would occur when all eight hardware channels are enabled.
Outputting a byte to one of eight channels every 4 microseconds results in an audio
sample period of 32 microseconds per channel, a sample frequency of 31.25kHz.

The current system design revolves around a VIOC system clock of 24M Hz;
however, experimental hi-resolution monochrome systems using a 28MHz YIOC
clock, and systems with slow (150nS) memory which could use a 20MHz crystal,
constrain the Sound sample rates (the sound clock is basically a multiple of 1/24 of
the YIOC system clock). Analysing clock division rates for all these three clock
options reveals that there is only one simple common denominator which enables
the sample rate to default to the same value (eg important for speech sample rate
interpolation). This turns out to be 6uS as follows:

6uS Sound Frequency Generator period:
5 at 20MHz
• 6 at 24MHz
"' 7 at 28MHz

llouNn

Thus this is chosen as the system default:

8 channel multiplex rate = 166.666 kHz
Overall audio sample rate = 20.833 kHz

resulting Nyquist= 10.416 kHz

Returning to the DMA buffer length, this is constrained to be a multiple of 4 words,
and to give a buffer period of 1 centi-second, buffer sizes as outlined below are
closest:

Buffer lengths for Audio Sample Rate of 20.833 kHz

DAC o/p

0.9984 csec 1.0752 csec per iod/byte

1-channel 208 bytes 224 bytes 48 usee

2-channel 416 bytes 448 bytes 24 usee

4-channel 832 bytes 896 bytes 12 usee

8-channel 1664 bytes 1792 bytes 6usec

bytes per channel &DO &EO

interrupt rate 100.16 Hz 930.1 Hz

The system default buffer period is chosen as 0.9984 centi-seconds, thus the buffer
length is a multiple of 52 words (13 DMA quad-word cycles).

DMA Buffer Format

The sound DMA system systematically outputs bytes at the programmed sample rate;
each (16-byte) load of DMA data from memory is synchronised to the flrst stereo
image position. For single channel operation all stereo image registers are mapped to
the same position, and the buffer format is simply sequential sample bytes.

529

530

Multiple channel operation is possible with two, four or eight channels; in this case
the data bytes for each channel must be interleaved throughout the DMA buffer at
2, 4 or 8 byte intervals.

Schematically:

Single channel operation:

sample rate = 20 kHz
image registers 0- 7 programmed identically

0 by teO bytel byte2 I byte3 1 byte4 1 byte5 I byte6 I byte 7

+8 byteS byte9 etc

Two channel (a/b) operation:

sample rate = 40 kHz
image registers 0,2,4,8 and 1,3,5,7 programmed per channel

a b a b a b a b

0 by teO by teO bytel I bytel 1 byte2 1 byte2 l byte3 1 byte3

+8 byte4 byte4 etc

Four channel (a/b/c/d) operation:

sample rate = 80 kHz
image registers 0+4, 1 +5, 2+6, 3+ 7 programmed per channel

a b c d a b c d

0 by teO by teO byteO I byteO 1 by tel 1 byte 1 1 bytel 1 bytel

+8 byte2 byte2 etc

Eight channel (a/b/c/d/e/f/g/h) operation:

sample rate = 160kHz
image registers 0,1 ,2,3,4,5,6, 7 programmed per channel

a b c d e f g h

0 by teO by teO byteO I byteO I byteO I byteO I byteO I byteO

+8 by tel bytel etc

The interleave is entirely a function of the Level 1 channel handler which is
activated every time buffer filling is required.

The system provides two DMA buffers, and performs all the physical memory DMA
memory addressing, and virtual memory mapping to the higher level Sound System
modules.

Building a Level 1 sound ch annel handler

The Level 1 interface is provided by a Control Block, a pointer which must be
registered with Level 0 using the Sound_ Configure interface. The first two word
entries (which must be word-aligned) arc defined as pointers to the Levell handler
code, and a Levell overrun fix-up entry which is called if the previous Levell filling
has not completed in time.

531

532

Level 1 control block

FillCodePtr - 0
FixUpCodePtr = 4

pointer to Levell Handler
pointer to Levell overrun code

ChanPtrBase
ChanlPtr = ChanPtrBase
Chan2Ptr - ChanPtrBase + 4
Chan3Ptr - ChanPtrBase + 8
Chan4Ptr - ChanPtrBase + 12
Chan5Ptr - ChanPtrBase + 16
Chan6Ptr - ChanPtrBase + 20
Chan7Ptr = ChanPtrBase + 24
Chan8Ptr - ChanPtrBase + 28
1

Example Level 1 handler:

.LevellFill ; simple Level 1
entered indirected through LOR PC, [R9,tFillCodePtr]

R6 is -ve if updated levelO

R8 - sample period in uS
R9 - pointer to Levell Control Block

RlO = DMA Buffer End (+1)
Rll - DMA Buffer Inc
Rl2 - DMA Buffer Base
Rl3 IRQ stack pointer
Rl4 return to Level 0
USAGE:

R7 = Channel counter
R0-5 (AND preserved R6-12 for Channel fill)
STMFD Rl3!,{Rl4}
ADD R9,R9,tChan0Ptr
MOV R7,tO

.LevellLoop
ADR RO,LevellReturn return address

STMFD R13!,{RO,R6-R12}

,, {RO} return address MUST BE LAST ON STACK!

ADD R12,R12,R7

LOR RO, [R9,t4]!

ORRS PC,RO,t&00000002

, , MUST return with LDMFD

R12 is interleaved Channel dma base

call next chanel fill

re- enable IRQs in fill code

R13!, {PC}

. LevellReturn

TEQP

MOV

LDMFD

ADD

CMP

BLT

PC,t&08000002

RO,RO

R13!,{R6-R12}

R7,R7,U

R7,Rll

Levell Loop

disable IRQS again

wait for IRQ bank

sequence through channels

LDMFD R13!, {PC} ; return to LevelO

;***********************************
.LevellFixup

;On Entry:

r14 is return
r12 is stack mark (TOP) ** THIS MUST BE PRESERVED **
rll is Levell base (code entered at base + 4)

stack (words)

RlO)

R9

RS
R7

R6

RS
R4

R3
R2

Rl

RO

contains:

Level 0

reg save area

<---- TOP-1

<---- TOP-11

·----------------------,
return to Level 0 <---- TOP-12

level 1 save block

(stacked R7 will contain

R12 DMA Base

Rll DMA Interleave

-13
-14

533

534

R10 DMA Limit -15

R9 Sound Stream Base -16
R8 Sample rate period -17
R7 Channel counter -18
R6 Update (flush) flag -19
Stream Link return -20

·----------------------'
any currently stacked registers

·----------------------'
int return

Rl2
new sound IRQ entry!

R11 <------ R13

·----------------------'

STMFD
LOR

R13!,{R11,R12,R14}

R14, [R12,t-18*4) ; get offending Channel no.
disable or mark the problem Channel,
LevelO will patch the stack, swap buffers
and call Level1Fill imminently

LOMFD R13!,{R11,R12,PC}

Building a Level 2 sound scheduler

The Level 2 interface is lese; complex that outlined for Level 1, and is registered with
Level 0 using the Sound_ Configure interface. The first word of the block of
workspace (which must be word-aligned} referenced by the pointer, is defined to be a
pointer to the Level 2 handler code. The Level 2 handler code is called every DMA
buffer fill period and, assuming Level 2 is implemented as a relocatable module, sets
R12 to point to the workspace base.

Level 2 control block:

SchedulerCodePtr - 0 pointer to Levell Handler

Example Level 2 handler:

.Level2 ; simple Level 2 skeleton

/}

entered indirected through LOR PC, [R12,tSchedulerCodePtr)

R12 - Level 2 (workspace) control block pointer

R13 - IRQ stack pointer
R14 - return to Level 0
USAGE:

RS - Rll are already preserved on entry

R0 - 7 MUST be preserved by the user
in IRQ node, with IRQ's disabled

STMFD R13!,{RO-R7,R14}

scheduler code

LDMFD R13!,{RO-R7,PC}

SOUNDCHANNELS (LEVEL 1) -SOUND CHANNEL HANDLER

The channel handler accepts a buffer fill request with a virtual memory base address
and length, and converts this to a series of Voice Generator calls with selected buffer
interleave offsets to build up the required composite sound buffer.

The Sound Channel Control Block (SCCB) contains the relevant parameters to
map the buffer to the one to eight active sound channels. The hardware supports
only one, two, four or eight physical channels, so in order to support an intermediate
number of channels the next highest physical number is chosen, and the unused
channels must have their interleaved data cleared to zero amplitude. If this is
performed at channel initialisation, then no further work in software is required to
maintain these unused channels.

Level 2 • commands

Commands are provided as follows:

535

536

*Volume command sets the audio channel loudness.

Syntax: *Volume n <range 1 -127>

Scales the internal lookup tables that the voice generators would nonnally use, to
scale their signal amplitude efficiently.

•VOICES

*Voices lists the installed voice generators and channel allocation.

Voice Generators, when they are installed, are entered into a system-maintained
table and may be attached to one of the eight possible sound channels. It is possible
to attach all eight channels independently of the number of channels currently
enabled in Level 0.

•CHANNEL VOICE

*ChannelVoice command attaches a Voice Generator to a Sound Channel

Syntax: ChannelVoice <channel> <voice index> I <voice name>

This command is used to configure the allocation of voice channels to voice
generators. The voice index is the number given by the *Voices command (and an
index of 0 may be used to mute the channel altogether). The voice index may well
depend on the order in which the voices were loaded into the system, the
(unquoted) voice name allows position independent voice attachment. However,
this is only supported on SoundChannels version 1.08 upwards. The voice name is
case sensitive and only an exact match of names will result in the channel voice
attachment being successful.

IJouND

•SOUND

The •Sound command makes a foreground (immediate) sound.

Syntax: •Sound <channel> <amplitude> <pitch> <duration>

This command provides the equivalent of the BASIC SOUND command and allows
immediate sounds to be generated on the specified channel, providing the channel
number is in fact active according to the current number of channels enabled. The
parameters must all be unsigned integers and are interpreted identically to the
SOUND command .

.-rUNING

The •Tuning command sets the system tuning.

Syntax: •Tuning n <range 1- 32767>

This command overrides the system pitch base. It is not to be supported in the same
way in future; instead, a signed representation of relative pitch change will be
implemented. All pitches for Voice Generators vary with the system pitch base.

•CONFIGURE SoundDefault

This sets default sound channel one parameters.

Syntax: SoundDefault <0 11> <0- 7> < 1 - 16> (speaker, coarse volume, voice)

This configure option sets the non-volatile parameters to be used after power-on.
They specify the built-in loudspeaker as on or off, the relative default volume
preferred at start up, and the voice generator one wishes to attach to channel 1 (the
default system Bell channel).

The volume parameter is a 'coarse' volume setting, each unit corresponding to one
eighth of the overall maximum volume. At power-up the default settings are: one
channel, with central stereo position.

537

538

Level 1 SWI calls

A table of installed Voice Generators is managed by Levell. Services are provided
to allow voices to be installed and removed from the Voice Generator Table, and to
attach particular voices to channels. To simplify the software interface to user
loadablc voices, facilities are provided to determine textual voice names and channel
assignment.

Sound_InstallVoice -Install voice generator

This software interrupt is used by Voice Modules or Libraries to associate a RAM
resident Voice Generator with a Sound Voice Generator entry. A Voice Generator
must have a header of pointers to code and data fields as specified in the section
Sound voice generators for the SoundScheduler (level2).

On Entry: RO =Voice Module pointer (0 for don't change)
Rl = voice slot specified (0 for install in next free slot)

On Exit: RO = string pointer- name of previous voice (or error message)
Rl = voice number allocated (0 for FAIL to install)

This call may be used to interrogate the installed voice list (by using an RO
parameter of 0 for each slot entry); the voice table is currently limited to 32 entries.

Sound_RemovcVoice- Remove voice generator

This software interrupt is used when Voice Modules or Libraries are to be removed
from the system. It notifies Levell that a RAM-resident Voice Generator is being
scratched. (It may also be called when the Relocatable Module Area is Tidied).

On Entry: Rl = voice slot to remove

On Exit: RO =string pointer- name of previous voice (or error message)
Rl is voice number de-allocated (0 for FAIL)

Sound_AttachNamedVoice -Attach a channel to a named voice generator

This call is used to bind a particular sound channel to one of the loaded voices. The
name is used as the parameter, and if no matching loaded voice name is found then
an error is reported and the channel is not detached from the voice to which it was
previously bound. An exact case-sensitive character match is performed.

On Entry: RO =channel number {1- 8)
Rl =pointer to Voice name (ASCII string, 0 terminated)

On Exit: RO is preserved, or 0 for FAlL
Rl is preserved

Attaching a new voice results in the previous voice being shut down and the new
voice being reset. Different algorithms have different internal state representations
so it is not possible to swap Voice Generator mid-sound.

SWI Sound_Attach Voice- Attach channel to voice generator

This software interrupt is used to attach an Installed Voice Generator with a channel
number.

On Entry: RO =channel number {1- 8)
Rl = voice slot to attach (0 to detach and mute channel)

On Exit: RO preserved (or 0 if illegal channel number)
Rl = previous voice number (or 0 if not previously attached)

Attaching a new voice results in the previous voice being shut down and the new
voice being reset. Different algorithms have different internal state representations
so it is not possible to swap Voice Generator mid-sound.

A set of service calls provides efficient and centralised conttol of the the Level 1
Sound System. These control the Volume:

539

540

- scaled to the current system Volume setting

- pitch and overall tuning for voices that understand this parameter

- two forms of foreground control commands.

Sound_ Volume- Set the overaii loudness

Amplitudes are internally represented in a 7-bit logarithmic form with a change of
16 representing an effective doubling or halving of signal amplitude. Well behaved
Voice modules should observe the volume setting and scale their waveforms to this
maximum peak amplitude.

The defa~lt value is obtained from CMOS RAM to allow you to set a preferred
loudness limit for the Sound system.

On Entry: RO • sound volume (1 - 127) (0 to inspect last setting)

On exit: RO = previous volume

- Note: this apparently trivial software interrupt does in fact perform large amounts
of internal logarithm and lookup table calculation and scaling, and as such is an
expensive operation. Therefore it is advisable to use this call to set the overall
volume and then control the channel volumes directly.

Sound_SoundLog -Linear to audio logarithm

This software interrupt maps a 32-bit signed integer to an internal representation as
a signed logarithmic byte value, scaled according to the current volume setting.
(Table lookup for efficiency.)

On Entry: RO • signed 32-bit signed number

On Exit: RO - 8-bit signed scaled logarithm

Sound_LogScale -Internal audio logarithm scaling

This software interrupt maps an internal 8-bit sign and log representation number to
one scaled to the current volume.

On Entry: ROb= signed audio logarithm

On Exit: RO = 8-bit scaled audio logarithm

On Entry:

On Exit:

Sound_Pitch - Convert pitch to internal representation

This software interrupt maps a 15-bit pitch to an internal format pitch value
(suitable for the standard voice phase accumulator oscillator).

RO = 15-bit pitch value:
I

bits 14 \ 2 (3-bit octave number)
bits 11 - 0 (12-bit 1/4096 octave)

RO = 32-bit phase accumulator value

Sound_ Tuning - Set the sound system tuning

This call sets the tuning parameter; this value is used to offset the pitch values used
throughout the system.

On Entry: RO = new tuning value (or 0 for no change)

n exit: RO = previous tuning value

Sound_Control- Foreground (immediate) control of channel

This call allows real-time control of a specified Sound Channel. The parameters are
immediately updated (they take effect on the next buffer 611 entry) and may be used
to provide real-time control of the amplitude, gating, pitch, and duration in a unined
way for any voice type. Gating is used here as the term to describe new note on/off
information as distinct from 'smooth' update control information; gate on

541

542

corresponds to the distinct start of a note and gate off to stopping the note, whilst
slurring corresponds to changing note parameters without restarting the note.

On Entry: RO =channel number 0-8)
R1 = amplitude:

&FFFO- &FFFF,O for BBC emulation amplitude (0 to- 15)
&000 1 - &OOOF ENVELOPE NOT EMU LA TED
&0100- &01FF for full amplitude/gate control:

R2 • pitch

bit 7 is 0 for gate ON/OFF
1 for smooth update)

bits 6-0 are 7-bit audio log amp

&0000 - &OOFF for BBC emulation pitch
&0100- &7FFF for enhanced pitch control:

bits 14 - 12 = 3-bit octave
bits 11 -0 = 12-bit fractional part of octave
(&4000 is nominally Middle C)

&8000 + n 'n' in range 0- & 7FFF as phase accumulator increment
R3 = duration

&0001 - &OOFE for BBC emulation in 5 • centi-second periods
&OOFF for BBC emulation 'infinite' time
> &OOFF for 5 • n centi-seconds

On Exit: RO - R3 preserved

Sound_ControlPacked- Foreground (immediate) control of channel

This call is identical to Sound_ Control but the parameters are packed 16-bit at a
time into low RO, high RO, low Rl, high R l respectively. This is then identical in
format to the memory image of the OSWORD Sound call, and reflects the same
packing of parameters into the Level 2 Scheduler format.

On Entry: RO is AAAACCCC Amp/Channel
Rl is DDDDPPPP Duration/Pitch

On Exit: RO,Rl preserved

llouND

Sound_ReadControlBlock -Read channel control data

This call allows 32-bit data values to be read from the Sound Channel Control Block
(SCCB) for the designated channel. The interpretation of many fields in the SCCB
is not defined, and this call allows Voice Generators that require extended
information (eg timbral control) over the general sound foreground interface,
defined above, to communicate further data. Voice Generators that use extended
SCCB parameters must document the extended interface, and it should be borne in
mind that using extended parameters becomes non-general purpose across different
voices. Use with care.

On Entry: RO"' channel
R 1 - offset to read from

On Exit: RO preserved (or 0 if fail, invalid read offset)
Rl preserved
R2 = 32-bit word read (ifRO non-zero)

Sound_ WriteControlBlock- Write channel control data

This call allows 32-bit data values to be written to the Sound Channel Control
Block (SCCB) for the designated channel. See previous SWI description.

On Entry: RO =channel
Rl =offset to read from
R2 = 32-bit word to write

On Exit: RO preserved (or 0 if fail, invalid write offset)
Rl preserved
R2 =previous 32-bit word (ifRO non-zero)

SoundChannels Level 1 control block

SoundChannels registers a Level 1 control block with Level 0 which has the first
four entries defined; in addition to the mandatory Fill and Fixup entries, two pointers
are provided to lookup tables which are internally scaled according to the current
volume.

543

544

The SoundLevellLogTable pointer is to the base of an 8 kbyte table arranged to map
signed linear numbers directly to volume-scaled 8-bit audio logarithms suitable for
VIOC buffer filling. (See the section Sound voice generators for coding
implementation details.)

The SoundLevellAmpTable pointer is to the base of a 256-byte table which maps a
VIOC-format sign and magnitude audio logarithm amplitude from maximum range
down to a value scaled to the volume setting.

; Level 1 data structure
SoundLevellFillPtr 0 pointer to Level 1 code
SoundLevel1FixupPtr 4 pointer to overrun fixup code
SoundLevel1LogTable 8 pointer to Linear-to-Log table
SoundLevel1AmpTable = 12 pointer to Log-scale table

Sound channel control block (SCCB)

Each sound channel has a control block which contains a common set of basic
parameters and flags that Voice Generators use with an extension area. Voices
interpret these in specialised ways. There is also a Flags field which indicates the
state of the voice and may be used for allocating voices in a polyphonic manner or
checking for Overrun errors (voice unable to complete processing in real time - an
external scheduler could inspect overrun fields and de-allocate voices which
continually fail to fill in time).

