
Desldop Tools

Acornl

Desktop Tools

Acornl

ii

------· . - -- ----·--
Copyright© 1994 Acorn Computers Limited. All rights reserved.

Published by Acorn Computers Technical Publications Department

--·

No part of this publication may be reproduced or transmitted. in any form or by
any means, electron ic. mechanical. photocopying. recording or otherwise. or
stored in any retrieval system of any nature. without the written permission of the
copyright holder and the publisher. application for which shall be made to the
publisher.

The product described in this manual is not intended for use as a critical
component in life support devices or any system in which failure could be expected
to resul t in personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product
and its use (including the information and particu lars in th is manual) are given by
Acorn Computers Limited in good faith. However. Acorn Computers Limited
cannot accept any liability for any loss or damage arising from the use of any
information or particu lars in this manual.

If you have any comments on this manual. please complete the form at the back of
the manual and send it to the address given there

Acorn supplies its products through an international distribution network. Your
supplier is available to help resolve any queries you might have.

ACORN. the ACORN logo, ARCHIMEDES and ECONET are trademarks of Acorn
Computers Limited.

UNIX is a trademark of X/Open Company Ltd .

All other trademarks are acknowledged.

Published by Acorn Computers Limited
ISBN l 85250 l 64 2
Part number 0484,230
Issue I. December 1994

Contents

Introduction 1
About this manual 2

Conventions used 3

Part 1 - Getting started 5

Installing Acorn C/C++ 7
Hardware requirement 7

The Install application 7

Running the Installer application 8

Environment variables and Acorn CIC++ II

Working with desktop tools 13
Desktop tools I 3

Working styles 15

Where to go from here 16

Part 2 - Interactive tools 17

Desktop debugging tool 19
Overview 19

About debuggers 20

Preparing your program 21

Starting a debugging session 2'3

Specifying program objects 26

Execution control 33

Program examination and modification 40

Options and other commands 45

An example debugging session 49

Make 57
Invoking Make 57

Using Make 58

Makefile format 67

Programmer interface 68

iii

Contents

iv

SrcEdit 71
Starting SrcEdit 71
SrcEdit menus 72
Printing a SrcEdit file 85
Laying out tables- the Tab key 86
Reading in text from another file 87
Bracket Matching 87
Throwback 88
Saving Options 92
The SrcEdit icon bar menu 92
SrcEdit task windows 94
Some guidelines and suggestions for using task windows 95
Keystroke equivalents 96

Part 3 - Non-interactive tools 99

General features 1 01
The Application menu I 02
The Setup box I 03
Output 105

AMU 107
Starting AMU I 07
The Application menu I 09
Example output I 09
Command line mterface 110

DecAOF 111
The SetUp dialogue box Ill
The Application menu 112
Example output 113
Command line interface 113

Diff 115
The SetUp dialogue box I 15
The Application Menu 117
Exiimple output 117
Command line interface 118

Find 119
The SetUp dialogue box 119

The Application menu 124

Example output 124

Command line interface 125

LibFile 127
The SetUp dialogue box 127

Output 129

Command l ine interface 1 '31

Link 135
The SetUp dialogue box 135

Output 138

Possible errors during a link stage I 39

Libraries 139

Generating overla1d programs 140

Relocatable AIF images 143

Relocatable modules 144

Predcfi ned I i nker sym bois I 4 5

Command line interface 146

ObjSize 149
The SetUp dia logue box I 49

The Application menu 149

Example output 150

Command line interface 150

Squeeze 151
The SetUp dialogue box I 5 I

The Application menu I 52

Example output 152

Command line interface 152

Adding your own desktop tools 155
The FrontEnd module I 56

Producing a complete Wimp application 157

The DDEUtils module 169

SrcEdit 169

Make 169

Contents

v

Contents

vi

Appendices 171

Makefile syntax 173
Make and AMU 173
Makefi le basics 174
Makefile structu re 176
Advanced features 179
Makefiles constructed by Make 181
Miscellaneous features 183

FrontEnd protocols 185
StarCommands 185
EBNP Grammar of Description Format 185
WIMP Message returned afler a *FrontEnd_SetUp 190

DDEUtils 191
Filename prefixing SWis 191
Filename prefixing •commands 191
Long command line SWis 192
Throwback SWis 193
Throwback WIMP messages 195

SrcEdit file formats 197
Language File Format 197
Help File Formal 197

Code file formats 199
Terminology 199

Byte Sex or End ian-ness 200

Alignment 200

Undefined fields 200

AOF 201

Chunk file format 201

Object file format 202

ALF 218

Library file format 218

Object Code Libraries 221

AIF 222
Properties of AIF 222

The Layout of AIF 224

Zero-Initialisation Code 228

ASD 231

Order o f Debugging Data 231

Endian-ness and the Encoding of Debugging Data 232

Representation of Data Types 233

Representation of Source File Positions 234

Debugging Data Items in Detail 234

ARM procedure call standard 247
The purpose of APCS 247

The ARM Procedure Call Standard 249

APCS variants 257

C Language cal ling conventions 259

Some examples 266

The APCS in non-user ARM modes 268

Index 271

Contents

vii

viii

1 Introduction

A corn C/C++ provides a set of RISC OS desktop applications for programming

.M. These tools interact in ways designed to help your productivity and make the

desktop a high quality environment for creating RISC OS applications and

relocatable modules from compiled languages or assembler

The Tools dnectory is where the desktop tools reside

li'•IX4) J 1: SCSI. DHams.$ AcomC C++.Tool8 -r .. ~
'

!-! C++ c ~c @ ~ ~
1!.

!amu !ou •cc 'onhg !ddt •decaof ldiff

J) It {1 II ~ lh
!find 'lobfile 'hnk I Make '<Jbtasm 'obj~ze !ResEd

~ * I c c
t.. t

$.
•ResT est 1squeeze !SrcEdtt !toansi !topcc !J

With the exception ot the Desktop Debugging Tool (DDT). all these tools are

multitasking RISC OS applications DDT has to operate outside RISC OS in order

to stop it dead at any moment for breakpoints etc.. so 1s wmdowed but not

multitasking The desktop tools allow you to:

• edit program source and other text files

• sea rch and examine text files mechanically

• examine some types of binary file

• compile and link programs

• assemble assembly language programs

• construct relocatable modules

• construct programs efficiently under the control of makefiles. these being set

up from a simple desktop interface

• squeeze finished program images to occupy less disk space

• construct linkable libraries

• debug RISC OS dec;ktop applicattons interactively

• construct resource files for Toolbox applications.

The Acorn C compiler. C++ compiler and Assembler are described in the Acorn
Assembler and Acorn C!C++ manuals

1

About this manual

About this manual

2

This volume is organised into four parts:

• Part I - Getting started

• Part 2- Interactive tools

• Part 3 Non-interactive tools

• Part 4- Appendices

Part 1- Getting started

This part of the manual describes how to install Acorn C/C++ and how to use the
desktop tools

The chapters are:

• In stalling Acorn CIC++

• Working witft desktop tools

Part 2 -Interactive tools

This has chapters covering each of the desktop tools which you use with constant
interaction as ·foreground' tasks. Each has its own distinctive icon and file type
They are the debugger. make and source text editor.

The chapters are:

• Desktop debugging tool

• Make

• SrcEdil

Part 3 - Non-interactive tools

This covers the less interactive desktop tools which all have similar interfaces for
setting options and running. some performing operations which can be controlled
by Make. The first chapter in this part covers the general features common to all
the non-interactive tools. The next eight chapters are ordered alphabetica lly and
each describes an individual tool. The last chapter describes how to add your own
desktop tools

The chapters are:

• Getreral features

e AMU

e DecAOF

e Diff

Introduction

• Find

• Lib File

• Litlk

• ObiSize

• Squeeze

• Adding your own desktop tools

Part 4- Appendices

This part of the manual gives technical details of the file formats and protocols

used in Acorn C/C++.

The appendices arc:

• Makefile synla~

• Frot1tEnd protocols

• DDEUiils

• SrcEdit file formats

• Code fi/1' formats

• ARM procedure call standard

Conventions used

Throughout this manual. a fixed-width font is used for text that the user shou ld
type. with an italic version representing classec; of item that would be replaced in
the command by actual objects of the appropriate type. For example

link options filenames

This means that you type 'link' exactly as shown. and replace ·options· and
'filenames· by specific examples.

A bold version of the same font is used for text that the computer responds with.

Hex integers are given in uppercase. and preceded by ox. e.g. OXFEl.

(Not preceded by&. as is the case with those of you more familiar with BBC Basic.)

3

4

Part 1 - Getting started

5

6

2 Installing Acorn C/C++

I nstalling Acorn C/C++ means setting up a sui table disc directory structure You

only need to perform this once to set up a suitable structure.

To use Acorn CIC++ you will need to instal l it. booting is performed automatically.

This chapter on ly describes installat ion. The chapter Working witf1 desktop tools
explains how to use the desktop tools.

Hardware requirement

The minimum specification of RISC OS system recommended for serious use of
Acorn CIC++ is a 4MB RAM machine with a hard disc drive.

A limited subset of features of Acorn C/C++ can be used on a 2MB RAM machine.
but its use is not recommended.

The Install application

Before insta l ling Acorn CIC++ on your machine with the Instal l appl ica tion. it is
wise to take a backup copy of each of the floppy discs supplied with the product.

Acorn C/C++ is supplied with six floppy discs. These are not intended for use other
than with the Install application.

7

Running the Installer application

Running the Installer application

8

Take the following steps to run the Install application

I Insert Disc I (labelled Installation Disc) in your drive and click Select on the
drive icon to open its root directory

2 Double-click on I Insta ller in the resulting directory d isplay

The Insta l ler appl ication then reads your current fi ling system and disc name. and
displays an options dialogue box·

Aoom C'C++ ins taler
De!.tinatiOO

• Drag the dwectory ICon to where you would bke

AoomC CH Acorn C C++ to be installed

Name §Oc C++l] Path I
()piiOOS

l7 Warn before overwrites

SCSI::DHarris $ Ac01nC C++

[7 Run Acorn C c ... Wltroductory demo

Cancel II Install I
'

This dialogue box allows you to specify the filing system and disc name to insta ll
to. and to set various options for the Insta llation arrangement

The Path field displays the default filtng system name and disc name forming the
destination for Installer to copy files to. It is initialised with the current filing
system and disc name. If you want to specify a different destination for
AcornC_C++. drag the directory icon to the required destination. Use the Name
writable field to specify a name other than AcornC_C++

Warn before overwrites ca uses Insta ller to display a warning message before it
overwrites existing files whose names are duplicated by new ones This gives you
the opportunity to halt the installation if you don't want an existing file
overwritten.

Run Acorn C/C++ introductory demo allows you to specify whether you want the
introductory demonstration appli cation to be run after Acorn C_C++ has been
installed. See overleaf for details of th is application

Cancel cancels the Install process

Install starts the installation process with the options <IS set.

Installing Acorn GIG++

Once you click on Install Lhe fol lowing box wi ll be displayed

!Systern Is about to be updated with the Acorn c. c .. moooles

Abort , r Conb"'!._]

From now on llnsta l ler will ask you to insert the installation discs as it installs the

new software When it .1sks for a new disc. or d isplays a warning message. the bar

showing installallon progress in the Complete field will change from green to red

lnstalhno

Progress
Complete lliiiiiiiiiiiiiiiii'"'""..,....,.....,.....,...,...,,...,...,,.,.,..,....,...,....,.-..,....,...,..---

1 Please 1nsert disc 2

Abort] I Contmue

Demonstration program

If you enabled the Run Acorn C/C++ Introductory demo opti on. the follow111g

window will be d1splayed after the installation is complete

About Acorn CIC++

Eft !
I •. ,1 I I I I

~----b ~, - ~·

- j

The demonstration toolbox program allows you to learn more about Acorn C/C++

by cl icking on various icons which open Lo display further information. The pointer

changes to a poin ter allached to an open book if you posit ion it over an icon tha l

can d isplay additi0nal information

9

Running the Installer application

10

AcornC _C++ directory structure

The following directory structu re is set up for you on your hard disc. IL is crealcd
if not present. or updated if it is already there

I Lib~ary J

-- l
Acornc_c;J ~ystemSpath> J t

r-- -=-I
Examplesl llibrarlesl [TOj's J

I
f Modu~ !Set Paths ~ocs amu -- . --r - r I C++

ail !Demo C++ lib !amu cc l~
alf !Hyper clib !C++ cfront 1310Suppo'!J I toolbo~
a of !MiniApp eventlib !cc cmhg 1
apes !Sort renderlib !cmhg debugaif icons BorderUtil ColourObox
asdtf !TboxCalc toolboxlib !ddt decaof icons22 DDEUtils ColourMenu
DrawFile AsmError wimplib !decaof diff ThreeT en ddt DCS_Quit

AsmHdrs !diff find DragAnObj Filelnfo
AsmHello !find libfile DragASprit FontDbox
AsmMacro !libfile link DrawFile FontMenu
AsmModule !link objasm FilterMgr Icon Bar
C++Error !Make objsize FrontEnd Menu
C++ Hello !objasm squeeze P1cker PnntDbox
CError !objsize toansi TinyStubs Proglnfo
CHello !Res Ed topcc SaveAs
CModule !ResT est Scale
CStatics !squeeze ToolBox
Dhrystone !SrcEd1t Window
Printlib !toansi
SaveAs !topcc
Sieve

t <SystemSpath> g1ves the location of your !System dnectory.

Installing Acorn C!C++

Environment variables and Acorn C/C++

Various Acorn C/C++ operations depend on the correct settings of environment

variables. If you carefully follow the instructions at the begining of this chapter for

Installing Acorn CIC++ they should be correctly set and you do not need the

following information These details arc summarised here as an aid for trackmg

down any problems you may have.

l:.ach desktop tool. when loaded. defines an environment variable of the sort

<toolname>$Dir The purpose of these variables is to allow each tool access to

its application directory, for example. to store options These are not likely to

become incorrectly set and cause problems. SrcEdit can be configured with

options from its desktop interface, and also from options variables. as described in

the chapter SrcEdit later in this manu<JI

Run$Path

Set by

Purpose.

Problems:

DDE$Path

Set by·

Purpose:

Problems.

C$Path

Set by:

Purpose:

User constructed ! Boot obey file.

This specifies a list of directory names which the system searches to

find and execute image files When the desktop non-interactive

tools are run, they execute command line tools from a library

directory.

If incorrectly set. command line tools may not be found and
non-Interactive tools fail to run.

The !Run and !Boot files of the !SetPaths application (set up by
! lnsl<JIIer)

This is set to the name of the directory conta ining the desktop lools.

and is used by Make to start tool interfaces for setting Tool options

If DDESPath is unset. the Make Tool options facility fails with an

error mentioning DOE :

The !Run and !Boot files of the !SetPaths application (set up by

!Installer)

This specifies a list of directory names for the C compiler to search

for libraries and their headers

11

•• --- • --- M IW ww -·

12

3

Desktop tools

Working with desktop tools

This chapter provides an overview of the most productive way to work with the

desktop tools to produce your programs. The chapter Installing Acom CIC++

describes how to prepare you r working environment.

Acorn C!C++ includes the following tools

• DDT - A windowed debugger for debugging any executable image file,

including the !Runlmage file of a RISC OS application. DDT presents a

windowed interface with RISC OS style controls

Note that as DDT has to be capable of stopping RISC OS dead at any point in a

program, for breakpoints, single stepping. etc. it cannot multitask under the

RISC OS desktop.

• Make - A desktop application for constructing programs under the

management of ·recipes· stored in Makefiles Various types of Makefile can be

rapidly constructed using the desktop controls of Make, as well as being

executed. This facility for constructing Makefiles is known as 'project

management' on some programming systems for other types of computer.

• SrcEdit - A text editor derived from Edit with many features for constructing

program sources and other text files

• AMU - A compact alternative to Make for using. but not constructing.

Makefi les.

• DecAOF- A utility for examining AOF files output by language compilers or

assemblers

• Dlff - A text file comparison tool

• Find - A tool for finding text patterns in the names or contents of sets of files.

• Link - A tool for constructing usable relocatable modules, program files. etc ..

from object files produced by language compilers and assemblers.

• Lib File - A utility for constructing linkable library files storing general purpose

routines for re-use in more than one program.

• ObjSize- A util ity to measure object fi le size.

• Squeeze - A tool which compactc; finished program images so that they

occupy much less disc space and load faster

13

Desktop tools

14

- ••• ---·--·--·*'*
Each of the tools listed above IS described in more detall1n its own chapter later in
this volume. The language specific tools are described in the language user guides
accompC:Jnying th is manua l.

As well as performing individual tasks. several of the desktop tools cooperate in
ways designed to enhance your productivi ty An example of this is 1f1rowback When
a language compiler or assembler detects an error in a program source file, iL can
ca use throwback- opening a SrcF.dit window for immed iate correction of the
offending program line Another example of cooperation is the abll1ty to drag an
output file from one desktop tool to the input of another appropriate desktop tool.

Interactive and non-interactive tools

The desktop tools are divided into two categories- interactive and non-interactive
The non-Interactive tools are those that have options set and then are run, without
any further interaction with you until the task completes or is haiLed The
interactive tools are those that operate with constant interaction with you. such as
the source editor SrcEdit

In the list of tools above. the first three [DDT, Make and SrcEdit) are interactive
tools, and the rest are all non-interact ive. The chapters describing each tool are
organised into parts of this manual describing each category of tool The
non-interactive tools all have s1mllar user interfaces. and the features common to
al l of them are described in the chapter General features on page I 0 I .

Entering filenames

Many of the desktop tools require you to specify file or directory names. The
interactive tools each have file types that they 'own' . which you can double cl ick on
in directory displays to start activities. These are·

• DebugAIF - execution of one starts a DDT session Files of th1s type are
displayed in directory displays with the icon:

• MakeHie - double cl icking on one loads it into Make (and may sta rt a Make
job) Files of the type Makefi lc are displayed in directory displays with the icon

• Text double clicking on one starts a SrcEdit edit

Working styles

Working with desktop tools

None of the non-interactive desktop tools own a file type. Input files are specified
to these tools by dragging them to their icon bar icons from a directory display or
by typing their names into a writable icon in a dialogue box or menu field When

typing filenames into a writable icon, enter absolute filenames such as·

adfs :: dharris.$.AcornC_C++.Examples . !TboxCalc.o.Main

To reduce the amount of typing required. any writable icon on a dialogue box that
accepts a filename or directory name can be set by dragging a filename from a
directory display to it For example. dragging a filename from a directory display to

the files writable icon on the Link SetUp dialogue box adds it to the list of input
files already specified

IT.: I :"': 1 L1nker

Files § .$.AcornC_C++.Examples.ITBoxCalc.o.Main!l

OpUons
(i AIF

J Module

...) Relocatabll' AtF _j Debug

..) Btnary ,) AOf _j Vemose

_Ca~el J I Run

Many program source files and Makefiles contain filenames. for example tn an
assembler program line such as:

GET ".h.SWINames

RISC OS provides only one current directory, but many tasks (such as assembly

processes) can be multitasking, running at the same time. Thus the concept o f work
directory is used in Acorn CJC++. This can be considered rather like a current
directory for each task, and file searching is performed relative to this See the
sect ion on each tool to see the way the work directory is set and used by that tool.
Most of the simpler tools do not require a work directory.

The desktop tools support two main styles o f working- managed and urrmarraged

development. These differ only in the way you construct your finished programs
from sources. not the way you write or debug them. and you can mix and match the
two styles as you wish.

Managed development makes use of Makefiles to manage the construction of your
finished programs A Makefile is a ·recipe for processing your sources and linking

the object files produced to form the usable program. The tools Make and AMU can
both execute the commands in a Makefile running other tools to perform a make
job The tool Make also constructs Makefiles for you. avoiding the need for you to

15

Where to go from here

understand their syntax. and making it quick and easy to do this The main
advantages of managed development are. timestamps of files arc examined dunng
a make job and no unnecessary reprocessing of unaltered program sources is
performed programs are constructed consistently. following the same recipe eilch
time. even when run by different people These advantages make managed
development the best style for the development of larger programs with source
split into severa l source files

Unmanaged development makes use of each individual tool directly to process the
files as required to construct your programs. This can offer the quickest way of
constructing small programs.

When Booting for unmanaged development you have to load each tool that you
wish to use. but when Booting for managed development you only need to load
Make (or AMU).

When working in either style. it is recommended you place each program project in
a separate subdirectory. in the same way that the program examples are arranged
You can place the source. header and object files in su1table subdirectories of the
project directory. See the accompanying language specific manuals for more
details of subdi rectory conventions Source may be placed elsewhere. but this cr1n
make it more difficult to rename or move whole projects to other directories or
filing systems.

Where to go from here

16

If you have studied th1s chapter 111 detail you now understand how to construct a
simple runnable program from text sources You may now wish to load various
desktop tools and experiment with lhei ruse. and there are further chapters that
may provide useful general information

Fach desktop tool. such as the text editor SrcCdit and debugger DDT. has a chapter
describing it. either in this user guide or in one of the accompanying manuals If
you intend to make much use ot any particu lar tool. its chapter may prove useful
reading next

A large number of the desktop tools are classified as ·non-interactive·. and have
similar interfaces. The chapter G(•m•ral {eaturt>s on page 101 covers the interface
features of this class of tool

Part 2 - Interactive tools

17

18

4

Overview

Desktop debugging tool

This chapter describes the desktop debugging tool (DDT). DDT is an interactive
aid to debugging desktop or non-desktop programs written in compiled

languages such as C. Pascal or Fortran DDT can also be used to debug programs

written in ARM assembler using ObjAsm It can be used on any of the Archimedes

range of computers running RISC OS 2 00 or later.

Although DDT can be used to debug desktop programs. and provides a windowed

interface. it is no t a true multitasking desktop program. This is beca use DDT has to

be able to halt the RISC OS desktop at any point for single stepping. breakpoints

etc This means that its interaction with other RISC OS applications is limited in

certain ways

• When the debugger is active (i.e. when a program is halted under control of the
debugger) all other tasks are halted until execution of the program is resumed

Note: You can always tell when the debugger is active. because the pointer will
change to a No Entry sign if you move it outside the debugger's windows.

• On ly one application may be running under the debugger at any given time

The windowed interface of DDT is designed to be easily understood by RISC OS

desktop users. and to facilitate this it duplicates many RISC OS features However.

it uses visua l detai ls such as unusual colours to act as reminders that it is not
operating as a true desktop multitasking program.

Topics covered in this chapter
• the section About debuggers introduces the concept of debuggers in general and

describes the facilities provided by DDT.

• the section Preparing your program describes how to prepare your program for
use with DDT

• the section Starling a debugging session describes how to invoke the debugger on
your program

19

About debuggers

• section Specifying program objects describes the way in which various objects in
the program you are debugging. such as variable names. procedure names and
line numbers are specified

• section Execution control describes how to contro l execution of a program
running under the debugger.

• section Program examinatior1 and modification describes the debugger's facilities
for displaying various objects in the program being debugged and the facilities
for changing varidble. register and memory contents.

• section Options and otlier commands describes the options in the options
dia logue box and other commands which are not covered by any of the
previous topics

About debuggers

20

This section is aimed mainly at readers who haven't used a program debugger of
any sort before However. others may find it useful reading. as it introduces some
of the facilities provided by DDT

Anyone who has written a program more than about ten lines long has had
recourse to debugging techniques· the tracking down and remova l of errors. The
form this takes depends on many things, not least the language in which the
program is written

Some languages provide primitive debugging facilities of their own. For example
ANSI C provides the assert macro wh ich can be used to ensure a condition is
true. as in the following example·

assert(i >= 0); I* Ensure following loop is finite*/
while (i--) { ... }

Some language implementations provide additional debugging faci li ties. A
description of the debugging facili ties provided by Acorn's release of ANSI C may
be found in the accompanying Acorn CIC++ manual

Ohen. however. it 1s left to the programmer to plant trace information in the
program itself For example you might trace the va lue of the index variable in a
while loop as follows:

while (i--) { fprintf (tracefile, "i = %d\n"); . . . }

Such additions to the program can be useful. but are tedious to use in compiled
langudges. because every time you want to change the debugging statements. the
program has to be recompiled. There is also the possibi lity that the debugging
statements themselves have undesirable side-effects which contribute to the
ill-health of the program

Desktop debugging tool

Planting trace information in assembly language programs is more dirficult. ror
example, displaying the contents of all ARM registers is a non-trivial code fragment
in ARM assembler.

A debugger enables you to execute your program in a controlled environment
where you can stop execution. examine and aiLer variables. set breakpoints, single
step through a program and ·watch' particular variables for changes

DDT provides the following debugging facilities

• Start program execution and continue after program execution has been

stopped

• Single step program execution. by source statement or ARM instruction

• Stop program execution at a specified program location

• Stop program execution when a specifi ed variable changes its value

• Stop program execution at any t ime on request

• Trace program execution continuously

• Trace procedure calls

• Trace changes to a specified variable or memory location

• Display source text. symbolic disassembly, variables. registers. memory
contents and stack backtrace information

• Alter variable va lues. register contents or memory contents

• ProLecL sensit ive areas of memory against being accidentally overwriltcn by
your program.

Preparing your program

This section describes how to prepare your program for use with DDT DDT uses

special information in the program being debugged. which provides DDT with
information about the source code that generated the program This information is
not automatically included in the output of the compi ler. This is mainly for reasons
of efficiency: programs which contain debugging information are larger. take longer
to compile, and run more slowly than those with no debugging information.