Sound Channel Control Block : SCCB
8 initial words (normally for LDMIA R9, (RO-R7} entry)
size constrained to exactly 256 bytes

SoundChannelAmpGateB 0 gate + 7-bit log amp.
SoundChannelVoiceindexB - 1 index to voice table
SoundChannelinstanceB 2 Voice instance no.
SoundChannelFlagsB 3 control/status bit flags
SoundChannelPitch
SoundChannelTimbre
SoundChannelDuration
SoundChannelReserved4
SoundChannelReservedS

4

8

- 12
16

- 20

phase ace pitch oscillator

no. of buffer fills (counter)
(normally working R4)
(normally working RS)

SoundChannelReserved6 - 24 (normally working R6)
SoundChannelReserved7 - 28 (normally working R7)
SoundChannelReserved8 - 32 (normally working R8)
; ACORN reserved area follows
SoundChannelExtension - 64 START HERE -> 256 BYTES
SoundChannelCBSize ~ 256 total size of SCCB

See Sound voice generators in the next section for details of usage.

SOUNDSCHEDULER (LEVEL 2) -SOUND SYSTEM SCHEDULER

All the tempo- or time-related sound system facilities are supported by the Level 2
module which is responsible for ordering and synchronising events scheduled for
future activation and depending on the defined tempo activating the Levell
interface in real-time. Note on/note off events are those that are normally processed,
but the system is made more powerful by the ability to issue sound system SWI calls
{or even general SWI calls to enable synchronised graphics, or external musical
instrument control) subject to certain constraints.

Level 2 • commands

Commands are provided as follows:

~EMPO

The *Tempo command sets the sound scheduler tempo.

Syntax: *Tempo <n> (0- &FFFF, &1000 Default)

The default tempo is &1000, which corresponds to one microbeat per centi-second;
doubling or halving the value proportionally affects the rate at which scheduled
events are played back.

545

546

•QSOUND

*QSound queues a sound after the specified number of beats.

S)'ntax: *QSound <chan> <amp> <pitch> <duration> <nBeats>

On entry:

This OSCLI command is effectively equivalent to the five parameter BASIC
SOUND command; all parameters must be unsigned numbers.

Level 2 SWI calls

A series of software interrupt service entries are provided which allow tempo-related
and synchronised music to be produced.

Sound_Qlnit - Flush and initialise the event queue

This call flushes out all events currently scheduled and re-initialises the event queue
data structures. The Tempo and Beat variables are reset to their default values.

On Exit: RO = 0, indicating success

Sound_QSchedule - Schedule a sound event

This call attempts to schedule an 'event' on the Sound Event Queue for activation in
the specified number of tempo-controlled beat period ticks. The schedule time is
treated as beat counts since the last beginning of a bar; after initialisation the beat
counter is reset and disabled, so all scheduling will occur in tempo intervals from
time 'now'. If a second (or further) event is to be synchronised with the last, then a
schedule time of - 1 forces the new event to be queued for activation concurrently
with the last one.

The event is typically a Sound_ControlPacked type call, although any other sound
(or for that matter, ANY general) SWI number plus the register contents for RO and
Rl (ONLY; registers 2- 7 are cleared when the SWI is activated) may be used.
There are, of course, practical implications: most of the Sound SWI calls are defined

to use registers RO and Rl for basic operation (with the other registers ignored or
treated as 'don't change parameters if 0'); any return parameters are ignored. Register
contents that are pointers may well become catastrophic if the memory contents are
not guaranteed until the schedule period is complete.

On Entry: RO = the schedule period (from last beat 0) or -I to synchronise with the last
scheduled event
Rl = 0 to cause a Sound_ Control Packed call or the SWI code to schedule (of the
form &xFOOOOOO + SWI no.)
R2,R3 are the SWI parameters for RO,Rl

On exit: RO = 0 for successfully Queued
RO < 0 for failure (Queue full)

Sound_QRemove - Reserved Level 2 call

This call is internally reserved for internal scheduler operation.

Only for custom Sound Leve!O Handlers.

On Entry: RO = incremental slot advance period

On Exit: RO = incremental slot advance period remaining
R 1 - R3 scheduled data

On entry:

or
RO < 0 for no events to remove (and slots advanced)
Rl - R3 indeterminate

Sound_QFree- Check free slots

This call returns the most pessimistic number of slots guaranteed free at the current
instant (takes into account worst case data structure overheads). The caller is
welcome to exceed the guaranteed free slot count (and cause this call to return
negative values!) but QSchedule status must be carefully monitored to observe when
overflow occurs.

547

548

On Exit: RO = no. of guaranteed slots available

On entry:

RO < 0 indicates over worst case limit but OK

Sound_QDispatch - Reserved Level 2 call

This call is used internally to advance scheduler time by the next tempo-related
period, and to dispatch all events scheduled for this period.

Only for custom Sound LevelO Handlers.

On exit: Tempo advanced and any pending SWis activated

Sound_QTempo - Set the sound system tcm(X)

This call sets the tempo parameter which is used by the Level2 Scheduler. The
parameter should be treated as a hexadecimal fractional number, where the three
least-significant digits are the fractional part. A value of &1000 corresponds to a
tempo of one tempo beat per centi-second. Doubling the value causes the tempo to
double (2 tempo beats per centi-second), while halving the value halves the tempo
(to half a beat per centi-second).

On Entry: RO"' new tempo (or 0 for no change)

On Exit: RO = previous tempo value

Sound_QBeat -Set/read the tempo beat counter

This call sets the tempo beat counter, or allows the beat counter to be read. The beat
counter, when enabled, simply increments from 0 up to the programmed count
number (N-1), then resets and begins counting again. The beat counter enables
synchronisation of musical events as they are scheduled, and the effect of the
counter reaching the programmed counter limit causes it to reset. Sound event
scheduling is always relative to the last tempo beat reset.

After the initialisation counter is disabled, the call will always return beat 0 and all
scheduling will always be relative to the present time. When the counter is
programmed with a positive value the beat count will increment and wrap (with the
option of causing an event each time the counter wraps). The beat counter may be
disabled by specifying a negative count (less than -1 in fact).

On Entry: RO = 0 to return current beat number
RO = -1 to return the current beat counter value
RO < 0 to clear and disable the beat counter (to 0)
RO = + N for beat set count of N (counts 0 to N-1)

On Exit: RO = current beat number if input parameter was 0, otherwise the previous beat
Count value

The event queue

The central time-ordered Event Queue manager is provided in order to allow the
scheduling and synchronisation of sounds on all sound channels. Schedule times are
always relative to the beat counter zero-crossing point. Although principally
designed for queuing sound commands to internal channels, a powerful sofrware
interrupt scheduling scheme is implemented to allow easy extension of synchronised
activity to, for example, an external instrument interface (such as a Musical
Instrument Digital Interface (MIDI) expansion podule), or a screen-based music
editor with real-time score replay.

Events are de-queued every sound system scheduler period, and the voice algorithm
and all parameter change events are first processed and used to update the Voice
Control Block before the buffer fill code is activated.

The event queues are implemented as linked list structures with fixed sized records
that are recycled after use via a free list stack. The number of free slots varies
according not only to how many events arc presently queued but also to how the
events are 'clustered'. The queue is implemented as a circular list of bucket chains,
with buckets accumulating all events scheduled to occur at a given microbeat.

Event Queue Record, in a scheduler bucket (RO schedule period)

549

550

link

SWI

SWI ROparam

SWIRl param

Event dispatcher

pointer to next record

copy of queued R 1

copy of queued R1

copy of queued R.3

Every centi-second the 'scheduler time' is advanced according to the current tempo
value, and any events that fall in the advance period are activated in strict queuing
order. The software interrupt calls are issued using auto error-handling, as they are
unable to report errors explicitly; return parameters arc discarded. Scheduled
software interrupts are issued with RO and Rl set to copies of the Sound_Schedule
R2 and R.3 parameters, and registers R2 to R 7 are cleared to zero prior to the SWI
call. Most sound system interface SWI's can be scheduled in this way, but care
should be taken to check whether pointers are used; these are fatal if the data to
which they point is not guaranteed to be preserved until the SWI is actually
activated. This becomes even more serious when external SWI calls to other
modules are issued.

Sound voice generators

A Voice Generator is an assembler-coded algorithm for synthesizing one or more
streams (if the multiple instantiations of the voice arc permitted) of bytes on demand
to the SoundChannel handler once they have been both installed and attached to
an active sound channel.

The voice generator must provide a header block containing a fixed number of entry
points used both for attaching and detaching the voice under supervisor mode
control, plus a set of real-time buffer filling entries which arc entered in IRQ mode to
perform the actual synthesis and buffer filling operations.

Associated with the voice header is a name string that is used as the textual
reference in the Levell voice table. The name should be reasonably descriptive and
also concise.

The speed and efficiency of the generator algorithms is paramount, and requires
careful attention to coding. ROM voice generators in fact copy an image of the
synthesis kernel into system heap RAM, in order that the code executes in fast
sequential memory modes.

Voice libraries are efficient for sharing common code and channel instance data
areas, and would normally be built as Relocatable Modules which install sets of
voices preferably with some form of library name preftx.

Voice generator header block

The first eight words of the voice generator header must conform to the format
described below. The first four entries are the real-time IRQ mode buffer fill entries,
the next three are SWI mode interface procedure entries, and the eighth is a relative
offset of the voice name string to the voice base address.

Voices are installed by registering a pointer to the header block using the SWI
Sound_Install call (see Level 1) and must be removed using SWI Sound_Remove if
the voice is to be unloaded (normally a Voice Generator is a Relocatable Module
and any attempts to clear or tidy the RMA, or kill off the voice module must register
removal and installation with Level 1).

; Level 2 (VOICE) data structure
; SVCB Sound Voice Control Block

.VoiceBase

.VoiceFillEntry

.SoundVoiceUpdate

.SoundVoiceGateOn

.SoundVoiceGateOff

.SoundVoiceinstantiate

.SoundVoiceFree

.SoundVoiceinstall

.SoundVoiceTitle

B Fill Code

B UpdateCode

B Start Code

B ReleaseCode

B Instantiate

B Deinstantiate
LDMFD Rl3!, {pc} ; not supported

EQUD VoiceName - VoiceBase

551

552

Voice generator buffer filling

The following register allocation is specified on entry to any one of the first four
(IRQ mode) buffer fill code entry points.

Register

R6
R7
R8
R9
RIO
Rll
Rl2
Rl3
Rl4

Function

(negative if Levell configure changed)
Channel number
Sample Period in uS
Pointer to Voice Code Base
Buffer End Pointer
Buffer Increment
Buffer (Write) Pointer
Stack (Return address on top of stack)
** DO NOT USE **

Return address on top of stack (LDMFD R 13! ,{pc})

- Note: IRQ's are enabled on entry, so Rl4 is untrustworthy

A voice generator is a re-entrant code section which is called by the channel handler
with all parameters (or pointers to parameters) in registers with a request for a given
number of 8-bit data samples. In order to optimise the buffer filling speed for each
channel, the voice generator is presented with a pointer to the virtual memory
address to start filling from (which includes the buffer interleave offset set up by the
channel handler). In addition, the buffer increment and the buffer address limit
values are passed in, these being the only other parameters required by the voice
generator to generate the stream of data samples for output.

Because code execution speed is of key importance in real-time buffer filling, the
sound voice generator code would not run fast enough in ROM; a ROM template or
user code template has to be copied into the stream code block (subject to a large
enough allocated code segment space).

The code runs in IRQ mode, but IRQs are enabled to ensure that IRQ latency is not
made unreasonable for other system devices. This means that R14 cannot be used as

. OUND

a subroutine link register, since it will be corrupted by an interrupt. Normal voice
code should be carefully written so that the IRQ link register is not used and to
ensure sufficient system IRQ stack depth is maintained for other system IRQ
handling.

R9 points to the Sound Channel Control Block (SCCB) for the appropriate channel
as described in the SoundChannels specification. Parameters are exchanged between
Levell and the Voice Generator, and the parameter usage depends on which entry
point has been called.

On fill completion, a flags byte must be returned to Level 1 in RO to indicate filling
status. The flags byte is used by the system to prioritise the real-time fill requests to
the attached Voice Generator. Return to level 1 is then performed by
LDMFD R13l,{PC}.

Channel Flags Byte: (return through RO)

7 0
+---+---+---+---+---+---+---+---+
I Q I K I I I F I A I V I F21 F11
+---+---+---+---+---+---+---+---+
Z - Quiet (inactive)
K - Kill Pending
I - Initialise Pending
F - Fill Pending
A - Active Flag
V - oVerrun Flag
F2,F1 - 2-bit Flush Pending counter

SoundChannelGateOff - &80 ; carefully priority-encoded
SoundChannelGateOn - &40
SoundChannelUpdate - &20
SoundChannelReserved - &10
SoundChannelActive &08 normal continuation fill in progress
SoundChannelOverrun - &04
SoundChannelFlush2 - &02 2-bit flush counter
SoundChannelFlush1 - &01

553

554

GateOn entry

The GateOn entry is used whenever a new sound command is issued on the specified
channel, and the SCCB parameters for amplitude, pitch and duration are updated.
Normally any previous synthesis on this channel would be aborted and the algorithm
restaned with the new parameters.

On exit the duration parameter would normally be updated and a
SoundChanneiActive flags byte would be returned ready for continued filling next
buffer fill period.

Fill entry

The Fill entry is the normal entry used when Level 1 requests the next sample buffer
fill; no new sound commands are pending on the specified channel, and the SCCB
parameters for amplitude, pitch and duration would normally be updated at the
completion of each fill.

On exit, the duration parameter would normally be updated and a
SoundChanne!Active flags byte would be returned. However, if the duration period
has expired and the waveform has decayed to zero amplitude, then it is usual to
return with a SoundChanne!Flush2 flags byte so that Levell will automatically flush
out the next two DMA buffers for this channel before becoming dormant.

Update entry

The Update entry is used whenever a sound command is issued for smooth update of
a parameter (or parameters) rather than a new GateOn command (using extended
amplitudes &180 to &IFF in the SOUND command for example). The SCCB
parameters for amplitude, pitch and duration would normally be reloaded by the
Voice Generator, but the rest of the local state for this channel instance would
normally be preserved.

Exit flags as for Fill Entry.

llouND

GateOff entry

The GateOff entry is used to force the Voice Generator to close down the the sound
on this channel instance. Simple voices may stop abruptly (but this is liable to cause
an audible 'dick'), whilst more refined algorithms might enter a specific note release
phase (which might require buffers filling for a number of buffer periods).

On exit, the duration parameter would normally only return a SoundChanneiFiush2
flags byte if the sound is simply to be truncated, but could return
SoundChannelActive as the release phase is entered. Once this channel has received
a GateOff call it might well receive a new GateOn call directly.

Voice instantiation

Two entry points are provided to inform the voice generator that a request has been
issued to attach or detach a sound channel to it. Voice Generators usually require
some private workspace per channel; very complex algorithms or, for example, a
voice generator which plays back data samples from disc, may only be able to support
one channel instance. Other generators may be instantiated up to eight times
directly. The Instantiate entry gives the voice generator the option of accepting or
rejecting a request to attach a physical channel to an instance of the algorithm. The
Free entry is simply called to inform the voice generator that the channel which has
been attached is now to be reattached elsewhere, and the instance is to be killed off.
The free call MUST release the channel successfully.

The entries are only made in supervisor mode, and any registers to be used must be
preserved explicitly using the SVC stack normally.

Register

RO
R14

Function

physical Channel number -1 (0 to 7)
usable

Return address on top of stack (LDMFD Rl3 !,{pc})

555

556

Instantiate Entry

The instantiate entry is called with RO containing the number of the physical
channel (in fact channel-1) to which it is requested to attach an instance of this
voice. If a new instance cannot be created for this channel, then the channel
number in RO should be changed. The test for successfully instantiating the channel
is equivalence ofRO before and after the instantiate call.

Free entry

The instantiate entry is called with RO containing the number of the physical
channel (-1) to be freed, and this call does not have the option of failing (all
registers, including RO should be preserved).

Install Entry

There is one other entry point defined, originally to be called when a voice was
installed. However, Relocatable Modules, which are envisaged as the normal way in
which user-developed voices are to be implemented, offer exactly this service in the
form of the Initialistion Entry point; thus this field is not to be supported.

Buffer filling algorithms

Each voice generator has Virtual Memory addressing access to the entire output
buffer (and so has the potential to corrupt any of the sound data samples already
interleaved throughout the buffer). The sound stream handler sets up three registers
(Rl2,11,10) to give the stan address, the buffer write interleave increment and the
end address for correct filling. In the general case, each voice generator should
include something like the following in-line code:

.loop

STRB Rl, [Rl2),Rll
CMPS Rl2,Rl0
BLT loop

e.g. form byte in rl
store, and bump ptr
check for end
and loop until fill complete

l ouND

To avoid the loop overheads every sample, the following points should be borne in
mind:

The total DMA buffer length is always a multiple of 16, so two-byte store operations
may always be performed in the loop code. The system Level 0 Handler in fact
guarantees that buffers will always be filled to a multiple of four bytes, and that the
system default buffer byte count of 208, the in-line loop code, may be extended
considerably.

The increment value (in rll) will be either 1, 2, 4, or 8. A quick test to see if the
value is unity immediately ascertains whether this is the only voice active, implying
that a sequential store is required. If this is the case, then WORD stores may be used,
dramatically improving the buffer filling time. (This is possible because hardware
buffers are always guaranteed to be a multiple of 16 bytes long, always word-aligned.)

Voice generator code fragments

The fundamental operations performed by nearly all voice generators involve
Oscillators, Table lookup and Amplitude modulation. In addition, some algorithms
(plucked string and drum in particular) require random bit generators. Simple in-line
code fragments are briefly outlined for each of these.

- Note: in all cases the aim is to produce the most efficient, and wherever possible
highly sequential, ARM machine code; in most algorithms the aim must be to get
as many working variables into registers as possible, and then adapt the synthesis
algorithms wherever possible to use the high-speed barrel shifter to effect.

Oscillator code

The accumulator-divider is the most useful type of oscillator for most voices.
Basically, a frequency increment is added to a phase accumulator register and the
high-order bits of the resulting phase (modulo wavetable length) provide the index
to a wavetable. The frequency increment is linearly related to the oscillator
frequency. The result is that the oscillator may be given the correct frequency, or
phase modulated, directly by adding in the modulating component. Sixteen-bit
registers provide good audible frequency resolution, and are used in many digital

557

558

hardware synthesizer products. The 32-bit register width of the ARM is ideally split
16/16 bits for phase/increment.

Schematically:

delta f

ADD
8 (+) Sawtooth

(table index)

phase ace
16

Coding:

Register field assignment: Rp

31 16 15 0

PHASE ACCUMULATOR INCREMENT

ADD Rp,Rp,Rp,LSL 116 ; phase accumulate

In many cases it is desirable to update wavetable pointers or parameten. at or close to

zero-crossing points: if wave tables are arranged with zero-crossing aligned to the start
and end of the wavetable then it is a simple matter to add a singleS (sequential)
cycle.

Coding:

ADDS Rp,Rp,Rp,LSL 116 phase accumulate
BCS Update ; only take branch if past zero crossing

llouNn

Waveform table access code

Normally fixed-length (256-byte or a larger power of two) wavetables are used by
most voice generator modules. Given a wavetable base pointer and the way the
oscillator phase increment is calculated, it is possible in one single pre-indexed load
instruction to access the wavetable sample byte:

Schematically: (for a 256-byte table)

phase

ADD

wave table

Coding:

32 [Table I
(byte fetch)

Given the Phase index calculated in the most significant 8 bits and Rt as the Table
base pointer:

LDRB Rn, [Rt,Rp,LSR f24)

where Rn is the destination register.

Amplitude modulation code

Amplitude modulation involves the multiplication of the current sample value
magnitude by the amplitude envelope component, with the internal logarithmic
representation used by the output DAC. This process simplifies to addition of log
values and range checking of the result (for result under/overflow). In fact, the
numeric values are treated as fractional quantities (in the range 0 to 1) and
underflow is the only condition of concern. For example, when values become too
small to be correctly represented (-ve log values), the result must be rounded to 0.
The amplitude value must, in fact, be pre-processed to give an effective division
(peakAmp minus amplitude, where peakAmp is 12 7 for maximum, rounded up to
zero if negative) .

559

560

The data format for the VIDC sound data byte stream encodes the sign bit as the
least significant bit and the 7-bit logarithmic magnitude value as the top seven bits
(bit 7 corresponds to the most significant amplitude bit).

VIDC 8-bit sample format

7 6 5 4 3 2

LOGARITHM

Amplitude Byte Data Format:

7 6 5 4 3 2

0 LOGARITHM

Coding:

Ra contains amplitude in range 0 to 127
Rs contains sample data in range -127 to+ 127 [sign bit LSB)

SUBS Rs,Rs,Ra,LSL tl
MOVMI Rs,tO

0

s

t
Sign bit

1 0

- Note: the SoundChannels Level 1 module provides a pointer to a 256-byte
volume scaled lookup table and an example of usage is given in the worked
example at the end of this section.

Linear-to-Logarithmic conversion

Algorithms which work with linear integer arithmetic may use the Level 1
SoundChannels module linear-log table directly to fill buffers efficiently. The table is
8 kbyte in length, to allow the full dynamic range of the VIDC sound DAC to be

OUND

utilised, and the format is chosen to allow direct indexing using barrel-shifted 32-bit
integer values. The lookup characteristic is varied according to the current volume
setting.

Coding:

; to access the lookup table pointer during initialisation:
MOV RO,tO
MOV Rl,fO
MOV R2,tO
MOV R3,tO ; get Level 1 base
MOV R4,10
SWI "Sound_Configure"
LOR R8, [R3,t8) ; lin-to-log pointer

in line buffer filling code:
linear 32-bit value in RO

LDRB RO, [R8,RO,LSR fl9)
STRB RO, [Rl2),Rll

Random bit generator code

lin -> log
output

An efficient multi-tap 32-bit shift register pseudo-random bit generator (with a
sequence length of 4294967295) can be implemented to run fast using two internal
registers. One register would be loaded up with the current seed value, and the
second with an XOR bit mask constant (& I D872B41); random carry bit setting by
the simple code fragment outlined below will allow conditional execution on carry
set (or cleared) directly.

Coding:

MOVS R8,R8,LSL tl
EORCS R8,R8,R9
xxxCC do this ..

set random carry

yyyCS ; .. or alternately this

561

562

Example voice

REM -> WaveVoice

DIM WaveTable% 255
DIM Code% 4095

FOR s%=0 TO 255
SYS "Sound_SoundLog",&7FFFFFFF*SIN(2*PI*s%/256) TO WaveTable%?s%

NEXT s% : REM build samples

FOR a%=WaveTable% TO WaveTable%+255
SYS "Sound_LogScale",?a% TO ?a%

NEXT a% : REM scale to current volume

FOR C- O TO 2 STEP 2
P%-Code%
[OPT C
;**************************************
; * VOICE CO-ROUTINE CODE SEGMENT *
;**************************************

On installation, point Levell voice
pointers to this voice control block
(return address always on top of stack)

.VoiceBase
B Fill
B Fill update entry

B Gate On

B GateOff

B Instance Instantiate
LDMFD R13!,{PC} Free entry

LDMFD R13! I {PC} Initialise
EQUD VoiceName - VoiceBase

.VoiceName EQUS "WaveVoice"

EQUB 0
ALIGN

;**************** **********************

entry

.LogAmpPtr EQUO 0

.WaveBase EQUO WaveTable%

;**************************************

OUND

.Instance
STMFO
MOV

; any instance must use LogAmp table
Rl3!,{RO-R4}

RO,tO
MOV Rl,tO
MOV R2,i0
MOV R3,t0

R4,t0
"Sound_Configure"

MOV
SWI
LOR
STR
LOMFO

RO, [R3,tl2) ; Levell ScaleTable Offset
RO,LogAmpPtr
Rl3!,{RO-R4,PC} ;restore and return

;**************************************
;* VOICE BUFFER FILL ROUTINES *
;**************************************

on entry:
r0-r8 available
r9 is SoundChannelControlBlock pointer
rlO OMA buffer limit (+1)
rll OMA buffer interleave increment
rl2 OMA buffer base pointer
rl3 Sound System Stack with return address and flags

on top (must LOMFO Rl3!,{ ... ,pc}
NO rl4 - IRQs are enabled and rl4 is not usable

.GateOn
LOR
STR
LOR
STR

RO,WaveBase
RO, [R9, 416)
RO,LogAmpPtr
RO, [R9,t20]

wavetable base
set up as working
volume scaled log
set up as working

;**************************************
.Fill

register 5
amp table

register 6

LDMIA R9,{Rl-R5} pick up working registers
AND Rl,Rl,t&7F

Rl is amp (0-127) R2 is pitch phase ace
R3 is timbre phase ace R4 is duration
RS is wavetable base R6 is amp table base

563

564

LDRB
MOV

RSB
.FillLoop

ADD
LDRB
SUBS
MOVMI
STRB
ADD
LDRB
SUBS
MOVMI
STRB
ADD
LDRB
SUBS
MOVMI
STRB
ADD
LDRB
SUBS
MOVMI
STRB

Rl, [R6,Rl,LSL ill
Rl,Rl, LSR U
Rl,Rl, U27

R2,R2,R2,LSL 116

RO, [RS,R2,LSR 124)
RO,RO,Rl,LSL U
RO,tO
RO, [R12] ,Rll
R2,R2,R2,LSL 416

RO, [RS,R2,LSR 124)
RO,RO,Rl,LSL il
RO,tO
RO, [R12] ,Rll
R2,R2,R2,LSL f16
RO, [RS,R2,LSR f24)
RO,RO,Rl,LSL 41
RO,iO
RO, [R12) ,Rll
R2,R2,R2,LSL 416
RO, [RS,R2,LSR 424]
RO,RO,Rl,LSL tl

R0,40
RO, [R12] ,Rll

CMP Rl2,R10
BLT FillLoop

check for end of note
SUBS R4,R4,fl
STMIB R9,{R2-RS}
MOVPL RO,t%00001000
MOVMI RO,f%00000010
LDMFD R13!,{PC}

; get volume scaled amp
; Rl is volume scaled amp (0-127)

make attenuation factor

advance waveform phase
get wave sample
scale amplitude
and correct underflow
generate output sample
repeated in line four times ...

check for end of buffer fill
loop if not

decrement centisec count

voice active
force flush
return to level 1

;**************************************
.GateOff

MOV RO,iO
.FlushLoop

STRB RO, [R12],Rll
STRB RO, [R12),Rll

STRB RO, [R12] ,Rll

STRB RO, [R12] ,Rll

CMP R12,R10

BLT FlushLoop

CAUSE level 1 TO FLUSH once more

MOV RO,I%00000001 flush one more buffer

LDMFD R13! I {PC} ; return to level 1

NEXT C

DIM OldVoice%(8)
SYS "Sound_InstallVoice",VoiceBase,O TO a%,Voice%

FOR v%•1 TO 8
SYS "Sound_AttachVoice",v%,0 TO z%,0ldVoice%(v%)

VOICE v%,"WaveVoice"
NEXT

ON ERROR PROCRestoreSound END

VOICES 8
*voices
SOUND 1,&17F,53,10 :REM activate channel 1!
PRINT''"any key to make a noise, <ESCAPE> to finish"

C%•1
REPEAT

K\•INKEY (1)
IF K%>0 THEN

SOUND C%,&17F,K%,100
C%+•1 : IF C%>8 THEN C%•1

END IF
UNTIL 0

DEF PROCRestoreSound
ON ERROR OFF
REPORT:PRINT ERL
SYS "Sound_RemoveVoice",O,Voice%
FOR v%•1 TO 8

565

566

SYS "Sound_AttachVoice",v%,0ldVoice\(v\)
NEXT
VOICES 1
*voices

PRINT''
ENDPROC

IIHE DEBUGGER

This chapter describes the facilities provided by the machine code debugger module.
Most of these are accessed through * commands. There is one SWI provided by the
debugger, though.

The debugger allows breakpoints to be set so that a piece of code will stop when it
reaches a particular instruction. Other commands may then be called to interrogate
and even reset the values contained at particular addresses in memory and to list the
contents of the registers. Then execution of the code may be continued from that
point.

THE DEBUGGER * COMMANDS

Command

*BREAKCLR
*BREAKLIST
*BREAKSET
*CONTINUE
*DEBUG
*INITSTORE
*MEMORY
*MEMORY A
*MEMORY!
*QUIT
*SHOWREGS

Description

Remove breakpoint
List currently set breakpoints
Set a breakpoint at a given address
Stan execution from a breakpoint saved state
Enter the debugger
Fill memory with given data
Display memory between two addresses/register
Display and alter memory
Disassemble ARM instructions
Perform a SWI Exit
Display registers caught by traps

When an address is required, it should be given in hex, without a preceding &.

*BREAKCLR

Synrax: *BREAKCLR [<addr>)

*BREAKCLR removes the breakpoint at the specified address, putting the original
contents back into that location. If no address is given then all breakpoints are
removed.

567

568

Note that debugger breakpoints are separate from those caused by OS_BreakPt: you
can't continue from the latter using *CONTINUE.

*BREAKLIST

Syntax: *BREAKLIST

*BREAKLIST lists all the breakpoints currently set, in the form:

Address
00008704

Old Data
EF000141

There may be up to 16 breakpoints set at once.

•BREAKSET

Syntax: *BREAKSET <addr>

•BREAKSET sets a breakpoint at the address given so that when the code is
executed and the instruction at that address is reached, execution will be halted.

The previous contents of the breakpoint address arc replaced with a branch into the
debugger code. This means that breakpoints may only be set in RAM. If you try to

set a breakpoint in ROM, the error Bad breakpoint address will be given.

When a breakpoint instruction is reached, the debugger is entered, with the prompt
DEBUG*, from which you can type any • command. An automatic register dump is
also displayed.

•CONTINUE

Syntax: *CONTINUE

*CONTINUE starts execution from the breakpoint saved state. If there is a
breakpoint at the continuation position, then this prompt is given:

Continue from breakpoint set at &0008704
Execute out of line? [Y/<anything>)

HE DEBUGGER

Reply 'y' if it is permissible to execute the instruction at a different address {ie it does
not refer to the PC). If the instruction that was replaced by the breakpoint contains
a PC-relative reference {eg LDR RO,Iabel or an ADR directive), then you should
reset the break point before continuing. This causes the instruction to be executed
in-line, otherwise the wrong address is referenced.

Syntax: *DEBUG

This command enters the debugger. It will be expanded from the present form of
allowing you to type • commands only in a future release.

*INITSTORE

Syntax: *INITSfORE [<data>)

*INITSfORE fills user memory with the specified data or the value &E1000090
{which is an illegal instruction) if no parameter is given. If you give this command
from within an application (eg BASIC), the machine will crash, and will have to be
reset.

Syntax: *MEMORY [B] <addrl/regl> [(+)<addr2/reg2>)

*MEMORY displays the values in the memory in ARM words from the address given
either explicitly or contained in a register to the next address given in <addr2/reg2>.
If the second address begins with a'+', this address is added to the first. Otherwise it
is taken to be an absolute value. If no second address is given 256 bytes are displayed.

569

570

If the optional B is given after the command but before the start address, the display
is byte-oriented, with 16 bytes per line. If it is omitted, the display is grouped as
bytes, with four words to a line. For example:

*MEMORY 1000 +200

•MEMORY A

Syntax: *MEMORY A [B] <addr/regl> [<data>/<reg1>]

*MEMORY A displays and alters the memory in bytes, if the optional B is given, or
in words otherwise. It starts at the address given absolutely or within a register. If no
further parameters are given, interactive mode is entered where the following may be
typed:

+
<hex digits>
<anything else>

to go to 'next' location
to step backwards in memory
to step forwards in memory
to alter a location and proceed,
to exit

At each line, the following is printed:

+ 000087AO : ecce xxxxxxxx opcode
Enter new value

where the'+' is the direction in which [d steps (it is'-' for backwards). Next is the
address of the word/byte being altered, then the four characters in that word, then
the current value of the word, and finally the instruction at that address.

In byte mode, it looks like this:

+ 000087Al : C : XX

Alternatively you can give the new data value on the line after the address, eg:

*MEMORYA 87AO 123456578

. HE DEBUGGER

Syntax: *MEMORYI <addrl/regl> [[+]<addr1/reg1>]

*MEMORYI disassembles ARM instructions starting at the location given in
<addrl/regl> until it reaches the address in the second parameter if given. If the
second parameter is missing, it continues disassembling for 25 instructions.

Syntax: *QUIT

*QUIT exits the debugger. It rerurns tO the last routine which claimed the exit
handler by performing a SWI Exit.

•SHOWREGS

Syntax: *SHOWREGS

*SHOWREGS displays the registers caught on one of the five following traps:

- unknown instruction
- address exception
- data abort
- address abort
- breakpoint.

It also prints the address in memory where the registers are stored, so you can alter
them (for example after a breakpoint) by using *MEMORY A on these locations,
before using *CONTINUE.

571

THE DEBUGGER SW1 CALL

572

Dcbugger_Disassemble &40380

This is the only SWI provided by the debugger.

On entry: RO = instruction to disassemble

On exit: Rl = address of buffer containing text
R2 = length of disassembled line

RO contains the 32-bit instruction to disassemble. On exit, Rl points to a buffer
which contains a zero terminated string. This string consists of the instruction
mnemonic, and any operands, in the format used by the *MEMOR YI instruction.
The length in R2 includes the zero-byte.

IIHE FLOATING POINT EMULATOR

INTRODUCTION

The Acorn RISC machine has a general co-processor interface. The first co
processor envisaged is one which performs floating point calculations to the IEEE
standard. To ensure compatability with furure versions of the RISC machine which
use this co-processor, the machine contains a floating point emulator module which
provides all the functionality of a hardware processor. The instructions it provides
may be incorporated into any assembler text, provided they are called from user
mode. However, these instructions are not supponed by the BASIC assembler and
are given here for information only.

PROGRAMMER'S MODEL

The ARM IEEE floating point system has eight 'high precision' floating point
registers, FO to F7. The format, in which numbers are stored in these registers, is not
specified. Floating point formats only become visible when a number is transferred to
memory, using one of the precisions described below.

There is also a floating point status register. This is used to hold flags which indicate
various error conditions, such as overflow and division by zero. Each flag has a
corresponding mask, which can be used to enable or disable a 'trap' associated with
the error condition.

Precision

All basic floating point instructions operate as though the result were computed to
infinite precision and then rounded to the length and in the way, specified by the
instruction. The rounding is selectable from:

Round to nearest
- Round to +infinity (P)
- Round to -infinity (M)
- Round to zero (Z).

The default is 'round to nearest'. If any of the others arc required they must be given
in the instruction.

573

574

The working precision of the system is 80 bits, comprising a 64 bit mantissa, a 15
bit exponent and a sign bit.

Like the ARM instructions, the floating point data processing operations refer to
registers rather than memory locations. Values may be stored into ARM memory
in one of four formats:

- IEEE Single Precision (S)

31 30 23 22 0

sign Exponent msb Fraction lsb

- IEEE Double Precision (D)

31 30 20 19 0

First Word sign I Exponent I msb Fraction lsb

Second Word
L---~

msb Fraction lsb

- Double Extended Precision (E)

31 3016 15 14 0

First Word sign I zeroes I 15 bit exponent

Second Word J I msb Fraction lsb

Third Word msb Fraction lsb

J is one bit to the left of the binary point

IIHE FLOATING
POINT EMULATOR

Storing a floating point register in 'E' format is guaranteed to maintain precision
when loaded back into the floating point system in this format.

- Packed Decimal (P)

31. .. 0

First Word sign e3 e2 el eO d18 d17 d16

Second Word d15 d14 d13 d12 dll dlO d9 d8

Third Word d7 d6 d5 d4 d3 d2 dl dO

Value is:

+/-d * 10 A (+/-e)

d18 or e3 is the most significant digit. Sign contains both the number's sign (top bit)
and the exponent's sign (next bit). The other two bits are zero. The value of 'd' is
arranged so as to minimise the value of 'e'. The guaranteed ranges for 'd' and 'e' are
17 digits and three digits respectively: e3 and dl8, dl7 may always be zero. A single
precision number has a maximum exponent of 53 and 9 digits of significand; a
double precision number has a maximum exponent of 340 and 17 digits of
significance. The result when the packed values are &A through &F is undefined.
Zero will always be stored as +zero, but either +0 or -0 may be loaded.

575

576

Floating point status register

There is a floating point status register (FPSR) which, like ARM's combined PC and
PSR, has all the necessary status for the floating point system. The FPSR contains
the IEEE flags but not the result flags- these are only available after floating point
compare operations.

Each IEEE flag denotes a possible error condition. There is a corresponding 'trap' or
interrupt enable flag for each one. If the trap is enabled, then the error condition will
cause execution to stop with an error; otherwise a special result (eg not-a-number or
infinity) is returned.

The flags contained in the status register are as follows:

IVO- invalid operation

The IVO is set when an operand is invalid for the operation to be performed. Invalid
operations are:

- Any operation on something a NAN (not-a-number)

- Magnitude subtraction of infinities eg +infinity + -infinity

- Multiplication of 0 by an infinity

- Division of0/0 or infinity/infinity

- x REM y where x is infinity or y is 0

- Square root of any number less than zero (but SQR(-0) is -0)

- Conversion to integer or decimal when overflow, infinity or operand not being a
number make it impossible.

- Comparison with exceptions of unordered operands.

- ACS, ASN when argument's absolute value is > 1

- SIN, COS, TAN when argument is infinite

- LOG, LGN when argument<= 0

. HE FLOATING
POINT EMULATOR

REM is the 'remainder after floating point division' operator.

DVZ - division by zero

If the divisor is zero and the dividend a finite, non-zero number then this exception
occurs, or a correctly signed infinity is returned if the trap is disabled.

OFL - overflow

The OFL is set whenever the destination format's largest finite number is exceeded
by the result after rounding has taken place. As overflow is detected after rounding a
result, whether overflow occurs or not (after some operations) depends on rounding
mode.

The untrapped result returned is the correctly signed infinity, independent of the
rounding mode- overflow can be seen as a signal that an infinite result has been
generated from an operation on finite values.

UFL- underflow

The UFL is set whenever a result is so tiny that it is rounded to zero, but has a non·
zero value. As underflow is detected after rounding a result, whether underflow
occurs or not after some operations depends on rounding mode.

The untrapped result returned is zero, with the sign set to that of the non-zero value.

INX - inexact

The INX is set if the rounded result of an operation is not exact (different from the
value computable with infinite precision) or overflow has occurred while the OFL
trap was disabled. If there is no trap the result will be used directly. OFL or UFL traps
take precedence over INX. INX will also be set when computing SIN or COS or

577

TAN of values larger than 10"20 (ie values for which the multiple of PI ranging
gives a useless answer).

For each flag, there are two bits of the instruction dedicated to it:

31.. 21 20 19 18 17 16 155 4 3 2

Interrupt Masks Cumulative Flags

0

Whenever the appropriate condition arises, the cumulative flags in bits 0 to 4 are set.
They can only become cleared by a WFS instruction. If the relevant interrupt mask
is set, then the same condition that sets the cummulative flags also causes an
exception to be delivered to the program. The floating point system provides the
exception routine with a word indicating (in the same position as the cumulative
flags) which floating point exception occured.