Compiling

You enable the generation of debugging information with the Debug option on the
compiler SetUp menu If you are using the compiler from the command line use
the -g flag to enable debugging information with the Acorn ANSI C complier
(other compliers may use different flags, though -g is common across a wide

range of compilers

21

Preparing your program

22

Because each module of a program can be compiled with its own debugging
information. you need only specify debugging for suspect modules Well-proven
modules in which you have complete faith can be compiled with no debugging
information. whereas newer. less rel iable code can have debugging information
enabled.

Turning on debugging inhibits optimisation. and reduces the speed of execution of
your program even when you are not debugging it This of course does not matter
when you are using the debugger. but for maximum speed. programs should be
compi led without debugging in formation. especial ly for production bui lds.

Note that if you are using an automated program construction tool. such as the
Make utility, you may have to delete the object files of the modules you wish to
compile with debugging informatiOn when you enable the Debug option. Th1s IS
because the modules are not recompiled until the object files are either absent. or
out of date with respect to the source files. so you must delete the object files to
force recompilation.

Linking

When linking a program to be debugged. you must instruct the linker to include the
debugging information generated by the compiler To do this. enable the Debug
option on the link menu. or. if you are using the linker from the command line. by
usmg the -debug flag

If you are using Acorn's ANSI C compiler to perform the link stage (i.e. without the
Compile only option enabled on the compiler menu. or without the -c flag from
the command line) the compi ler will automatica lly instruct the linker to include
debugging information if the compiler's debugging option is enabled

The linker also generates its own debugging information. This debugging
information is used by DDT to provide low-level or symbolic debugging facilities If
you do not wish to use source level debugging faci li ties. you can enable the Debug
option on the linker without enabling the Debug option on the compiler.

Note that !Runlmage files compiled or assembled and then linked with Debug
enabled are much larger than those produced without debug information. This
may require an increase in the WimpSiot size specified in your !Run fi le. otherwise
the following error may be produced at run time:

No writable memory at this address

If you are writing in assembler using ObjAsm you may wish to use the KEEP
directive. which instructs the assembler to keep information about local symbols
in the symbol table. These will be included in the program when linked with
debugging enabled

Desktop debugging tool

You might like to try preparing the following small program for use with the
debugger. using the methods described above.

1 #include <stdio . h>
2
3 int main(void)
4 {

5 int world;
6
7 for (wor l d = 0 · world < 100; world++) ,
8 printf("Hello, World %d\n", world);
9 return 0;

10 }

Starting a debugging session

You can start a debugging session in one o f the following ways

• Double click on the 1 DDT application. This will place the debugger's icon on
the icon bar Then drag the program to be debugged to the debugger's icon
You can drag either a program image or an application directory If you drag an
application directory. the program image within that directory must be called
ei ther ! Run or ! Runimage.

• Choose Debug from the debugger application menu. This will produce a
dia logue box with two wri table icons. one for the name of the application to be
debugged. the second for any arguments the application may take. You can
specify the program name by dragging an application to the writable icon.
When the writable icons have been filled. clicking the OK button wil l invoke
the debugger

• Enter the following •command:

*DebugAIF program {arguments}
where program is the name of the program to be debugged. and
arguments are any command line arguments that program may take You
can enter this command from the supervisor prompt (outside the desktop).
from the Shell CLl prompt (obtained by choosing the •commands option on
the Task Manager menu) or from a task window CLI prompt.

Try invoking the debugger on the sample program shown at the end of the last
section.

23

Startmg a debugging session

24

Once you have started a debugging ~ess ion in one of the above ways. two debugger
windows will be d isplayed as follows

DDT: SCSI: :DHarris.S.AcornC C++.Exal!flles. !Hypet·. !HyperUtPII

; l8tllccS4

The upper window is the ConiPxl window. The title bar contains the name of the
program being debugged. The Context window displays the source text or symbol ic
disassembly a~sociated with the current Context or PC location.

When you start a debugging session. the Context window Initially displays a
symbolic disassembly. like that shown above. This is a disassembly of the run-time
system initialisation code. The arrow symbol(-) to the left of the window shows
the current PC localion. The debugger does not display your source code at this
stage because the program has no l sta rted executing your code, it sti ll ha<; to
execute the initialisation code. Once execution reaches your code (i e the first
instruction of main) your source code will be displayed

The lower window is the Status window. The title bar contains the current status of
the program being debugged. The Status window d1splays error and informational
messages. in addition to any data displayed by the debugger's display. trace and
watchpoint facilities. The Status display scrolls when any new information is
d isp layed. You can use the scroll bar to examine earlier contents of the st<Jtus
display.

Some messages that may appear m the Status window at th1s stage are

No debugging information available

This means that you are debugging d program which has not been linked with
debugging information. No source- level or symbolic debugging facilities arc
available, and debugging is limite<"! to machine-level debugging (i e. everything

Desktop debugging tool

must be specified in terms of machine addresses). If you have forgotten to link the
program with debugging information you should quit the debugging session.
relink the program with debugging enabled and start the debugging session again.

No source level debugging information

This means that you are debugging a program which has been compiled without
debugging enabled. No source-level debugging facilities are available. symbolic
debugging facilities are available (i .e. objects can be specified in terms of link time
symbols) . If you have forgotten to compile the program with debugging
information, qu1t the debugging sess1on and recompile the program with

debugging enabled.

RO area limit not on page boundary, last page not protected

This message occurs when memory protection is enabled (as it is by default) and
the last part of the code or read only area is not page aligned. This means that the

last page of the read only area cannot be protected against accidental writes. since
writing to data. or a read/write area which immediately follows the code area.
would cause an erroneous data abort. You can ignore this message. Future
versions of the linker may align the areas on page boundaries when linking with
debugging enabled.

Can't set breakpoint on procedure main

When a debugging session is started the debugger automatically tries to set a
breakpoint on main if the Stop at entry option is enabled (as it is by default) . If the
address of main cannot be determined. because. for example, the module
containing the procedure main has not been compiled with debugging information

enabled. or. the program is not written in C. then the above message will be
displayed.

Try moving the pointer completely outside the debugger's windows The pointer
will change to a No Entry pointer. indicating that the debugger is active and you
cannot select anything outside the debugger's windows. Moving the pointer back
inside the debugger's windows changes it back to the usual arrow pointer

25

Specifying program objects

Clicking Menu on either debugger window produces the following menu:

ontinue
Single step "S
Call ¢
Return ¢
Breakpoint "B ¢
Natchpoint "W ¢
Trace ¢
Context
Display "0 ¢
Change ¢
log ¢
Find ¢
Options ¢
•CoMMands ¢
Help
Quit "Q

Continue, Single step. CaU, Return. Breakpoint and Watch point are explained in
the section Execution control on page 33

Trace, Context, Display and Change are explained in the section Program
examination and modification on page 40.

Log, Find. Options. Help. Quit and •commands are explained in the section
Options and other commands on page 45

Specifying program objects

26

Once the debugger is running. the program can be executed. single stepped. have
its variables examined or altered and so on. All of these facilities are described 10
the following sections. However, before you can use these facilities. you must know
how to refer to certain program objects. Variable names. line numbers. procedure
names and memory addresses all have a syntax which must be used if you are to
reference the desired object.

The following notation will be used in describing the syntax.

• An item in square brackets ([]) is an optional item which can be omitted if
desired.

• An item in braces ({} l is an optional item which can be repeated as many
Urnes as desired

• An item in italicised text is a non-terminal item. i .e. an item which must be
replaced by a suitable string of characters.

For example. an optional. comma-separated list of numbers would be denoted by

[number{,number}]

Desktop debugging tool

Procedure names

Procedure names are used. for example. when setting a breakpoint on entry to a
procedure. The syntax for a procedure name is:

[module:]{procedure:}procedure

where module is the name of a program module and procedure is a procedure
name within that module. Each procedure name in the list of procedure names

refers to a successive procedure in the textuc>: nesting of procedures The module
name is the leaf filename o f the compiled source file For example consider the
following program fragment stored in file pas. test.

program raytrace(input, output);
var count: integer; ...

procedure pixel(x, y : integer);
var colour : integer;
function reflect(x, y : integer; angle

integer;

begin (* body of reflect *) end;
begin (* body of pixel *) end;

begin (* body of raytrace *) end;

The full name for function reflect would be:

test : raytrace:pixel : reflect

real)

that is, procedure reflect contained in procedure pixel contained in
procedure raytrace (the debugger treats the entire Pascal program as one large
procedure) contained in module test (module names do not generally make
much sense for Pascal. since standard Pascal has no facilities for separate
compilation. but many Pascal implementations. including Acorn's ISO Pascal. have
extensions to al low separate compilation)

Note: Some Pasca l implementations on Acorn computers do not represent
procedure names in the manner described above. Instead. they generate a new
procedure name at the outermost level by concatenating enclosing procedure
names to the currenl procedure name separated by a dot Also. they do not
generate a pseudo-procedure for the whole program. Thus. with such an
implementation. the full name for function reflect would be

test:pixel.reflect.

You do not need to type the full name every time you wish to refer to a procedure:
Since the prefixed module name and procedure names are optional they can be
omitted. and the procedure referred to by its name alone (e.g. reflect or

27

Specifying program objects

28

pixel. reflect in the above example). Sometimes it will be necessary to enter
a longer version of the procedure if there are two or more procedures with the
same name.

Suppose in the above example there was a procedure:

test:raytrace:line:reflect

reflect on its own would be amb1guous. so you would have to enter
pixel: reflect or line : reflect to specify which one you meant. Note that
it is stil l not necessary to enter the test: raytrace prefix. since the line or
pixel prefixes are sufficient to render the procedure name unambiguous.

Similarly, suppose you had two C modules called quickdraw and slowdraw.
each containing a static function circle. In this case you would need to enter
either quickdraw: circle or slowdraw: circle to indicate which circle
function you were referring to.

Even if two procedures have the same name. it may not be necessary to enter more
than the procedure name on its own When looking at a procedure specification.
the debugger searches back along the dynamic call chain (ie. the chain of
procedures called to reach this point in the program) to find a procedure name
which matches the first name in the procedure specification . Having found this. it
matches the rest of the procedure specification against textually nested
procedures contained within the first procedure found.

For instance. in the above example with two reflect procedures. if the program
was stopped (at a breakpoint. perhaps) at some point in pixel: reflect. then
reflect on its own would refer to pixel : reflect, since on looking at the
dynamic call chain the debugger would find that it was in a procedure called
reflect. and would match that aga inst the procedure specification reflect

Variable names

Variable names are used, for example. when setting a watchpoint The syntax for a
variable name is

[procedure-specification:][line number :]variable

where procedure-specification is a procedure specification as described in
the section above. line number is a line number in a source file and variable
is the name of a variable

As in the case of a procedure specification. the debugger tries its best to match a
variable name given to it. by first sea rching back along the dynamic call chain. and
then search ing the globa l variables. so it is usually not necessary to specify more
than the variable name on its own

Desktop debugging tool

In the raytrace example above, if the program was stopped at some point in the
function reflect then x . y and angle would refer to the arguments in function
reflect , colour on its own would refer to the local variable colour in
procedure pixel (since the debugger searches back the call chain and finds
procedure pixel containing a variable colour) The variable count would refer
to the global variable count in program raytrace

In some cases. however. it may be necessary to specify more information about the
variable. suppose. for example. you wanted to examine the arguments x and y to
the procedure pixel. Specifying x or y on its own wou ld display the x or y
argument in function reflect so you must specify pixel: x or pixel : y.

There may sti ll be some ambiguity in languages other than Pascal. In Pascal you
cannot declare local variables within a program block (i.e. between a
begin • • • end pair). however C allows declarations in loca l blocks. Consider for
example the following code fragment as it would be displayed in the debugger's
source window:

DDT: adfs::HardDisc5.$.ddt.~an.e at
115 int Jogical<int a, lnt b, int op)
116 (
117 int t~; '* t_, ustd in calculating 1 op b t /
118
119 if (op == OP_6T II op == OP_6E> (I t } or >= t /
128 int t~;
121
122 op = op == 0Pii6T ? OP_LE : OP_LT; I t Changt to <= or (t /
123 tiiP = a; a = ; b = t_,; 1t and sup artuMnts t1

=12~4 ==}~==~ ~-H ..c..

The are two declarations of trnp in logical. so trnp or logical : trnp may be
ambiguous. In this case you must specify a line number before the variable name
to remove the ambiguity.

For example, to refer to the trnp variable in the outer scope (i.e. at the function
level) you cou ld enter

117 : trnp

or

logica1 :117:trnp

To refer to the trnp variable in the inner block. use:

120 : trnp

or

logica1 : 120 : trnp

29

Specifying program objects

30

The line number should be the line number of the decla ration of the variable (in
this case 117 or 120) The line numbers are displayed in the source window. so it is
quite easy to find the line number of the declaration.

The syntax described above is sufficient to refer to all textually nested vanables.
However. va riables in earlier instances of a recursive or mutually recursive
procedure cannot be accessed. For example:

void hanoi(int src, int dest, int via, int n)
{

if (n > 1) {
hanoi(src, via, dest, n - 1);
hanoi(src, dest, v i a, 1) ;
hanoi(via, dest, src, n - 1) ;

} else
printf("Move disc from peg %d to peg %d\n", src,
dest);

}

Suppose this function is called with n = 3 and that it recurses until it hits a
breakpoint on the print£ when n - I There is no direct way to refer to the
variables src. dest and via in an outer call when n = 2 or 3 since any reference
to these variables wi ll refer to the variables in the cal l with n = I . What you can do
is. use the Context option on the debugger's main menu (described in the section
Program examination and modification on page 40) to change the context to an outer
call on the stack Since the debugger searches from the cu rrent context outwards.
you can now specify the va riable as per normal. The debugger will ignore the
variables in inner calls and use the va riable in the current context

Expressions

Several DDT commands (for example Display Expression) may take arbitrary
expressions. The syntax for these expressions is based on that found inC

The following table summarises the operators available along with the precedence
of each operator

2

() grouping, e.g. a* (b+c)
[] subscript. e.g. isprime[n].matrix[1][2]

record select ion. e.g. rec. field. a. b. c
-> indirect selection. e g rec->next is (*rec). next

*
&

logical not, e.g. 1 f i n i shed
bitwise not. e.g. - mask
negation, e.g. -a
indirection. e.g. *ptr
address, e.g. &var

Desktop debugging tool

3

4

5

6

7

8

9

*
I
%

+

>>
<<

<
>
<=
>=

!=

&

multiplication. e.g a *b
division. e.g. c/d
remainder. e.g. a%b is a-b* (a/b)

addition. e.g. a+1
subtraction, e.g. b-d

right shift, e g. k>>2
left sh ift. e.g. 2<<n

less than. e.g. a<b
greater than. e.g. n> 10
less than or equal to. e.g c<=d
greater than or equa l to. e.g. k>=S

not equal to. e.g. count I =limit

bitwise and, e.g. i & mask

bitwise or. e.g. m1 &0100

The lower the number. the higher the precedence of the operator. Note the syntax
for subscripting and record selection The object to which subscripting is applied
must be a pointer or array name. The debugger will check both the number of
subscripts and their bounds in languages which support such checking A warning

will be issued for out-of-bound array accesses. As in C. the name of an array may be
used without subscripting to yield the address of the first element.

The prefix indirection operator * is used to dereference pointer values. in the same
way as Pasca l's postfix operator~. Thus if ptr is a pointer type, *ptr will yield the
object it points to (as ptr" in Pascal)

To access the fields of a record through a pointer. you can either use

(* recp) • field. or the C 'shorthand' notation. recp-> field

If the lefthand operand of a right shift is a signed variable. then the shift will be an
arithmetic one (i e. the sign bit is preserved) If the operand is unsigned. the shift
is a logical one. and zero is shifted into the most significant bit.

If incompatible types are used during expression eva luation. the debugger will
print a warn ing message, but eva luation will continue.

31

Specifying program objects

32

Constants may be integers (to the base specified in the Base opt ion). hex integers
(preceded by &) character constants. strings or floating point numbers The
following show examples of each:

32768 In teger in the currently selected base
&8000 Hex integer
3. 27 68e4 Floating point number
' A ' Character constant
"Hel lo , World" String

Addresses & low-level expressions
This section describes the syntax for low-level expressions. It is directed mainly at
assembly language programmers You can skip this if you will only be using the
high level language debugging fa~ili ties

The syntax for a low-level expression (as used. for example. when setting a
breakpoint on a memory address or displaying a d isassembly or memory dump) is
as follows (an understanding of BN F is assumed)

expr : :=value + expr I value I expr
value :: = ' & ' hex-number I n umber I symbol

where hex- number is a hexadecima l number. number is a number in the default
base (hexadecimal if no default base specified) which must start with a digit in
range 0 .. 9 and symbol is a low level symbol in the debugging information
produced by the linker.

Examples:

ma i n Address of function mai n

main + &1 4 Five words into main.

8000 Start of image (assuming the image has not been relocated and the
default base is hex.)

Image$$RO$$Base Preferred way of specifying base of program.

Desktop debugging tool

Execution control

This section describes how you can contro l the way in which the debugger executes

your program.

Continue

Continue sta rts or resta rts execution of the program. Execution continues until

one of the following events occurs:

• a watchpomt changes or is cancelled

• the program runs to completion

• an error or abort condit ion occurs.

You can interrupt execution of the program at any time by pressing Shi ft-1"12 Note

that if another task is execut ing when you press Shift-FI2 you may need Lo
generate an event to force execution to return to the program before the Shift-F I 2

interrupt will be no ticed. The simplest way to do this, usually, is to cl ick on the

program's icon on the icon bar, or click on one of its windows.

As the debugger sets a breakpoint on procedure main. you can usually use
Continue to start execution of the program and get to the first line of your source

text You cannot do this if

• you have disabled the Stop at entry opt ion, or

• the Can't set breakpoint on main message appeared when you
started the debugging session.

No te that if you have any watch po ints set, I he instructions are single stepped
instead o f executed and the watchpoin ts are checked after each instruction If any

have changed. the single stepping is stopped at that point. Th is will be completely

transparent. except that the program runs more slowly than normal

You can use Ctri-C as a short cut for Continue

Single step

Single step allows you to step execution th rough one or more source statements

or ARM instruct ions. Choosing Single step produces the following d ialogue box

m Single step

[7 Step into procedures

J Sttp b\1 source stah~~ent

(!i Step by ARM instruction

No. of steps: CJ 0!]

33

Execution control

34

No. of steps allow~ you to enter the number of statements or instructions to be
executed The Step by source statement and Step by ARM instruction radio
icons allow you to specify whether the contents of No. of steps should be treated
as a source statement count or an ARM instruction count

The Step into procedures option icon selects whether procedure calls shou ld be
treated as a single source statement I ARM instruction or whether single stepping
should continue into the procedure call

Note that the debugger cannot detect certain types of procedure calls, for example.
ca l ls via fu nction vmiables in C In these cases the debugger wil l continue stepping
into the procedure. regardless of the setting of the Step into procedures option

Note for assembly language programmers The debugger treats BL instructions as
procedure calls, so 1f some other 1n~truction is used to call a procedure, thi~ will
not be detected by the debugger f.or instance. consider the following example.
which might be produced by the C compiler when ca l ling via a function variable

MOVlr, pc . Set up link PC current instruction+ 8
LDRpc, [sp, #o _ fn J . Load PC from function variable on stack

: Returns here

You complete the Single step dia logue by clicking on OK or pressing Return The
specified number of statements or instructions are then executed.

Note that if you are currently stopped at an ARM instruction for wh1ch there is no
source mformation. stepping one source statement will step AI~M instructions
until an instruction for which source information is ava ilable is reached. This can
be used when you initia lly start a debugging session. and wbh to step to the first
source statement to be executed This is usually the first instruction of main for C
programs, but need not necessarily be so. if. for example. the module containing
main was not compiled with debugging information.

You can use Ctri-S as a short cu t for single stepping I instructi on or source
statement The Step into procedures and Step by source statement I Step by
ARM instruction are determined by the current settings in the Single step
dialogue box (i e the settings when the dialogue box was last displayed)

Call

Desktop debugging tool

Call allows you to call a named procedure Choosing Call produces the fol lowing

dialogue box

Call

~----------------~@0
The writable icon allows you to specify the name of the procedure to be called . You

can spectfy arguments to the procedure in a comma-separated list in round
brackets after the procedure name

The arguments must be word-sized obJects tc g. integers or pointers) or
floating-point values. Floating-point arguments occupy the next two adjdcent ARM

registers or stack words as described in the /\rm Procedure Call Standdrd t i <'

floating-point arguments are not passed in fl oating-point registers)

Complete the d ialogue by clicking on OK or pressing Return The speciHed
procedure is called with the argument<; on the program's stack. and in AR.\1

registers RO - R'3

Note that the program's stack pointer must be initialised before attempting to call

a procedure: calling a procedure wtthout d valid stack pointer may result tn a Data

abort or Address exception Therefore. if you are debugging a program wntten tn C.

you must en<>ure you have executed the run-lime system initia l isation cmk using

Continue or Single step as described above. If you are debugging a program
written in assembler. you must ensure that you have executed your own
initialisation code. which must initialise the stack pointer

Return

Return allows you to return from the current procedure Choosing Return

produces the following dialogue box

Return

Ualue: I rof1
~--------------~~

You can cnt era value to be returned from 1 he procedure in the value writable icon

This may be either an integer or floating point value If you do not spcctfy il va lue.

a default value of 0 (or 0 0 for floating-point values) is used.

Note that the Return option returns from the procedure in the current context If

you used the. Context option to change the current context to an outer context on

the stack non the debugger's menu. the Return option will return from the
procedure tn the selected context. rather than the currently executing procedure

35

Execution control

Breakpoint

36

Breakpoint is used to add and remove breakpoints Choosing Breakpoint
produces the following dialogue box:

Breakpoint

i~~~------------------~~
I at Procedure J I at line II at Address I
I on SWI lion lliiiP event ¢11 Re1110ve I

.

list Re1110ve all

Choosing one of the at Procedure. at Line or at Add ress buttons sets a
breakpoint at the procedure. source line number or memory address entered in the
associated writable icon. The syntax for specifying these objects is described in the
section Specifying program objects on page 26

Choosing the on SWI button causes the debugger to stop when the named SWI is
called by the debuggec SWI names are specified as in the RISC OS Programmers
Reference Manual except that a leading ·x· is ignored and case is ignored when
matching SWI names

Choosing the on Wimp event leads to the fol lowing dia logue box

llif'IP Events
Event selection:

_j Null _j Redraw llindow
__jOpen llindow _j Close llindow
__J Pointer leaving llindow
_j Pointer Entering Window
_j lose Caret _j Gain Cmt
_.User Mfssage _j Mfssage Recorded

_j Scroll Requrst
_jltouse Click

-· User Drag Box
.J Key Pressed
_j ltfnu Selection
_j Message Ack

OK

Select the set of Wimp events you are interested in and click OK The debugger will
stop execution of the debuggec when it receives one of the specified events and
will display a message describing the event received.

For example·

Event = User message , action 0 (Quit)

Desktop debugging tool

Choosing Remove removes the breakpoint specified in the associated writable

icon. The breakpoint may be specified as a breakpoint number, as given 1n the l1st

breakpoints command. preceded by a hash t#l or it may be specified exactly as

specified when seLLing the breakpoinl.

List d isplays a list o f all cu rrently set breakpoints with breakpoin t numbers wh ich

can be used when removing ind ividual breakpoints.

Remove all removes all current breakpoints .

You can use Ctri-B as a short cut to produce the Breakpoint dialogue box

Breakpoints may also be set or cleared by clicking on a line in a source or

disassembly display. Clicking on a line sets a breakpoint on the line The

breakpoint is shown by the breakpoint marker (a fi lled in ci rcle) to the left of the

l ine. Clicking on a line which already has a breakpoint removes the breakpoint

Watch point

Choose Watchpolnt to detect when a variable or memory location changes its

value. When a watchpoint is in force. instructions in the program are single

stepped instead of being executed and the values of the variables bemg watched

are checked after each instruction or source statement executed Watchpoints may

be set on simple variables such as integers or more complex variables such as

structs and arrays Setting a watchpoint on a whole array can be very useful if. for

example. you are debugging a sort routine; you can t rack all changes to the array as

it is sorted.

Since the debugger is single stepping. execution can be qu ite slow, typica lly

between 4 and 10 times as slow as normal execution If this is too slow to be

practical. the best approach is to try to isolate the section of code under suspicion

set a breakpoint on entry to this section of code. and only set the watchpoint(s)

when the program stops at the breakpoint

Choosing Watch point produces the following dialogue box:

Natchpoint

I on Uariable I on Me111ory

Re111ove

List I Re11ove all j

37

Execution control

Trace

38

Selecting on Variable or on M emory sets a watch point on the variable or memory
location specified in the associated writable 1con. The syntax for specifying
variables or memory addresses is described in the section Specifying program objects
on page 26

Remove removes the watchpoint specified 1n the associated writable ICon. As w1th
breakpoints the watch point to remove may be specifi ed as a watchpoint number
preceded with a hash(#) or exact ly as specified when setting the watchpoint

List d1splays a list of watchpomts currently in force. Remove all removes all
watch points

Note th i1 t i f you are watching a loca l variable 1 i e. a variable stored on the stack) the
watch point will become mvalid on exit from the procedure containing the variable
being watched. The debugger detects this and stops execution with the message:

Watchpoint watchpoint discarded on exit from procedure

where watchpoint IS the name of the variable being watched.