THE INSTRUCTION SET

578

Co-Processor data transfer

op<cond>prec Fd, addr

is LDF for load, STF for store
is [Rn]<, #offset> or [Rn ,#offset]<!>

st fop
addr
prec is the precision denoted by the letterS, D, E or P (see below)

The bit format of the instruction is

31...28 27 ... 24 23 22 21 20 19 ... 16 15 ... 12 11. .. 8 7 0

Cond llOP Rn X Fd 0001 Offset

. HE FLOATING
POIN T EMULATOR

P is pre- or post-indexed addressing
U/D is positive/negative offset
YX is the precision
Wb is write-back (pre-indexed only)
L/S is load or store
Rn is the ARM base address register
Fd is the FPU source/destination register
offset is the scaled offset

Load (LDF) or store (STF) the high precision value into one of the four memory
formats. On store, the value is rounded using the 'round to nearest' rounding method
to the destination precision, or is precise if the destination has sufficient precision.
Bits 22 and 15 are set from the precision letter, and determine the precision, as
follows:

Precision Letter y X

Single s 0 0
Double D 0 1
Extended E 1 0
Packed BCD p 1 1

The offset is in words from the ARM base register, and is in the range -1020 to
+ 1020. It is added to the base register in pre-indexed mode if write-back is specified,
and always in post-indexed mode.

Co-Processor register transfer

FLT<cond>prec<round>
FIX<cond>prec<round>
WFS<cond>
RFS<cond>
WFC<cond>
RFC<cond>

Fn, (Rd I tvalue)
Rd,Fn

Rd
Rd
Rd
Rd

<round> is the optional rounding mode: P, M or Z; sec below

0000
0001
0010
0011
0100
0101

579

580

FLT
FIX
WFS
RFS
WFC
RFC

Integer to Floating Point
Floating point to integer
Write Floating Point Status
Read Floating Point Status
Write Floating Point Control
Read Floating Point Control

The binary format is:

31...28 27 ... 24 23 ... 21 20 19 ... 16

Cond 1110 e Fn

Fn := Rd (or Fn := #value)
Rd := Fm
FPSR := Rd
Rd:= FPSR
FPC := Rd Supervisor Only
Rd := FPC Supervisor Only

15 ... 12 11 ... 8 7...4

Rd 0001 fgh1

abcL/S
ef

are the operation code bits, as above (0110 .. undefined)
give the floating point precision, as above

gh
Fm,Fn
Rd

is the rounding mode, as below
are FPU register numbers
is an ARM register number
determined whether Fm is a register number of constant

The rounding modes are

Mode

Nearest
Plus infinity
Minus infinity
Zero

Letter e

p
M
z

0
0
1

f

0
1
0

3 .. . 0

iFm

. HE FLOATING
POINT EMULATOR

1be values allowed for immediate operands in FL Tare:

Value

0.0
1.0
2.0
3.0
4.0
5.0
0.5
10.0

Fm endcoding

000
001
010
011
100
101
110
111

Constants cannot be specified in the Fn field for the FIX instruction since there is no
point FIXing a known value into an ARM integer register. 1be MOV instruction
should be used for this.

Co-Processor data operations

1bc formats of these instructions are:

binop<cond>prec<round>
unyop<cond>prec<round>

Fd, Fn, (Fml fvalue)
Fd, (Fm I tvalue)

binop
unyop
Fd
Fn
Fm
#value

is one of the binary operations listed below
is one of the unary operations.
is the FPU destination register
is the FPU source register (binops only)
is the FPU source register
is the immediate operand, as an alternative to Fm

581

The binops are:

opcode

ADF Add: Fd := Fn + Fm 00000
MUF Multiply: Fd := Fn • Fm 00010
SUF Sub: Fd := Fn-Fm 00100
RSF Reverse Subtract: Fd := Fm - Fn 00110
DVF Divide: Fd := Fm/Fn 01000
RDF Reverse Divide: Fd := Fm /Fn 01010
POW Power: Fd := Fn to the power of Fm 01100
RPW Reverse Power: Fd := Fm to the power of Fn 01110
RMF Remainder Fd := remainder of Fn / Fm 10000
FML Fast Multiply: Fd := Fn • Fm 10010
FDV Fast Divide: Fd := Fn/Fm 10100
FRO Fast Reverse Divide: Fd := Fm /Fn 10110
POL Polar angle (ArcTanZ): Fd := polar angle of Fn, Fm 11000

The unops are:

MVF Move: Fd := Fm 00001
MNF Move Negated: Fd := -Fm 00011
ABS Absolute value: Fd := ABS (Fm) 00101
RND Round to integral value: Fd := integer value of Fm 00111
SQT Square root: Fd := square root of Fm 01001
LOG Logarithm to base 10: Fd := logten of Fm 01011
LGN Logarithm to base e: Fd := loge of Fm 01101
EXP Exponent: Fd := e to the power of Fm 01111
SIN Sine: Fd := sine of Fm 10001
cos Cosine: Fd := cosine of Fm 10011
TAN Tangent: Fd := tangent of Fm 10101
ASN ArcSine: Fd := arcsine of Fm 10111
ACS ArcCosine: Fd := arccosine of Fm 11001
ATN Arc Tangent: Fd := arctangent of Fm 11011

Note that wherever Fm is mentioned, a floating point constant could be used
instead.

582

IIHE FLOATING
POINT EMULATOR

FML, FRD and FDV produce a result only accurate to single precision.

Final rounding is done only at the last stage of a SIN, COS etc- the calculations to
compute the value are done with 'round to nearest' using the full working precision.

The binary format of the instruction is:

31...28 27 ... 24 23 ... 20 19 ... 16 15 ... 12

Cond 1110 abed e Fn j Fd

abcdj is the opcode
ef is the precision
gh is the rounding mode

is 0 for Fm, 1 for immediate operand

Co-Processor Status Transfer

op<cond>prec<round> Fro, Fn

op is one of the following:

Compare floating
Compare negated floating

CMF
CNF
CMFE
CNFE

Compare floating with exception
Compare negated floating with exception

11 ... 8 7...4

0001 fghO

compare Fn with Fm
compare Fn with -Fm
compare Fn with Fm
compare Fn with -Fm

3 ... 0

iFm

Compares are provided with and without the exception that could arise if the
numbers are unordered (ie one or both of them is not-a-number). To comply with
IEEE 754, the CMF instruction should be used to test for equality (ie when a BEQ or
BNE is used afterwards) or to test for unorderedness (in the V flag). The CMFE
instruction should be used for all other tests (BGE, BGE, BLT, BLE afterwards).

583

584

The ARM flags N, Z, C, V refer to the following after compares:

- N Less than ie Fn less than Fm (or -Fm)
- Z Equal
- C Greater than or equal ie Fn greater than or equal to Fm
- V Unordered

Note that when two numbers are not equal, Nand Care not necessarily opposites. If
the result is unordered they will both be clear.

i!coNET, THE TRANSPORT LAYER

lNTERFACES

There are only two interface styles to Econet, one is the simple case of *Help Station
where the current station number and the network number (if known) are printed
on the screen. The second style of interface is via a set of SWl calls. These SWl
calls are listed below.

SWI Econet_CreateReceive

RO => pon
Rl =>station
R2 =>net
R3 •> buffer address
R4 "'>size
RO <"'handle

SWI Econet_ExamineReceive

RO =>handle
RO <=statuS

SWI Econet_ReadReceive

RO => handle
RO <=StatuS
Rl <= control
R2 < .. pon
R3 <=station
R4 <=net
R5 <=buffer address
R6 <=size

SWI Econet_AbandonReceive

RO =>handle
RO <=status

585

586

SWI Econet_ WaitForReception

RO =>handle
Rl => delay
R2 => ESCapableFlag
RO <=status
Rl <=control
R2 <= pon
R3 <= station
R4 <=net
R5 <=buffer address
R6 <=size

Note that this interface enables interrupts and so cannot be called from within
interrupt service code.

SWI Econet_EnumcratcRcccivc

RO =>index
RO <=handle

SWI Econct_StartTransmit

RO => flag byte
Rl => pon
R2 => station
R3 => net
R4 =>buffer address
R5 =>size
R6 =>count
R7 =>delay
RO <= handle

SWI Econet_PollTransmit

RO =>handle
RO <= StatuS
R3 < = station
R4 <= net

SWI Econet_AbandonTransmit

RO =>handle
RO <= statuS

SWI Econet_DoTransmit

RO => flag byte
Rl • > pon
R2 • > station
R3 =>net
R4 =>buffer address
R5 =>buffer size
R6 =>count
R7 =>delay
RO <= status
R2 < = buffer address
R3 <= station
R4 <= net

CONET, THE
TRANSPORT LAYER

Note that this interface enables interrupts and so cannot be called from within
interrupt service code.

SWI Econet_ReadLocalStationAndNet

RO <= station
Rl <= net

Note that this interface enables interrupts and so cannot be called from within
interrupt service code.

587

588

SWI Econet_ConvertStatusToString

RO =>statuS
Rl =>buffer
R2 = > size of the buffer
R3 =>station number
R4 =>network number
RO <=buffer
Rl <= updated buffer
R2 <= updated size of the buffer

SWI Econet_ConvertStatusToError

RO =>status
Rl =>pointer to error buffer
R2 =>size of buffer
R3 = > station number
R4 => network number
RO <-- standardErrorlndicator
Rerums with V set

SWI Econet_ReadProtcction

RO < = mask word

SWI Econet_SetProtection

RO = > mask word

SWI Econet_ReadStationNumbcr

Rl => address of string to read
Rl <= address of terminating space or control character
R2 <• station number (-1 for not found)
R3 <=network number (-1 for not found)

SWI Econet_PrintBanner

SWI Econet_RegisterDomain

RO <=domain number

SWI Econet_DcRegisterDomain

RO => domain number

SWI Econet_AllocatePort

RO <= port number

SWI Econet_DeAllocatePort

RO => port number

SWI Econet_PreAllocatePort

RO => port number

CONVENTIONS AND VALUES

llcoNET,THE
TRANSPORT LAYER

Station numbers are normally in the range 1 to 254. The station number zero is used
in CreateReceive to indicate that reception may occur from any station. The station
number 255 is used in Start Transmit and in Do Transmit to indicate that a broadcast
is to take place; it is also used in CreateReceive to indicate that reception may occur
from any station and is to be preferred over the value zero for this purpose.

589

590

Network numbers are normally in the range 0 to 254. The value zero in a
CreateReceive is taken to indicate that reception may occur from any network. The
network number 255 is used in StartTransmit and in Do Transmit to indicate that a
broadcast is to take place; it is also used in CreateReceive to indicate that reception
may occur from any station and is to be preferred over the value zero for this purpose.

Port numbers are normally in the range 1 to 254, although the values &90 through
&9F, and &DO through &Dl are reserved by Acorn for existing protocols. Port
number zero is reserved in transmission to indicate that the transmission is an
immediate operation. A port number of either zero or 255 in a reception indicates
that the reception may occur regardless of the port number on the incoming packet.

Control values are in the range 128 (&80) to 255 (&FF).

Buffer addresses are any byte address and the size fields are always of the byte length.

All delays are in centi-seconds.

There are two ways of doing receptions, the first is for simple foreground processes:

SWI
LDRVC
LDRVC

XEconet CreateReceive
rl, Delay
r2, EscFlag SWIVC

XEconet_WaitForReception
BVS Error
TEQ rO, Status_Received
BEQ OK SWI
XEconet ConvertStatusToError
BVS Error ; Always taken

The second method involves the user, possibly even and interrupt or event processes,
using the full four interfaces (Create, Examine, Read, and Abandon) in the usual
way.

As with reception there are two ways for transmissions to take place, a simple way for
use by foreground processes (Do Transmit), and a more complex method which is OK
to use in the background. The background method involves starting the transmit

llcoNET,THE
TRANSPORT LAYER

process and then using the Poll interface to poll it to completion, then Abandoning
it. Note that for both reception and transmission the call to Abandon is important in
that it releases memory held for internal state.

All utilities and programs requiring the user to input a station number should use the
SWI call to convert to numeric since this is then both efficient and consistant.

Outputting station numbers are handled by the MOS SWI calls
XOS_ConvenFixedNetStation and XOS_ConvertNetStation.

MPLEMENT A TION LIMITS

No immediate operations are possible from Arthur Econet.

Only the immediate operations 'Peek', 'Poke', and 'MachinePeek' are available to
Arthur Econet.

None of the port allocation or domain registration SWls are implemented.

591

592

l!oDULE, THE PODULE SYSTEM MANAGER

INTERFACES

SWI Podule_ReadiD

R3 => podule number
RO <= podule ID byte

SWI Podule_RcadHeader

R2 =>pointer to core, 3 or 16 bytes
R3 => podule number

SWI Podule_EnumerateChunks

RO => chunk number (zero to start)
R3 => podule number
RO <= next chunk number (zero for end)
Rl <=size in bytes
R2 <= type byte
R4 <- pointer to name if an RM else preserved

SWI Podule_ReadChunk

RO .. > chunk number
R2 => pointer to core, assumed big enough
R3 •> podule number

SWI Podule_ReadBytes

RO => psuedo address
Rl =>count in bytes
R2 -> pointer tO core
R3 => podule number

593

594

SWI Podule_ WriteBytes

RO = > pseudo address
Rl =>count in bytes
R2 => pointer to core
R3 => podulc number

SWI Podule_CallLoadcr

RO => user data
Rl => user data
R2 => user data
R3 => podule number
RO <= user data
Rl <= user data
R2 <= user data

SWI Podule_RawRead

RO => podule address (0 .. &3FFF)
Rl =>count in bytes
R2 => pointer to core
R3 = > podule number

SWI Podule_RawWrite

RO "'> podule address (0 .. &3FFF)
Rl =>count in bytes
R2 =>pointer to core
R3 => podule number

..,PPENDIX A - ARM ASSEMBLER

INTRODUCTION

Assembly language is a programming language in which each statement translates
directly into a single machine code instruction or piece of data. An assembler is a
piece of software which converts these statements into their machine code
counterparts.

Writing in assembly language has its disadvantages. The code is more verbose than
the equivalent high-level language statements, more difficult to understand and
therefore harder to debug. High-level languages were i!lvented so that programs
could be written to look more like English so we could talk to computers in our
language rather than directly in its own.

Assembly language is used in preference to high-level languages. The first reason is
that the machine code program produced by it executes more quickly than its high
level counterparts, particularly those in languages such as BASIC which are
interpreted. The second reason is that assembly language offers greater flexibility. It
allows certain operating system routines to be called or replaced by new pieces of
code, and it allows greater access to the hardware devices and controllers.

USING THE BASIC ASSEMBLER

The assembler is part of the BBC BASIC language. Square brackets'[' and')' are
used to enclose all the assembly language instructions and directives and hence to
inform BASIC that the enclosed instructions are intended for its assembler.
However, there are several operations which must be performed from BASIC itself to

ensure that a subsequent assembly language routine is assembled correctly.

595

596

Initialising external variables

The assembler allows the use of BASIC variables as addresses or data in instructions
and assembler directives. For example variables can be set up in BASIC giving the
numbers of any SWI routines which will be called. For example:

OS Write! - &100

SWI OS Writei+ASC">"

Reserving memory space for the machine code

The machine code generated by the assembler is stored in memory. However, the
assembler does not automatically set memory aside for this purpose. You must reserve
sufficient memory by using the DIM statement. For example:

1000 DIM code% 100

The start address of the memory area reserved is assigned to the variable code%. The
address of the last memory location is code%+ 100. Hence, it reserves a total of 101
bytes of memory.

Memory pointers

You need to tell the assembler the stan address of the area of memory you have
reserved. The simplest way to do this is to assign P% to point to the start of this area.
For example:

DIM code% 100

P% - code%

P% is then used as the program counter. The assembler places the first assembler
instruction at the address po,o and automatically incrementS the value of P% by four

. RM ASSEMBLER

so that it points to the next free location. When the assembler has finished
assembling the code, P% points to the byte following the final location used.
Therefore, the number of bytes of machine code generated is given by:

P% - code%

This method assumes that you wish subsequently to execute the code at the same
location.

The position in memory at which you load a machine code program may be
significant. For example, it might refer directly to data embedded within itself, or
expect to find routines at fixed addresses. Such a program only works if it is loaded in
the correct place in memory. However, it is often inconvenient to assemble the
program directly into the place where it will eventually be executed. This memory
may well be used for something else whilst you are assembling the program. The
solution to this problem is to use a technique called 'offset assembly' where code is
assembled as if it is to run at a certain address but is actually placed at another.

To do this, set 0% to point to the place where the first machine code instruction is
to be placed and P% to point to the address where the code is to be run.

To notify the assembler that this method of generating code is to be used, the
directive OPT, which is described in more detail below, must have bit 2 set.

Implementing passes

Normally, when the processor is executing a machine code program, it executes one
instruction and then moves on automatically to the one following it in memory. You
can, however, make the processor move to a different location and start processing
from there instead by using one of the 'branch' instructions. For example:

.result was 0

BEQ result was 0

597

598

The fullstop in front of the name result_was_O identifies this string as the name of a
'label'. This is a directive to the assembler which tells it to assign the current value
of the program counter (P%) to the variable whose name follows the fullstop.

BEQ means 'branch if the result of the last calculation was zero'. The location to be
branched to is given by the value previously assigned to the label result_was_O.

The label can, however, occur after the branch instruction. This causes a slight
problem for the assembler since when it reaches the branch instruction, it hasn't yet
assigned a value to the variable, so it doesn't know which value to replace it with.

You can get around this problem by assembling the source code twice. This is known
as two-pass assembly. During the first pass the assembler assigns values to all the label
variables. In the second pass it is able to replace references to these variables by their
values.

It is only when the text contains no forward references of labels that just a single pass
is sufficient.

These two passes may be performed by a FOR ... NEXT loop as follows:

DIM code% 400
FOR pass% - 0 TO 3 STEP 3

P% - code%

OPT pass%

NEXT pass%

Note that the pointer(s), in this case just P%, must be set at the start of both passes.

The OPT is an assembler directive whose bits have the following meaning:

. RM ASSEMBLER

Bit Meaning

0 Assembly listing enabled if set
1 Assembler errors enabled
2 Assembled code placed in memory at 0% instead of P%

Bit 0 controls whether a listing is produced. It is up to you whether or not you wish
to have one or not.

Bit 1 determines whether or not assembler errors are to be flagged or suppressed. For
the first pass, bit 1 should be zero since otherwise any forward-referenced labels will
cause the error Unknown or missing variable and hence stop the assembly.
During the second pass, this bit should be set to one, since by this stage all the labels
defined are known, so the only errors it catches are 'real ones'. For example, labels
which have been used but not defined, or misspelt instructions, etc.

Bit 2 allows 'offset assembly', ie the program may be assembled into one area of
memory, pointed to by 0%, whilst being set up to run at the address pointed to by
P%.

Executing a machine code program

Once an assembly language routine has been successfully assembled, the resulting
machine code can be executed in a variety of ways:

CALL <address> or OSR <address>

These may be used from inside BASIC to run the machine code at a given address.
See the Archimedes User Guide for more details on these statements.

*<name> or *RON <name> or * /<name>

These will load and run the named file, using the locations defined when it was
saved.

599

FORMAT OF ASSEMBLY LANGUAGE STATEMENTS

600

The assembly language statements and assembler directives should be between the
square brackets.

There are very few rules about the format of assembly language statements, those
which exist are given below:

- Each assembly language statement comprises an assembler mnemonic of one or
more letters followed by a varying number of operands.

- Instructions should be separated from each other by colons or new lines.

- Any text following a full stop'.' is treated as a label name.

- Any text following a semicolon';', or backslash 'f, or 'REM' is treated as a
comment and so ignored (until the next end of line or':').

- Spaces between the mnemonic and the first operand, and between the operands
themselves are ignored.