Also note that when you are watching a vanable which is stored 1n a register. the
debugger may erroneous ly report a change in the variable's va lue This is because
the C compiler does not allocate registers to variables over the whole range of a
procedure Instead. it allocates the registers over the lifetimes of vanables (i.e the
range of the procedure in which the variable is actually used). Outs1de this range a
register may be used for other purposes (such as temporary values in ca lculations)
It may even be allocated to another variable, if the lifetimes of the variables do not
overlap Thus the debugger may report a change in the variable when it sees the
register changing, but of course the register is no longer being used to store the
variable.

You can use Ctri-W as a short cut to produce the Watchpoint dialogue box

Trace allows you to select a set o f actions about which you wish to be informed
When one of these actions occurs a message to this effect is displayed in the
debugger's status wmdow. For certain actions the source I disassembly display IS
updated lo show where the action occurred

The actions which you can trace are as follows

Execution

The source I disassembly display is updated for every ARM instruction or source
statement executed (ARM instnKtion if Machine-level debugging is enabled.
source statements otherwise) The effect 1s to produce a continuous execution
display in the context window

Desktop debugging tool

Breakpoints

When a breakpoint occurs. instead of stopping execution. a message IS displdyed

in the Status window·

Break at breakpoint

where breakpoint is the location of the breakpoint The source I disassembly

display is updated to show where the breakpoint occurred. Execution then
continues after the breakpoint.

Watch points

When a watchpoint changes. a message of the following form is displayed

Watchpoint watchpoint changed at location

where watchpoint is the name of the variable being watched, and location is

the program locat ion where the watch point was changed. If. for example. you are

debugging a sort routine and have a watch point on the array being sorted. you can

select watch point tracing to provide a cont1nuous update of all changes to the
array

Procedures

\.Vhen procedure traCing is enabled a message of the following form is displayed :

Entered procedure procedure name

This can be uscru I if you wish to quickly locate the procedure where a fault is

occurring.

Event breaks

When a W1mp event break occurs execut1on IS not halted Instead of stoppmg at

the breakpoint a decoded form of the event data is displayed and execution

continues

SWI breaks

When a SWI break occurs execution is not halted. a message is displayed

Break at SWI SWI Name

The SWI is then executed and execution continues after the SWI breakpoint

39

Program examination and modification

Choosing Trace from the debugger's menu produces the fo llowing dia logue box:

Tt•ace

_jEmution
_j Brukpoints
_jllatchpoints
_j Procedures
_j Event breaks
_j SWI breaks

OK

Select the set of actions you are interested in tracing and c.lick on OK. A message
confirming your selection will be d isplayed. You won't notice the effects of
enabling procedure tracing unti l execution of the debuggee is resumed.

Program examination and modification

40

Display

Th is option allows you to display information about 1 he program being debugged
You can examine source text, instruction disassembly, variab le contents, memory
con tents. stack backtrace information. register contents and low- level symbol
values. Choosing Display produces the following dialogue box.

Display

_j Update Bm: O
r

Source [Expression II Syf!lbols

I Disassellbly I lle.-ory I
Argu~~~ents I Registers II locals

Backtrace I FP Registers I

You can use Ctri -D as a short cut to produce this display

Select the item you want information about The Source Expression. Symbols.
Disassembly and Memory icons use the contents of the writable icon to
determine what to display Each icon is described in turn below.

Desktop debugging tool

Source

Displays the specified source fi le in the debugger Context window. You can specify
a source line number at wh ich to start the d isplay. The syntax for the filename and
line number is:

filename[:line)

(that is. a valid RISC OS filename opti onall y followed by a colon () and a line
number) The line number defaults to I if not speci fied. The fi lename does not
have to be a source file used to generate the program you are debugging: you can

display any file you like

Expression

The writable icon should contain an expression name. The syntax for entering
expression names is described in the section Specifying program objects on page 26.
The expression is displayed in the debugger Status window.

Complex expressions such as C structs or arrays are displayed in structured format .
nested substructures are indented to indicated the level of nesting Character
pointers and arrays are displayed as st rings if a terminating 0 is found wi thin the

first 80 characters and there are no intervening non-graphic characters apart from
newline and carriage return. which are displayed as \n and \r. For example. the
following structure:

typedef struct _ HotSpot
{

struct _ HotSpot *next;
BBox box;
char *command;
char *name;
Componentid id;

} HotSpot;
HotSpot *button;

would be d isplayed as:

• ut on = s rue {
ntxt = 888882e61

..... .,

box = struct {
x111in = 8541
!ltlin = 4
XN X : 2~621489 1
!!NX = -1

} I

IJ

COat!ind : llllllll1
na~~e = 111111111
id = -1

41

Program examination and modification

42

j •••• ····---- ·--····--···
Arguments

Arguments displays a lithe arguments to the current procedure The arguments arc
displayed as if each individual argument had been displayed using the Display
Expression facility described above

If you want to examine the arguments in an outer scope (i .e. in the procedure
which called th is procedure or the procedure which called that ...) you can use the
Context item on the main menu to change the current context to that of one of the
calling procedures. and then select Arguments to display the arguments of that
procedure.

Locals

Locals is very simi lar to Arguments It displays all local variables (including the
arguments) in the current procedure

Backtrace

Backtrace displays a list of procedures in the call chain from the current
procedure back to the program entry point.

Procedures wh ich have been com pi led with debugging information are displayed
in the following form

procedure , l i ne line of tile

Those which have been compiled or assembled without debugging information
look like this

PC = address (procedure + offset)

Procedures in the Shared C Library will appear as

PC = address

A typica l backtrace might look someth ing like this:

Status: Stopped at Breakpoint

Desktop debugging tool

Symbols

Symbols displays low-level symbols generated by the linker when linking with
debugging enabled. The writable icon gives a comma-separated list of symbols to
be displayed. The symbols and their addresses are d isplayed in the debugger's

Status window.

You can use the following wildcard characters in symbol names

• A star (· l matches 0 or more characters

• A hash(#) matches any single character

For example·

kernel * would list all the kernel routines
(e.g. _kerne l_swi)

$$$$* wou ld list all the l inker generated symbols
(c g. I mage $$RO$$Base and C$$code$$Base).

Disassembly

This displays a symbolic instruction disassembly in the debugger's Context
window The writable icon should contain a low-level expression which evaluates
to a memory address indicating where the disassembly should start. The syntax for
low-level expressions is described in the section Specifying program objects on
page 26

Memory

This displays a memory dump in the debugger's Context window. The writable icon
should contain a low-level expression giving the memory address

Registers

This displays the contents of ARM user reg1sters 0- 15 and the flags m R 15.

FP Registers

Th is displays the contents o f floating-point registers 0- 7 and the flags in the
noating-point processor status word.

The Base writable icon gives the numeric base to be used when displaying
Variables. Arguments, Locals, Symbols and ARM registers. If this writable icon is
left blank a default of decimal or hexadecimal is used depending on what is being

displayed

43

Program examination and modification

44

The Update box applies to Variables. Locals. Arguments. Backtrace. Registers and
FP Registers. When Update is selected and one of these items is displayed. the
item is added to a list of items to be displayed whenever the debugger stops
execution (for example. at a breakpoint) There is no way to remove items from this
list once they have been added to it.

Change

Change allows you to alter variable. registers or memory contents. Choosing
Change produces the following dia logue box

Change

(i Uariablt

The Variable. Register and Memory radio buttons indicate what IS to be changed
The Name writable icon indicates which variable. register or set of memory
locations is to be changed. The New contents writable icon gives the new
contents. Clicking OK makes the change.

Variable

The Name writable icon should contain a variable name as described in the
section Spl'cifying program objects on page 26. Only simple variables such as in tegers
and pointers or floating-point variables may be changed. The New Contents
writable icon should contain the new value for the variable. float1ng-point values
are specified in normal C floating-point format

Register

The Name writable icon should contain a register name. Valid register names are
RO- R 15. SL, IP. SP. l R. PC and FO- F7 The New Contents writable icon should
contain a low-level expression or noat~ng-point constant. depending on the type of
register being changed. Low-level expressions are described in the section
Specifying program objects on page 26.

Memory contents

The Name writable icon should contain a low-level expression wh1ch evaluates to
a memory address. The New Contents writable icon should conta1n a
comma-separated list of low- level expressions, which are placed in successive
memory words starting at the memory word specified in the name writable icon.
The syntax for low-level expressions is described in the section Specifying program
objects on page 26

Desktop debugging tool

Options and other commands

The Options i tem on the debugger main menu produces the following dialogue
box:

Options

[7 Source level 17 Sourct line nuNbers

f7 Michine level [7 Stop at entry

j7 11f110ry prohction [7C++ na..es

(i' RISC OS bindings) Rrthur bindings

CoMand line: !SCSI : :DHarris.S.Library .diff I

Source tree: ISCSI ::DHarris.S.library

Base: D ~ o:cJ

Source-level debugging

This option enables the display o f source information in the debugger Context
window If this option is deselected. a disassembly of the ARM instructtons
corresponding to the source text will be displayed.

Machine-level debugging

This option enables the t racing of ARM instructions when trace execution is
selected.

Memory protection

This opt ion enables or disables protection of sensit ive areas of memory When this
option is enabled zero page (0- & 7fff) is protected against being written to by the
debugee and the debuggee's code area is protected against writing

Source line numbers

This option enables or disables the display of line numbers in source text displays.

Stop at entry

When this option is enabled. the debugger automatica lly tries to set a breakpoint
on procedure main when a debugging session is started. This allows you to use
Continue on the debugger main menu to get rapidly to the start of your source

code

45

Options and other commands

Log

46

RISC OS bindings I Arthur bindings

This option is provided for backward compatibility.

Command line

This writable icon allows you to change the command line passed to the debuggec.
The existing command line is displayed in the icon and may be ed1ted Note that
the first word of the command line should be the program name.

Base

The Base writable icon gives the default numeric base when displaying or entering
numbers

Source tree

Compi lers such as Acorn's ANSI C may put relative filenames in the debugging
information (e.g. c. display or A .mip. c. aetree) The debugger needs to
know where these fi les can be found By default 1t assumes the source files res1de
in the directory from which the program image was loaded. Th1s writable icon
allows you to change this default. It accepts a comma-separated li st of directory
names. each one ending in a full stop (immediately before the comma).

Th is could be used when debugging a library whose source is held in a directory
different to that of the debugee program source

Log allows you to record any information output to the debugger Status window to
a text file Choosing Log produces the following dialogue box

,.

FilenaMe: I 'Of1 ~------------~~

Enter the name of the file into wh1ch you wish to log output. The file will be opened
as a new log file. Any previous contents of the log file will be overwritten. If a log
file was previously open it will be closed when the new log file is opened

Find

Desktop debugging tool

Find allows you to find a sequence of bytes. words or characters in the application
workspace. Choosing Find produces the following dialogue box:

Find

Byte Word I String I

Word or Byte

The writable icon should contain a comma separated list of low-level expressions
giving the word or byte values to be found.

String

The writable icon should contain the sequence of characters to be found. the
sequence should be entered without quotation marks of any kind

All occurrences of the byte. word or character sequence in the application space
are reported in the debugger Status window

*Commands

*Commands allows you to access the RISC OS CLI from within the debugger.
Choosing *Commands will lead to the following dialogue box:

Enter the command you wish to execute in the dialogue box and press Return or
click OK. If you are debugging a Wimp task (i e a task which has called
Wimp_lnitialise) you should precede the command with the WimpTask command.
otherwise the output of any command executed may be displayed in graphics

mode.

If you wish to enter several commands you can enter the Gos command or the
ShellCLI command in the dialogue box

47

Options and other commands

Help

Quit

48

Help gives interactive help on the debugger. Choosing Help wi ll produce this
initial help window:

Help

This is the Desktop Debugging Tool <DDT>. R debugging session .a~ be started in one of the fol1111int AYS ,

link an application with the -debug flag and
execute it as per nor.al.
Drop an i.age onto the debuggtr icon on the
icon bar.
FroA a task 11indow or the deskto~ eli (froA the task Ninager Menu> type "debugaif {i.age> <args)"

- -T . OPIC:
I Continue IISingle step II Call II Return
I Breakpoint II Natchpoint I Qr~ :=1 ==c=on""'te=x~t =i
[Displa~ II Change II log I._I_FI_·n_d___.

Choose the icon corresponding to the topic on which you want help The help will
be displayed in the Help box above the topic buttons.

Th is quits the debugger and returns to the call ing environment (generally the
RISC OS desktop)

You can use Ctrl-0 as a short cut for Quit.

Desktop debugging tool

An example debugging session

The following example debugging session shows how DDT might be used to fix a
rather bug-ridden file sorting tool written in C. The source is given here with line
numbers for reference later in the chapter. The source, along with the other files to

make the application, can be found in I Sort, which is in the
AcornC_C++ . Examples directory.

1
2
3
4

5
6
7
8
9

10
11
12
13

#include
#include
#include
#include

#include

#define
#define
#define

#define

<stdio.h>
<stdlib.h>
<string .h>
<stdarg .h>

"kernel . h"

READATTR 5
READ FILE 16
WRITEFILE 0

FILE FOUND 1

14 static void fail(char *errmsg, ...)

15
16 va list ap;
17
18 va_ start(ap, errmsg);
19 vfprintf (stderr, errmsg, ap);
20 va_ end(ap);
21 exit(1);
22
23
24 I* See Sedgewick: Algorithms 2nd edition P 108 *I
25 static void sortstrings(char *a[], int n)

26
27 int h, i, j;
28 char *v;
29
30
31
32
33
34
35
36
37
38

39

h = 1;
do

h h * 3 + 1· ,
while (h <= n);
do

h h I 3;
for (i = h + 1; i <= n; i++) {

v = a[i];
j = i;
while (j > h && strcmp(a[j-h], v) > 0) {

49

An example debuggmg session -
40
41
42
43
44
45
46
47
48 void
49 {
50
51
52
53
54
55
56
57
58

59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

50

a[j] = a[j-h J;
j -- h;

}
a[j] = v;

while (h > 1) i

sortfile(char *infile, char *outfile)

kernel osfile_block finfo;
int size;
char *finbuff, *foutbuff;
char *cp;
int 1, linestart;
char **lbuff;
int i;

if (_kernel_osfile(READATTR, infile, &finfo) !=
FILEFOUND)

fail("Error opening %s\n", infile);
size = finfo.start;
if (!(finbuff = malloc(size + 1)) I I !(foutbuff

malloc(size + 1)))
fail("Out of memory\n");

finfo.load = (int) finbuff;
finfo.exec = 0;
if (_kernel_osfile(READFILE, infile, &finfo) < 0)

fail("Error reading %s\n" , infile);
1 = 0;
cp = finbuff;
1inestart = 1;
for (i = 0; i < size; i++) {

if (line start) {
1++;
1inestart = 0;

if (l*cp II *Cp I \n I)

*cp = 0;
1inestart 1 i

cp++;
}
*(finbuff + size) = 0;

{

if (!(1buff = malloc(l * sizeof(char *))))
fail("Out of memory\n");

cp = finbuff;

Desktop debugging tool

85 for (i = 0; i < 1; i++)
86 1buff[i] = cp;
87 cp += str1en(cp);
88 }
89 sortstrings(1buff, 1) ;
90 cp = foutbuff ;
91 for (i = 0; i < 1; i++)
92 strcpy(cp, 1buff[i]);
93 cp += str1en(cp);
94
95 }

*cp++ = '\n';

96 finfo.start = (int) foutbuff;
97 finfo.end = (int) foutbuff + size;
98 if (_kerne1_osfi1e(WRITEFILE, outfi1e, &finfo) < 0)

99 fai1("Error writing %s\n", outfile);
100 free(finbuff);
101 free(foutbuff);
102 free(1buff);
103
104
105 int rnain(int argc, char *argv(])
106
107 if (argc != 3)
108 fai1("Usage: Sort <infi1e> <outfi1e>");

109 sortfi1e(argv[1], argv[2]);
110 return 0;
111

The debugging session

Follow the steps below to debug the example program

J Compile and link the program using !Make with the Makefile provided in the

! Sort directory.

Now try running the program·

2 Double click on the ! Sort application directory The Sort tool icon will appear

on the icon bar

51

An example debugging session

52

3 Drag the example 1nput file in file on to the Sort tool icon
This should sort the input file and display a Save as dialogue box. to allow you
to save the sorted result. Unfortunately it doesn't. instead it produces a
display similar to the following:
Illegal address (e.g. wildly outside array bounds)

Postmortem requested
Arg2: OxOOOOOOOc 12 - > [Oxe59ff110 Oxe59ff110 Oxe59ff110 Oxeae00ce7]
Argl: Ox0000ca8c 51852 -> (0x0000cb14 Ox0000cb18 OxOOOOcb18 Ox0000cb18]

3984074 in function sortstrings
Arg2: Ox0000ad70 44400 -> [Ox49534353 Ox48443a3a Ox69727261 Ox2e242e73)
Arg1: OxOOOOad3f 44351

8348 in function sortfile
Arg2: OxOOOOac£4 44276 -> [OxOOOOadlO Ox0000ad3f Ox0000ad70 OxOOOOOOOOJ
Argl: Ox00000003 3

8430 in function main
39a29c4 in unknown procedure
84b8 in anonymous function

This is ca lled a symbol ic backtrace.
The first line gives a genera l indication of what might be wrong with your
program. In this case it's an illegal address; the program tried to access
memory which is outside the addressing range of your computer.
Each line of the form address in function name represents a procedure
call frame on the stack. The first frame on the stack is function sortstrings;
this is where the illegal address was referenced
This doesn't look too promising, so try running it under DDT to get more clues
as to what might be wrong:

4 Quit the Sort tool.

5 Construct a debug version of Sort with Make. To do this. first open the Make
project dialogue box for Sort, click Menu on it and Select on the Link item of
the Tool options submenu Next, enable the Linker Debug option and click on
OK to alter the Makefile. Use the Make Touch facility to touch all source
members by clicking on All in the Touch option. Finally, click on the Make
button to remake Sort.

6 Start the debugger if you haven't started it already and drag the 1 Sort
application directory on to the debugger's icon

7 Drag the sample input file infile on to the Sort icon on the icon bar. The
debugger's Context and Status windows should now be displayed.
The program actually crashed in the function sortstrings Since you want
the program to stop before making the illegal access. you want it to stop at the
beginning of function sortstrings. So:

Desktop debugging tool

8 Set a breakpoint on procedure sortstrings:

Bring up the breakpoint dialogue box Enter the name sortstr ings, and
choose at Procedure.

As a genera l ru le this is the best way to sta rt a debugging session. By placing a
breakpoint just before the section of code you think is wrong (or after the code

you know to be correct) you can examine the program state to ensure it is
correct and the step through the incorrect code to find exactly where the error
is occurring

Tell DDT to start executing your program

9 Choose the Continue option from the debugger's menu. The debugger will
stop with the following message:

Break at main, line 107 of c.sort

The debugger always stops on entry to main. However you want it to cont inue
unti l it reaches sortstrings. so:

10 Choose Continue from the main menu aga in.

This time the debugger displays the following message

Break at sortstrings, line 30 of c.sort

The Source wmdow should contain the source for the start of function
sortstrings. with the execution location indicator(=>) pointing to the first
source line of the function sortstrings

Now you want to examine the program state to ensure it is correct before
continuing. In this case. the most important state information is the fu nction's

arguments. You can examine them as fo l lows:

I 1 Choose Display on the debugger's menu (or use the short cut Ctrl-D) and cl ick
on the Arguments button in the Display dialogue box.

The debugger will display the following in the Status window·

a = 0000ca8c
n = 12

The two arguments to sortstrings are ·

n is the number of strings to sort. in this case 12. This is correct. since there
were 12 names in the input file

a is a pointer to an array of char •s or strings. The debugger displays the
value of this pointer. i.e. the address of the array.

Note. You may get a different address when you try running this example
depending on the version of the C compiler and library you are using

Next. examme the individual elements of the array:

53

An example debugging session

54

I 2 Enter the array element as it would appear on the left hand side of an
assignment in C in the Displdy dialogue box. and click on the Expression
button.

To examine element 0. enter a [o 1. To examine element I. enter a [1 1 The
debugger will display the array elements as follows
a[01 = string "Noel"
a[l1 = 0000cb18
The first element was correct it contained the string Noel, which is the first
name in the input file. However. the second element is a null string. This is
wrong: it shou ld contain the string Edward. This means that the arguments to
sortstrings were wrong. The error therefore occurred earlier. so you want
to try re-running the program under the debugger and setting the breakpotnt
earlier

I 3 Quit the debugging session and drag the sample input fi le in file to the Sort
icon to start a new debugging session

14 Now follow the instructions in step 8 to set the breakpoint at function
sortfile instead of function sortstrings. and continue execution until
the program hits the breakpoint at function sortfile.
The variable lbuff is passed as the first argument (a) to sortstrings
lbuff is initialised in the loop just before the call to sortstrings.
Therefore you want to set a breakpoint at the start of the initialisation loop:

15 Scroll the Source window up until the initialisation loop comes into view
From the line numbers in the Source display you can see that the initialisation
loop starts at line 84. with the initialisation of cp. So. set a breakpoint on line
84

I 6 Enter 84 in the Breakpoint dialogue box and click on at Line

17 Now choose Continue from the main menu.
The program will continue executing until it reaches line 84. where it will stop
at the breakpoint. You want to examine each element of the array as it is
initialised. since the array is initialised from the pointer cp. Set a watchpoint
on cp

I 8 Enter cp in the Watch point dialogue box and click on on Variable.

19 Choose Continue again. The debugger will stop with the message
Watchpoint on cp changed at sortfile, line 85 of c.sort
New contents: string "Noel"
This is correct. so:

Desktop debugging tool

20 Choose Continue again. The debugger will respond with:

Watchpoint on cp changed at sortfil e , line 87 of c . sort
New contents : 0000c b1 8

Th is is wrong: it should conta in the string Edward. Look at the line which

updated the va lue of c p:

87 cp += strlen (cp);

This is supposed to update cp to point to the next string in the list of strings
to be sorted It does this by adding the size of the string pointed to by cp into
cp Unfortunately, it miscalculates the size of the string by omitting to take
into account the 0 byte at the end of the string This means that the second
and all subsequent strings are treated as null strings, because they are

pointing to the 0 byte at the end of the previous string instead of the start of
the string.

To fix this:

21 Quit the debugger and the Sort tool.

22 Edit the file c . sort and change line 87 to read

87 cp += strlen(cp) + 1 ;

23 Recompile c . sort using the Make utility

Now try re-runn ing the program:

24 Double click on the ! Sort application directory and drag the file infile to
the Sort tool icon. then choose Continue twice on the DDT menu to run Sort.

The resu lt is Lhe same as when you first tried running it: you get the same

exception. although th is t ime trapped by DDT rather than generating a
backtrace. so obviously the fix appl ied to line 87 didn't fix the problem So, try
running it under the debugger again

25 Quit the Sort tool frontend.

26 Drag infile to the Sort tool icon

27 Set a breakpoint on function sortstrings and choose Continue

The debugger will stop when it reaches main.

28 Choose Continue again . and the debugger wil l stop at the start of
sortstrings.

Examine the arguments. All being well they should look something like this:

a 0000ca90
n = 12

55

An example debugging session

56

29 Display the individual elements of a by entering a [0 1 etc .. in the Display
dialogue box and choosing Expression.
Do the same for all] and alii]. The display should look like this:
a(01 = string "Noel"
a[l1 = string "Edward"
a[ll1 =string "Martin"
They're correct now. so something must be wrong with the sort algorithm. So.
try setting a breakpoint on the inner while loop:

30 Scroll the source display to find the line number; it should be line 39. Enter 39
in the Breakpoint dialogue box and click on at Line and continue execution.
The debugger shou ld display:
Break at sortstrings, line 39 of c . sort
Examine a few variables:

31 Enter j in the Display dialogue box and choose Expression; then do the same
for h The debugger should display:
j = 5
h = 4

These are both correct. so look at the contents of a [j -h 1:
32 Enter a [1] in the Display dialogue box and choose Expression The debugger

should display
a(11 = string "Edward"
The shellsort algorithm should be comparing against the first string (i.e
Noel). It is not, so this is wrong. Looking closely at the algorithm you can see
that it has been written assuming array indices start at 1. whereas inC they
start at 0.
To fix this, you could subtract 1 from each array index However you just want
a quick fix to see if it works. so.

33 Add the following line at the start of the function after line 29:
30 a--; I* Quick hack to make array 1 origin */

34 Compile the program. this time disabling the Debug option of Link using
Make (see step 5). and try running the result.

All being well. the program shou ld run to completion and produce a Save as
dialogue box for the output. You can just click the OK button to save it. or you may
like to drag it to the editor icon to load it into the editor to check that it has been
sorted correctly.

5

Invoking Make

Make ~

Info .,.

Options .,.
Open ,.

Quit

Make

The Make application aids the programmer in the construction and

maintenance of multiple-file programs, which can be combined to form any

number of final targets (for example. I ibraries. modules. and application

programs). The set of final targets and the files from which they are constructed are

known as a project (see later for a more detailed description of this term) The

facilities provided for a project include

• automatic construction of Makefi les

• automatic main tenance of Makefiles to track changes made to sources and the

addition/deletion of source and object files to or from a project

• setting options using dialogue boxes for the tools used to convert source fi les
to object fi les (e.g C compiler or Ob)Asm options)

• pre-emptive multitasking of the Make process when constructing final targets.

including the abil ity to pause. continue. or abort it at any time

• display of the output of tools used to make a final target. in a scrollable.

saveable window

Make can be invoked in two ways; by double-clicking on the Make icon from a

directory display, or by double-clicking on a file of type Makef ile (OXFEl). In the

latter case thi s will also run the Acorn Make Utility (AMU) tool to make the first

target found in the chosen Makefile.