The BASIC assembler contains the following directives:

EQUB int
EQUWint
EQUDint
EQUS Str

ALIGN

ADR reg,addr

Define 1 byte of memory from LSB of int
Define 2 bytes of memory from int
Define 4 bytes of memory from int
Define 0- 255 bytes as required by string expression str

Align P% (and 0%) to the next word boundary

Assemble instruction to load addr into reg

The first four operations initialise the reserved memory to the values specified by the
operand. ln the case ofEQUS the operand field should be a string expression. In all
other cases it may be a numeric expression. DCB, DCW, DCD and DCS are
synonyms for these directives.

REGISTERS

.RM ASSEMBLER

The ALIGN directive ensures that P% (and 0% that is used) lies on a word
boundary. It is used after, for example, an EQUS to ensure that the next instruction
is word-aligned.

ADR assembles a single instruction, an ADD or SUB, with reg as the destination
register. It obtains addr in that register in a PC-relative (ie position independent)
manner.

At any panicular time there are sixteen 32-bit registers available for use, RO tO Rl5.
However, R15 is special since it contains the program counter and the processor
status register.

R 15 is split up with 24 bits used as the program counter (PC) to hold the word
address of the next instruction. 8 bits are used as the processor status register (PSR)
to hold information about the current values of flags and the current mode/register
bank. These bits are arranged as follows:

31 26 25 .. 2

The top six bits hold the following information:

Bit

31
30
29
28
27
26

Flag

N
z
c
v
I
F

Meaning

Negative flag
Zero flag
Carry flag
Overflow flag
Interrupt request disable
Fast interrupt request disable

The bottom two bits can hold one of four different values:

0

M

601

CONDITION CODES

602

~ ~caning

0 User mode
1 Fast interrupt processing mode
2 Interrupt processing mode
3 Supervisor mode

User mode is the normal program execution state. Supervisor mode is a special mode
which is entered when calls to the supervisor are made using software interrupts
(SWis) or when an exception occurs. From within supervisor mode certain
operations can be performed which are not permitted in user mode, such as writing
to hardware devices and peripherals. The supervisor has its own private registers R13
and Rl4. So after changing to supervisor mode, the registers RO- R12 are the same,
but new versions ofR13 and R14 are available. The values, contained by these
registers in user mode, are not overwritten or corrupted.

Similarly the interrupt and fast interrupt processing modes have their own private
registers (R13- R14 and R8- R14 respectively).

Although only 16 registers are available at any one time, the processor actually
contains a total of 2 7 registers.

All the machine code instructions can be performed conditionally according to the
status of one or more of the following flags: N, Z, C, V. The sixteen available
condition codes arc:

AL
cc
cs
EQ
GE
GT

HI
LE

Always
Carry clear
Carry set
Equal
Greater than or equal
Greater than

Higher (unsigned)
Less than or equal

C=O
C=l
Z=l
N .. l ANDV=l ORN=O ANDY=O
N • l ANDV=l ANDZ = OOR NaO AND
y ... QANDZ=O
C=l ANDZ=O
N .. l ANDV=OORN=OANDV• l ORZ=l

LS
LT
MI
NE
NV
PL
vc
vs

Lower or same (unsigned)
Less than
Negative
Not equal
Never
Positive
Overflow clear
Overflow set

. RM ASSEMBLER

C=O OR Z=l
N=l ANDV=OOR N=O ANDV=l
N=l
Z=O

N=O
V=O
V=l

Two of these may be given altemati ve names as follows:

LO Lower unsigned is equivalent to CC
HS Higher I same unsigned is equivalent to CS

THE INSTRUCTION SET

The available instructions are introduced below in categories indicating the type of
action they perform and their syntax. The description of the syntax obeys the
following standards:

< > indicates that the contents of the brackets are optional

(xI y) indicates the either x or y but not both may be given

#exp indicates that an expression is to be used which evaluates to an immediate
constant. An error is given if the value cannot be stored in the instruction.

Rn indicates that an expression evaluating to a register number (in the range 0
- 15) should be used, or just a register name, eg RO. PC may be used for
RIS.

603

604

shift indicates that one of the following shift options should be used:

ASL

LSL
ASR
LSR
ROR
RRX

(Rnl #exp)

(Rn I #exp)
(Rn I #exp)
(Rn I #exp)
(Rnl #exp)

Arithmetic shift left by contentS ofRn or
expression
Logical shift left
Arithmetic shift right
Logical shift right
Rotate right
Rotate right one bit with extend

Arithmetic and logical instructions

Syntax: opcode<cond><S> Rd, <Rn>, (#exp I Rm <,shift>)

The instructions available are given below:

Instructions

ADC
ADD
SBC
SUB
RSC
RSB

AND
BIC
ORR
EOR

MOV
MVN

Add with carry
Add without carry
Subtract with carry
Subtract without carry
Reverse subtract with carry
Reverse subtract without carry

Bitwise AND
Bitwise AND NOT
Bitwise OR
Bitwise EOR

Move
Move NOT

Result of opcode Rd, Rn, Rm

Rd = Rn + Rm + C
Rd = Rn + Rm
Rd = Rn- Rm- (1 -C)
Rd=Rn-Rm
Rd = Rm- Rn- (1 -C)
Rd = Rm-Rn

Rd = RnANDRm
Rd = Rn AND NOT (Rm)
Rd = RnOR Rm
Rd c RnEORRm

Result of opcode Rd, Rm

Rd=Rm
Rd= NOTRm

Each of these instructions produces a result which it places in a destination register
(Rd). The instructions do not affect bytes in memory directly.

. RM ASSEMBLER

As was seen above, all of these instructions can be performed conditionally. In
addition, if the 'S' is present, they can cause the condition codes to be set or cleared.
The condition codes N, Z, C and V are set by the arithmetic logic unit (ALU) in the
arithmetic operations. The logical (bitwise) operations set Nand Z from the ALU, C
from the shifter and do not affect V.

Example: ADDEQ Rl, Rl, 47

Example: SBCS R2, R3, R4

Example: AND R3, Rl, R2, LSR 42

If the zero flag is set then add 7
to the contents of register Rl.

Subtract with carry the contents of
register R4 from the contents of
register R3 and place the result in
register R2. The flags will be
updated.

Perform a logical AND on the contents
of register Rl and the contents of
register R2 * 4 and place the result
in register R3.

Special actions are taken if any of the source registers are Rl5; the action is as
follows:

- IfRm• Rl5 all32 bits ofR15 are used in the operation ie the PC+ PSR.

- IfRn=Rl5 only the 24 bits of the PC are used in the operation.

If the destination register is Rl5, then the action depends on whether the optional
'S' has been used:

- If S is not present only the 24 bits of the PC are set.

If Sis present the whole result is written to Rl5, the flags are updated from the
result. (However the mode, I and F bits can only be changed when in non-user
modes.)

605

606

Comparisons

Syntax: opc.ode<cond><P> Rn, (#exp I Rm <,shift>}

There are four comparison instructions:

Instruction

CMN
CMP
TEQ
TST

Compare
Compare
Test equal
Test

Calculation performed by opcode Rn, Rm

Rn+Rm
Rn-Rm
RnEORRm
RnANDRm

These are similar to the arithmetic and logical instructions listed above except that
they do not take a destination register since they do not return a result. Also, they
automatically set the condition flags (since they would perform no useful purpose if
they didn't}. Hence, the'S' of the arithmetic instructions is implied.

These routines have an additional function which is to set the whole of the PSR to a
given value. This is done by using a 'P' after the opt code, for example CMNP.

Normally the flags are set depending on the value of the comparison. The I and F
bits and the mode and register bits are unaltered. The 'P' option allows the
corresponding eight bits of the result of the calculation performed by the comparison
to overwrite those in the PSR (or just rhe flag bits in user mode}. For example:

CMNP RO,t&FCOOOOOO Set the PSR to the result of

RO + &FCOOOOOO

In the above example, ifRO is previously set to zero then this instruction will
perform the calculation 0 + &FCOOOOOO = &FFOOOOOO. The top six bits of the result
are, therefore, set and the bottom two bits are clear. Hence this will alter the PSR so
that all the flags are set and user mode is selected. This example assumes that the
instruction is used when it is privileged enough to change the mode bits, ie not in
user mode.

Multiply instructions

Syntax: MUL<cond><S> Rd,Rm,Rs
MLA<cond><S> Rd,Rm,Rs,Rn

Instruction

MUL
MLA

Multiply
Multiply-accumulate

RM ASSEMBLER

Calculation pcrfonned

Rd = Rm • Rs
Rd = Rm • Rs + Rn

The multiply instructions perform integer multiplication, giving the least significant
32 bits of the product of two 31-bit operands.

The destination register must not be Rl5 or the same as Rm. Any other register
combinations can be used.

If the'S' is given in the instruction, theN and Z flags are set on the result, the V flag
is unaffected and the C flag is undefined.

Example: MUL Rl , R2, R3

Example: MLAEQS Rl, R2, R3, R4

Branching

Syntax: B(cond) expression
BL(cond) expression

There are essentially only two branch instructions but in each case the branch can
take place as a result of any of the 16 condition codes:

B<cond> Branch
BL<cond> Branch and link

The branch instruction causes the execution of the code to jump to the instruction
given at the address to be branched to. This address is held relative to the current
location.

607

608

Example: BEQ labell branch if zero flag set

Example: BMI minus branch if negative flag set

The branch and link instruction performs the additional action of copying the
address of the instruction following the branch, and the current flags, into register
R14. R14 is known as the 'link register'. This means that the routine branched to
can be returned from by transferring the contents of R 14 into the program counter
and can restore the flags from this register on return. Hence instead of being a simple
branch the instruction acts like a subroutine call. For example:

BLEQ equal

.equal

address of this instruction
moved to R14 automatically

start of subroutine

MOV R15,Rl4 ; end of subroutine

Single register load/save instructions

Syntax: opcode<cond><T> Rd, address

The single register load/save instructions are as follows:

LOR Load register
STR Store register

These instructions allow a single register to load a value from memory or save a value
to memory at a given address. Addresses are held in registers, whose names are
enclosed in square brackets. The simplest form of address is a register number, in
which case the contents of the register are used as the address to load from or save to.

Another option is to add the contents of another register, or an immediate value, to
the contents of the first register. This sum is then used as the address. This is known
as pre-indexed addressing since the address written to the register is calculated before

. RM ASSEMBLER

the load/save takes place. The register can be optionally updated to contain the
address which was actually used by adding a'!' after the closing square bracket.

Syntax

[Rn)
[Rn,#m)<l>
[Rn,Rm)<l>
[Rn,Rm,shift #s]<l>

Address

Contents of Rn
Contents of Rn + m
Contents ofRn +contents ofRm
Contents ofRn + (contents ofRm shifted by's' places)

The alternative is post-indexed addressing. In this case the address being used is
given solely by the contents of the register Rn. The rest of the instruction determines
what value is written back into Rn. This write back is performed automatically; no'!'
is needed. Post-indexing gets its name from the fact that the address written to the
register is calculated after the load/save takes place.

Syntax

[Rn],#m
[Rn],Rm
[Rn),Rm,shift #s

Value written back

Contents of Rn + m
Contents of Rn + contents of Rm
Contents of Rn + (contents of Rm shifted by s places)

If the address is given as a simple expression, the assembler will generate a pre
indexed instruction using R15 (the PC) as the base register. If the address is out of
the range of the instruction(+/- 4095 bytes), an error is given.

If the 'B' option is specified after the condition, only a single byte is transferred,
instead of a whole word.

Multiple load/store instructions

Syntax: opcode<cond>(I I D)(A I B) Rn<!>, {Rlist}<A>

These instructions allow the loading or saving of several registers:

LDM Load multiple registers
STM Store multiple registers

609

610

The contents of register Rn give the base address from/to which the value(s) are
loaded or saved. Rlist provides a list of registers which are to be loaded from or saved
to. The order the registers are given, in the list, is irrelevant since the lowest
numbered register will be loaded first and the highest one last. For example., a list
comprising {R5,R3,Rl,R8} will be loaded from/saved to in the order Rl, R3, RS, R8,
with Rl occupying the lowest address in memory.

The 'I' or 'D' indicates whether the addresses loaded from or saved to are to Increase
or Decrease from the base address. Hence it is possible to load or save a series of
registers from/to a base address and the locations above it or below it in memory.

The 'A' or 'B' indicates whether or not the addresses are to be altered After or Before
each register is loaded or saved. If they are altered afterwards, then the first register is
loaded from or saved to the base address, and the address will be either increased or
decreased before the next load or save. If they are to be altered before, then the base
address is either increased or decreased before the first load or save takes place, then
again before the second, etc.

Exampk: LDMIA RS, {RO,R1,R2}

Exampk: LDMDB RS, {RO,R1,R2}

where R1 contains the value &1484
This will load RO from &1484

R1 from &1488
R2 from &148C

where R1 contains the value &1484
This will load RO from &1480

Rl from &147C
R2 from &1478

There are two further options. If a'!' is present after the register containing the base
address then this register will be updated to contain the final address. In the two
examples above this would leave R5 containing &1490 and &1478 respectively.

If a'"' is given at the end of the register list on a load, and R15 is contained in this
list, then the whole 32 bits ofR15 will be loaded, instead of just the program counter
part. IfR15 is not contained in the list then the user bank of registers is forced. On
save, a'"' at the end of the list means force the use of the user bank.

ASSEMBLER

The examples below show how a stack may be implemented. The stack is built
downwards in memory and is a 'full' stack as opposed to an 'empty' one. In a full
stack the stack pointer points to the address containing the last value added to the
stack rather than to the address of the first available empty slot.

Exampk: STMDB Stackpointer!, {RO,Rl,R2,R3} push onto stack

Exampk: LDMIA Stackpointer!, {RO,Rl,R2,R3} pull from stack

Example:

Example:

Syntax:

To make it easier to use these instructions with stacks, alternative set of letters may
be used after the instruction. These are 'F' for Full stack, ie one where the stack
pointer holds the address of the last item to be pushed, or 'E' for Empty, where the
SP holds the address of the next item to be pushed. The second letter may be 'D' for
a descending stack, where the SP is decremented for a push and incremented for a
pull, and 'A' for an ascending stack, where the opposite is true.

All Acorn software uses an FD (full, descending) stack, and you should too. The two
examples above could be rewritten:

STMFD Stackpointer!, {RO,Rl,R2,R3} push onto stack

LDMFD Stackpointer!, {RO,Rl,R2,R3} pull from stack

SWI

SWI <expression>

The SWI mnenomic stands for SoftWare Interrupt. On encountering a SWI, the
CPU changes into Supervisor mode and stores the address of the next location in
R14. Since this is written into the Supervisor's own copy ofR14, the User value is
not corrupted. The CPU then goes to the SWI routine handler via the hardware
SWI vector containing its address.

The first thing that this routine does is to discover which SWI was requested. It finds
this out by using the location addressed in R 14 to read the current SWI instruction.
The opcode for a SWI is 32 bits long; 4 bits identify the opcode as being for a SWI, 4
bits hold all the condition codes and the bottom 24 bits identify which SWI it is.

611

612

Hence 2"24 different SWI routines can be distinguished. When it has found which
particular SWI it is, the routine executes the appropriate code to deal with it and
then returns by placing the contents ofR14 back into the PC and changing the
caller's mode status.

See the chapter FUNDAMENTAL OPERATING SYSTEM CONCEPTS for a
description of how the Arthur operating system handles SWls, and the appendix
SUMMARIES OF OPERATING SYSTEM CALLS for a list of the operating
system SWis.

.PPENDIX B -THE LINKER

USING THE LINKER

This appendix describes the operation of the linker.

The Linker accepts as input one or more files written in the ARM Object Format;
(AOF) resolves references between them, and produces an executable image. Some
of the inputs accepted by link may be libraries of AOF files which are searched to
resolve unresolved external references.

Link has two input requirements. These are:

- the name of the image to be produced
- the names of the files to be linked.

The image file is specified using the -image keyword. The files to be linked can be
specified either as a comma-separated list using the - files keyword, or they may be
contained in a file specified by the -via keyword. For example:

link - image test -files a,b,c

means take a, b and c as input, and produce an image file called test. (Note that
there must be no spaces in a comma-separated list because space is a more powerful
separator than comma.)

Alternatively, you can use:

link - image test -via myfiles

'myfiles' should contain a list of input files, one on each line. In this case, the
explicit object file list may be omitted. For example, mylist might contain:

o.test
o.mylibrary/1

613

614

If both an object-file list and a -via file are specified, then the files listed in the
argument to the -via keyword are simply appended to the object-file list. For
example:

link -image test o.testl,o.test2 -via stdstuff

where stdstuff contains:

test3
testlib/1

$.arm.clib.o.ansilib/l

and has the same effect as:

link -image test o.testl,o.test2,test3 -lib testlib,$.arm.clib.o.ansilib

Any file in a list of files to be linked may be decorated with a '/I' denoting that it is a
library and the -Files keyword may be omitted. For example:

link -image test o.test,o.mylibrary/1
link -files o.test,o.mylibrary/1 -image test

The order of arguments is not significant and, in general, neither is the order of files
within a list of files, except that libraries are searched in the order they are listed.
Keywords may be typed in upper or lower case and can be given in full or
abbreviated. For example, you can use either of the following:

link -FI o.test,o.mylibrary/1 -im test
link -fi o.test,o.mylibrary/1 -image test

Optionally, a list of libraries may be given using the -LIBrary keyword. For example:

link o.hello -image p.hello -library $.arm.clib.o.ansilib,o.Arthurlib

When libraries are included in the list of object files, only the required parts of them
will be included in the final image.

. HE LINKER

By default, link generates an 'ADFS' image, suitable for direct execution by the
Command Line Interpreter. However, this is not suitable for the low-level debugger
Dbug as it lacks the necessary symbolic data. To generate an image suitable for use
with the Dbug tool, one of the -DBug or -AOF keywords must be specified. For
example:

link -dbug -image test o.testl,o.test2 -via stdstuff

LINKER PRE-DEFINED SYMBOLS

The linker defines several useful symbolic values to which the assembly code
programmer may refer. These may not be defined or redefined by the programmer.
All these names begin with 'Image$$' and, indeed, use of all external symbol names
beginning 'Image$$' is reserved to Acorn.

The names which may be relied on are as follows:

lmage$$RO$$Base

Address of the first byte of the (notionally) read-only portion of the image.

Image$$RO$$Limit

Address of the first byte beyond the (notionally) read-only portion of the image.

lmage$$R W$$Base

Address of the first byte of the read-write portion of the image.

lmage$$R W$$ Limit

Address of the first byte beyond the read-write portion of the image.

ADFS and AOF images are split into two areas: a notionally read-only area (which is
write protected on systems with hardware which supports this) and a read-write area.
Usually, the read-only area contains code and literal data and precedes the read
write area in the image so the whole image is bounded by lmage$$RO$$Base and

615

LINKER KEYWORDS

616

Image$$RW$$Limit.lt is not guaranteed that Image$$RO$$Limit =

Image$$RW$$Base.

-image

The argument to this keyword is the filename of the resulting object file.

-files

The argument to this keyword is a comma-separated list of object files. The -files
keyword may be omitted in which case the first and only (non keyword) positional
argument is interpreted as the list of files.

-via

The argument to this keyword specifies a files from which a list of object file to link
should be acquired. There should be one name per line in the file. This list is
additional to and appended to that provided by the argument to the -files keyword.

-library

The argument to this keyword specifies a list of object file libraries in which to

search for unresolved external symbols. Libraries are searched as many times as
necessary to resolve external symbols.

-keep

This option is provided for backwards compatibility.

-adfs

This option specifies that the resulting file be suitable for direct execution by the
Command Line Interpreter. In this case, the default base address is 3ZK. Under the
Arthur operating system, -adfs is assumed by default.

fHE DEBUGGER

HE LINKER

Link also has numerous additional options reserved to Acorn. Some of these will be
revealed by the command:

link - help

Most of these options are not relevant to the Archimedes system and can be ignored.