Clicking Menu on the Make icon gives the menu shown on the left

Info shows the normal information box about the application.

Options allows the setting of auto-run and display options.

Open is used to open a dialogue box for a given project.

Quit quits Make

These are described more fully in later sections.

57

Using Make

Using Make

To use Make efficiently it is necessary first to understand how to create and
maintain a project.

Projects

58

A project is made up of a collection of source and object fi les, which combine to
form a number of final targets. The life cycle of a project will typically involve the
creation and maintenance of the project, the production of final results. and finally,
if required, the removal of the project from Make's control. The details of these
steps are more fully described in later sections, but here we give an overview of
their operation.

When a new project is created, you give it a unique name. and save its associated
Makefile to disc. The persistent state of a project is held in a Makefile, wh ich is
automatica lly maintained by Make. with the option that it can be textually edited
for customisation to a particular projects requirements To achieve this automatic
maintenance, the Makefile is divided into sections which are delimited by active
comments (i .e l ines beginning with a (#).which are otherwise ignored by the AMU
program)

The files which make up the project can reside anywhere on disc (or on a network)
and can be added to, and removed from, the project by dragging their filer icons
onto a d ialogue box representing that pro ject.

Final targets for the project are created by clicking on Make in the dialogue box
relating to that project. the targets will be saved in the same directory as the
Makefile for the project.

Under the desktop the concept of current directory has no sensible meaning, Make
therefore uses the work directory in which the Makefile for a project has been saved
as a prefix for all filenames used in the project. This prefix is denoted by the at
symbol(@).

Clicking Menu on a project dialogue box gives the menu shown below, which is
used to further tailor the project References to this menu are made in a later
section on maintaining projects.

o,;.-~·1_

Make opllons •
Touch
list members
Addtarget ,...
Remove target
Remove protect

Tool options "'

Make

Creating new projects

In order to create a new project. you should click Select on the Make icon on the

icon bar. This will display the New Project dialogue box as shown below. which

allows you to enter information for the new project:

lf'lJ~l New Pr()ject

Rein
Name I Example I

~ Taroetl !RIXIImage I
1 Makehle 1 01<.1 rooal l.Jn~ =:J

·-
There are three writable icons in the New Project dialogue box which you must fill

in before a new project can be created. These are:

Name you should fill this in with the name of the project. This name will be

used to identify the project in the Open menu as described later

Target you should fill this in with the name of the main target to be created
from this project. For example. if you were creating an application the

target name would be !Run Image. if you were creating a module the
target name would be the module's name (e.g. FrontEnd)

Tool you shou ld fill this in with the name of the tool used to construct the

main target For an application this could be Link. or in the case of a

library th1s could be Libfilc

Note Make requires this tool to be one which takes intermediate files

and creates a final object. Such tools are Link (for a module or

application). Lib File (for a library) or Squeeze (for a squeezed module or

application).

Having filled in these three boxes. you must then save the Makefile which will be

used to hold all information for this project This is accomplished either by

dragging the Makefile icon to a directory viewer (having optionally changed the

leafname from the default Make file). or by typing in a full path name and clickmg

OK. The directory in which the Makefile is saved is important. This directory is

where the final targets for the project will be created, since each target will be

saved in the@ work directory (see the section Creati11g a final target for a project on

page 64 for an explanation of this) The sources for the project can be stored

anywhere. since they will always be referenced relative to@ If any of the Name.

Target or Tool icons have not been correctly filled in then an error is reported. and

the Makefile is not created.

59

Using Make

60

When this process has been completed, the newly created project becomes one of
those maintained by Make. until it is explicitly removed (see the section Removi11g
projects on page 64 for how this is done). The dialogue box which is used to
maintain this project then appears. with the project's name in its title bar. The
project can then be maintained as described below.

Maintaining projects

To maintain a project it is necessary to understand how to open and close projects,
and how to specify the targets for a project

Opening a project

Make keeps a list of all projects which it is maintaining at any one time This list 1s
shown when you enter the Open submenu from Make's application menu. When
no projects are known about. this menu item is unselectable.

The list of project names is shown with the most recently registered project at the
bottom. Clicking on a project name in this list will open a dialogue box for that
project, with the name of the project in its t itle bar; if the project was already open.
then the dialogue box is brought to the front of the WIMP's window stack. If the
project is being opened for the first time. then the directory containmg the
Makefile for this project is also opened The dialogue box is shown below

lnsertl:=::::::::============~l_?< 1

Removal I~
Target! !Runlmage I I~

Sa-.. 1 11 Make jJ

This dialogue box can be used to add new members to the project. remove
members which are no longer required. make final targets. and select the current
final target to which these operations refer These are described in more detail in
later sections.

Make

Adding and removing members

When you have written a new source file or created a new object file which you wish
to include in a project. you should drag the filer icon for that file to the icon marked
Insert in the project's dia logue box menu. Typically, the only object fi les which you
will need to insert in a project are external libraries. Any number of files can be

dragged in this way to Insert, where their full path names are displayed, provided
that the number of characters displayed does not exceed the buffer for the icon
(4096 characters by default. but this can be changed by using a Wimp templates
file editor) .

Once you are satisfied that this is a list of all the files to be added to the project.
click on OK to the right of Insert. The insertion will then take place An asterisk
appears in the title bar of the project dialogue box to indicate that this project has
been modified since its Makefile was last saved.

If you wish to remove members from a project. follow the same procedure as that

described for insertion, but drag file icons to the Remove icon instead. and click
on OK to the right of Remove. Again an asterisk will appear in the project's title
bar, to indicate that a modification has been made.

Note that insertion and removal applies only to the currently selected target when
used in conjunction with multiple-target projects (see the section Multiple targets on
page 62 for more details).

Make uses the following rule for dealing with files dragged to Insert if the filename
has. as its last but one component, a string (usually just one character) which
corresponds to one of those registered by a translation tool, then it is assumed to
be a program source file and a ru le is constructed to make it into an object file:

otherwise it is assumed to be an object file (such as a library) and will just be
inserted into the list of objects which go to make up the current final target

Listing members

A list of the members which have been added to a project (and not subsequently
removed) can be obtained in a scrolling text window by selecting the List
members option from that project's dialogue box menu. The filenames in this list
are expanded to full pathnames. whereas they wil l appear relative to@ in the
Makefi le for the project.

61

Using Make

62

Touching members

You can force a member of the project to be t ime-stamped using the Touch option
in a project's dia logue box menu·

Exam !lie
Make options ..,.. CCII XI '" Touch '1-'

••• Files I I
list members

' All I I Add target ... OK

Remove target
Remove project

T oo1 options ...

In the Touch dialogue box. you can type (or drag to it) the filename(s) of the file(s)
to be touched (either relative to@ as it appears in the Makefi le. or as a ful l
pathname). and then click on OK If you wish to touch all source members of the
project. then click on All. in this case any filename in Files is ignored

Multiple targets

When a project is first created. it has just one final target- the one whose name is
entered in the Target icon in the New Project dialogue box. This name will also
appear in the Target icon in a project's dialogue box when that project has been
opened. This target is referred to as the current target. and it is the target wh ich wil l
be made when you click the Make icon. The current target is also the one to which
members are added or removed when you enter filenames in the Insert and
Remove icons from a project's dialogue box.

1:": El181'11!lle
Makeo~ons ...
Touch
List members lj;'jj •Niw taraet

'4'51&1•14 Target I t.¥-ibrary I Remove target
Toolj LbFIIej I Remove prOject

Tool options r- CoK I
In order to add a new target, you should use the Add target option from a proJect's
d ialogue box. In the Add target dialogue box you must enter a name for the new
target. and the name of the tool which is used to construct that target (e.g.
MyLibrary and LibFile l. as shown above

Make

Targets created in this fashion can be removed by choosing Remove target in the
project menu. Remove target always applies to the current target.

When a project has its dialogue box open. the list of final targets can be traversed
using the up and down arrow icons (next to the Target icon) . You will nolice that

any targets which you manually insert in the user-editable section of the Makefile
will also appear in the project dialogue box. This is so that you can select them as
the target to be made when clicking on the Make icon.

This can be used to create a 'squeezed' image by doing the following

• When you first create the project use a final target name such as ! RunimageU

for the unsqueez.ed binary. Insert all your sources and library files to this
target

• Then add a target (called. for example, l Run Image) with its 'tool' set to
Squeeze.

• Insert the @. l RunimageU as the only member for this target.

If you used the example names above. and you now make the target l Run Image.

you will get a squeezed final binary.

Setting tool options

In order to make final targets and object files which will combine to make those
final targets. a number of toots such as compilers, assemblers. linkers and library
constructors will be used. These toots will typically have a set of options which are
normally specified from a dialogue box when using the tools under the control of
the FrontEnd module. It is possible to set the options for a particular tool's use
under Make (for a given project) by following the Tool options submenu from the

project's dialogue box menu.

Elan 1M '·
Makeo~ons ...
Touch

List members
Add target ...
Remove target
Remove project s.t odlotls: ~

• ,.. cc
C++
Link
<l>jAsm
CMHG
UbFIIe

Squeeze

63

Using Make

64

This will show a list of all the tools which have registered themselves for use w1th
Make (for example. Cc. ObjAsm. Link etc). Clicking Select or Adjust on a tool's
name in this l ist will result in the options dialogue box for that tool being
displayed This dialogue box can then be used to set the options for the tool: these
will be translated into command-line options and entered into the tool flags
section of the Makefile for the project.

Removing projects

A project can be removed from the list of projects maintained by Make by choosmg
Remove project from the project's dialogue box menu. This simply means that it
is removed from the I ist of projects which can be opened from Make's Open
submenu, the Makefile for the project is still retained

You will also be asked if you want to remove the files wh1ch store the toolflags for
the project. If you intend never to reinstate this project as one maintained by
Make. then answer Yes to this query. If you are just temporarily removing this
project from the list then answer No. so that the toolflags state for this project is
saved.

If you later wish to reinstate a removed project. this can be done by dragging the
Makefile for the project onto the Make icon

Creating a final target for a project

There are two ways of creating a final target for a project:

• If you click on Make in a project's dialogue box, Make will make the target
which is currently showing in the Target icon. An alternative target can be
selected by clicking the up and down arrow icons to move through the list of
possible final targets.

• If you double click on a filer icon of type Makefile (OXFE I). and you have
enabled the Auto Run options from Make's Options menu, then Make will
make the first target that it finds in the Makefile (which will be the target
specified when the project was created)

In both of the above cases, the amu program is run pre-emptively using the
TaskWindow module to make the chosen target. The space avai lable to load and
start up amu is determined by the Wimp Next slot. If you get errors such as:

No writable memory at this address

when you run a Make job, try adjusting the Next slot.

Make

The output from this process appears by default in a scrollable. saveable text
window (or in a summary dialogue box if this option is selected in the Display
submenu)

This window is read-only. you can scroll up and down to view progress. but you
cannot edit the text without exporting it to an editor. To indicate this, clicking
Select on the scrollable part of this window has no effect.

Clicking Adjust on the close icon of the output window switches to the output
summary dialogue box:

Make 7 Lines of output

Abort 1 ~nbnue r

This box presents a rem inder of the tool runn ing (Make). the status of the task
(Running. Paused. Completed or Aborted). the time when the task was started and
the number of l ines of output that have been generated (i.e. those that are
displayed by the output window) . Clicking Adjust on the close icon of the summary
box returns to the output window

Both the above output displays follow the standard pattern of all the
non-interactive desktop tools. The common features of the non-interactive
desktop tools are covered in more detail in the chapter General features on page 101
Both output displays. and the menus brought up by clicking Menu on them. offer
the standard features al lowing you to abort. pause. or continue execution. save
output text to a fi le. or repeat execution.

Saving a project without Making it

If you have made changes to a project. and wish these to be written back to the
project's Makefile without actually making a target. then click on Save m the
dialogue box

65

Using Make

66

Setting Make main options

The Options submenu from the Make icon bar menu allows you to set two options:
Auto Run and Display.

Make
Info ... ClPb6nrf - · ~ Auto Run ' ()I splay' •
Open ,.. Text
Quit Summary

Selecting Auto Run me8ns that when you double-cl ick on a file of type Makefile
(OXFEl l from a directory display. the AMU program is immediately invoked to
make the first target found in the Makefile; if you do not select Auto Run . then
double-clicking on a Makefile merely adds the project to Make's list of maintarned
projects (if it is no t already there). and opens the dialogue box for that project
(bringing it to the front of the WIMP's window sLack if it is already open)

In the Display submenu. you can choose whether the output of all Make processes
is drsplayed in a scrolling text wrndow or in a summary dialogue box

Text-editing Makefiles

You can use a text editor to customise a project's Makefile. There is a section of the
Makefile. following the active comment User-editable dependencies .
which is left untouched by Make All other sections of the Makefile will be
over-written and so should not be ed ited using a text editor (unless you arc
thorough ly famil iar with the opera! ion of Make). The full format or a Makefilc is
described in Makefi/e format on page 67

Note that the actual Makefile is only read in if Make is re-loaded and the project
then opened. just re-opening the project without re-loading Make is not sufficient

A good example of how this cou ld be used. is Lo create a ru le which removes an
application's binary image and the object files used to create it. so that the next
·make' wi ll remake all objects This is done by entering in the user-editable section
the following lines

c lean: ; remov e ! Runimage
wipe o . * - cf

Using conventional Makefiles

If a file of type Makefile. which does not comply to the Makefile format. is
double-cl icked. or if a fi le of type Text or Data is dragged onto the Make icon. il is
not registered as a project. Instead Make runs the AMU program with this file as its
input Makefile This allows the usc of Makefiles from other systems. and ones
which do not fit into the project-oriented way of working required by Make

Makefile format

Make

The Maketilc which is used to maintain a project is a file of type OXFEl
(Makefile), and contains normal ASCII text. This text is arranged inlo a number

of sect ions which are separated by active comments. For a detailed description of
Makefi le syntax see appendix Makefi/(, syntax on page 173.

Below. we describe each of these sections. beginning with their respective active
comments

Project project_name: This gives a name to be used for the
project in the Open submenu

Toolflags: This section has a set of default flagc; for
each of the tools which have registered
themselves with Make, for automalic
inclusion in a Makefile. The tool wil l have
done Lhis by writing l ines (described in
the Programmer interface on page 681 into:

Final targets:

User-editable
dependencies:

<Make$Dir> .choices.tools.

Each macro in the Makefile will be of the
type

tool flags

e.g ccflags = -c

Th is section contains the ru les for making
the fina l targets of the project. For
example

!Runimage:link $(linkflagsl

This information is obtained when the
proJeCt was created (from the Name and
Tool icons in the New Project dialogue
box)

This section is left untouched by Make.
and can freely be edited by the user This
allows ru les to be added wh ich are
specific to a particular project: for
example. il may copy sources from a file
server to your local Winchester. before
doing a compilation.

67

Programmer interface

Static dependencies: This sect ion contains rules for making an
object file from corresponding source It
does not refer to include files etc.
(described in Dynamic
dependencies).

Dynamic dependencies: This section contains the rules which are
created by Make by running the relevant
tool on a source file to ascerta in its
dependencies (e.g. cc -depend) .

Programmer interface

68

The following information is given for programmers wi shing to add new desktop
tools to be used with the Make applica tion

If you wish to use a tool with Make. which does not come with Acorn C/C++. you
can use either of the following two methods.

• Write a description or Setup file (see appendix FrontEnd protocols on page 185)
for the tool for use by the FrontEnd module and register it with Make as
described below in the sect ion Registering command-line tools witft Make.

• Wrtte a WIMP frontend for the tool which complies with the details given
below in the section Message-passing interface for setting tool options

Registering command-line tools with Make
A command-line tool which will be run under the control of the FrontEnd module
(for setttng its options in a Makcfile). wi ll need to append lines of the following
format to the file <Make$Dir>. choices . tools

toolname Name of tool

string

flags

rule

pathname

pathname

Extension

Default flags for use by Make

Rule for converting sources to objects

Fu ll pathname ot file containing application description

Full path name of file containing Frontend setup commands

All the above lines should be terminated by the C newline character \n.

Make

Message-passing interface for setting tool options

When the user selects a tool name from the Tool options submenu. Make 1ssues a
star command to get the frontend module to start up a Wimp frontend for the
chosen tool (without an icon appearing on the icon ba r) The setup d ialogue box
for that tool is then displayed, with the Run icon replaced by an OK box.

The user can then set opt ions for that tool A suitable set of command-line options
is returned by the generalised frontend, to be used as that tool's tool flags entry
in the Makefile

If the star command fails (presumably because the frontend module is not active
or because there is no description for the chosen tooll. then Make broadcasts a
WIMP message (recorded delivery). to sec if any application can deal with the
request. This is to allow expansion o f the system to incorporate other WIMP-based
compi lers. assemblers. etc .. which other parties wish to provide for use under the
control of Make.

The WIMP message has the format

Byte offset

+16

+20
+24

Contents

DDE_CommandLineRequest (reason code) (&8140 I 1

Make's internal handle

null-terminated application name

If you have written an application which needs to respond to this message, then
your application should

I Acknowledge the WIMP message. You must also store the taskhandle of Make

2 Display a dialogue box to allow the user of your appl ication to set options
appropriately.

3 When the user has chosen the options. send back a WIMP message to Make.
with the following format:

Byte offset

+16

+20
+24 to +36

+36 ..

Contents

DDE_CommandLineResponse (reason code) (&814001

Application's handle

Appl ication's name

nu ll-terminated command- line options

69

70

6 SrcEdit :-,: ; :-: :
; .., . :

I

SrcEdit is a text editor. based on the RISC OS editor (Edit). with extra features to
make it more suitable to create and edit program sources

You can control SrcEdit from a menu tree, which 1s described fully in this chapter
However. many menu choices are available directly from the keyboard: once you
are familiar with SrcEdit. you may find that you prefer this method These keystroke
equivalents are listed later in this chapter

Starting SrcEdit

You can load SrcEdit either by double-clicking on the !SrcEdit icon from a directory
display. or by double-clicking on a file of type Text (&Offf). You will then see an
icon similar to that of Edit on the iconbar (a pen and program listing!

Typing in text

When you first open a new SrcEdit window. an 1-shaped bar- the caret- appears at
the top left of the window. This is where text will appear when you start typing. You
can open more SrcEdit windows. but only one of them will have a caret in it: this is
called the current window. It is also identified by the fact that parts of its border
appear in cream rather than grey. You can type only in the current window

If you type in some text without putting in any carriage returns. and using the
system font (the default font) you will find that the window scrolls sideways. This is

because the default SrcEdit window is not as wide as the screen You can break
your text mto lines by pressing Return Alternatively. click on the Toggle Size icon
to extend the window to the full screen and avoid having to scroll sideways There
is another way of getting al l your text into the window. using the Format

command: this is described later.

As you type, you will notice that SrcEdit fi lls the current line and then carries on to

the next line. often breaking words in the middle. Ignore this for the moment, as
there is a menu option (Wordwrap) that will take care of it. and this will be

described later

71

SrcEdit menus

Inserting and deleting text

SrcEdit menus

If you need to insert or delete text. position the ca ret where you want to make the
alteration by moving the pointer there and pressing Select You can insert text
simply by typing. If you want to delete a character. pos1t1on the caret 1m mediately
after it and press either Backspace or Delete, hold the key down and the
auto-repeat wi ll come into effect. deleting more characters.

The top level menu for text windows contains the following options:

Src:Edit
Mise ,.

Save F3,..
Select ,..

Edit "'
Oisplay2

The Mise menu

Info

File
New111ew

~ Column tab rF3
Overwnte llFl

Wordwrap "F5

72

This menu offers six options:

Info tells you about SrcEdit. including the version number of your copy of the
program.

File gives information about the file you are working on. m particular

• whether it has been modified since you last saved it,

• what type of file it is: for example. a Text File or a Command fi le (its icon, if it
has one. is also shown);

• its name, includmg the full directory path name:

• its size. in number of characters:

• the time and date it was last saved (or if you have not saved it yet. the time and
date when it was first created)

New view opens a second window on the same text. This allows you to look at l wo
parts of the same document, and makes many actions such as copying from one
part of a document to another much easier Remember that you are looking at one
document. not at two separate copies of it to illustrate this. try looking at the
same part of a document in two views (not the way you will normal ly use New
view'): enter some changes in the first view and you will see the same changes
appearing in the second view. This is particularly useful with large documents

SrcEdit

Column tabs switches on a different type of tab insertion; for more detail see the

section Layi11g out tables- the Tab key on page 86 When this option is on . it is ticked

in the Mise menu and Col Tab appears tn the Title bar.

In SrcF.d it the defau lt stale is to have Column tabs on.

Overwrite. means that each character you type replaces the character at the cursor.

instead of pushing the cursor aside and inserting the new character When th1s

option 1s on. it is ticked in the Mise menu and overwrite appears in the Title bar

Wordwrap prevents words being split over l ine-ends as you type. When this option

is on. it is ticked in the Mise menu and Wordwrap appears in the Title bar. Do not

confuse this option with Wrap. selected from the Display submenu. Wordwrap ,

unlike Wrap. inserts a newline character (which is there although you cannot see 1t

on the screen) when the cursor moves to a new line.

Saving text- the Save menu

The Save menu allows you to save a complete file. you can also save part of a file

using the Select menu

In order to save a file in the easiest way, you need to have on the screen the

directory display for the directory where you want to save the fi le

I Click Menu over the SrcEdit window. and move to the Save submenu A

dialogue box appears. containtng an icon. the current filename. and an OK

button (as a short-cut you can also display this dialogue box by pressing F31

¥-· $reEdit
Mise ,... t Save as "'

n••••" Select .. ~
Edit ,.

IS Display ,.. I TextFilej
-

2 If the file has not been saved before. SrcEdit offers you a default filename of

'Text File' If you want a different name. use Backspace or Delete (or press

Ctrl U) to delete TextFile. then type in the name you want

3 Place the pointer on the icon in the box and drag the icon into the d irectory

display where you want to keep the new file An icon for the fi le then appears

111 the directory wmdow.

This act1on assigns a full pathname to the file, as you will see from the Title bar of

the SrcLdit window. When you have made some changes to the text and want to

save the fi le a second time, use the Save option again, but th is time, provided you

want to use the same filename. you can save the file by clicking the OK box Saving

the file with the same name overwrites your old file with the new mformation

73

SrcEdit menus

74

You can also save part of the text. typically for printing or transferring to another
application. using the Select/Save option, described in the next section.

Manipulating blocks of text - the Select menu
You can select blocks of text. then manipulate them.

The simplest way to select a block is to position the pointer where you want the
block to start, click and hold down the Select button. then drag the pointer to the
end of the block and release the button. The selected block of text is highlighted.

If necessary. you can then use Adjust to 'adjust' the ends of the block. Position the
pointer exactly where you want the block to start or finish. click Adjust and the
block lengthens or shrinks accordingly. This is particularly useful when you want to
select a block that extends beyond the part of the text you can seem the window
Select a few words or lines at the sta rt of the block, scroll until you can see the
point where you want the block to end. place the cursor there and click Adjust

Here are some other ways of selecting blocks of text

To

select a single word
select a single line
extend block to whole word
extend block to include current line

Do this
double-click Select
triple-click Select
double-click Adjust
triple-click Adjust

Once selected. text can then be saved. copied. moved. deleted. de-selected
(cleared) or indented by choosing options from the Select menu

To Save a selected block. move to Save from the Select menu. and follow the
standard saving procedure Use this option to copy a selection into another
SrcEdit window; open a new window and drag the icon into it. The copied block will
appear after the current caret position in the destination window The caret is also
moved to the end of the copied text

SrcEdit

To make a Copy of a selected block of texl, select (highl ight) your block of text and

then position the caret where you want the copy inserted. then cal l up the Select

submenu and click on Copy. The original block remains selected. Keep clicking on

Copy to make as many copies as you want

If the caret is already at the position where you want the copied block to appear.

press and hold Ctrl while making the selection in the usual way Copy the block by

pressing Ctri-C This way you can make a selection without moving the caret.

If you copy to a position inside a selected block, both the origina l and the new copy

remain selected. If you then make multiple copies you will get double the number

you mdicate. This may happen accidentally if you position the caret immediately to

the right of a selected block ending in a newline character because the newline

character does not appear on the screen it is not highlighted, but is still part of the

selected block. To undo an action. choose Undo from the SrcEdit menu.

To Move a selected block o f text. select you r block of text and place the caret where

you want the text moved to. then click on Move.

If the caret is already where you want the block to end up. press and hold Ctrl while

making the selection in the usual way Then still holding Ctrl. press V. and the block

will be moved to the caret position This way you can make a selection without

moving the caret.

To Delete a selected block of text. click on Delete. The marked block then

disappears. (Undo in the Edit menu- al lows you to reverse any changes or

deletions made in the Select menu)

To Clear or 'deselect' a block of text you have previously selected. click on Clear

The highlighted block reverts to normal and the block is no longer selected

Indent allows you to indent a selected block of text. The indent is defined in

character spaces. You can also use Indent to add a text prefix to the beginning of

each line of a block

To indent a selected block of text. call up the Indent submenu.

r.: Sid: <It . l
t.tsc ... 1
Save F3 .. s.l<oct
- Save ~

.. l"""' Oaplay • Move •v

Delet•'X

a ... •z -

I 16 -~--- .. -•-
,umbflf .,.e:nomarac~

~-·-••~•• I

Cane.~ I I ()(I

75

SrcEdit menus

76

You can then type in three different types of indent:

• A positive number gives you an indent of the specified width .