The debugger is for debugging AOF images not containing unresolved references
within the execution path. It works by loading itself where the program would
normally load, and loading the program further up in store. The program can be run
at this higher address without the control of the debugger (in order to achieve the
same placement if it should be important) using the utility m2run. The debugger
takes control from the program by means of breakpoints, which cause a trap into the
debugger. Thus you cannot use the debugger to stop a program which has gone
wildly wrong and find out where it has gone wrong.

The debugger is only for use in user mode, as its entry method following a breakpoint
causes SVC mode to be entered temporarily, thus corrupting SVC register 14.

The debugger is started by typing:

dbug programname

where programname is a linked AOFimage. The debugger will respond with the
prompt:

dbug:

whenever it is ready for input.

The debugger deals with input of commands, numbers, register names and other
miscellaneous items. The following terms will be used later in this guide, and so are
defined now.

617

618

- A name is a sequence of letters, digits, dot and dollar beginning with a letter.

- A decimal number is a non-empty sequence of decimal digits.

- A hexadecimal number is the '&' character followed by a possibly empty sequence
ofhcxadecimal digits.

- A register name is one of: RO, Rl, R2, R3, R4, R5, R6, R7, R8, R9, RlO, Rll,
Rl2, Rl3, R14, Rl5, PC (=R15), SL (=Rl3), SP (=Rl2), FP (=Rll) and IP
(• RIO), LR (-=R14).

- AIL register names refer to the user bank of registers.

- Expressions are composed of numbers, names, register names, brackets and +, -, /,
•, A and'.'.

The symbols+, - ,/ and • have their usual meanings, while:

'.' refers to the last location examined or deposited into

brackets may be used for clarity and forcing evaluation order

A is a postfixed unary operator meaning 'the contents of and delivers a word from
a word-aligned address. In certain circumstances, a register name may be an
expression on its own, such as when examining a register range. Otherwise, any
register name used in an expression must be followed by A in order that the
register contents be used. There is no meaning if the A is left out.

The debugger takes commands of the following forms:

Name arguments

For commands which are names, only the first character is significant and the case is
ignored. Thus RUN, run and Rare all equivalent.

. HE LINKER

Run

Syntax: R rest-of-line

The program is entered with rest-of-line as argumentS which will be available to the
argument decoder as if the program had been run from the supervisor command
prompt. The debugger will not be entered again unless either a breakpoint is reached
or a machine level trap of some sort is taken, such as an address exception.

Single step

Syntax: S

Executes the current instruction and then re-enters the debugger.

Continue

Syntax: C

Continues execution

The debugger re-enters the program. As with Run, the debugger can only regain
control by means of a breakpoint or a machine level trap.

Quit

Syntax: Q

Leaves the debugger and returns to the supervisor.

619

620

Breakpoint

Syntax: B S location

B D location

BD

BL

Sets or deletes a breakpoint at the given location. The location may be an expression
evaluating to a store address. A maximum of twenty breakpoints is permitted.
BreakpointS work by replacing the existing instruction by an instruction which will
cause a trap and enter the debugger. Breakpoints cannot be placed in ROM code.
Deleting a breakpoint simply replaces the original instruction over the trap, and
removes the breakpoint from the breakpoint table.

B D with no location specified will interactively delete all breakpointS.

B L will list the addresses of all breakpoints.

Unwind

Syntax: U

Unwi'1ds the procedure call stack. This is only meaningful if the Acorn procedure
call standard has been used for procedure calling within the program you are
debugging. In this case it will give a list of procedure calls made starting with the
most recent and ending at the mainline code. (See the appendix ACORN
PROCEDURE CALL STANDARD.)

IIHELINKER

List

Syntax: L name

Lists all symbols in the symbol table from the AOF which stan with the given name.
The output is not sorted and is, therefore, in the order in which the symbols were
encountered in the AOF file.

Examine

Syntax: E Format

E al Format

E al :a2 Format

E al,a3 Format

Examines locations and produces output in format or in the default format if it is
omitted. al is the first location examined; if omitted then the location after the last
location examined/deposited into will be examined. Examination will continue until
location a2 or for a3 locations, or if these are omitted only one location will be
examined. The output format is specified below.

Base
Style
Length

Deposit

S)-ntax: D al value

Address

Current base
Symbolic
4

Value

As specified
As specified
As specified

Deposits value in location al or if al is omitted then in the next location, that is the
one after the last to be examined/deposited into.

621

622

Specifies the amount of store to be updated (byte, half-word or word).

Convert

Syntax = al

Converts (display) al in given format, or in the default format if none has been
given.

Format

Sets default format for output. The formats are:

Sizes

$W =word
$H = halfword
$B =byte

Bases

$0 =decimal
$X = hexadecimal
$R = number in base 'r'

Styles

$C = character
$1 = instruction
$S =string
$Y =symbolic name
$N =numeric,
$Z = signed numeric

The default format is $W $X $1.

I PPENDIX c - ARM PROCEDURE CALL STANDARD

INTRODUCTION

This document relates to compiler implementation on the ARM. The reader should
be familiar with the ARM's instruction set [ARM], floating point instruction set
[AFP] and assembler syntax [AASM] before attempting to use this information to
implement code generators for the ARM. In order to write a run-time system for a
language implementation, additional information specific to the operating system
will be necessary.

The main topics described herein are the procedure call and stack disciplines. These
methodologies are followed in all Acorn language implementations for the ARM.
The usefulness of any new language implementation will be directly related to the
degree of compatibility between that language and those provided by Acorn.

At the end of this document are several examples of the usage of the standard with
suggestions for generating effective code for the ARM.

Goals

The reduced instruction set of the ARM does not include a procedure call
instruction, but a set of rules has been devised to facilitate calls between languages
on the ARM, and the porting of language implementations between operating
systems. These rules are used by the C and Modula-2 Plus compilers developed for
use on the ARM, and other language implementors are strongly encouraged to use
them, too.

The standard defines the use of registers and the passing of arguments at an external
procedure call, and the format of a data structure that can be used by stack backtrace
programs in reconstructing a sequence of outstanding calls.

The standard only defines what happens when an 'm' external procedure call occurs.
Languages may choose to use other mechanisms for internal calls, and are not
required to follow the register conventions described in this document except at the
instant of an external call or return.

623

624

Design criteria

The procedure call standard was produced after a great deal of experimentation and
study of other architectures and is believed to be the best possible compromise
between various requirements. The following important factors influenced this
design.

- The procedure call must be extremely fast.

- The call sequence must be as compact as possible. (Code density on RISC
machines is a well-known problem. In typical compiled code, calls are believed to
outnumber entries by about 5 to 1. The ARM instruction set is considerably more
efficient when working out of registers than out of memory, so as many operations
as possible must take place in registers. This is true to a certain extent on most
machines, but substantially more so on the ARM than, say, on a VAX.)

- When multiple threads of control are being used within one address space, a
separate stack is needed for each thread of control. Rather than having to specify
the stack size of each thread at creation time, the standard is devised so that the
stack can be extended in a non-contiguous manner, in 'm' stack chunks.

- The standard should encourage the production of re-entrant programs, with
writable data separated from code.

- To accomodate analysis or change of procedure calls, other than the conventional
return of outstanding called procedures, the design requires support of a 'stack
backtracking' technique. Examples include de buggers providing information
about local variables, C Long.Jmp and Modula-2 Plus exceptions. The procedure
call standard defines enough about stack structure to ensure that these are
possible, within certain stated limits.

The following names are used when referring to ARM registers:

ARM Register Names

a1
a2
a3

a4
v1
v2
v3

v4
v5
v6

fp
ip
sp
sl
lr
pc

fO
fl

f2
f3
f4
fS

f6

f7

RN

RN
RN
RN
RN
RN
RN

RN

RN
RN

RN
RN
RN
RN
RN

RN

FN
FN
FN
FN
FN
FN
FN
FN

0

1

2

3

4

5

6
7

8

9
10
11
12
13
14
15

0

1

2

3
4

5

6

7

. RM PROCEDURE
CALL STANDARD

argument 1/integer result
argument 2

argument 3

argument4
register variable
register variable
register variable
register variable
register variable
register variable
frame pointer
used as temp workspace
lower end of current stack frame
stack limit
link address on calls/workspace
program counter and processor status

floating point result
floating point scratch register
floating point scratch register
floating point scratch register
floating point preserved register
floating point preserved register
floating point preserved register
floating point preserved register

Please note that references to 'the stack' denoted by sp assume a stack that grows
from high memory to low memory, with sp pointing at the top (i.e., lowest
addressed) word in the stack.

For any register 'r', the phrase 'in r' in the following text refers to the contents of'r'.
The phrase 'at [r]' or 'at [r, #n]' refers to the word pointed at by 'r' or r+n, in line
with the corresponding assembler syntax.

625

626

Data Representation and Argument Passing

This standard does not describe the layout in store of records, arrays and so forth,
used by C and Modula-2 Plus on the ARM. For this information, consult the Acorn
documentation of each language. The procedure call standard is defined in terms of
m n word-sized arguments being passed from the caller to the callee, and a single
word or floating point result that is passed back by the callee. For a detailed
description of how these facilities are used to implement open array arguments,
structure arguments, structure results, etc., also consult the Acorn documentation for
each language.

Using Registers and Argument Passing in External Procedures

m Control Amool

At the instant when control arrives at the target procedure, the following statements
should be true. (For any m m, if a statement is made about argm and m n<m, then
the statement can be ignored.)

- argl is in al.

- arg2 is in a2.

- arg3 is in a3.

- arg4 is in a4.

- arg5 is at (sp).

- for all m > 5, argm should be at (sp, #4*(m-5)).

- fp contains 0 or points to a backtrace structure, as described in the next section.

- The values in sp, sl, fp are all multiples of 4.

- sp+256 >= sl.

. RM PROCEDURE
CALL STANDARD

- The values of sp and sl are such that all words below the word at [sp] and above or
including the word at [sl, #-512] are readable, writable memory which can be
used by the called procedure as temporary workspace and be overwritten with any
values before the return of this procedure.

- lr contains the pc+psw value that should be restored into r 15 on exit from the
procedure. This is known as the 'm' return link value for this procedure call.

- pc contains the entry address of the target procedure.

- The value in sl is a 'm' stack chunk handle. This concept is only relevant if stack
extension is being used, and its exact meaning depends on the operating system or
language run-time system in use. It provides enough information to ensure that
the stack can be extended with an extra chunk if necessary.

m Return Link

At the instant when the return link value for a procedure call is placed in the
pc+psw, the following statements should be true.

- fp, sp, sl, vl, v2, v3, v4, v5, v6, f4, f5, f6 and f7 should contain the same values as
they did at the instant of the call.

- If the procedure returns a word-sized result, R, which is not a single-precision
floating point value, then 'r' should be in a 1.

- If the procedure returns a single or double precision floating point result, fpr, then
fpr should be infO.

Notes

- The requirements of C preclude the passing of floating point arguments in
floating point registers.

- The values of a1, a3, a4, ip and lr are not defined at the instant of rerum. The
maintenance of the registers v 1 to v6, however, suggests that this should be
thought of as a 'callcc-saving' standard.

627

628

- The values of the Z, N, C and V flags are loaded from the corresponding bits in
the return link value on procedure return. This means, in the case where a
procedure is called using a BL instruction, that these flag values will be preserved
across the call.

- The values of fp and sp are not defined at arbitrary execution moments during the
evaluation of a procedure, only at the instants of call and return.

- The minimum amount of stack defined to be available is not particularly great,
and as a general rule a language implementation should not expect much more
than this. Code generated by the C and Modula-2 Plus compilers, if there is
inadequate local workspace, is able to allocate more stack space from the storage
allocator and continue operation. Any language unable to do this may have its
interaction with C and Modula2 impaired. The fact that sl contains a stack chunk
handle may be important in achieving this.

- The statements about sp and sl are designed to optimise the testing of the one
against the other. It is anticipated that a procedure's entry sequence might
include something like:

CMP sp, sl

BLLO AllocateNewStackChunk

where AllocateNewStackChunk is a part of the run-time system for that language. If
this test fails, and AllocateNewStackChunk is not called, then:

There are at least 512 bytes free on the stack.

This procedure should only call other procedures when sp has been dropped by 256
bytes or less. This will guarantee that there is enough space for the called procedure's
entry sequence to work in.

If these limits are not enough, then the entry sequence may have to drop sp before
performing the test.

. RM PROCEDURE
CALL STANDARD

At the instant of an external procedure call, the value in fp is zero or it points to a
data structure that gives information about the sequence of outstanding procedure
calls. This structure is in the following format:

fp points to here: save mask pointer

return link value

return sp value

return fp value

saved v6 value

saved vS value

saved v4 value

saved v3 value

saved v2 value

saved vl value

saved f7 value

saved f6 value

saved f5 value

saved f4 value

[fp]

(fp. #-4]

[fp, #-8]

[fp, #-12]

3 words

3 words

3 words

3 words

The diagram shows between four and ten word-sized values, with those higher on the
page being at the higher address in memory. The lowest ten values are entirely
optional, and the presence of any does not imply the presence of any other. The
floating point values are in extended format and occupy three words each. At the
instant of procedure call, all of the following statements about this structure must be
true:

629

630

The 'm' return fp value in the diagram is either 0 or contains a pointer to another
stack back trace data structure of the same form. Each of these corresponds to an
active, outstanding procedure invocation. The same statements listed here are just as
true about this next stack backtrace data structure as they are for the current one.
Thus, the statements hold true for each structure in the chain.

The 'm' save mask pointer value, when bits 0, 1, 26, 27, 28,29,30,31 have been
cleared, points twelve bytes beyond a word known as the 'm' return data save
instruction.

The return data save instruction is a word that corresponds to an ARM instruction
of the following form:

STMDB sp!, {[all, [a2), [a3), [a4), [vl], [v2], [v3], [v4), [vS), [v6) ,fp, ip,lr,pc]

Note the square brackets in the above form denote optional parts: thus, there are
1024 possible allowable values for the return data save instruction, corresponding to
the following bit patterns:

1110 1001 0010 1100 1100 1lxx xxxx xxxx

The lowest 10 bits represent the registers, i.e. if bit 'n' is set, then register m n will be
transferred.

The optional parts [v1], [v2], [v31. [v4), [v5] and [v6] in this instruction correspond to
those optional parts of the stack back trace data structure that are present such that:
for all m m, if [vm) is present then so is [I saved vm value 1], and if [vm] is absent
then so is [I saved vm value I). This is just as though the stack backtrace data
structure was formed by the execution of this instruction, following the loading of ip
from sp-as is very probably the case. Nothing should be deduced from the presence
or absence of the optional parts [all. [a2], [a3), [a4].

The sequence of up to four instructions following the return data save instruction
decides if the saved floating point registers are present. The four instructions that are
allowed in this sequence are:

STFE
STFE
STFE
STFE

f7,
f6,
fS,
f4,

[sp,
[sp,
[sp,
[sp,

t-12] [f7],
t-12] [f6]
t-12] [fS]
t-12] [f4]

. RM PROCEDURE
CALL STANDARD

xxxxxxxx xxxxxxxx xxxxxxx xxxxxxxx

Any or aJI of these instructions may be missing, and any deviation from this order or
any other instruction terminates the sequence.

The optional instructions [f4], [f5), [f6) and [f7) in this sequence correspond to those
optional parts of the stack backtrace data structure that are present such that: for all
m m, if [fm) is present then so is [I saved fm value I], and if [fm] is absent then so is
[I saved fm value I). This is just as though the stack backtrace data structure was
formed by the execution of this sequence, as is probably the case.

At the instant when procedure a calls procedure b, the stack backtrace data structure
pointed at by fp contains exactly those elements [vl], [v2], [v3), [v4], [v5), [v6), [f4),
[f5), [f6], [f7), fp, sp and pc which must be restored into the corresponding ARM
registers in order to cause a correct exit from procedure a, albeit with a junk result.

The following example suggests what the entry and exit sequences for a procedure
are likely to be. Though not defined in terms of the following sequences because that
would be unnecessarily restrictive, the entry sequence to a typical procedure might
be expected to look something like:

MOV
STMDB
SUB

ip, sp
sp!, (args, workspace, fp, ip, lr, pc}A
fp, ip, t4

The corresponding exit sequence would be:

LDMDB fp, workspace, fp, sp, peA

Many apparent idiosyncrasies in the standard may be explained by efforts to make
the entry sequence work smoothly. The example above is neither complete (no stack
limit checking) nor mandatory (making arguments contiguous for C, for instance,
requires a slightly different entry sequence).

631

632

The 'workspace' registers mentioned above correspond to as many of v 1 to v6 that
this procedure needs in order to work smoothly. At the instant when procedure a
calls any other, those registers not mentioned in a's return data save instruction will
contain the values that they contained at the instant that a was entered. Here is
some sample assembly code as it might be produced by the C compiler:

; gggg is a function of 2 args that needs one register variable (vl)

gggg ip, sp MOV
STMDB
SUB
CMPS

BLLO

sp!, {al, a2, vl, fp, ip, lr, pc}

fp, ip, 44 points at saved PC

MOV

BL

sp, sl

stack_overflowl

vl, ...

ffffl
vl ...

handler procedure

use a register variable

rely on its value after ffff()

Within the body of the procedure, arguments are used from registers, if possible;
otherwise they must be addressed relative to fp. In the two-argument case shown
above, argl is at [fp,##-24] and arg2 is at [fp,##-20), but as discussed below, args
will sometimes be stacked with positive offsets relative to fp. Local variables are
never addressed offset from fp, they always have positive offsets relative to sp. In
code that changes sp, this means that the offsets used may vary from place to place in
the code. The reason for this is that it permits the procedure at stack_ overflow to

recover by setting sp (and sl) to some new stack segment as necessary. As part of this
mechanism, stack_overflow may alter memory offset from fp by negative amounts,
e.g. [fp, #- 64) and downwards, provided that it adjusts sp to provide workspace for
the called routine. If the function is going to use more than 256 bytes of stack it must
go:

SUB ip, sp, t<my stack size>
CMPS ip, sl

BLLO stack overflow 11

instead of the two-instruction test shown above.

. RM PROCEDURE
CALL STANDARD

If a function expects no more than 4 arguments it can push all args onto the stack at
the same time as saving its old fp and its return address (see the example above), and
arguments are then saved contiguously in memory with argl having the lowest
address. A function that expects more than 4 arguments has code at its head:

MOV ip, sp

STMFD sp!, (al, a2, a3,
STMFD sp!, (vl, v2, fp,

SUB fp, ip, t20
CMPS sp, sl
BLLO stack_ overflow I

a4}
ip, lr, pc} vl-v6 saved as necessary

point at saved PC

LDMDB fp, (vl, v2, fp, sp, pc}A ; restore register vars & return

where the header arranges that arguments (however many there are) lie in
consecutive words of memory, and the return sequence that sp is always the lowest
address on the stack that still contains useful data.

The time taken for a call, enter and return, with no arguments and no registers
saved, is about 22 S-cycles, less than 3 microseconds on an uninterrupted ARM2.

ARM2 is Acorn's second-generation ARM processor.

Modula-2 Plus has slightly different requirements from C. For instance, there is no
requirement for arguments to be contiguous, but on the other hand (due to open
array arguments) the size of stack frames is not always computable at compile time.
The following entry sequence is used in the presence of 4 or less arguments:

MOV ip, sp
STMDB
SUB
SUB

sp!, (args, workregs, fp, ip , lr, pc}
fp, ip, t4
sp, sp, tworkspace

CMP sp, sl
BLLO SYSTEM.StackOverflow

633

634

Note that the arguments are not necessarily stored in the stack frame: if they are
frequently referenced in the procedure (and not used as V AR arguments to further
calls) it may be more efficient to transfer them into preserved work registers soon
after the entry sequence.