• A negative number. -5. for example. deletes the specified number of spaces or
characters from the beginning of the block line. use this to cancel an indent

• You can also type in text: IGNORE, or Note, for example. This will then appear
at the beginning o f every line in the selected block. You can remove this text by
indenting with a suitable negative number

no indent

indent= 4

indent= -4

indent = Note:

By selecting some text and choosing the Help submenu, some language-specific
help can be given on that selection . This help is supplied by a language package,
which wil l have registered a help file containing typically a list of help messages for
keywords of a programming language (e g the C printf function)

The Load submenu allows you to load a file into the editor, whose name is given by
the current selection . The rule used to determine the name of the fi le to be loaded
(assuming the current selection is in a file whose name has the form
DirectoryPath .LanguageExtension foo) is as follows:

Try to load file Selection

2 If (I) fai ls try to load file:
DirectoryPath.LanguageExtension.Selection

3 Try to load file DirectoryPath.Selection.

4 If (3) fai ls try the comma-separated list of directories entered by the user from
the Search Path entry in the Options submenu of SrcEdit's icon bar menu.
with Selection appended as a leafname.

5 If (3) and (4) fail, try the comma-separated list of directories which are
registered for the current language (see The SrcEdit icon bar menu on page 92 for
details of how to set the current language)

SrcEdit

Por example, you may have a C source fi le with a line #include "defs . h" . By

selecting defs . h and typing Ctri-L the header file defs . h wil l be loaded into

SrcEdit (providing it can be found on one of the search paths).

The Edit menu

Eclt
Find F4 ,..

Go to F5 .,..

U'ldo FS

Redo F9
CR<->LP·FS

Expand tabs
Format text .,..

The first option in the Edit menu is Find. At its simplest, this allows you to locate

any character(s) in your file. You can also use it to replace text with other text. To

make sure that the search is complete. always position the caret at the start of the

fi le before giving the Find command. In the fol lowing description, the text being

searched for is referred to as a 'string': it may consist of any sequence of letters.

numbers. spaces or other cha racters

Searching for a string of characters

To use Find without doing anything with the found stri ng, choose Find in the Ed it

submenu: the Find text dialogue box appears, with the caret in the Find box. Type

in the string you want to locate and press Return. The caret then moves to the

Replace with box

I~ PreviOIS I~
Find I Find this texq J

Replace wllh I I
_]Case sensitive

...) MagiC characters ...) Wildcalded expre~lions

Since on this occasion you do not want to replace the found strings, either cl ick on

Go, press Return or press Fl .

Edit finds the first occurrence after the caret of the word in your file. then displays

the Text found dialogue box. indicating the operations available.

1'-'1 T•tbnl
Stop I Continue I. Replace I

Last Replace I End of tile replace I
U'ldo I MOO I

Found

To look for the next occurrence of your string, cl ick on Continue. To abandon the

search. click on Stop or press Escape.

77

$reEdit menus

78

Replacing a string of characters with a new string

To use Find for replacing a string wi th a new string, go to the Find text dialogue
box as before. but this time, insert the new stri ng into the Replace with box. Then
press Return. and the Text found dialogue box appears

: r: rll'ld lllxt •' .,., ,,.. . •t.;

J ~ !revlous I Cou'2!_j
Find I Type the text you want to find in here I

Replace with I Replace 1t w1th this te)(~

_jCase sensttiVe
) MagiC d'laracters .) W11dcarded e~pressions

Click on Replace to substitute the new string for the o ld string; if you do not want
to change this particu lar occurrence of the old string, cl ick on Continue and
SrcEdit moves on to the next one

If you click Last Replace, SrcEd it replaces the currently found instance of the
string, but does not search for further occurrences.

If you click on End of flle Replace. SrcEdit finds and replaces all occurrences of
the string from the present one forwa rd to the end or the fi le. without stopping at
each one for instructions.

Clicki ng on Undo takes you back to the last string replaced and returns it to the
original version; click Redo to change it back again

The display at the top of the dialogue box keeps you informed of the state of the
search; if SrcEdit cannot find the word you have speci fi ed. it di splays the message
Not Found

Using keyboard short-cuts

Besides using the Select button. you can contro l all these options from the
keyboard the particula r keys are indicated by the cap1tal letters 111 the dialogue
box. Press Sand the search Stops. press C and it Continues. D and 1t will reDo. and
so on. Pressing Escape or Return also stops the search and removes the Text
found window.

Other useful facilities

Note that you can use Find to delete st ri ngs in a text, by entering nothing in the
Replace with box. and clicking on Replace in the Text found dialogue box. thus
replacing the found string with nothing: deleting it in effect

SrcEdit

There are several other useful facilities in the Find text dialogue box:

• You can carry out the last Find and Replace operation again. by clicking

Previous (or by pressing F2)

• You can specify a string and ask SrcEd it to counllhe number of times it occurs

in your file (from the caret position to the end of the fi le) by cl icking on Count

(or by pressing F3)

• By default. Find makes no distmction between upper and lower case

characters- Hello will match to both HELLO and hello, or for that matter.

hElLo- you can specifica lly ask it to match case by clicking nexllo Case

sensitive (or by pressing F4 l Hello will then match only Hello Case sensitivity

remains selected until you deselect it by clicking again.

Magic characters and their meanings

You can also use the Find facil ity to search for classes of characters. To activate this

feature. click on Magic characters (or press F5) in the Find dialogue box.

Magic characters are indicated by a\ character. as shown in the lower half of the

dialogue box. which shows you the available characters

Type these characters in d irectly as shown in the window.

I~ _PrfNioos I ~unt J
Find l '------;------,~

Replace with l l
~------------------~ LJ Case sellSitive

(e" MagiC d1aracters 0 Wddcarded expresSions

\.-any char a any letter Of digit

\xXX- hell char \n, newllne

·=any strtng \&=found string

The magic characters operate as follows.

Character Meaning

\daany digtt

\\:\

\cXcCII-X

, . matches any string (including a string consisting of no

characters at all) This is really only useful in the middle of a

search string. For example. jo*n matches jon. john. and

johaan.

\a matches any single alphabetic or digit character. Sot \ap

matches tip. tap. and top. but not trap.

79

SrcEdit menus

80

Character

\d

\.

\ n

\eX

\&

\\

\ xXX

Meaning

matches any d igit (0 to 9).

matches any character at all, including spaces and
non-alphabetic characters.

matches the newline character 1 remember that to the
computer. this is a character just like any other).

matches Ctri-X. where X is any character

is used in the Replace with box to represent the found
string: the string matched in the search . Th is is pa rticu larly
usefu l when you have used magic characters in the Find
string. For example. if you have searched for t \ap, and you
want to add an s to the end of all the stnngs found \ &s in
the Replace with box will replace t ip, tap and top by
tips, taps and tops

enables you to search for a stnng actually containmg the
backslash character\ while using magic characters. To
search for the strings cat\a or cot\a. en ter c\at\ \a.
matches characters by their ASCII number. expressed in
hexadecimal. Thus \x61 matches lower-case a. This is
principally useful for finding characters tha t are no t in the
normal printable range

Wlldcarded expressions and their meanings

There is also a faci lity for specifying wildca rded expressions in search strings In
order to use this facil ity, cl ick on Wlldcarded Expressions (or press F6) in the Find
dialogue box.

~· ., Fini:l •xt .,
t

~~ ~sj_eount I
Find I tp I

Replace with I &sj I
J Case sensltwe

....) MagiC characters ~ W11dcarded e•pressions

Arly ' -Newline$ Alph&rom@ OIQit #
Ctrl I Normal \ Se~ ·)Set
Not~ Oor more • 1 or more • Most %
To- Found & ' Field# ? He•'

Click on the wildca rd character you wish to enter and it is copied into rhe text box

SrcEdit

The wildcard characters operate as follows·

Character

s
@

\

•

1\

%

&

Icon name

Any

Newline

Alphanum

Digit

Ctrl

Normal

Set

To

Not

0 or more

I or more

Most

Found

Meaning

matches any single character.

matches I i nefeeds.

matches any alphanumeric character. A to Z. a
to z. 0 to 9. and

matches 0 to 9

matches any control character. For example. to
search For Ctrl z. type in I z

matches any character following it even if it is a
special character. # would be searched for as
\#.

matches any one o f the characters between the
brackets. This is always case sensitive.

(a-z] would match any character (in the
ASCII character set) From a to z.

does not match character. -c matches any
character apart from C. This can also be
applied to sets

matches zero or more occurrences of a
character or a set of characters. T*O matches T.
TO,TOO. TOOO etc.

matches one or more occurrences of a

character or a set of characters T"O matches
TO. TOO. TOOO etc.

%cis the same as "c except when used as the
final element of a search string. In this case the
longest sequence of matching characters is
found.

refers to the whole of the 'Find' text. It is used
in the Replace with box to represent the
'found string': the stri ng matched in the search.
This is particu larly useful when you have used
wildcard characters in the Find string lor
example if you have searched fort . p . and you
want to add an s to the end of all the strings
found. &sin the Replace with box will replace

tip tap and top by tips. taps and tops

81

SrcEdit menus

82

Character Icon name Meaning

? rield

Hex

rr a string was found that matched the search
pattern. then ? n refers to the part of the found
string which matched the nth ambiguous part
of the search pattern. where n is a digit from 0
to 9. Ambiguous parts are those which could
not be exactly specified in the search string,
e g. in the search string %#fred*$ there are
two ambiguous parts. %#and *$-which are
?0 and ? 1 respectively. Ambiguous parts are
numbered from left to right. (Only to be used in
the Replace with string).

(3 nn matches the character whose ASCII
number is nn, where nn is a two-digit hex
number.

C3 61 matches lower-case a. This is principally
useful for finding characters that are not in the
normal printable range.

The fu ll power of the wildcard faci lity can be i ll ustrated by a few examples.

• To count how many lower case letters appear in a piece of text

Find. (a-z)

and click on Count.

• To count how many words are in a piece of text

Find %@

and Click on Count.

• To surround all words in a piece of text by brackets:

Find: %@

Replace with (&)

and click on GO, then on End of File Replace in the Found dialogue box

• Tochangealloccurrencesofstringslike#include "h.foo" into
#include "foo .h ":

Find: \jinclude "b\. %@"
Replace with: #include "?O.b "

and click on GO, then on End of File Replace in the Found dialogue box

SrcEdit

• To remove all ASC II characters. other than those between space and-. and the

newline character. from a file:

Find: -[-\- $]
Repla ce with:

and click on GO. then on End of File Replace in the Found dialogue box (I e.

find all characters outside the set from the space character to the- character.

and newli ne. and replace them with nothing) In fact this could be written

without the \.since- wou ld not make sense in th is context if it had its special

meaning of Not. ie:

Find: -1 --$1

Other options on the Edit menu:

To send the ca ret to a specific line of text. use the Goto option. Ca ll up the Goto

submenu and SrcEdit d isplays a dia logue box:

h:.."""<t 'l'- Golo•xt line ·r •_!..-..,

CU'T8 nt hne Ia
current chari-12_.50 ~"""'

Go to line I 4.i 1.1 OK j

Type in the line number you want to move to. then click on OK The dialogue box

disappears. and the screen displays the caret. positioned at the beginning of the

line you have just specified. Note that this option understands 'line to mean the

string of characters between two presses of Return. If you have not formatted your

text, a l ine in this sense may ru n over more than one display line.

Undo allows you to step backwards through the most recent changes you have

made to the text The number of changes you can reverse in this way varies

according to the operations involved

Redo allows you to remake the changes you reversed with Undo.

CR- LF allows you lo convert the linefeeds in your text to carriage returns (and

carriage returns to linefeeds). Carriage returns appear as the characters [Od J in you r

text.

If you convert from linefeeds to carriage returns. the file will be converted to one

continuous line. with carriage return characters inserted where linefeeds have

been removed. Though it is possible to edit a file in this state. you may find that

updating the screen takes a long time. This facility is useful when importing text

from other text editors. wh ich may use carriage returns where SrcEdit uses line

feeds.

83

SrcEdit menus

Expand Tabs converts each tab character into eight spaces. since some printers
can interpret spaces more easily than the tab character. If you have imported a file
that was produced on a word processor. you may find it uses tab characters. These
appear in the SrcEdit file as the characters 1091 in your text

Format text allows you to reformat a paragraph of text- from the caret to the next
blank line or line starting with a space- so that the lines fil l the screen and break
correcliy at the ends of words. It is useful for tidying up text after editing. Position
the caret at the beginning of the paragraph. choose Format text in the Edit menu
and enter the number of characters per line you want your text to have in the
Format width dialogue box. Then move the pointer back over the Edit menu and
cl ick on Format text to format the paragraph.

The setting in the Format width dialogue box also controls the length of lines
when you are entering text with Wordwrap switched on.

The Display menu

84

Font siz&
Font heigl11

Une spaci'lg "'
Margin
lnvel't
Window wrap
Foreground "'
Bad<gotnl ,..

..r Worl< Area r-

Display allows you to change the way your text looks on the screen you can
experiment with fonts. colours. line spacing and margins. However. the features
you select do not form part of the text when you save it.

For example. if you choose New view in the Mise menu. you will have a second
window on your text If you wish. the Display features in these two windows can be
different: this will not affect the text as such.

Font offers you a choice of fonts (typefaces) System Font is the default style. and
has a fixed character width. For further information on fonts. see the RISC OS User
Guide .

You can use Font size to set the point size (height and width) of the characters
displayed on the screen. Either select one of the sizes indicated or position the
pointer on the bottom (blank) line of the menu; you can then type 1n another size.

Font height allows you to set the height of the characters d isplayed on the screen
leaving their width unchanged.

line spacing increases or decreases the space between lines. Its units are pixels
(the smallest unit the screen uses in its current mode). The selected font size
assigns a suitable line spacing; this option is therefore used only to increase (or if
you type a negative number. to decrease) the given spacing.

Margin sets the left margin, again in pixels.

Invert swaps foreground and background colours. so that black texl on white
becomes white text on black. and so on.

SrcEdit

By default. SrcEdit assumes a text width of 76 characters. but the default window is

not as wide as the full screen. You can of course change the number of characters

per line (by choosing Format text in the Edit menu) or enlarge the window to the

full screen by clicking on the Toggle Size icon. Alternatively, clicking Window wrap
makes your text fit the size of the window. When Window wrap is on. you can
change the window to any size. and the width of the text will change accordingly.

You can revert to the default by selecting Window wrap again.

Foreground allows you to set the text to any one of the sixteen colours. by clicking

on the selected colour square from the palette displayed.

Background allows you to set the window's background colour. as above.

Work Area allows you to set the extent of your SrcEdit windows so that you can

have windows which are wider than the current screen mode. You can specify a

wider window in terms of System Font characters in the Work Area submenu (the

size of System Font characters is used even if the current font used is a fancy font).

This is particularly useful if you have sources which. for example, are 80 or 132
characters wide and you are viewing them in mode I 2. The maximum size of
window width which can be specified in this manner is 192 System Font characters.

Printing a SrcEdit file
There are two ways of printing a SrcEdit file: however. to use either, you first need

to load a printer driver.

If the file you want to print is already loaded into SrcEd it. call up the Save as
dia logue box and drag the icon onto the printer driver icon on the icon bar. This

will print the current version of the file. whether or not it has been saved.

If the file is not loaded into SrcEdit. you can simply drag the files's icon from its

directory display onto the printer driver icon You can also do this if the file is
loaded. but if you have made any changes to it since you last saved it. they will not

appear in the printed copy; only what has been saved will be printed by thts

method

85

Laying out tables - the Tab key

Laying out tables - the Tab key

86

Tables can be set out in two ways using tabs- as regular columns or irregular
columns.

Regular columns

If you want your table to have columns regularly spaced eight characters apart.
select Column tabs in the Mise submenu. The word CoiTab will appear in the
window's Title bar to remind you that you have done this. Pressing Tab will then
cause the cursor to jump to the next tab position. This is very useful for creating
simple tables that will not display much text:

~'• ADFS Hard0tsc4 $ Ttmt s CoiTab
Average conpilation tines (sees) for source files

Main.c swi .c gui. c hardboot. c

Jan 489 318 128 34
Feb 498 312 145 42
Mar 495 314 145 47
Apt· 492 313 132 59
May 498 312 138 45
Jun 498 328 131 43
Jul 485 325 133 42
Aug 485 338 148 39

Column Tabs is selected by default in SrcEdit.

Irregular columns

m
l'l

I

To set out a table with irregular columns. make sure that Column Tabs in the Mise
submenu is not selected. Type in the first line -the column headings. for example
-as you want it to appea r. using spaces to separate the text in the columns Then
press Return. On the next line. pressing Tab will make the cursor jump to the
position underneath the start of the next word in the line above

SrcEdit

So, in the following example of a simple d iary, the column headings (Person. File.
Task and Reason) were typed in using spaces. then the following lines were typed

in using tabs (including the dashes used as underlines for the column headings):

Note: Both the table layout methods described above will only work with a fixed
width font (e.g. the System font). If you create a table and subsequently display the
screen in another font. the text in the table will not line up correctly with the

column headings

Reading in text from another file

If you want to add all the text from another fi le into the file you are currently
editing, position the caret at the point where Lhe inserted text is to appear Call up
the directory display for the incoming fi le. and drag its icon into the text window.
The entire contents of the source file are then copied into the destination file at the
caret position The caret will appear at the end of the text you have inserted.

Bracket Matching

SrcEdit has a useful bracket-matching faci lity. If you place the caret to the left of an
opening bracket- any of the set (. (. or { -and press FlO, the corresponding
closing bracket wi ll become the cu rrent selection; similarly by placing the ca ret to
the left of a closing bracket - any of the set) . J. or } -and pressing Fl 0, the
corresponding open ing bracket will be selected. If there is no matching bracket an
error message is generated. Thi s is a particularly useful feature in heavily bracketed
expressions and blocks of code which extend over a large amount of source code.
and is useful in conjunction with the Ctri-F7 feature (toggle caret and selection)
thus moving the selection between matching brackets.

87

Throwback

Throwback

The purpose of throwback is to allow translators (compilers/assemblers) to signal
the editor when they have detected source errors. On receiving such a signal,
SrcEd it displays a window wh ich shows the name of the fi le which was being
processed when the error(s) were found, the name of the file in which the error(s)
were found, and the relevant line number together with the text of the error
message. Also displayed is the severity level of the error(s): Senous Error. Error, or
Warning. The complete list of errors is shown in a scrollable window. We shall refer
to a single l ine of th is window as an error line. You can scro l l through these as with
any normal text window, using the vert ica l and horizonta l scrol l bars.

line
61
61
82

' Type
warning
Warning
Narning

...
Description
use of '=' in condition context
use of '=' in condition context
use of '=' in condition context

Double-clicking Select on an error line opens an edit window on the appropriate
file (if it is not already open I. and highlights the line containing the selected error.
The selected error l ine is also highl ighted in the scrollable error window. Clicking
Ad just on an error I ine removes it from the list (presumably you have either
corrected the error or have chosen to ignore it) Note that error line numbers refer
to the original source when it was processed You may, in the course of correcting
errors, insert or delete lines; the position in the source where errors were detected
rema ins correct despite your edits (provided that the ed its are made as a
consequence of th rowback)

'Informational· throwback is also supported for tools like !Find The functionality of
such a throwback wmdow is the same as for 'error' throwback

C example throwback session

88

First double click on !SrcEdit and !CC in a directory display to load them as
applications with icons on the icon bar. Next open the subdirectory
AcornC_C++ . Ex arnples . CError to show the text file HelloW containing the
source of the program example of that name.

SrcEdit

Hellow is a trivial C program which when run prints Hello World on the

screen. It is written to be compi led with an integra l link step by CC to form an

executable image file . Its source con tains a simple error which will be detected by
CC when you try to compile it.

Drag the source file Hell ow to the CC icon to make the CC SetUp dialogue box

appear with the Source writable icon initialised to the absolute file name Ensure

that the Throwback option is enabled. The correct dialogue box appearance is CIS

follows:

cc
Source fomC C++ Examples CError.c Henow.l

Include I C:

Opuons

'

..) Compile only

...) Preprocess only

._I Debug

[7 Throwback

Cancel I j Run

Click Menu on the setup box and ensure that the Work directory item on the menu

displayed has the default setting of'"'. Click on the Run button on the SetUp box

to start compilation. This has the normal effect of removing the setup box and

putting the CC ou tpu t display on the screen. but almost immediately afterwards

the compi ler produces an error and requests SrcEdit to display a Throwback error
browser:

line
15

Type
Error

Description
expectfd ')' or ',' -inserted ')' before ';'

Double click Select on the compiler error message:

expected o) o or 0 0 , - inserted ') ' before

89

Throwback

90

SrcEdit displays the source file with the offending line that caused the error clearly
highlighted:

Examining this line closely shows that a closing bracket is missing before the
ending semicolon Insert this bracket in SrcEdit and save the file Click Select on
the CC icon bar icon and click on Run to repeat the last compilation If you have
changed the HelloW source correctly. the compilation should now complete with
no errors hence without bringing back the SrcEdit browser

When the CC save dia logue box appears. click on the OK button to save the
executable fi le produced in the directory Examples . CError . Now double click
Select on the newly created executable image file in a directory display The image
file should run. pnntmg the Hello world message in a RISC OS run window

Run SCSI" DHarris.$ AcornC C•1 .E>camples CError HalloW
H•ll o wor ld

' r••• S PACE or cllck ~use to continue

L __ ____.

SrcEdit

Assembler example throwback session

First double cliCk on !SrcEdit. !ObjAsm and ! Link in a directory displdy to load
them as applications with icons on the icon bar. Next open a directory display on

the subd irectory AcornC_C++. Examples .AsmError . s to show the text file
Hell ow con taining the source of the program example of that name

HelloW is a simple assembly language program which when run prints Hello

world on the screen It is written to be assembled to an object file by ObjAsm

then linked to form an executable image file with Link Its source contains a simple

error which will be detected by ObjAsm when you try to assemble it. The line
containing the error is

= "Hello World"l3,10,0

Examin ing th is line shows that a comma is missing after the close quote Correct

this and you will then be able to assemble the program without error.

C++ example throwback session

First double cl1ck on !SrcEdit and 'C++ in a d1rectory display to load them as
applications w1th icons on the icon bar Next open the subdirectory
AcornC_C++ . Examples .C++ Error to show the text file HelloW containing

the source of the program example of that name

HelloW is a trivial C++ program which when run prints Hello World on the

screen. It b written to be compiled with an in tegral link step by CC++ to form an

executable image fi le. Its source conta ins a simple error which will be detected by

C++ when you try to compile it. The line con taining the error is:

cout << "Hello World\n;

Examining this I me closely shows that a closing double quote is missing before
the ending semicolon Insert this double quote in SrcEdit and save the file. Click

Select on the C++ icon bar icon and click on Run to repeat the last compilation If
you have changed the Hell oW source correctly. the compilation should now
complete with no errors. hence without bringing back the SrcEdit browser

When the C++ ~ave dialogue box appears. click on the OK button to silve the
executable file produced in the directory Examples. C++ Error. Now double

click Select on the newly created execu tab le image file in a d irectory display The

image file shou ld run. printing the Hello World message in a RISC OS run

window

91

Saving Options

Saving Options

To retain the same set of options whenever you use SrcEdit. set the menu and
dialogue box entries to the required configuration and then choose Save options
from the SrcEdit icon bar menu. The options you have chosen are then saved in
two files

<SrcEdit$Dir>.choices .options
<SrcEdit$Dir>.choices.liboptions

These files are read when SrcEdit starts up. The options saved are:

Foreground Colour
Background Colour
Font Width
Font Height
Left Margin in pixels
Extra spacing between lines
Window wrap
Font name

Window work area width
Column tab
Overwrite
Wordwrap
Warn multiple edits
Current language
Search path

Setting options in a SrcEdit window

If you set the Column tab, Overwrite or Wordwrap options in the Mise submenu
in a SrcEdit window they wil l only apply to that session of SrcEdit in that \~·indow
To change these three options and retain the new settings whenever you use
SrcEdit. you must set them in the Options submenu in the SrcF.d it icon bar rr>enu.
and then choose Save options

The SrcEdit icon bar menu

Src:Edit
Into
Save all IIF9
Save opbons

~boos eate
it

92

...

,..
,..

Pressing Menu on the SrcEdit icon on the icon bar produces a menu with the
following options

Info gives you some information about the version of SrcEdit you are using

Save All saves all modified buffers, and closes al l open windows.

Save Options saves the current settings of all SrcEd it options lo file. so that there
is no need to set the environment variables used to maintain these options

The Options submenu allows you to set the following options.

~Column tab

Overwrite
Worctwrap

~ Warn multiple ed1ts 1-=Lan:..:.~=.~~-!
1"-.IC

Search path t Assembler

SrcEdit

Column tab Overwrite and Wordwrap are s1milar to the options on the Mise
submenu in the section entitled T(le Mise menu on page 72 . They are used to set
the default options for al l windows opened by SrcEdit.