The actions performed at SYSTEM.StackOverflow are as follows:

- If there isn't another stack chunk forward chained onto this one, then allocate a
new legal stack chunk.

- Change the values in fp and sp so that they are the same distance apart, pointing
near the high address end of the new stack chunk. Copy 14 words from the place
fp used to point, to where it now does. This represents the maximum number of
registers that could have been saved, exclusive of sp and sl). The copy will be used
as the stack backtrace data structure.

It might seem that this copy is wasteful, but the alternative (in the presence of
variable sired stack frames) is to use an extra register (in addition to fp and sp) to
denote the stack frame. The copy is acrually quite quick, since it is of a known, fixed
sire. Note that the standard allows C and Modula2 the freedom to use slightly
different stack extension routines, in order to optimise the most likely path in each
case.

In the presence of 5 or more arguments, the arguments are copied if a stack
extension occurs. This prevents having to allocate a whole register to this task.

Example: ap RN v6

MOV

STMDB
SUB
SUB
CMP

MOVLO

BLLO

ip, sp

sp!, {args, workregs, ap, fp, ip, lr, pc}
fp, ip, t4
sp, sp, fworkspace
sp, sl
ip, fnargs
SYSTEM.StackOverflowNI

The exit sequence is the same as for C.

. RM PROCEDURE
CALL STANDARD

Although not required by the standard, the values in fp and sp are maintained while
executing code produced by both the Modula-2 Plus and the C compilers. This
makes it much easier to debug compiled code.

The following Modula-2 Plus types are implemented as words:

BITSET
BOOLEAN
CARDINAL
INTEGER
REAL POINTER TO (anything)
REF (anything)
REF ANY
SET OF (anything)
SYSTEM.ADDRESS
SYSTEM.WORD

Variables and record fields of type CHAR are implemented using words, but an
ARRAY OF CHAR is implemented using bytes. The values used for BOOLEAN
values are: O=FALSE and l=TRUE.

The Modula-2 Plus type SystemTypes.String is implemented as a C-style string,

in order to aid interaction between the languages. That is, it is a pointer to a zero
terminated sequence of characters. There is no alignment or padding requirement for
either the beginning or the end of the string. Most string manipulation in Modula-2
Plus programs is done in terms of the type Strings.String, rather than ARRAY OF
CHAR.

The C and Modula-2 Plus concepts of pointer, record and array are broadly similar,
and so most structures can be shared successfully between the two languages. The
same is not quite true, however, of multi-word arguments that are passed by value.

The Modula-2 Plus compiler goes to considerable trouble to optimise cases whereby
a multi-word value such as a structure or array is passed by value (in theory), but

635

636

where passing by reference is in fact adequate. Examples are where an object passed
by value is never written to, or is only used to pass on to other procedures. The
frequent use of ARRAY OF CHAR parameters, for instance, makes this an
extremely worthwhile optimisation. The method that Modula-2 Plus uses is that any
multi-word object passed to a Modula-2 Plus procedure (except double precision
real, see below) is in fact passed by reference. If the called procedure wishes to
update the object then it copies it into its own stack frame as part of the entry
sequence to the procedure. The C language does not do this- all arguments in C are
passed by value and all types, including structures and arrays, are copied into the
argument list.

A Modula-2 Plus open array argument is represented as two word-sized arguments, a
pointer to the first element of the array and the number of elements in the array.

Cases where this impedes the passing of objects between C and Modula-2 Plus are
very rare and can always be circumvented by the construction of appropriate type
definitions in the two languages for a procedure.

Double precision reals are an exception to this rule, and are passed by value in both
languages.

Multi-word results other than double precision reals inC and Modula-2 Plus
programs are represented as an implicit first argument to the call, which points to
where the caller would like the result placed. It is the first, rather than the last, so
that it works with a C program that is not given enough arguments.

The procedure call standard is reasonably easy and natural for assembler
programmers to use. It is encapsulated in a collection of macros that help assembler
programmers to conform to the standard and construct the extra data structures
needed for pseudo-Modula-2 Plus modules.

The Acorn Fortran-77 compiler uses calls that conform to this standard, except that,
owing to the tendency for all Fortran-77 arguments to be pointers that can be
computed statically, all calls are compiled as calls with a single argument, which
points to a statically constructed argument pointer record. Thus, C and Modula-2
Plus can call Fortran routines, provided they make the relevant data structure
definitions, but Fortran cannot call general C and Modula-2 Plus routines directly.

. RM PROCEDURE
CALL STANDARD

Since all Fortran 1/0 is done through built-in language features rather than through
general procedure calls, this ability is worth sacrificing.

Note that there is no requirement specified by the standard concerning the
production of re-entrant code, as this would place an intolerable strain on the
conventional programming practices used in C and Fortran. The performance of a
procedure in the face of multiple overlapping invocations is part of the specification
of that procedure.

All of these languages have their own special requirements that make it
inappropriate to use a procedure call of the form described here internally. All are
capable of making external calls of the given form, through a small amount of
assembler 'glue' code.

This document is not intended as a general guide to the writing of code generators,
however it seems worthwhile to highlight various optimisations that appear
particularly relevant to the ARM and to this standard.

The standard uses callee-saving rather than caller-saving because of the low cost of a
LDM which loads many registers, and after statistical analysis of the code generated
by both caller- and callee-saving code generators. The caller-saving code was found
to be somewhat bulkier, with a higher proportion of LDM and STM instructions.

The preservation of condition codes over a procedure call is often useful because any
short sequence of instructions (including calls) that forms the body of a short IF
statement can be executed without a branch instruction.

For example:

IF a< 0 THEN b :- Foo(); END;

can compile into:

CMP a, tO

BLLT Foo
MOVLT b, al

637

638

In the case of a 'leaf or 'fast' procedure, i.e., one that calls no other procedures, much
of the standard entry sequence can be omitted. In very small procedures, such as are
frequently used in data abstraction modules, the cost of the procedure can be very
small indeed. For instance, consider:

TYPE Foo = POINTER TO FooRecord;
FooRecord - RECORD ... ; bar: Bar; ... END;

PROCEDURE GetBar(foo: Foo): Bar; BEGIN RETURN fooA.bar; END GetBar;

The procedure GetBar can compile to just:

LOR a1, [a1, ibarOffset]
MOVS pc, lr

This is also useful in procedures with a conditional as the top level statement, where
one or other arm of the conditional is 'fast'- it calls no procedures. In this case there
is no need to form a stack frame there.

For example, using this, the Modula-2 Plus program:

PROCEDURE Sum(i : INTEGER);
BEGIN IF i <- 1 THEN RETURN i; ELSE RETURN i + Sum(i-1); END; END Sum;

could compile into:

try fast case CMP a1, U

MOVSLE pc, lr and if appropriate, handle quickly!

; ELSE, form a stack frame and handle the rest as normal code.
MOV
STMDB
CMP
BLLO

MOV

SUB

ip, sp
sp!, {v1, fp, ip, lr, pc}
sp, sl
overflow

v1, a1
a1, a1, 11

register to hold i
set up argument for call

BL prod
ADD al, al, vl
LDMDB fp, {vl, fp, sp, pc}A

. RM PROCEDURE
CALL STANDARD

do the call
perform the addition
and return

This is only worthwhile if the test can be compiled using only ip, and any spare of a 1,
a2, a3 and a4, as scratch registers. This technique could easily have a significant
impact on certain speed-critical routines, such as read and write character.

For information on other publications, please contact Customer Services at the
address given at the beginning of this manual.

639

640

IPPENDIX D- OPERATING SYSTEM CALLS

lNDEX OF SWI CALLS

SWI name Number Page

OS_WriteC &00 51
OS_ WriteS &01 51
OS_WriteO &02 51
OS_Newline &03 52
OS_ReadC &04 139
OS_CLI &05 184
OS_Byte &06 13
OS_ Word &07 13
OS_File &08 233
OS_Args &09 252
OS_BGet &OA 251
OS_BPut &OB 251
OS_GBPB &OC 244
OS_Find &OD 242
OS_ReadLine &OE 141
OS_Comrol &OF 336
OS_GetEnv &10 338
OS_Exit &1 1 335
OS_SetEnv &12 339
OS_IntOn &13 35
OS_IntOff &14 35
OS_Cal!Back &15 340
OS_EnterOS &16 35
OS_BreakPt &17 341
OS_BreakCtrl &18 342
OS_UnusedSWI &19 342
OS_UpdateMEMC &lA 330
OS_SetCallBack &1B 341
OS_Mouse &lC 134
OS_Heap &10 326
OS_Module &1E 358
OS_Claim &lF 17
OS_Release &20 18

641

SWI name Number Page

OS _Read Unsigned &21 403
OS_GenerateEvent &22 37
OS_ReadVarVal &23 346
OS_SetVarVal &24 347
OS_GSinit &25 411
OS_GSRead &26 412
OS_GSTrans &27 414
OS_BinaryToDecimal &28 407
OS_FSControl &29 294
OS_ChangeDynamicArea &2A 331
OS_GenerateError &2B 11
OS_ReadEscapeState &2C 174
OS_EvaluateExpression &20 404
OS_SpriteOp &2E 422
OS_ReadPalette &2F 121
OS_ServiceCall &30 364
OS _ReadY du Variables &31 122
OS_ReadPoint &32 124
OS_UpCall &33 19
OS_CallA Vector &34 18
OS _ReadModeVariable &35 124
OS _RemoveCursors &36 126
OS _RestoreCursors &37 127
OS_SWINumberToString &38 410
OS_SWINumberFromString &39 410
OS_ ValidateAddress &3A 332
OS_CallAfter &3B 394
OS_CalLEvery &3C 395
OS _Remove TickerEvent &30 395
OS _InstallKey Handler &3E 174
OS_CheckModeValid &3F 127
OS_ChangeEnvironment &40 343
OS_ClaimScreenMemory &41 322
OS_ReadMonotonicTime &42 394
OS_SubstituteArgs &43 414

642

SWI name

OS _PretryPri nt
OS_Plot
OS_WriteN

OS_ ConvertStandardDateAndTime
OS_ ConvertOateAndTime

OS_ ConvertHex 1/2/4/6/8
OS_ConvertCardinal1/2/3/4
OS_ Convertlnteger 1/2/3/4
OS_ Convert Binary 1/2/3/4
OS_ ConvertSpacedCardinal1/2/3/4
OS_ ConvertSpacedl nteger 1/2/3/4

OS_ConvertfixedNetStation
OS_ ConvertNetStation

OS_Writel

~~PERATING SYSTEM
CALLS

Number Page

&44 52
&45 53
&46 53

&CO 400
&C1 401

&D0-&04 408
&05-&08 408
&09-&0C 408
&00-&EO 408
&E1-&E4 409
&E5 -&E8 409

&E9 409
&EA 409

&100 53

643

NUMERIC INDEX OF OS_BYTE CALLS

OS_Byte Description Page

&00 (0) Display OS version information 48
&01 (1) Write user flag 48
&02 (2) Specify input stream 138

&03 (3) Specify output streams 54

&04 (4) Cursor key status 148
&05 (5) Write printer driver type 60
&06 (6) Write printer ignore character 62
&07 (7) Write RS423 receive rate 176
&08 (8) Write RS423 transmit rate 56
&09 (9) Write duration of first colour 104
&OA (10) Write duration of second colour 104
&OB (11) Write keyboard auto-repeat delay 149
&OC (12) Write keyboard auto-repeat rate 150
&OD (13) Disable event 36
&OE (14) Enable event 37
&OF (15) Flush buffer 44
&12 (18) Reset function keys 151
&13 (19) Wait for vertical sync (vsync) 105
&14 (20) Reset font definitions 106
&15 (21) Flush selected buffer 45
&19 (25) Reset group of font definitions 106
&6A (106) Select pointer/ activate mouse 128
&70 (112) Write VDU driver screen bank 107
&71 (113) Write display hardware screen bank 108
&72 (114) Write shadow/non-shadow state 108
&75 (117) Read VDU status 109
&76 (118) Reflect keyboard status in LEOs 151
&78 (120) Write keys pressed information 152
&79 (121) Keyboard scan 156
&7A (122) Keyboard scan from 16 decimal 156
&7C (124) Clear escape condition 157
&70 (125) Set escape condition 157
&7E (126) Acknowledge escape condition 157

644

OS_Byte

&7F (127)
&SO (12S)
&S1 (129)
&S6 (134)
&S7 (135)
&SA (13S)
&SB (139)
&SF (143)
&90 (144)
&91 (145)
&9S (152)
&99 (153)
&9C (156)
&AO (160)
&A1 (161)
&A2 (162)
&A3 (163)
&A5 (165)
&BO (176)
&Bl (177)
&B2 (178)
&B5 (181)
&B6 (182)
&BF (191}
&CO (192}
&C1 (193)
&CZ (194)
&C3 (195}
&C4 (196)
&C5 (197)
&C6 (198)
&C7 (199)
&C8 (ZOO)
&C9 (201)
&CA (202)

. PERATING SYSTEM
CALLS

Description

Check for end of file
Get buffer/mouse status
Scan a for a particular key
Read text cursor position
Read character at text cursor and screen mode
Insert character code into buffer
Write filing system options
Issue module service call
Set vertical screen shift and interlace
Get character from buffer
Examine buffer status
Insert character into buffer
Read/write asynchronous communications state
Read YOU variable value
Read battery backed RAM
Write battery backed RAM
Read/write general graphics information
Read output cursor position
50Hz counter
Read input source
Read/write keyboard semaphore
Read/write RS423 input interpretation status
Read/write NOIGNORE state
Read/write R$423 busy flag
Read RS423 control byte
Read/write flash counter
Read duration of second colour
Read duration of first colour
Read/write keyboard auto-repeat delay
Read/write keyboard auto-repeat rate
Read/write *EXEC file handle
Read/write *SPOOL file handle
Read/write Break and Escape effect
Read/write keyboard disable flag
Read/write keyboard status byte

Page

231
45, 129

139, 15S
110
110
46

232
364
111
46
46
47

177
111
325
325
112
110
396
139
161
178
62

179
178
113
105
104
150
151
1S2
63

162
162
163

645

646

OS_Byte

&CB (203)
&CC (204)
&03 (211)
&04 (212)
&D5 (213)
&D6 (214)
&DB (216)
&09 (217)
&DA (218)
&DB (219)
&DC (220)
&DD (221)
&DE (222)
&DF (223)
&EO (224)
&E1 (225)
&E2 (226)
&E3 (227)
&E4 (228)
&E5 (229)
&E6 (230)
&EC (236)
&ED (237)
&EE (238)
&FO (240)
&Fl (241)
&F2 (242)
&F5 (245)
&F6 (246)
&F7 (247)
&FA (250)
&FB (251)
&FD (253)
&FE (254)
&FF (255)

Description

Read/write RS423 input buffer minimum space
Read/write RS4 23 ignore flag
Read/write bell channel
Read/write bell sound volume
Read/write bell frequency
Read/write bell duration
Read/write length of function key string
Read/write paged mode line count
Read/write bytes in VDU queue
Read/write Tab key code
Read/write escape character
Read/write interpretation of input values &CO - &CF
Read/write interpretation of input values &DO - &DF
Read/write interpretation of input values &EO- &EF
Read/write interpretation of input values &FO- &FF
Read/write function key interpretation
Read/write Shift function key interpretation
Read/write Ctrl function key interpretation
Read/write Ctrl Shift function key interpretation
Read/write Escape key statuS
Read/write escape effects
Read/write character destination statuS
Read/write cursor key statuS
Read/write numeric keypad interpretation
Read country flag
Read/write user flag
Read RS423 baud rates
Read printer driver type

Read/write printer ignore character
Read/write Break key actions
Read VDU driver screen bank number
Read display screen bank number
Read last break type
Set effect of Shift Ctrl on numeric keypad
Read/write boot option

Page

180
180
114
114
114
115
164
115
115
164
165
165
165
165
165
167
167
167
167
169
169
55

149
170
49
48

180
61
62

172
107
108
172
173
232


~~~PERATINGSYSTEM 
CALLS 

NUMERIC INDEX OF OS_ WORD CALLS 

OS_ Word 

&00 (0) 
&01 (1) 
&02 (2) 
&03 (3) 
&04 (4) 
&09 (9) 
&OA (10) 
&OB (11) 
&OC (12) 
&OD (13) 
&OE (14) 
&OF (15) 
&15 (21) 
&16 (22) 

Description 

Read line from input stream to memory 
Read system clock 
Write system clock 
Read interval timer 
Write interval timer 
Read pixel logical colour 
Read a character definition 
Read the palette 
Write the palette 
Read current and last graphics cursors 
Read CMOS clock 
Write CMOS clock 
Define pointer and mouse parameters 
Write screen base address 

Page 

142 
391 
392 
392 
393 
116 
117 
118 
118 
119 
396 
398 
130 
119 

647 



648 



ADFS 209 
ADFS error messages 2 77 
ADFS intrinsic commands 266 
ADFS SWI calls 

perform a miscellaneous disc 
operation 2 72 

read free space 2 77 
set address of hard disc controller etc. 

276 
ADFS_DiscOp 272 
ADFS_Drives 277 
ADFS_Fre<:Space 277 
ADFS_HDC 276 
advanced disc filing system 263 
aliases 186 
anti-aliasing palette 509 
application, leaving 334 
ArgsV 24 
argument passing in external procedures 

626 
arithmetic instructions 604 
ARM assembler 595 
ARM instruction set 603 
ARM procedure-call standard 623 
Arthur OS 3 
ASCII to binary conversions 403 
assembler 595 
assembly language statements, format 

600 
auto-repeat 14 7 

banks 67 
BASIC assembler 595 
battery-backed RAM 325 
BGetV 24 
Binary to ASCII conversion SWls 407 
binary to ASCII conversions 407 

BPutV 24 
branching instructions 607 
buffer OS_Byte calls 

examine buffer status 46 
flush buffer 44 
flush selected buffer 45 
get buffer/mouse status 45 
get character from buffer 46 
insert character code into buffer 46 
insert character into buffer 4 7 

buffer codes, interpreting 144 
buffer numbers and sizes 43 
buffers 42 
ByteV 23 

ChangeEnvironmentV 29 
character output routines 

perform a plot command 53 
print a formatted string 52 
write a counted string 53 
write an immediate byte 53 
write an in-line string 51 
write an indirect string 51 
write character 51 
write newline 52 

character input event 38 
character output 51 
chunk numbers 7 
CLI183 
CLI parameters, reading 207 
CliV 23 
clock/calendar 396 
C MOSRAM322 
CnpV 26 
co-ordinate units 506 
command keyword table 381 
command line interpreter 12, 183 



II 

comparisons 606 
condition codes 602 
control codes 69 
conventfons 1 
country flag, read 49 
cursor editing 68 

date 391 
date stamping 213 
debugger • commands 567 
debugger 567,617 
Debugger_Disassemble 572 
defect list 274 
define pointer and mouse parameters 

130 
define font 507 
dialogue boxes 444 
directories 210 
disc specifiers 265 
Double Extended Precision (E) 574 
dragging boxes 445 

Econet585 
Econet conventions 589 
Econet event 40 
environment SWis 

read environment parameters 338 
set environment parameters 339 
set-up CallBack handler 340 
set/read handler addresses 336 

error handling, SWI 8 
error numbers 9 
errors, generating 11 
ErrorV 22 
escape condition 147 
escape condition event 39 

event OS_Bytes 
disable event 36 
enable event 3 7 

event dispatcher 550 
event queue 549 
events36 
EventV 25 
execution modes 351 
expression evaluator 405 

file types 113 
fileswitch 217 
FileV 24 
filing system 

interface calling conventions 297 
interface calls 298 
writing your own 293 

filing systems 209 
floating-point emulator 573 
floating-point instruction set 578 
floating-point status register 576 
font files 490, 513 
font manager 489 
font manager SWis 492 
font painter 490, 505 
Font_CacheAddress 493 
Font_ Caret 497 
Font_CharBBox 500 
Font_ConvemoOS 497 
Font_Converttopoints 498 
Font_CurrentFont 498 
Font_FindCaret 499 
Font_FindCaret) 504 
Font_FindFont 493 
Font_FutureFont 499 
Font_ListFonts 501 
Font_LoseFont 493 



Font_ Paint 496 
Font_ReadDefn 494 
Font_Readinfo 494 
Font_ReadScaleFactors 500 
Font_ReadThresholds 502 
Font_SetFont 498 
Font_SetFontColour 501 
Font_SetPalette 502 
Font_SetScaleFactors 500 
Font_SetThresholds 504 
Font_StringBBox 505 
Font_StringWidth 494 
fonts, accessing 491 
format of the heap 329 
FSCV 25 
FSEntry_Args 301 
FSEntry_Close 304 
FSEmry_File 305 
FSEntry_Func 309 
FSEntry_GetBytes 300 
FSEntry_Open 298 
function keys 145 
function-key codes 166 

GBPBV 24 

hardware vectors 30 
heap descriptor 329 
heap manager 325 
heap manager SWI call326 
help keyword table 381 

IEEE Double Precision (D) 574 
IEEE Single Precision (S) 574 
inputbufferevent38 
input routines 139 

read character 139 

read key with time limit 139 
read line from input stream to 

memory 141, 142 
input stream OS_Bytes 

read input source 139 
specify input stream 138 

input streams 13 7 
instruction set 603 
InsV 25 
interrupts 31 
interrupts 

devices handled under 3 
disabling 35 
intercepting 32 

interval timer event 39 
IrqV 23 

key up/down event 41 
keyboard input 443 
keyboard interrupts 143 
keyboard OS_Byte calls 

aclcnowledge escape condition 157 
clear escape condition 157 
cursor key status 148 
keyboard scan 156 
keyboard scan from 16 decimal156 
read last break type 172 
read/write Break and Escape effect 

162 
read/write Break key actions 172 
read/write Ctrl function key 

interpretation 167 
read/write Ctrl Shift function key 

int~rpretation 167 
read/write cursor key status 149 
read/write escape character 165 
read/write escape effects 169 

III 



IV 

read/write Escape key status 169 
read/write function key interpretation 

167 
read/write interpretation of input 

values &CO- &CF 165 
read/write interpretation of input 

values &DO- &DF 165 
read/write interpretation of input 

values &EO- &EF 165 
read/write interpretation of input 

values &FO - &FF 165 
read/write keyboard auto-repeat delay 

150 
read/write keyboard auto-repeat rate 

151 
read/write keyboard disable flag 162 
read/write keyboard semaphore 161 
read/write keyboard status byte 163 
read/write length of function key 

string 164 
read/write numeric keypad 

interpretation 170 
read/write Shift function key 

interpretation 167 
read/write Tab key code 164 
reflect keyboard status in LEOs 151 
reset function keys 151 
scan a for a particular key 158 
set effect of Shift Ctrl on numeric 

keypad 173 
set escape condition 157 
write keyboard auto-repeat delay 149 
write keyboard auto-repeat rate 150 
write keys pressed information 152 

keyboard scanning 146 
keyboard SWI calls 174 

layout of windows 439 
Level 1 sound channel handler 531 
Level 2 sound scheduler 534 
line input 140 
linker 613 
linker keywords 616 
linker symbols 615 
load/save instructions 608 
logical instructions 604 
logical memory map 318 
logical RAM 31 7 

memory management 31 7 
memory protection 320 
memory SWis 330 
metrics files format 513 
miscellaneous OS_Byte calls 

display OS version information 48 
read country flag 49 
read/write user flag 48 
write user flag 48 

modes, screen 65 
module * commands 356 
module code, errors in 365 
module header format 366 
module help string 380 
module SWI calls 

issue module service call 364 
perform a module operation 358 

module title string 380 
module workspace 365 
module, writing 365 
modules355 
mouse and pointer 128 
mouse button event 40 
mouse buttons 443 



mouse/pointer OS_Byte calls 
get buffer/mouse status 129 
select pointer/ activate mouse 128 

mouse/pointer OS_ Word call 
define pointer and mouse parameters 

130 
MouseY (&lA) 28 
multiply instructions 607 

NetFS 209 
NetFS intrinsic commands 283 
netprint 290 
network ftling system 283 
network filing system 

configuration 285 
interfaces 286 

network printing 290 
non-volatile memory 322 
Num Lock, effect of 1 71 
number conversions 403 
number conversions, SWI 409 

OpenV 24 
operating system commands 189 
operating-system variable calls 

read a variable's value 346 
set/create a variable 34 7 

operating-system variables 345 
OPT assembler directive 599 
OS filing system commands 217 
OS filing system SWI calls 

check for end of file 231 
filing system control 254 
open or close a file for byte access 242 
perform action on whole file 233 
read or write arguments for an open 

file 252 

read single byte from an open file 251 
read/write a group of bytes from/to an 

open file 244 
read/write boot option 232 
write filing system options 232 
write single byte to an open file 251 

OS table 187 
OS vectors 

1 ()()Hz pacemaker vector 29 
buffer insert vector 25 
buffer remove vector 25 
command line interpreter vector 23 
count/purge buffer vector 26 
error vector 22 
event vector 25 
file arguments read/write vector 24 
file byte block get/put vector 24 
file byte put vector 24 
file byte read vector 24 
file open vector 24 
file read/write vector 24 
filing system control vector 25 
mouse vector 28 
OS_Byte indirection vector 23 
OS_ Word indirection vector 24 
read character vector 23 
read line vector 25 
unknown interrupt vector 23 
unknown SWI vector 2 7 
unknown VDU 25 vector 2 7 
unknown VDU23 vector 27 
VDU extension vector 28 
warning of change in environment 29 
warning vector 29 
write character vector 23 

OS version information, display 48 
OS_Args 252 

v 



VI 

OS_BGet 251 
OS_BinaryToDecimal407 
OS_BPut 251 
OS_BreakCtrl 342 
OS_BreakPt 341 
OS_Byte 13 
OS_Bytc calls 

buffers 44 
index of643 
mouse/pointer 128 
RS423 176 
YOU 104 

OS_CallAfter 394 
OS_CallAVector 18 
OS_ CallBack 340 
OS_CallEvery 395 
OS_ChangeDynamicArea 331 
OS_ ChangeEnvironment 343 
OS_OleckModeValid 127 
OS_Claim 17 
OS_ClaimScreenMemory 127,322 
OS_CLI184 
OS_Control336 
OS_ConvertDateAndTime 401 
OS_ConvertStandardDateAndTime 400 
OS_EvaluateExpression 404 
OS_Exit335 
OS_File 233 
OS_Find242 
OS_FSControl 294 
OS_FSControl 254 
OS_GBPB244 
OS_GenerateError 11 
OS_GenerateEvent 37 
OS_GetEnv 338 
OS_GSinit 411 
OS_GSRead 412 

OS_GSTrans 414 
OS_Heap326 
OS_InstallKeyHandler 1 74 
OS_Module 358 
OS_Mouse 134 
OS_NcwLine 52 
OS_Plot53 
OS_prettyPrint 52 
OS_ReadC 139 
OS_ReadEscapeState 174 
OS_ReadLine 141 
OS_ReadModeVariable 124 
OS_ReadMonotonicTime 394 
OS_ReadPalette 121 
OS_ReadPoint 124 
OS_ReadUnsigned 403 
OS_ReadYarYal346 
OS_ReadYduVariables 122 
OS_Release 18 
OS_RemoveCursors 126 
OS_RemoveTickerEvent 395 
OS_RestoreCursors 12 7 
OS_ServiceCall364 
OS_SetCallBack 341 
OS_SetEnv 339 
OS_SetYarYal347 
OS_SetYarVal errors 350 
OS_SpriteOp 422 
OS_SubstituteArgs 414 
OS_SWINumberFromString 410 
OS_SWINumberToString 410 
OS_UnusedSWI 342 
OS_UpCall19 
OS_UpdateMEMC 330 
OS_ YalidateAddress 332 
OS_ Word 13 



OS_ Word calls 
mouse/pointer 130 
index of646 
YOU 116 

OS_ WriteO 51 
OS_ WriteC 51 
OS_ WriteC, using 69 
OS_ Writel 53 
OS_ WriteN 53 
OS_ WriteS 51 
Output stream OS_Bytes 

read printer driver type 61 
read/write *SPOOL file handle 63 
read/write character destination status 

55 
read/write NO IGNORE state 62 
read/write printer ignore character 62 
specify output streams 54 
write printer driver type 60 
write printer ignore character 62 
write RS423 transmit rate 56 

output buffer event 38 
output streams 54 

Packed Decimal (P) 575 
palette 67 
panes 446 
pathname conventions 231 
pathnames 210 
pixel data, converting to screen 505 
pixel files format 514 
plot a sprite 422 
podule system manager 593 
pointer shape, changing 446 
pop· up menus 444 
printer ignore character 61 
printer stream 57 

procedure-call standard 623 
program environment 333 

RdchV 23 
ReadlineV 25 
redrawing windows 441 
registers 60 1 
registers, names for referring to 625 
RemV 25 
RS423 characters, interpretation of 175 
RS423 error event 39 
RS423 OS_Byte calls 

read I write asynchronous 
communications state 177 

read RS423 baud rates 180 
read RS423 control byte 178 
read/write RS423 busy flag 179 
read/write RS423 ignore flag 180 
read/write RS423 input buffer 

minimum space 180 
read/write RS423 input interpretation 

status 178 
write RS423 receive rate 176 

RS423 output stream 55 
RS423 port 174 

sample rate 528 
SCCB544 
screen memory 321 
screen RAM 67 
single-character prefixes 186 
software vectors 16 
Sound Voice Generators 520,522,550 
sound channel control block 544 
sound channel handler 535 
sound channel interface 521 
sound DMA buffer handler 521,523 

VII 



Vlll 

sound event 41 
sound event scheduler 522 
sound Level 0 • commands 524 
sound Level 0 SWl calls 

configure the sound system 525 
loudspeaker control 526 
set stereo image position 52 7 
sound system control 526 

sound Level 1 SWl calls 
attach a channel to a named voice 

generator 539 
attach channel to voice generator 539 
convert pitch to internal 

representation 541 
foreground (immediate) control of 

channel541, 542 
install voice generator 538 
internal audio logarithm scaling 541 
linear to audio logarithm 540 
read channel control data 543 
remove goice generator 538 
set the overall loudness 540 
set the sound system tuning 541 
write channel control data 543 

sound Level 2 SWl calls 
check free slots 54 7 
flush and initialise the event queue 

546 
reserved Level2 call547, 548 
schedule a sound event 546 
set the sound system tempo 548 
set/read the tempo beat counter 548 

sound Level 2 • commattds 535,545 
sound system 519 
sound system scheduler 545 
Sound_AttachNamedVoice 539 
Sound_ Configure 525 

Sound_Control541 
Sound_ControlPacked 542 
Sound_Enable 526 
Sound_lnstaliVoice 538 
Sound_LogScale 541 
Sound_Pitch 541 
Sound_QBeat 548 
Sound_QDispatch 548 
Sound_QFree 54 7 
Sound_Qlnit 546 
Sound_QRemove 54 7 
Sound_QSchedule 546 
Sound_QT empo 548 
Sound_ReadControlBiock 543 
Sound_RemoveVoice 538 
Sound_SoundLog540 
Sound_ Stereo 52 7 
Sound_ Tuning 541 
Sound_ Volume 540 
Sound_ WriteControlBlock 543 
SoundOlannels (Level 1) 521 
SoundChannels Level 1 control block 

543 
SoundDMA 521 
SoundScheduler (Level2) 522 
sprite* commands 418 
sprite area format 437 
sprite VDU commands 421 
sprites 417 
SpriteUtils module 417 
stack space, checking 184 
string scanning calls 

General String Translation 414 
string input 412 
string input initialisation 411 
substitute command line arguments 

414 



string scanning routines 411 
SWI calls 

ADFS 271 
environment 335 
mouse/pointer 134 
sprite 422 
debugger 572 
Econet585 
heap manager 326 
index of 641 
modules358 
OS filing system 231 
podule 593 
sound Level 0 525 
sound Level 1 538 
sound Level 2 546 
YOU 121 
window manager 448 

SWI chunk number 385 
SWidecodecode388 
SWI decode table 388 
SWI error handling 8 
SWI handler code 385 
SWI instruction 4, 611 
SWI number conversions 409 
SWI numbers 6 
SWI Sound_AttachVoice 539 
SWISound_Speaker526 
SWIV 27 

template files 447 
text and graphics 66 
text handling 443 
TickerV 29 
time391 

time and date OS_Byte calls 
50Hz counter 396 
read/write timer switch state 393 

time and date OS_ Word calls 
read CMOS clock 396 
read interval timer 392 
read system clock 391 
write CMOS clock 398 
write interval timer 393 
write system clock 392 

tool windows 446 
transfer function, setting 508 
transient programs 352 
two-key rollover 14 7 

UkPiotV 27 
UKYOU23Y27 
UpCaliV 29 
updating windows 442 
user event 40 
user flag, read/write 48 
user root directory 265 

YOU codes 
back space 7 3 
bell 73 
carriage return 74 
change display mode 82 
clear graphics window 75 
define graphics window 98 
define text window 102 
delete 103 
disable printer 71 
disable screen display 81 
enable printer 71 
enable screen output 72 
form feed/clear screen 74 

IX 



X 

general PLOT command 99 
home text cursor 103 
horizontal tab 73 
join cursors 72 
line feed 73 
miscellaneous commands 85 
next character to printer only 70 
no operation 102 
null operation 70 
page mode off 7 5 
page mode on 74 
position text cursor 103 
restore default colours 81 
restore default windows 102 
set graphics colour and action 76 
set graphics origin 102 
set palette 78 
set text colour 75 
split cursors 71 
vertical tab 7 4 

YOU control sequences 70 
YOU drivers 65 
YOU extension vector 134 
YOU OS_Byte calls 

read I write general graphics 
information 112 

read character at text cursor position 
and screen mode 110 

read display screen bank number 108 
read duration of first colour 104 
read duration of second colour 105 
read output cursor position 110 
read text cursor position 110 
read YOU driver screen bank number 

107 
read YOU status 109 
read YOU variable value 111 

read/write bell channel 114 
read/write bell duration 115 
read/write bell frequency 114 
read/write bell sound volume 114 
read/write bytes in YOU queue 115 
read/write flash counter 113 
read/write paged mode line count 115 
reset font definitions 106 
reset group of font definitions 106 
set vertical screen shift and interlace 

111 
wait for vertical sync ( vsync) 105 
write display hardware screen bank 

108 
write duration of first colour 104 
write duration of second colour 104 
write shadow/non-shadow state 108 
write YOU driver screen bank I 07 

YOU OS_ Word calls 
read a character definition 11 7 
read current and previous graphics 

cursor positions 119 
read pixel logical colour 116 
read the palette 118 
write screen base address 119 
write the palette 118 

YOU sequences 507 
YOU srream 56 
YOUXY28 
vector code, writing 20 
vector SWI calls 17 
vectors 21 
vectors and handlers 351 
vectors, hardware 30 
voice generator header block 551 
YSYNC timers 395 
Ysync event 39 



WIMP environment 439 
WIMP error messages 486 
Wimp_CloseDown 485 
Wimp_ Close Template 483 
Wimp_CloseWindow 455 
Wimp_Createicon 451 
Wimp_CreateMenu 4 79 
Wimp_CreateWindow 449 
Wimp_DecodeMenu 480 
Wimp_Deletelcon 454 
Wimp_DeleteWindow 454 
Wimp_DragBox 4 75 
Wimp_ForceRedraw 4 76 
Wimp_GetCaretPosition 4 78 
Wimp_Getlconinfo 4 72 
Wimp_GetPointerlnfo 474 
Wimp_GetRectangle 468 
Wimp_GetWindowlnfo 470 
Wimp_GetWindowState 469 
Wimp_lnitialise 448 
Wimp_LoadT emplate 484 
Wimp_ Open Template 483 
Wimp_OpenWindow 455 
Wimp_Poll 456 
Wimp_ProcessKey 485 
Wimp_RedrawWindow 466 
Wimp_SetCaretPosition 4 77 
Wimp_SetExtent 482 
Wimp_SetlconState 471 
Wimp_SetPointerShape 482 
Wimp_ Update Window 467 
Wimp_ Which Icon 481 
window manager 439 
WordY 24 
WrchV 23 

I in VDU sequence 70 

"'ACCESS217 
"'ADFS 265 
*APPEND218 
*AUD10524 
*BACK 267 
*BACKUP 267 
*BREAKCLR 567 
*BREAKLISf 568 
*BREAKSET 568 
*BUILD218 
*BYE 267, 283 
*CAT218 
*CDIR 219 
*CHANNEL VOICE 536 
*CLOSE219 
*COMPACT 268 
*CONFIGURE 189 
*CONFIGURE FS 285 
*CONFIGURE LIB 286 
*CONFIGURE SoundDefault 537 
*CONFIGURE SpriteSize 421 
*CONFIGURE PS 291 
*CONTINUE 568 
*COPY 219 
*CREATE 221 
*DEBUG 569 
*DELETE 221 
"'DIR 222 
*DISMOUNT 268 
*DRIVE269 
*DUMP222 
*ECHO 198 
*ENUMDIR 223 
*ERROR 198 
*EVAL 199 
*EX 223 
*EXEC223 

XI 



XII 

*EXEC file OS_Byte call 182 
*EXEC file OS_Byte calls 

read/write *EXEC file handle 182 
*EXEC input stream 181 
*FORMAT269 
*FREE 269 
*FREE 284 
*FS 284 
*FX 15, 199 
*GO 199 
*GOS 200 
*HELP 200 
*IF 201 
*IGNORE201 
*INFO 224 
*INITSTORE 569 
*KEY 201 
*LCAT224 
*LEX 224 
*LIB 224 
*LIST225 
*LOAD225 
*LOGON 284 
*MAP 270 
*MEMORY 569 
*MEMORY A 570 
*MEMORY! 571 
*MODULES 356 
*MOUNT 270,285 
*NAMEDISC 271 
*NAMEDISK 2 71 
*NODIR 271 
*NOLIB 271 
*NOURD271 
*OPT225 
*PASS 285 
*PRINT 226 

*PS 291 
*QSOUND546 
*QUIT 571 
*REMOVE227 
*RENAME227 
*RMCLEAR 356 
*RMKILL356 
*RMLOAD357 
*RMREINIT 357 
*RMRUN357 
*RMTIDY357 
*RUN 227 
*SAVE227 
*SCHOOSE418 
*SCOPY 418 
*SCREENLOAD 418 
*SCREEN SAVE 419 
*SDELETE 419 
*SET 202 
*SETEV AL 204 
*SETMACRO 204 
*SETPS 291 
*SETTYPE 228 
*SFLIPX 419 
*SFLIPY 419 
*SGET419 
*SHAOOW204 
*SHOW205 
*SHOWREGS 571 
*SHUT228 
*SHUTDOWN 228 
*SINFO 420 
*SLIST 420 
*SLOAD420 
*SMERGE420 
*SNEW420 
*SOUND537 



*SPEAKER 524 
*SPOOL 229 
*SPOOL stream 63 
*SPOOLON 129 
*SRENAME 411 
*SSAVE411 
*STAMP129 
*STATUS 205 
*STATUS FS 286 
*STATUS LIB 286 
*STATUS PS 191 
*STERE0514 
*TEMP0545 

*TIME106 
*TITLE 171 
*TUNING537 
*TV206 
*TYPE 229 
*UNPLUG358 
*UNSET206 
*UP 230 
*URD 212 
*VERIFY 172 
*VOICES536 
*VOLUME536 
*WIPE130 

X Ill 



• 

XIV 