Warn multiple edits, if enabled. will warn you when you attempt to load a file
which is already loaded in a modi fi ed SrcEdit buffer. This reduces the chance
of you accidenta lly ed iting two copies of the same file. and then saving one
over the other In such a case you will be presented with a dialogue box, giving
you the choice of having a read-only copy of the file. a normal editable copy, or
to cancel the load of the file. If you choose to have a read-only copy, then the
SrcEdit window for the document will have Read-Only in its Title bar and you
will be prevented from making any edits to the contents of the document

The Language submenu gives you a list of any language packages wh1ch have
registered themselves with SrcEdit. You can select which of these languages is
current. and this will determine what Help text is available, and also the
default search path used when load ing from a selection.

Search path - If you load from a selection (i.e. when you have chosen Load
from the Select submenu). SrcEdit will look in a number of places for the file to
be loaded You may set a comma-separated list of paths to search by typing
them into the Search path writable icon (described on page 76) Note that
each such path should either be a path variable or be explicitly terminated by

a dot

Create leads to a submenu which enables you to open windows for specific types
of file Text, Da ln, Command, Obey and Make files.

In addition, the Create submenu allows you to set up SrcEdit Task windows. these
are described in the next section.

Finally. Quit stops SrcEdit and removes it from the computer's memory, first
presenting you w1th a dialogue box for confirmation if there are any current files

you have not saved.

93

SrcEdit task windows

SrcEdit task windows

94

SrcEdit task windows allow you to use Command Line mode in a window. To open
a task window. choose Task window from the SrcEdit application menu. You can
have more than one task window open When you open a task window. you will see
a • prompt You can now enter commands in the window just as 1f you were usmg
Command Line mode.

The major advantages in entering commands in a task window instead of at the
Command Line prompt are that

• Other applications continue to run in their own windows while you run the
task (this does mean. though. that the task may run more slowly than it would
using other methods of reaching the Command Line)

• Commands that you type. plus the output (if any) appear m a conventional
SrcEdit window. and may therefore eas ily be examined by scrolling up and
down in the usual way. When you type into the window. or when a command
produces output. the window immediately scrolls to the bottom of the text
Anything you type in is passed to the task. and has the same effect as typ1ng
whilst in Command Line mode. You can change this by unlinking the window:
in this case. anyth ing you type in alters the contents of the window in the same
way as any other SrcEdit window. even while a task is running Any output from
the task JS appended to the end

You can also supply input to a task window by se lecting some text from another
text file and choosing Tasklnput from the task window menu. The selection may be
in any SrcEdit window

You cannot use graphics in a task window. The output of any commands that use
graph ics will appear as screen control codes in the task window

The menu for a task window contains the following options

Task
Kal
I 1nect

Suspend

F

Ulfink
l .,1

II

./Ignore Ctl
Ed1t ,..

Kill stops and destroys the task running in the window

SrcEdit

Reconnect sta rts a new task in the window. allocating memory to the task from the

Task Manager's Next slo t.

Suspend temporarily halts the task running in the window.

Resume restarts a suspended task

Unlink prevents the sending of typed 1 n characters to the task. Instead, they are

processed as if the task window were a normal SrcEdit text window.

link reverses the efrect of Unlink.

Tasklnput reads task input from the currently selected block

Ignore Ctl when selected, prevents any control characters generated by the

program from being sent to the screen

Edit leads to the normal SrcEdit menu Although this makes available most of

SrcEd it's features. you cannot use facilities such as the cu rsor keys or keys such as

Page Up and Home wh ile you are using a Task window

Some guidelines and suggestions for using task windows

In order to use a task window. you wi II need to be familiar with Command Line

mode. There are some commands which you will find arc more usefu l in a task

window than they are d irectly from the Command Line. In pa rticu lar

*wimps lot min (max] can be used to adjust the amount of memory available

to the task which will other\vise start up using the Next space allocation. If you

want to remove all the memory alloc<Jted to a task without closing its window or

destroying the task. use the command *wimps lot 0 0

*filer_opendir path opens a new directory display ror the directory with th e

given path. The path must sta rt with a n ling system name l'or example:

adfs::DHarris.$.Research

The command *Spool should not be used from a task wmdow Because 1ts effect

1s to write everything that appears on the <>creen to the spool file. using *Spool

from the desktop will produce unusable files full of screen control characters

There is. in any case, no point in using *Spool. since the output from the task

appears in the window, and can be saved using SrcEdit as normal

When you run a command in a task window. the computer d1vides its time between

the task window and other activities runnmg in the desktop You should note that

some time-consuming commands. for example. a *Copy of a large file. may

prevent access to the filing system that they use until the command is complete

Note that Command Line concepts such as current directory become relevan t

when you are using Task Windows

95

Keystroke equivalents

Keystroke equivalents

On occasions. it can be convenient to use the keyboard instead of the mouse.
especia lly once you are familiar with SrcEdit through its menus.

96

When editing

+-,-4, f,~

Shift-+-, Shift- -4

Shift-t. Shift-~

Ctrl-j

Ctrl- ~

Ctrl-+-, Ctrl--+

Ctri-Shirt-t. Ctri-ShHH

Ctri-Shift-+

Ctri-Shlft--+

Copy

Shift-Copy

Ctrl-Copy

Home

Insert

Page Up/Page Down

Shift-Page Up/Page Down

Ctri-Pagc Up/Page Down

Shift-F3

Sh ift-F I

Ctri-F5

Ctri-F7

Move ca ret one character lert. right. up or down

Move caret one word left or right

Move caret one windowful up or down

Move caret to start of fi le.

Move caret to end of file

Move caret to start or end of line.

Scroll file without moving caret.

Scroll all documents up by one line

Scroll all documents down by one line

Delete character to right or caret.

Delete word at current caret position.

Delete line at caret.

Place caret at top of document.

Insert space to right of caret

Scroll up or down one wmdowful.

Move caret up or down one l ine without scrolling.

Move caret and scroll up or down one line.

Toggle column tabs on or off

Toggle overwrite mode on or off.

Toggle word wrap on or off

Make where the caret is the current selection, and
move the caret to where the selection was (i e.
toggle caret and selection)

SrcEdit

Keystroke equivalents in the Select menu

Ctri-Z

Ctri-X

Ctri-C

Ctri-V

Fl

Ctri-L

Clear selection

Delete selection.

Copy selection to carel.

Move selection to ca ret.

Request langudge-specihc help

Load file whose leaf name is given by selection

Keystroke equivalents in the Edit menu

F'4

Ctri-F4

F5

F6

Shift-F6

F7

Shift-F7

F8

F9

Ctri-F6

Ctri-F1~

Ctri-Shift-Fl

Display Find dialogue box

l ndent text block.

Display GoTo dialogue box.

If no block is selected select the single character after
the caret. If a block is selected. and the caret is outside
it. extend the selection up to the caret If a block is
selected and the caret is inside it. cut the block from
the caret position to the nearest end of the block

Clear the current selection.

Copy the selected block at the current ca ret position

Move the curren t selection to the caret position

Undo last action

Redo last action.

Format text block

Toggle between CR and LF versions of the file.

Expand tab!> .

97

Keystroke equivalents

98

Keystroke equivalents in the Find menu

Note: these keystroke definitions only come into play once the Find dialogue box
has been displayed (e.g. by typing F4).

t. l
Fl

F2

F3

F4

F'5

F6

Keystroke File options

F2

Shift-F2

Ctri-F2

r3

Shirt-F9

Find I replace text string

Display Text found dialogue box.

Use previous find and replace strings

Count occurrences of f1nd stnng

Toggle case sensitive switch.

Toggle magic characters switch

Toggle wildcarded expressions switch

Open a dialogue box enabling you to load an existing
SrcEdit file into a new window

Open a dia logue box enabling you to insert an existing
SrcEd1t file at the caret position

Close w1 ndow.

Save the file in the cu rrent window This is n short-cu t to
the normal Save as dialogue box

Save dll window edits.

Part 3 - Non-interactive tools

99

100

7 General features

T his chapter describes those features common to all the Desktop

non-interactive tools.

As described in the chapter Working witf1 dt~sktop tools on page 13. the Desktop

programming tools can be divided into two categories interactive and
non-interactive The non-interactive tools are those wh1ch you set options for and

then run. not interacting further until the task completes or is halted. An example

of a non-interactive tool is the linker Link, whereas the ed itor SrcEdit is an

interactive tool. The chapters following this each describe an individual

non-interactive Desktop tool. Further chapters in the accompanying language user

gu1des describe non-interactive tools specific to programming in particular

languages· for example. the language compilers and assemblers themselves

The non-interactive tools can be further divided into two sub-categories: filters and

non-filters. The fi lter tools are those that take a set of input files and process them

to produce output files. examples being Link, Libfile. Squeeze and the language

processors. The non-fi lter tools al l perform some immediate action, such as

examining text files and presenting you with information as text output The fi lter

tools are intended to be used both managed and unmanaged by Make (an
interactive tool descnbed earlier in this user guide). whereas the non-filter tools

arc normally just used for unmanaged work

To start unmanaged use of any of the non-interactive tools. you first double-click

Select on a tool application name in a directory display This loads the tool,

pulling its application icon on the icon bar (just like any other RISC OS

application).

When using the filter type of non-interactive tool managed by Make. there is no

need to start each tool and put its icon on the icon bar

All the non-interactive Desktop tools ar(' implemented as command line program<;

provided with RISC OS desktop interfaces by the Front End relocatable module. but

you do not need to be aware of this when using them. as command lines are

automatically generated from your settmgs of the desktop interface of each tool .

making the tools appear to be standard RISC OS applications

101

The Application menu

Interface

The interfdce of each non-interactive tool can be summari~ed as follows:

• Clicking Menu on the application icon brings up a ~tandard application mc11n
menu (for unmanaged use only)

e Clicking Select on the application icon displays the SetUp d1alogue box This
al lows the u~er to set options and specify input fi l e~ etc. A menu is availt1ble
withm the dialogue box endbling other options to be set Tool SetUp boxe!> <Jre
d1splayed by Make for managed development.

• Messages generated are output to a Text window or a Summary window You
can toggle between these windows and ~ave the output to a file

• A processed output file from a filter tool is either saved in a work directory or
IS saved by you from a standard Save as dialogue box which appears when the
task has completed without error (unmanaged use on ly)

The Application menu

102

Clicking Menu on the applicdlion icon (for example. the Diff tool) g1ves the
following main menu

J,' Dirt
Info ,.

Save opt1ons
OptiOnS ~

Help

OUit

Info returns inform<ltion about the applic<ltion

Save options cau!>es the opt1ons in the SetUp box. and all submenu options
I meta-options) from this ma1n menu. to be saved in a file for later u~c as dcfcwlts
when l he tool is n•started.

The Options submenu allows you to set the following options

.-
Dill

Info ,.
Save opuons _QQ_bons

1:·~~:·'·1 I ~' Auto Rur l Help te

Ou1t Display ,.

Auto Run will cause the command-line command to be run 1mmed1ately when
a file I!> dragged onto the 1eon on the 1con bar. without fir~t displaying the
SetUp dialogue box. Options remain as they are currently set

The Setup box

General features

Auto Save suppresses the Save as dialogue box of filter tools il a sensible

pathname is available to save the output to For more details on path names

see the METAOPTIONS sectio11 on page 162. Note that output here is used to

describe a single file which is produced by running the command line tool

The Display submenu allows the user to choose whether the tool outputs by

default into a text window or a summary window

Help displays a help file in a scrollable text window. for example

I~

~~tt
Purpose: File co~arer

Setup:
Icon

Pathl
Path2

Case insensitive
Expand tabs
Re~ve spaces

Squash spaces

Quit qurts the application

Action/ ~'~fan ing
--------------NaN@S of files or directories to
be diff'ed
(typed or dragged)
Ignore case
Expand tabs to 8 spaces
Re~ve all spaces before co~aring
lines
Squash sequences of spaces to one
space

,,

Default

nil

off
off
off
off

When workrng in the unmanaged way. i e with the tool application icon on the rcon

bar. clicking Select on this icon or draggrng the name of an input file (if Auto Run is

off) to this icon displays the SetUp dialogue box. If the SetUp box was displayed by

a filename drag. this fi lename is dispiCJyed in the relevant writable icon. Options

appear with the previous settings uc,ed. making it easy to repeat the last run ot a

tool

When workrng managed by Make, you specify a ·recipe· of tasks to be followed to

construct a program from its sources This recipe is stored as a Makcfilc, and can

be used later You specify the recipe in terms of what goes in (source fi les. libraries.

etc.) what comes out te g <:ln executable 'Runlmage file) and the processes

followed The processes followed include specifyrng the options to be set for the

filter tools when they are used. To set these options you follow the Tool options

menu item of Make to a list of tools. 1 hen Select on 1 he name of thc> relevant tool.

Th is brings up the SetUp dia logue box of the relevan t tool. whether its applic<:ltion

icon is on the icon bar or not. The SetUp box appears with options set to helpful

default states for managed use.

103

The Setup box

A typical SetUp dialogue box is that of the application Diff

Path 1 1~========::;:::========:::1
Path 21.__ ____ ...~..1 ____ --JI

Options

_lease 1nsensitive

_I Expend tabs

) Remove spa09s

_) Squash spaces

__ cane~ I Run

The SetUp box for each application is d ifferent. but for unmanaged use they all
offer the following two action buttons

Run run s the tool with the options as set, starting a multitasking task performing
the non interactive job specified This multitasking depends on the presence of the
TaskWmdow relocatable module.

Clicking Select on Run removes the dialogue box. clicking Adjust on Run leaves the
dialogue box on your screen.

Cancel discards any changes made to the options and closes the SetUp box

The SetUp menu

104

Clicking Menu on the SetUp dialogue box produces a menu with the style of·

Command line ,..
Other optiOns
Other opCJOns

Command line leads to a dialogue box showing the command line equivalent of
the opt ions set in the SetUp d ialogue box. It also shows any extra options set from
the Other options part of the menu

Other options are a set of options specific to the particular application.

For example:

other options

Ditf
Command lme ~
D1 r. structure
Equate CRILF

Fast
Large l1les
Squidge
Expand tabs ,_

Output

General features

'Jwo types of output window arc ava i lable for generated messages; Text and

Summary

The Text window

If Text has been chosen from the Display submenu then a scrollable. saveable text

window appears when the tool is running. All textual output sent to the screen by

the program appears in the text window. This wmdow can be closed at any time.

thus aborting the command-line program. The Title bar of this window shows the

name of the tool and the state of the text running. i.e. Running. Completed.

Aborted or Paused. An example of a Text window using the application Diff is·

JI{',J I I

~iff files 'SCSI::DHirris.$.Journey0ld' and 'SCSI::DHirris.$.JourneyNeM'
~hange SCSI::DHarris.$.Journey0ld, line 6 to 7

line 6: tike the train to doncister and then change on to
lint 7: the 14.51 stoping at South El~all .

to SCSI::DHarris.$.Journt~NeM, line 6 to 7
line 6: take the tra1n to Doncaster and then change on to
line 7: the 14.58 stoppin~ at South El~sall.

~hf~~: scsl;:l!t~lfn:·!fu~:~~h1tt~!~t !al~ :uer the bridge
o SCSI::DHarris.$.JourneyNew line 9 to 9
line 9: Alighting at Sou{h El~all Nlk over the bridu ,-;:-
• ~ ~~

Clicking Menu on a text window displays the following menu:

Diff . J
Into ,.

Cmdlioe ,..

Save ...

ADOft

Pause
Continue

Info gives information about the program being run.

Cmd Line shows the command l ine generated and used to run the tool.

Save allows the textual output to be saved in a file.

Abort aborts a running program

Pause pauses a running program.

Continue continues a paused program.

105

Output

106

The Summary window

lf Summary has been chosen from the Display submenu then a small summary
w1ndow. similar to the followmg, appears when the tool is running

'OIX.I Diff (Completed) · ,

~ F\Jnat 105638
[)Iff 12 lines of output

Aborl I t'"uu.,g I

Til is summary window displays the sprite o f the application and the time at which
the command was run The Title bar is the same as for the text window There are
two action buttons. Abort and either Pa use or Continue. wh1ch allow the progrt~m
to be aborted. paused. and continued in dn identical fashion to the menu on the
Text window

Clicking Menu on the summary d1alogue box displays a menu similar to the
following

0111
Info ...
QndUne,.,.
save ..-

Info gives information about the program being run.

Cmd Line shows the command line generated to be used to run the tool

Save allows the textual output to be saved in a file

Toggling between the Text and Summary windows
To toggle between the Text and Summary windows click Adtust on the output
window's close icon.

Processed file output from filter tools
The numbers and types o f files output varies between each fi Iter tool. so for more
details see the chapter on the tool in question

During managed development 1 he saving of processed files 1s specified by the
Makefi le. wh ich can be constructed for you by Make

For unmanaged development. processed files are e1ther saved in positions relallve
to the work directory. or saved by you from a Save as dialogue box wh1ch appears
when a job has completed without errors. This box does not appear if you have
enabled the Auto save option on the application menu

8

Starting AMU

AMU

The Acorn Make Utility (AMU). is a tool managing the construction of executable

program images. libraries. and so on using operations specified in a Makefile.

All the facilities provided by AMU are also provided by Make. which in addition

assists you in constructing your Makefiles. It is therefore recommended that you

use Make rather than AMU. except where extreme memory shortage makes the

larger size of Make a problem and the extra facilities arc not needed.

Since usc of AMU IS deprecated, the description in this chdpter is brief For dC'In1ls

of Makefile syntax, sec dppendix Makefi/e sy~1tax on page 173. Some detai Is

described in the chapter Make on page 57 may also be useful references for AMU,

as the command ltne tool amu. which performs the management of program

construction. is the same tool used by MCike.

Each t1me that AMU IS run. a work directory is set up for that job as the dtrectory

containing the Makefile. For the effect of the work directory on each tool. see the

chapters on individuol tools such as the language processors CC and ObjAsm in

this and accompanying user guides.

AMU is one of the non-interactive desktop tools, its desktop user interface being

provided by the Front End module It shares many common features w1th the other

non-interactive tools. These common features are descnbed in the chapter Gt'nl'ral

{l'aturl's on page I 0 I

Smce AMU is an alternative tool providing construction management like Make, 1t

is normally used controlled directly from its desktop interlace To start AMU. first

double click on !AMU 1n a directory display to put its icon on the ICOn bar

107

Startmg AMU

108

Clicking Select on this icon or dragging the name of a make file (text or
Make file file type) from a directory display to the icon brings up the AMU SetUp
dialogue box, from which you control the runn ing of AMU:

lf. l I AMU
Makefile ~. ·HardDisc4.$.User.Dhrystooe.Makefiteil

Targets I I
Opbons - -~

_jConbnue alter errors _]Don't execute

_j Ignore retum oodes .JSIIent .. - -- .~

~nc:~l Run I

Makeftle contains the name of the Makefilc to be used when AMU is run. If you
brought up the SetUp dialogue box by clicking on the AMU icon bar icon. this
writable icon contains the previous Makefile used (if any). otherwise it displays the
name of the file you dragged to the icon. Dragging another file to this writable icon
replaces its contents with the new name.

Targets contains a space-separated list of the names of the targets in the Makefile
to be constructed. and macro predefinitions of the type narne=string. If this
writable icon is empty (default) the first target in the Makefile will be made.

The Continue after errors option causes the make job to continue after one of the
commands issued by it has returned a bad return code (signalling an error) When
the job continues. only those branches of the make job which don't depend on the
failed command are executed.

The Ignore return codes option causes the make job to continue after one of the
commands issued by it has returned a bad return code (Signalling an error) When
the job continues. all subsequent branches of the make job are executed. as if the
return code was good.

The Don 't execute option stops any commands being executed. instead just
printing them to the output window with dependency reasons for each one.

The Silent option stops printing of executed commands in the output window

Clicking Menu on the SetUp dialogue box brings up the AMU SetUp menu.
containing a few additional options .

. AinU 'ii ~ ·· '
Command ~ne ,..
Stamp
Command file ,_ L__ ___ _

The Command line option on the above menu has the standard purpose for

non-interactive desktop tools as described in the chapter Genera/features on

page I OJ.

AMU

The Stamp option stops construction of the target. instead causing sources and

target to be stamped with current lime so that the target appears up to date. This

only works if all sources are present.

The Command file option leads a writable icon where you specify the name of a

fi le to be written containing commands generated. If you specify a relative

filename, this is used relative to the work directory (the location of the Makefile)

The commands are written to this file but not executed

The Application menu

Clicking Menu on the AMU application icon on the icon bar gives access to the

following options:

Amu ..
Into ,..
Save optiOns QPtions

i*P' ~ Auto Run

Help .t..110 Save Display .
Quit II ,...; Text

Summ~ry_

For a description of each option in the application menu see the chapter General
features on page I 0 I

Example output

Running AMU displays any error messages in the standard text output window for

non-interactive tools If all goes well this window contains no error messages. for

example·

109

Command line interface

Command line interface

110

For normal use you do not need to understand the syntax of the AMU command
line. as it is generated automalica lly for you from the SetUp dia logue box and
menu settings before 1t is used

The syntax of the AMU command line is:

amu [options] [targetl{ target2 ... }J

Options

- f maketile
-i
- k
-n
- o commandtile
-s
-t

targetl {target2}

Ma keflle name !defaults to Makefile if omitted!
Ignore return cod es
Continue after errors
Don't execute
Specify Command file as on SetUp menu
Silent
Equiva lent to Stamp on the SetUp menu

Th1s 1s a space separated li st of ta rgets to be made or macro pre-definitions of the
form name=string Targets are made in the order given If no ta rgets arc given.
the firc,t target found 1n Makefile is used

9 DecAOF

DecAOF decodes one or more object files and returns information about each

area within the fi les.

The SetUp dialogue box

Click1ng Select on the application icon or draggmg the name of a file from a

di rectory display to the icon bri ngs up the SetUp dialogue box

DecAOF

File s J~...-_____ -'--------l]
Qp!JOOS

.JOn I)' area declaratiOns

Prmt

[7 Symbol table [7 Stnng table [7 Debug

17 Area contents ,..;- Area CleclaraiJOOs

[7 Relocallon directives rv- Disassemble

~nce:.J f Run J

The Files writable icon allows you to specify the name of one or more fi les to be

processed (typed in or dragged from a directory display) These files must be ARM

Object Format (AOfl fi les.

SetUp options

Only area declarations prints a short summary of detai ls about each area in the

ob1cct file If this option is selected no other details are printed

The options offered under the head ing of Print are all set on by default. Choosing

one or more of them will set the remaining opt ions to o ff.

Symbol table prints the contents of the symbol table

String table prin ts the contents of the string table

Debug prints the debug areas in a readable format

Area contents prints the area contents in hex

111

The Application menu

Area declarations prints the area declarations

Relocation directives prints linker relocation directives.

Disassemble prints disassembly of code areas

The SetUp menu

~DecAOF I
§Ommand ine,.

Clicking Menu on the SetUp dia logue box displays the menu shown on the left.

For a description of the DecAOf Command line option sec the section Command
line interface on page I I 3

The Application menu

112

Clicking Menu on the DecAOF application icon gives the following options.

Help

Ourt

For a descriplion of each option in the applica tion menu see the chapter General
features on page I 0 I.

Note that Auto Save is not available for this application.

DecAOF

Example output

The output of DecAOF appears in one of the standard non-interactive tool output
windows. For more details of these sec the sect ion OulpL!l on page I 05.

The fol lowing window shows an example of the output from DecAOF:

DeeAOF (Comd Midl I ~

•• String Tible (file SCSI : :OHarris.S.RcornC_C++ .ExiRPles.!TboxCalc. o.Cilc>:- ~

~ffset Strint-ni~
--------·---------4: C$$code

12: CS$dah
28: nullber_event
33: o~erator_event
48 : Wl"P ~ssages
62: tooliox_events
77 : operand_!
87 : operand_2
97 : oper

182: opl_hn
118: op2_hn
118: op
121: op_flag
129: do calculation rr

~:J

Command line interface

For normal use you do not need to understand the syntax of the DecAOF command
line. as it is automatica lly generated for you from the SetUp dialogue box settings.
The Command Line syntax for DecAOf- is:

DecAOF [options) filename [filename . . .]

Options

-a

-b

-c
-d

-g

-r

-s

-t

filename

print area contents in hex (Implies -d)

print only the area declarations

print disassembly of code area (implies -dl

print area declarations

print debug areas

print relocation directives (implies -d)

print symbol table

print string table

a valid pathname specifying an AOF file

113

•••••••••••••••••aaa••a••a••wwXT•xx••••cwxw•••••••••••cc•••&l

114

10 Diff

Diff displays the textual differences between two fil es on a line-by-line ba~is To
compare files more usefully various options allow you to display only those

differences of specific interest

The SetUp dialogue box
Clicking Select on the application icon or dragging the name o f a fi le from a
directory display to the icon brings up I he SetUp dialogue box:

liil (r<. (Dirt

Path 1 I l
Path 21 l

Options

_jCase ll'lsenSttiVe .) Remove spaces

_jE~ndtabs ...) SQuash spaces

carc!J l Run

Path I and Path2 al low you to specify the names o f files to be processed (typed in
or dragged from a directory display}

SetUp options

Case insensitive instructs Diff to 1gnore the case of letters; for example.
Variable dnd variable would be considered as identical if this option was

chosen

Expand tabs substitutes tabs by multiples of eight spaces

Remove spaces removes all spaces bclo rc comparing lines. Th is is useful if you

wish to examine two files you have been edit ing but are not interested in any extra
spaces you may have introduced.

Squash spaces replaces all instances of two or more spaces by one spdce

115

The SetUp dialogue box

116

Note. If you are using Diff to display the differences between two source files where
spaces can be critical. e g. assembler code. and you want to display lines where
spaces have been deleted or added. it is essentia l to ensure that neither Remove
spaces nor Squash spaces have been chosen

The SetUp menu

OilY
Command fine,..
Olr structure
Equate CR/LF
Fast

Large files
Squ1dge

Expand labs ·•

Cl icking Menu on the SetUp dialogue box displays the menu shown on the left

Command line enables you to examine or edit the actual command line For more
i nformatlon on this opt ron see the section Command line interface on page 118.

Dir. structure displays on ly the directory structure of the two files. It does not
display any differences between the files

Equate CRILF instructs Diff to treat the 1inefeed and carriage return characters dS
identical. This is especially helpfu l when analysing files crea ted by different editors
where sometimes linefeeds and sometimes carriage returns are used as end of line
terminators

Fast performs a speedy analysis of two files It reports only whether there are
differences between the two files. not what or where the differences are.

Large flies is helpful where very large files are being compared. It sometimes
happens that two files differ completely over a large sect ron of text because. for
instance, you may have ed ited in severa l paragraphs or even several pages of text.
Ordinarily Diff wou ld not be able to detect this and would report every line from
this point forward as different. However. if Large files has been chosen Diff
performs a more detailed ana lysts (thereby taking longer) and can detect this
si tuation . It will then pick up where the two riles converge again and display only
valid differences from that point onward.

Squidge removes all spaces. except between alphanumerics. where multiple
spaces are replaced by one space

Expand tabs allows you to replace tabs by multiples of any number of spaces you
wish.

Diff

The Application Menu

Clicking Menu on the Diff application icon gives the following options

Dilf
Info ...
Save opbons I Qobons

i ·"lt'' Auto Run

Help Auto Save Diso1av
Oult ~.I Text

Summary

For a description of each option in the application menu see the chapter Getwal

{eatu res on page I 0 I

Note that Auto Run and Auto Save are not available for this appl ication.

Example output

The output of Diff appears in one of the standard non-interactive tool output

windows. For more details of these see the section Output on page I 05

The following two examples show the usc of options with in Diff.

Example 1

In thts example two text files have been analysed by Diff with no options betng set

Oiff files 'SCSI::DHarris.$.Journey0ld' and 'SCSI::DHarris.$.JourneyNew'
change SCSI::DHarris,$.Journey0ld, line 6 to 7

line 6: take the train to doncaster and then change on to
line 7: the 14.58 stoping at South ElftSall.

o SCSI::DHarris.$.JourneyNew, line 6 to 7
line 6: take the tra1n to Doncaster and then change on to
line 7: the 14.51 stoppin~ at South ElMall .

Fhf~~: scs~;:~rr~~i~n:·!tu~~:rh1~i.!!~r :at~ :uer the bridge
o SCSI::DHarris.$.JourneyNew line 9 to 9
line 9: AliCJhting at South ElMall walk ouer the bridge v.

Three differences have been found·

• on line 6 of the first file Doncaster has been spelt wtth a lowercase d

• on line 7 of the first file stopping has been spell with only one p

• on line 9 of the first file there is an extra space before bridge.

117

Command line interface

Example 2

In the th1s example the same two hies are compared but the Case insensitive and
Remove spaces options have been chosen.

ltti l " l Olff IComDIHidl ~

"" r1

~jff files 'SCSI::DHarris.S.JourneyOld' and 'SCSI::DHarris.S.JourneyNe~· ~
~hange SCSI::DHarris.S.JourneyOld, line 7 to 7 II

line 7: the 14.58 sto~ing at South El~all . o SCSI: :DHarris.S.Journey e~, line 7 to 7
line 7: the 14.58 stopping at South ElMsall. l

lll!i l I"' P1

The result is that only the different spelling of the word stopping has been
displayed.

Command line interface

118

For normal use you do not need to understand the syntax of the D1ff command
line. as it is automatica lly generated for you from the SetUp dialogue box settings.
The Command Line syntax for Diff is

Diff (options] filen amel filen ame2

Options

-d

-e

-f

-1

-n

-r

-s

-t

-x

-Xn

til enamel
filename2

Show on ly the directory structu re. do not displi:ly any
differences

Equate CR and LF

Perform a fast Diff. all options except -d ignored, do
not display any differences

Handle large files more effectively (but more slowly)

Ignore case sensitivity when comparmg letters

Remove all spaces before comparing lines

Squash sequences o f spaces to one SP<Ke

As for -r but -s when between two alphanumeric
characters

Expand tabs to spaces (tab stops at multiples of 8)

Expand Labs to spaces (tab stops al multiples of n)

va lid pc~thnames specifying objects to be 'diffed'

11 Find
'fj•

Find searches both the names and the contents of one or more fi les for text

patterns. It includes options allowing you

• to control whether the case of letters shou ld be considered:

• to use wildcard expressions to specify several filenames .

• to insert wildcard expressions in the pattern string so that digits. control

characters. alphanumerics and particular sets of characters can be searched

for:

• to sta rt SrcEd it displaying found text using Throwback

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of a file from a

directory display to the icon brings up the SetUp dialogue box

Find

Patterns! I I
FMsl~==================~,

J 1;- Options

j Une count only _j Case 1nsensitr.oe

.) Filenames only _j Verbose f7 Throwback

_jWildcards

Cancel II Run

The Patterns writable icon allows you to type in the patterns to be searched for

If a single pattern includes spaces. the pattern must be enclosed in double quotes.

for example

"the text"

Double quote characters in a search pattern must be preceded by a backslash

The Files writable icon allows you to specify the name of one or more files (typed

in or dragged from a directory display) to do the searching in .

119

The SetUp dtalogue box -

120

------- ---------
SetUp options

Line count only prints only a count of the number of lines matching the pattern
I rom the specified files

Filenames only lists only the names of files matching the pattern.

Case insensitive will ignore the case of letters. for example. normal and Normal
would be considered as identical if this option was chosen

Verbose lists the name of each file before searching it for pattern matches

Throwback enables SrcEdit throwback when text selections are found .

Clicking on Wildcards displays a further set of options:

....) Una count only

.) Filenames only

17 Wildcards

File wildcards

_jCa$& insensitive

_j Verbose f7 Throwback

_ Cancel J I Run

~name ~-!J. 0 ()(more~~~~~_:
_ Sub d1r~tories _ _j ~ . J ~

0 ()(more { J) 0 or mo_re __ _,

Pattern Wildcards j
Any Newh!!!!_j AlphaNum @ I

~t# .1 Ctll; j_ ~I _j
- ~!.! _j_ I~..!_ j_ ...!!!..~ 1

Find

Pattern wildcards

The options listed under Pattern Wildcards allow you to specify wildcarded
expressions in your search string. Clicking on one of these options will insert a
specia l character into the Patterns writable icon immediately before the carcl.

Wildcard

Any .

Newline$

Alphanum @

Digit#

Ctrll

Normal\

Set(

I Set

Not-

Meaning

Matches any single character. For example

Fr . d will match Fred and Frld. but not Fried

Matches the newline character (LineFeed).

Matches any alphanumeric character a- z. A-z 0-9 or

Matches any digit 0-9.

Matches Ctrl-c, where cis any character between @ and_.
For example:

I x matches Ctrl-x

Note There are two special cases:

I? matches the Delete character

I ! c matches Ctrl-c' where c' is the character c
with its top bit set

Matches the following character even if that character IS a
special character. For example:

\ . matches the dot character (nol any single
character)

\c matches lowercase c

Inserts a left square bracket immediately before Lhe caret

Inserts a right square bracket immediately before the caret

The preceding two options insert opening and closing
square brackets into the Patterns writable icon You can
then manually insert one or more characters between these
brackets and Find will match any one of the characters you
put ins ide the brackets . For example:

t [aei J n matches tan. ten and tin. but not ton

Note that a set is always case-sensitive.

Matches any character other than the following character.
where the following character is any of the simple character

patterns listed above. For example:

la-ne matches late. lace and lake but not
lane

121

The SetUp dialogue box

122

Wildcard

0 or more •

I or more "

File wildcards

M eaning

Matches 0 or more occurrences of the followtng character.
where the following cha racter ts any of the stmple character
pa tterns listed above. For example:

ca*n matches can, cannot and c at

Matches I or more occurrences of the following character.
where the fol lowtng character is any of the simple character
patterns l isted above. For example:

ca"n matches can and cannot . but not cat

The options o ffered under File Wildcards insert special characters into the Files
writable icon which al low you to specify fi les in a variety of ways. Several or these
options require you to manually insert additional text next to or inside these
special characters

Filename ch. # inserts a hash character immediately before the ca ret. This
character will match any single fi lendme character except .

For example

Find adfs: : HDi sc4 . $.Fr ed# will search files Fredl and Freda. but not
Fred13 . Frederick etc

Find adfs : : HDisc4. $. Fr#d will sea rch fi les Fred and Fr2d. but no t
Freld. Freed etc.

OorMore filename chs. • inserts an asterisk immediately before the caret Thts
character wil l match any sequence of filename characters except . , {, and } .

For example:

Find adfs : :HDisc4 . $. Fred* will search fi les Fredl and Freda, and also
Fred13 Frederick e~

Find adfs :: HDisc4 . $. Fr*d wi ll search files Fred and Fr2d. and also
Frd. Freed. Fr123d etc

Sub-directories ... inserts three dots immed iately before the caret. It must be
positioned immediately after a dtrectory name Find will then search all nom mated
files in that directory and in any subdirectories tn that structure

For exdmple:

Find adfs ::Amy.$. Receipts ••• monthly

will search all files called mont h l y tn the directory Receipts and also in any
subdtrectories of Receipts.

Or { inserts a left brace immediately before the caret.

Or I inserts a right brace immediately before the caret.

The preced ing two options insert opening and closing braces into the Files

wntable icon You can then manually insert one or more filename characters

between these braces. separat ing each filename with a comma. Find wi l l then

search a II filenames ins ide the braces.

For example:

Find adfs: : HDisc4 . $. W.rel .{atype,btype,ctype}

would search all three files inside the braces. i.e. a type. bt ype and ctype .

0 or More (inserts a left bracket immediately before the caret.

) 0 or More inserts a right bracket immediately before the caret.

The preceding two options insert opening and closing brackets into the Files

writable icon. You can then manually insert one or more filename characters

between these brackets and Find will search any files w1th none. one or more

occurrences of the characters you put inside the brackets

For example:

Find

Find adfs :: HDisc4. $.Fr (e)d wi ll search fi les Frd. Fred and Freed.
but not Frid

Find adfs: : HDi sc4. $. Fr (ie) d will search files Fr d . Fried and
Frieied. but not Fr i d . Fr i eed or
Fre d .

The SetUp menu

Find •
Commlnl fi ne ,..
Allow '-' ,..

Grep style

Clicking Menu on the SetUp dialogue box displays the menu shown on the left.

Command line option- see Command line interface on page 125

The Allow '- ' option enables you to specify another pattern which will be matched

even if it begins with a-. This pattern will be searched for in con junction with the

patterns you have inserted into the Patterns writable icon

If you need to match two or more patterns beginning with a - . then you must

precede each additiona l pattern wi th -e

For example

-pattern -e - pattern -e -pattern

Grep style enables you to specify patterns using the syntax o f the UN IX grep tool.

This option is provided for users fam il ia r with UN IX.

123

The Application menu

The Application menu

Clicking Menu on the Find application icon gives the following options

Arid •'j

Info ,...
Save opbons ·-Ooiai'ls ,,. I Auto F\Jn
Help Auto Save I) splay
Quit ,.,~Text

Summary

For a description of each option in the application menu see the chapter General
features on page I 0 I

Nole that Auto Run and Auto Save are not available for th is application.

Example output

124

The output of Find appears in one of the standard non-interactive tool output
windows For more details of these see the section Output on page 105

The following window shows an example of the output from Find

:: tnc . . 1 s ,
RDFS::NDench.S.Utils•,
ADFS::HDench.S.Utils•,
ADFS::NDench.S.UtJls•,
RDFS::NDench.S.Ut1ls",
RDFS::NDench.S.Utils•, line 227:MOUCS RDFS::NDench.S.Utils", line 257:MOUCS RDFS::NDench.S.Utils•, line 274:MOUCC

"ADFS: :HDench.S.Utils", line 279:MOUCCS "ADFS::HDench.S.Utils", lint 354:MOUCCS ADFS::NDench.S.Utils•, line 393:MOUCSS

r , 9 P v
rl, ln)indv
rl ln_fscontroly r6, lnr~du e_clai~
r3, 12.~6
r3, rl
rl, I'.'
r8, 18
pc, lr
pc, lr
pc, lr

In the above example the pattern MOV [CV J was specified in the Patterns writable
icon in order to list only those instructions beginn ing with MOVV or MOVe in an
assembler source file Instructions where the fourth letter was not a Cor V, such as
MOVS. MOVNE and MOVEQS, were, therefore. not listed. The Throwback option was
not enabled in the above example. With Throwback enabled, a SrcEdit Th rowback
browser would also have appeared allowing the file Util lo be edited. starting at
the found lines.

Find

Command line interface

For normal usc you do not need to understand the syntax of the Find command
line, as it is automatical ly generated for you from the SetUp dialogue box settings.
The Command Line syntax for Find is:

Find [options) [pattern{ pattern}) -f filepattern{ filepattern}

Options

-c list only a count of the number of lines matching from each file

-n ignore the case of letters when making comparisons.
-1 list only the names of files matching patterns
-v list the name of each file before searching it for matches.

-u accept UNIX grep/egrep-style patterns.
-e allow the following pattern arguments to begin with a-.

Pattern

$
@

matches any single character.
matches the newline character (LineFeed)
matches any alphanumeric character.
matches any digit.
I c matches Ctrl-c. where c is any character between @ and_.

I
\ matches the following character even if that character is a special character.

matches any character inside the square brackets.

*

-f

File pattern

*

{ I }

()

matches any character other than the fol lowing character.
matches 0 or more occurrences of the following character.
matches 1 or more occurrences of the following character.

marks the end of multiple patterns and the start of filepatterns

matches any filename character except •
matches 0 or more filename characters other than •
searches files in that directory and any subd irectories in that directory.
searches files contained within braces (filenames separated by

commas) .
search any file with none, one or more occurrences of the characters inside

the brackets

125

•w•• •••••••••wwwwwwwaawwcwxxx•wwwa ••ww•c•••ww•www•••••

126

12 Lib File

LibFile creates and maintains library archives. It can be used to create archives

of files for backup and distribution purposes. for example. A special form of

library archive contain ing AOF files can be created for use with Link. The format of

library archive files is described in appendix Code file formats on page 199.

The SetUp dialogue box

Cl ick Select on the application icon. This displays the SetUp dialogue box.

Lib File

l.Jbrary

File list I
Options

(i' Create

..) Insert ...) Extract

-~-~I Run

The SetUp options

Library is the name of the library to be processed. If a library is being created this

wi ll be shaded. A Save as dia logue box wi ll be presented when the library is

created.

File List, when used with Create or Insert, contains the list of files to be placed in

the library. When used with Delete or Extract it contains a ltst of files in the ltbrary

which are to be extracted or deleted You can use wildcard characters in the File

list (• to match zero or more characters, and# to match a single character).

Create creates a new library containing the files in File List. This is the default

option

Delete removes the files in File List from the specified library

Insert adds the files in File List to the specified library Files of the same name in

the library will be replaced.

Extract copies the files in File List from the specified library to disc. The files are

not deleted from the library

127

The SetUp dialogue box

List library lists the files contained in the specified library By default . this option
is off.

The SetUp menu

Command line ,..
,t Sym bo1 table

List symbol table
Vaa ftle ,..

'------ -

128

Click Menu on the SetUp dia logue box. This displays the LibFile SetUp menu

Command line allows you to speci fy the command l ine to be presented to the
underlying LibFile command line tool. You should take care when modifying the
command line. The effect of certain arguments depends on the order in which they
appear in the command line. Changing thi s order may have unanticipated effects.
Refer to the section Command lin£' interface on page I 3 I.

Symbol table adds an external symbol table. as used by Link. to the library.
External symbols in any object files in the library are placed in the symbol table
Non object files are ignored. By default. this option is on.

List symbol table lists the symbols in the external symbol table along with the
name of the AOF file which generated each symbol This option is o ff by default

Via file allows you to set up a list of files to be used in one fi le ca lled a Via file
When crea ting or mainta ining libraries with a large number of fi les it may become
tedious having to drag all the fi les to the File List every lime. especially if they are
in different directories. Enter the name of the Via file in the submenu and press
Return.

Output

LibFile

The Output window displays the list of files 1 n the library and/or the list of external

symbols when the List library or List symbol table options are selected The
following windows show examples of each.

Notes

li'il>'l ·r~ .,. (, •.,

ronhnts

ActionButt.o.getclicksh
RctionButt.o.getevent
RctionButt.o.getttxt
ActionButt.o.setclicksh
RctionButt.o.setevent
ActionButt.o.settext
button.o.gttfla9s
button.o.getvalJd
button.o.gttvalut
button.o.sttflars
butt on. o, sttf on
button.o.setvalid

' I

actionbutton_get_click_show
actionbutton_get_tvtnt
actionbutton_ttt_text
actionbutton_set_click_show
actionbutton_set_tvent
actionbuttonTset_text
button_get_f a9s
button_get_ualJdation
button_gtt_ualue
button_stt_flags
butt on_stt_font
button_set_validation

l.bFile IComdetecn"' '11': 'l"c'~ · ., 11•

512
514
521
492
484
484
496
524
516
492
472
484

fr011
fro11
fro11
fro111
fro111
fro111
fro111
fro111
fro•
fro111
fro11
fro11

Mon Hou 28 11:56:53 1994
Mon Hou 28 11:56:53 1994
Mon Nov 28 11:56:53 1994
Mon lou 28 11:56:53 1994
Mon lov 28 11:56:53 1994
Mon lov 28 11:56:53 1994
Mon lov 28 11:56:53 1994
Mon Nov 28 11:56:53 19;4
Non Nov 28 11:56:53 19 4
Mon Nov 28 11:56:53 19;4
-~~ Nov 28 11:56:53 19 4

n Nov 28 11:56:53 1994

Actionlutt.o.getclicksh
ActionButt.o.getevent
ActionButt.o.gettext
ActionButt.o.setclicksh
ActionButt.o.sttevent
ActionButt.o.settext
button.o.getfla9s
button.o.getualJd
button.o.getvalue
button.o.setflags
button. o. setfont
button.o.setvalid

lnJ
~.1

~ ~

Any directories in the File List to be archived will be recursively archived (i e.
all files in the specified directory will be archived and any directories in the
specified directory will themselves be recursively archived). This can be useful
if. for example, you are backing up an entire source t ree on which you are
cu rrently working.

2 When extracting fi les. LibFile places absolute fi lenames from the libraries
index in their correspond ing absolute fi lenames on disc. Relative filenames
(i .e those not containing a colon (: l a dollar ($)or an at sign 1@ II are placed
in a temporary directory and. when the extraction is finished , a Save as
dialogue box is presented This allows you to drag the extracted files to Cl

suitable place on your disc. The temporary directory is then renamed to the
correct place on your disc. or copied and subsequently deleted if you drag to a
different device or filing system.

129

Output

130

3 When creating libraries for distribution purposes, you should not use absolute
fi lenames in the File List If, for example, you created a library with a File List
of adfs: : Edward .$. PDUtils. it would not be very useful to someone
called lan or to someone using an Econet network Instead set your current
directory (from the command line with the *Dir command) to
adf s: :Edward .$ and use the File List PDUtils

4 When creating libraries for backup purposes, you can use absolute filenames.
since you wil l always be restoring to you r own di sc. You shou ld not, however,
mix absolute and relative filenames in the same library LibFile will handle this
as described in the note on extracting files above. but the behaviour may be
confusing to anyone trying to extract files.

5 When creating a library, LibFile builds the library in memory. This means that
you cannot create a library bigger than the available memory on your machine.
When altering an existing library (using Insert or Delete) Libfi le requires
memory space for the new and old libraries. If there is not enough memory for
this you can get around the problem by extracting all the files and recreating
the library including the files to be Inserted, or omitting the files to be deleted.

6 When the Symbol table option is selected. LibFile always updates the
external symbol table regardless of the operation being performed This is
correct for Create. Insert and Delete. For Extract this is usually not very
useful. so you should general ly ensure the Symbol table option is deselected
when using Extract

7 If the Symbol table option is not selected. LibFile deletes the external symbol
table when used with Insert or Delete This prevents a potential problem
whereby the external symbol table could become out of date with respect to
the object modules in the library.

8 Convergence testing is a testing method whereby a binary file (such as an
object library) is rebuilt using itself. and the new and old binaries are
compared to ensure that they are the same. This can be difficult with tools
(such as LibFile) which timestamp files placed in the library. because the new
and old libraries will be built at different times. and will always differ
LibFile provides the Null timestamps option to circumvent this problem The
Null timestamps option uses timestamps of all bits 0. which corresponds to a
date of 00: 0 0: 00 0 1-Jan-1900. Thus. libraries built at different times can
be compared using a binary comparison utility, without the timestamps
causing extraneous differences to appear.

9 Wildcard matching. when applied to library members (when using Extract or
Delete) applies the wildcard across the complete filename. When applied to
files (Create or Insert) wildcards apply to single components of the filename.
Thus. the wildcard specification a#c would match a.b and abc when using
Extract or Delete. but would only match abc when using Create or Insert

Lib File

Command line interface

For norma l use you do not need to understand the syntax of the LibFile command
line. as it is automatically generated for you from the SetUp dialogue box settings.

The format of the LibFile command is:

Libfi1e options library [fil e list)

Wildcards* and# may be used in file_list

Options

-h

-c

-i

-d

-e

-0

-1

-s

-t

-v

-q

fil e

dir

Display a screen of help text

Create a new library conta ining fi les in file_list

Insert files in file_list. replace existing members

Delete the members in file list

Extract members in file_list placing in files of the same name

Add an external symbol table to an object library

List library, may be specified with any other option

List symbol table. may be specified with any other option

Use Null timestamps when creating or updating library

Take additional arguments from file

Place relative filenames in dir when extracting file

Notes

Multiple options may be specified in a single options argument For example.
-c1so is equivalent to -c - 1 -s -o

2 Most of the above options should be familiar from the description of the
desktop interface. One possible exception to this is the -q option Thts option

means 'behave as though the directory specified after the -q option were the
cu rrent working directory (as set by the dir command)'.

When extracting files with relative path names. LibFile creates this directory if
it does not already exist and prefixes the relative path names with the specified
directory. Note. that you shou ld not add a fu II stop (. l to the end oft he
directory speci fication. LibFile adds this itself.

3 The -q option is used by the desktop interface (since the desktop has no
notion of a current working directory) to tell LibFile where to put files with
relative pathname (generally <Wimp$ScrapDir>Tmp_name where
Tmp _name is a name invented by the desktop interface) This directory is then

renamed, or copied to a user-specified directory.

13 1

Command line interface

132

4 For compatibility with previous versions of LibFile. specifying - c with -o with
a null file list does not create an empty library. Instead, it ignores the -c
option and adds a symbol table to an existing library

Examples

LibFile -c srclib *

Create a library called srclib in the current directory from all the files in the
cu rrent directory (including the files contained in any directories in the current
d irectory) .

LibFile -co adfs : :Edward . $.clib.o . AnsiLib o

Create the object library AnsiL1b from the object files contained m directory om
the current directory.

Libfile -e -q :Ian . $. PDUtils :O . PDLib *
Extract all the files from : 0. PDLib and put them in the di rectory
:Ian . $. PDUtils .

Assembler example

The programming example Print Lib. which you can find in Examples. PrintLib,
consists of three potentially useful procedures written in assembler which are
intended to be assembled to object files using ObjAsm and then formed into a
library with LibFile. They i llustrate various programming points as well as how to
construct a library

If you examine the assembler source files in Examples. PrintLib. s you will
see that the procedure exported by each file obeys the ARM Procedure Call
Standard This ensures that they, and hence the Pri ntLib library. can be linked with
other languages such as C. It is essential that procedures placed m a library have
consistent register conventions, so that they can be re-used later without
consulting their source text.

The PrintLib example is provided with both its assembly language source and the
fi nished library. The facilities provided by this library are used in other
programming examples The procedures it exports are:

print_string

print hex

print double

Print a null terminated string pointed to by rO

Print in hexadecimal an integer contained in rO.

Print in scientific format a double precision float ing point
number contained in rO.rl

LibFile

To reconstruct PrintLib from its sources. first double click on !ObjAsm and ! Lib File
in a directory display to load them as applications with icons on the icon bar. Then
assembles. PrintStr, s. PrintHex and s. PrintDble to correspond ing
object files by dragging each source file to the ObjAsm icon and saving the output
object files in the defau lt places, i.e. o. PrintStr. o. PrintHex and
o. Pr intDble.

Next drag o. PrintStr to the LibFile icon to make the LibFile SetUp dialogue
box appear:

l®l~l Lib File-

File Ust ~-C++.Examples.PrintUb.o.PrintStlfl
- Optiol"'s ...,___ -- ---

~Create ...• ~ De~te _j~t k"ary Jn
~ ~~M~t--~~~~ - ------ li

Cancel II: Run

Ensure that the Create option is chosen as above. Drag the other two object files
to File List, then click on Run. Finally save the library file produced: it is now ready
to use.

The assembly language source file Examples. PrintLib. s .ATestPrLib is an
example program making use of the procedures exported by PrintLib. To use it:

Double click on the 'Link application to load it.

2 Assembles. ATestPrLib too . ATestPrLib with ObjAsm.

3 Link o. ATestPrLib with the finished PrintLib library to produce an
executable AIF image file

Running the test program by double clicking on it shou ld resu lt in text output into
a RISC OS output window:

Aun SCSI::OHarris.S,AcomC C++.Exanioles.PrintUb.!Runlmaae
Hello ~~rid 89RBCO
-1.234 -2
Press SPACE or click ~ouse to cont inue

133

134

13 Link

The purpose of Link is to combine the contents of one or more object fi les (the

output of a compiler or Assembler) with selected parts o f one or more library

fi les to produce an executable program

Load the Link application by double-clicking on the ! Link icon

The SetUp dialogue box

Click Select on the applicalion icon. This d isplays the SetUp dialogue box:

0 Binary

Cancel

This allows you to set the following opt ions

The Files writable 1con allows you to enter the list of object and library fi les to be

l inked. You ca n do th is in two ways.

• 1}1pe in a space-separated l ist of the files to be linked. You ca n use wildcards (•

to match zero or more characters. and # to match a single character)

• Drag the icons of the files to be linked onto the Files writable icon. Dragging a

directory to the icon (e.g. an o directory) links all the files in that directory

Note: When l inking libraries. you must take ca re to link them in the correct order.

See the section Libraries on page 139.

AIF generates ARM Image Format (Ai r) output This is the default image used for

bui lding an applicat ion . You shou ld on ly choose other image types i f AIF is not

suitable for some reason. The format or All files is described in Appendix E

Module generates Relocatable Module Format (RMF) output. Refer to Relocatable
modules on page 144 in the Acorn C!C++ manual for more detai ls on relocatable

modules.

135

The SetUp dialogue box

Relocatable AIF links an image so that it can be run at any address. usually
specified in conjunction with the Workspace option on the SetUp menu. See the
section Relocalable AIF images on page 143 for more detai ls.

Binary generates a plain binary tmage (without an image header or any specific
image format). The default load address for a binary image is 0. Any other address
can be speci fied using the Base option from Link's SetUp menu. If AIF is also
enabled in Link's SetUp dia logue box. then a plain binary image is generated,
preceded by an AIF header which describes it

AOF generates partial ly linked output in ARM Object Format. suitable for inclusion
in a subsequent li nk step.

Debug allows you to debug a program with the desktop debugger DDT See the
chapter Dt.>Sktop debuggmg tool on page 15 for more details on preparing a program
for use with the debugger This option is not suitable for use with the module
option. This option is switched off by default

Verbose gives progress reports in the Output window while linking See the
section Output on page 138 for an example of this output This option is switched
off by default.

The SetUp menu

Command line
Link map
X-Aef
Enors to file
Map to file
Symbols to file
Overlay
Workspace
Entry
Base
l'lk>Case

Clicking Menu on the SetUp dialogue box displays the menu shown on the left. ..
Command line allows you to specify the command line to be presented to the
underlying Link command line tool. Refer to the section Comrnattd lim' interface on

,... page I 46 for more details.

,.. Link map displays the base address and size of every code, data and debugging ,..
..,. information area. and displays total sizes for the code. data and debugging
~ information in the output window See the section Link map option on page 142 for
,... more information. For details on linker areas. see the section AOF on page 20 I . ,..

X~Ref displays a list of inter~area references. This option is most useful when
Vaa file ..
Map IKtresolved refs ·

trying to reduce dependencies between library elements. so that you only need
include the minimum set of library elements It is also useful when using overlays
See the section X-Ref option on page I 42 for more details. ~C++ naming

Others

136

Errors to flle allows you to specify the name of a file to which all errors should be
written

Map to file will write a link map to the given fi lename (if the Link map option is
enabled).

Symbols to file will write all symbols found to a file with the given name

Link

Overlay generates an overlaid image using the specified overlay description file
For details of overlay description files. see the section Overlay description files on
page 141. This option is not suitable for use when generating Module or Binary

output.

Workspace. when used in con junction with the Relocatable AIF option. generates
an auto-relocatable image which will relocate itself to the top or its application
space. This leaves the specified amount of workspace above the image free for the

use of the program being linked. The effect of this option is not currently defined
when generating image types other than relocatable AI F.

Entry specifies the entry point of an image if none of the object files themselves
specify an entry point. Generally, you should on ly use it when writing completely in
assembler without using the assembler's ENTRY directive.

Base specifies the base address at which the image should be l inked. By default
this is &8000 for AlP images and 0 for binary images. You should always load
non-relocatable AIF images at their base address.

No case causes a case insensitive comparison to be used when comparing
symbols You will not generally want to use this option with C (which is case
sensitive). However. you may need to use it with other language systems (such as
Pascal and Fortran) which are case insensitive. especially if you are trying to
interwork with C and one of these languages

Via file allows you to set up a list of object files to be linked in one file called a Via
file. Instead or having to drag all the files to the Files list on the SetUp dialogue
box. just enter the name of the Via file in the submenu.

Map unresolved refs causes all unresolved references to be resolved to a given

symbol.

C++ naming will report C++ symbol names using C++ notation
Note that you must enable this option when linking C++ compiled code

Others allows you to specify other options allowed by the underlying command

line link tool.

Note: The Base, Workspace and Entry options require a numeric argument to be

entered in the associated submenu. You can prefix this argument by & or OX to
specify a hexadecimal value. You can postfix it by k for 210 and m for 220

137

Output

Output

138

The Output window d1splays Information printed when you have selected the
Verbose, link map or X-Ref options. It also displays any error messages
generated while linking.

The fol lowing windows show examples of the Verbose and Link map output You
will find an example of the X-Ref output in the section X-Ref opt1011 on page 142

Verbose output.

Link map output:

!e;l I
~~Sf
8181

~llf
14 m~

194 24 CODE
8b8 18 CODE
8c8 24 CODE
Bee 21 CODE
lie 18 CODE
124 lc CODE
141 14 CODE
154 221 CODE
374 774 CODE
ae8 324 CODE

8t8~ 138 COD~ 8f4 478 COD
93bc 2e8 CODE
;ta4 47c CODE
b21 25c CODE

9d7c 3al CODE

link (COO'Ipeied)

!1M
C$$Code froft object f It wget11st
C$$Code froft obJect f It wredraw11
CS$Code froM obJect f le wsetcol
CS$Code fro• obJect f le wgetrec
CS$Code fro• ObJtCt f le wsend•
C$$Code fro• obJtCt f It wsetcarp
C$$Code fro" tbJtCt f It ~~reporte
CS$Code fro" obJtCt f h ~~readpal
CfScodt fro" obJect f le button
C$Scode fro. obJect f It coMands
CfScode froM obJect f It draw
C$$code froM obJect f It file
C$$codt froM ObJect f It handler
CSfcode froM obJect f le hcl
CSScode fro" obJect f It .ain
Cffcode fro" obJ•~t f le Mnus
CSfcode fro" obitc f It Print

on .
. o.co.ands .
. o.dra11 .
. o.file .
. o.handler .
. o.hcl.
.o.~~~ain •
. o.Mnus .
. o,print .
. o.utils .
• o.vie11.

" l::_

~ ·

Link

Possible errors during a link stage

Libraries

1\vo common errors wh1ch can occur during a link stage are caused by unresolved

and multiple references.

In the case of unresolved references. a symbol has been referenced from an object

file, but there is no corresponding definition for the symboL Link will generate an

error message giving the name of the undefined symbol This is usually caused by

the omission of a required object or library file from the file list. or the misspelling

of an external identifier in the original source program.

Multiple references are caused by a clt~sh of names. For example. a procedure

might have been defined with the same name as a library procedure. or as a

procedure in another object file

Libraries differ from object files in the way Link uses them. First, all the object files

are linked together Then. for each library in turn. Link searches for symbol

definitions which match unsatisfied symbol references. When such a symbol

definition is found, the module defining that symbol is loaded.

When a library module is loaded. new unsatisfied symbol references may be

created. so the library is re-searched unti l no more members are loaded from 11

Note that each library IS processed m turn, so references between libraries must be

ordered.

A reference from a member of a library later in the fi le li st to a member earlier in

the file list will not be resolved Therefore you must drag libraries to the file list in

the correct order

Usually, at least one library file will be specified in the list of files to be linked. Th1s

will typically be the run-time library for the language you are using. When wri ting in

C, you can use either the shared l ibrary (in wh ich case you will need to link with the

shared library stubs. c : o . s t ubs) orthe unshared library. c : o . ans ilib. Use

the unshared library when linking a program for use with the desktop debugger. or

when linking a program which you intend to distribute to people who may not have

the shared C l ibrary.

You can call the procedures in the library for one language from programs written

in another. provided

• both libraries conform to the ARM Procedure Call Standard (APCS) described

in appendix ARM procedure call standard on page 247

• the library's initia l isation routines have been called.

139

Generating overlaid programs

Refer to the chapter Tf1e Shared C library in Volume 4 of the RISC OS 3 Programmer's
Reference Manual for details on how to initialise the common run-time kernel
distributed with the C library

Generating overlaid programs

140

An introduction to overlays is given in the Acorn CIC++ manual. If you are not
familiar with the concept of overlays. you should read the chapter on overlays in
that manual first. This section only describes how to use Link to create an overlaid
application

A simple. 2-dimensional. static overlay scheme is supported. There is one root
segment and as many memory partitions as you specify (called I N. 2_N, etc)
Within each partition. some number of overlay segments (called 1_1. 1_2, etc)
share the same area of memory. You specify the contents of each overlay segment
and Link calcu lates the size of each partition. allowing sufficient space for the
largest segment in it All addresses are calculated at link time: overlaid programs
are not relocatable.

A hypothetica l example of the memory map for an overlaid program might be:

2_1
2_N

1 1 1 2 - -
1 N

2_2

1 3 -

root segment

2_3

1 4

high
address

low
address

Segments 1_1,1_2. 1_3and 1_4sharethesameareaofapplicationworkspace
Only one of these segments can be in memory at any g1ven instant. the remainder
must be on disc.

Similarly segments 2 I . 2_2 and 2 3 share the 2_N area of memory. which is
entirely separate from the I_N partition.

Link assigns AOF AREAs to overlay segments under user control Usually. a
compiler produces one code AREA and one data AREA for each source file (ca lled
C$$code and C$$data when generated by the C compiler) The C compiler
option -zo (described in the Acorn CIC++ manual) allows each separate function
to be compiled into a separate code AREA. This gives finer control of the

Link

assignment of functions to overlay segments (but at the cost of slightly enlarged
code and en larged object files). You contro l the overlay structu re by describing the

ass ignment o f certa in AREAs to overlay segments.

For all remaining code AREAs. Link wil l act as fol lows:

If all references to the AREA are from the same overlay segment. the AREA is
included in that segment; otherwi se. the AREA is included in the root segment.

This strategy can never make an overlaid program use more memory than if Link
put all remaming AREAs in the root segment. but it can somet imes reduce it

By defaul t. only code AREAs are included in overlay segments. Data AREAs can be
forcibly included, but it is the user's responsibil ity to ensure that doing so is
meaningful and sa fe.

On disc. an overlaid program is organised as a RISC OS applica tion. The
components o f the application (the ! Run Image and the various overlay segments)
must reside in the application directory. Link creates the fo llowing components in

the application directory:

!Runimage

1 1

The root segment. an AIF image (which may be squeezed)

Overlay segments. which are plain binary images. linked at
absolute 1_2 addresses Overlay segments may not be squeezed.

2 1

Overlay description files

The overlay description file. specified in the overlay submenu. describes the

required overlay st ructure It is a sequence of logical lines:

• A backs lash (\) immediately before the end of a physical line continues the
logica l line on the next physica l line.

• Any text from a semicolon (;) to the end of the logica l line inclusive is a
comment (for documentation purposes) which is ignored by Link.

Each logical line has the fo l lowing structure:

segment_name module_name [(l ist_of _AREA_names)) modul e name

For example

1 1 edi t ! edit2 editdata(C$$code,C$$data) sort

The list_of_AREA_names is a comma-separated list of names as they appear
when displayed by the DecAOF tool. If omitted. all code AREAs are included

141

Generating overlaid programs

142

--------- -
A module_name is either the name of an object file (with allleadmg path name
segments removed) or the name of a library member (again, with all leading
pathname segments removed)

X-Ref option

To help the user-parti tion between overlay segments. Link can generate a list or
i nter-ARCA references To do this. choose the X- Ref option on the SetUp menu
The following window shows an example of the output from X-Ref

u on o e re ers o u on i a uttonCC$Scode) refers to stubsCStub$$Entries)
utton<CSScode) refers to addgadget(C$Scode)
utton(C$Scode) refers to utils(C$Scode)
utton(C$$code) refers to reNgadget<CS$code)

buttonCC$$dati) refers to button<C$$code)
co~ands(C$$code) refers to stubs(Stub$$Entries> OMftindsCC$$code) refers to co~ndsCC$$data)
o~nds(C$$code) refers to utilsCC$$code>
rawCC$$code) refers to co~ndsCCSScode) raw<C$$code) refers to showo(C$$code)
raw<CS$code) refers to getch<CS$code)

draw<CS$code) refers to stubs<Stub$$Entries>
drawCC$$code> refers to setextentCC$$code)
rawCC$$code) refers to etrecCC$$Code>

In general, if area A references area B (for example because x in area A calls yin
area B) then A and B shou ld nol share the same area of memory Otherwise. every
timex calls y or y returns to x, there will be an overlay swap

Link map option

The Link map option displays the base address and size of every area in the output
program It is useful for determining how AREAs might be packed most efficiently
into overlay segments

Linking with the overlay manager

The overlay manager is responsible for loading overlay segments when.
• an inter-segment reference occurs to a segment which is not loaded, or
• a procedure return occurs to a segment which is no longer loaded.

In general. referencing a datum cannot cause an overlay segment to be loaded
One exception to this is an indirect procedure call via a function pointer which will
cause an overlay segment to be loaded (Link cannot d istingu ish this rrom a normal
procedure call. since Link just sees a word relocation to an overlaid procedure)
Note that the pointer itself must not be overlaid.

Link

If Link detects a data reference to a non co-resident or potentially non co-resident

segment it will issue one of the following messages

Non co-resident data reference in module_name(area_name)

Possible non co-resident data reference in

module_name(area_name)

Certain types of data reference cannot be detected by Link. This happens when

read-only data is placed in a code segment. The C compiler places string literals in

code areas. This wi ll cause problems if you have external string literals, since Link

cannot distingu ish between a string litera l and a procedure in the code segment

Hence 1t indirects the string through the Procedure Call indirection Table (PCIT)

So. when your program reads the contents of the string, it will in fact end up

reading the contents of the PCIT.

The C compiler option -fw (described in the Acorn CIC++ manual) causes the

compiler to place string literals in data areas. You shou ld use this option on

modules which may contain external string literals

The overlay manager must be included in the link stage. You will find the overlay

manager in the object file C: o . overmgr. You shou ld drag thi s object file to the

Files icon when linking an overlaid program.

Note The overlay manager is also contained in the non-shared library ANSI Lib. so.

if you are using ANSI Lib. you do not need to drag the overlay manager to the Files

icon. The shared C library does not contain a copy of the overlay manager.

Relocatable AIF images

Usually, when an image file is produced. it will execute correctly only at the

specified base address (or the default of &8000 if a base is not specified) This is

because the program will contain references to absolute addresses within itself.

However if you tell Link to generate a relocatable AIF image, you can load and

execute the program at any address Link also inserts a branch in the image header

so that the relocation code is automatically called when you run the program

This is achieved by adding the following to the end of the image:

• a relocation table

• a small routine to perform the relocation

The relocation table is a list of offsets from the start of the program to words which

need relocating. These words are adjusted by the difference between the base

address of the program and the address where it was loaded. Once the relocation

has been performed, the program proper starts executing.

143

Relocatable modules

However, although this can be used to make a program statica lly relocaLable. it
does not confer true position-independence on the program That is. the program
cannot be moved in memory once it has started. and still be expected to work.

If a Workspace va lue is specified on the SetUp menu. Link inserts the va lue in the
image header The relocation code examines this value and. if the value is
non-zero. relocates the application to the top of application space. leaving the
specified amount of workspace between the end of the application and the top of
application space for stack and heap usage.

Utilities

Utility or transient programs (filetype FFC) can be linked as relocatable AIF
images Use the SetType command to set the filetype correctly after linking.

*SetType i mage Utility

Notes: The C library cannot be used when linking a utility Utility programs must
not be squeezed. For more details on utilities. refer to the RISC OS 3 Programmer's
Reference Mant.~al.

Relocatable modules

144

When l inking a relocatable module. Link performs a similar task as when linking a
relocatable AIF image. adding a relocation table and a relocation routme to the
end of the module image.

However. the mechanism by which the relocation routine is called is different in a
relocatable module A module must be multiply relocatable. since it may move
about in the l~elocatable Module Area (RMA) when. for example. the RMA is tidied
with the *RMTidy command. The modu le must cal l the relocation routine in its
initialisation (or re-initialisation) code

When using the C Module Header Generator (CMHG) tool you need not worry
about this. since CMIIG automatical ly generates a module header which includes
a call to the relocation routine in its initialisation code.

If you are constructing the modu le header in assembler. you must make th is call
yourself. Use the IMPORT directive to import the external symbol_RelocCode
and place a BL to this symbol in your initialisation code.

I MPORT I_RelocCode l
init

BL j_RelocCodeJ

Link

Note any code executed before the call to the relocation routine must be
position-independent

When creating a module header in assembler. the AREA containing the header
should have the attributes CODE and READONLY The AREA name should be
chosen so that the AREA will be the first AREA in the module. Link sorts AREAs
first by attribute. then by AREA name, so you should choose an AREA name which
IS lexicographically less than all other AREA names in your module The CMHG
tool uses an AREA name of ! ! ! Module$ $Header, but this is not obligatory.

Predefined linker symbols
All symbols containing the substring$ $ are reserved by Acorn for use by Link.

For each AREA in the output fi le formed by coa lescing one or more areas of the
same name (e.g. C$$code) Link generates two symbols:

area_name$$Base

area_name$$Limit

area name

Address of the start of the area.

Address of the byte beyond the end of the area.

The name of the area in the output file You can use
these symbols in your programs to refer to the Base
and Limit of areas in your programs

In addition. Link creates four conceptual areas in the output. and defines Base and
Limit symbols for them

Image$$RO$$Base

Image$$RO$$Limit

Image$$RW$$Base

Image$$RW$$Limit

Image$$ZI$$Base

Image$$ZI$$Limit

Address of the start of the read-only (code) area

Address of the byte beyond the end of the code area.

Address of the start of the read/write (data) area.

Address of the byte beyond the end of the data area

Address of the start of the zero-initialised (bss) area

Address of the byte beyond the end of the bss area.

Although it wi ll often be the case. there is no guarantee that the end of the
read-only area corresponds to the start of the read/write area. You shou ld not
therefore rely on this being true.

The read/write (data) area may contain code. as programs are sometimes
self-modifying. Similarly, the read-only (code) area may contain read-only data
(e.g strings, floating-point constants etc).

145

Command line interface

Command line interface

146

The format of the Link command is

Li nk options f ile list

Options

Abbreviations are shown capitalised

General options

-Output file

-Debug

- ERRORS file

- LIST file

-VIA file

-Verbose

-MAP

-X ref

-Symbols file

Output options

Put final output in file

Include debugging information in image

Put d iagnostics to f ile, not stderr

Put Map and Xref listing to file. no t stdout

Take more object file names from file

Give inrormational message while l1nkmg

Print an area map to the standard output

Print an area cross-reference list

List symbol definitions to file

-AIF Absolute AIF (the default)

-AIF -Relocatable Relocatable AIF'

-AIF -R -Workspace n Self-moving AIF'

-AOF Partia lly l inked AOF'

-BIN Plain binary

-BIN -AIF Plain binary described by a prepended AIF header

-IHF lntc llec I lex Format (readable text)

-SPLIT Output RO and RW sections to separate fi les
(-BIN. -IHF)

- RMF RISC OS Modu le

-OVerlay file Overla id image as described in file

Special options

-RO-base n

-Base n

-RW-base n

-DATA n

-Entry n

-Entry n+obj(area)

-Case

-MATCH n

-FIRST obj(area)

-LAST obj(area)

-NOUNUSEDareas

-unresolved sym

-C++

Specify base of image

Specify separate base for image's data

Speciry entry address

Specify entry as offset n wtth in area found in
object hie obj (prefix n with [7 or Ox for hex,
postfix wtth K for *2 10• M for •220)

Ignore case when symbol matching

Set last-gasp symbol matching options

Link

Place area from object obj first in the output

image'

Place area from object obj last .

Dont eliminate AREAs unreachable from the
AREA containing the entry point (AIF images
only}

Make all unresolved references refer to sym

Support C++ external naming conventions

147

--- ·--· ------- ------ -

148

14 ObjSize

0 bjSize analyses one or more object or library files and returns the code-size.
data-size and debug-size of each file

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of a file (if Auto Run

is off) from a d irectory display to the icon brings up the SetUp dialogue box

li'U ~I ObiSize

~$ ~~-------~~~=====-!
cancel 11 I -Run -h

-

The Files field allows you to specify the name of one or more files to be processed
(typed in or dragged from a directory display) These files must be ALF or AOF files

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the menu shown on the left.

For a description of the ObjSize Command line option see the section Command
line interface on page I 50.

The Application menu
Clicking Menu on the ObjSize application icon gives the following options:

Info ,...
Save options ~---.r~~....-.
Mlii! ,. .; Auto Run

Help Auto Save 1---:a;:;;;;:;;o;.;::;o.--1
Oult .,. ..1 Text

Summary

For a description of each option in the application menu see the chapter General
features on page I 0 I

Note that Auto Save is not available for this application. and that Auto Run is
enabled by default.

149

Example output

Example output

The output of ObjSize appears in one of the standard non-interactive tool output
windows. For more details of these see the section Output on page 105.

The Following window shows an example of the output from ObjSize

li:i l ~l ~- .. <.' ObiStze (Com~ ~ ~

~ r

~~~ect file code-sin data-size debug-size ~ 
AD S::NDench.$,Stubs 388 m • 

I 
..... • f'..Ej 

The three object sizes displayed by ObjSize are 

code-size The size of the object code. 

data-size The total size of all areas in the AOr file which have the attribute 
data or zero-Init. 

debug- size The total size of all areas in the AOF file (compiled with the debug 
option set) which have the attribute debug 

If a library file is being analysed ObjSize displays the above three object sizes for 
each individual member of the library file and then displays the overa ll totals of 
these to provide a set of totals for the entire library. 

Command line interface 

150 

For normal use you do not need to understand the syntax of the ObjSize command 
line, as it is automatically generated for you from the SetUp dialogue box settings 
The Command Line syntax for ObjSize is 

ObjSize filename [filename ... ] 

filename a valid path name specifying an ALF or AOF file. 



15 Squeeze 

Squeeze compresses an executable ARM-code program, saving disc space and 

often making the program load faster. 

Relocatable modules can be squeezed but must be run rather than RMLoaded 

Squeeze converts a module to a program. which installs the module in the RMA 

when run. This program contains a binary image of the module within itself. 

Squeeze compresses this program. 

The SetUp dialogue box 

Chckmg Select on the application icon or dragging the name of a file (if Auto Run 

is offt from a di rectory display to the icon brings up the SetUp dialogue box 

The Input writable icon al lows you to specify the name of a fi le to be processed 

(typed in or dragged from a di rectory display). This fi le must be an AIF fi le. 

Try harder will force Squeeze to compress the file even if the file is considered by 

Squeeze to be too small to warrant compression. 

Verbose outputs messages and compression statistics 

The SetUp menu 

Clicking Menu on the SetUp dia logue box d isplays the following menu on the 

screen 

SqUeeze I 
Command fine ,. 

For a description of the Squeeze Comma nd line option see the section Command 
line interface on page I 52 

151 



The Application menu 

The Application menu 

Cl icking Menu on the Squeeze appl ication icon gives the following options: 

SQueeze '\ 

Into ... 
Save options -Ooton. 

*4' Auto Run 
Help Auto Save ~ 
<Alit Text 

Summary 

When Auto save is enabled. squeezing overwrites the input file with the squeezed 
version automatically without producing a save dialogue box for you to drag the 
file from. Auto save is off by default. whereas Auto Run is on by defau lt. 

For a description of each option in the application menu see the chapter General 
features on page I 0 I 

Example output 

The output of Squeeze appears in one of the standard non-interactive tool output 
windows For more details of these see the section Output on page I 05. 

The following window shows an example of the output from Squeeze. together with 
a standard save dialogue box (which appears if Auto Save is not enabled)· 

Command line interface 

152 

For normal use you do not need to understand the syntax of the Squeeze 
command line. as it is automatically generated for you from the SetUp dialogue 
box settings. The command line syntax for Squeeze is 

Squeeze [opt ions ) unsqueezed-file (squeezed- file] 



Options 

-f 

-v 

unsqueezed-file 

squeezed-file 

compress file regardless of size 

output messages and compression statistics 

a valid path name specifying an input AIF file 

a valid path name speci fying an output AIF file 

Squeeze 

153 



...... WWM*W******* WW**W**"**:&M*WW •• ........... .... 

154 



16 Adding your own desktop tools 

T he underlying technologies used in Acorn C/C++ have been des1gned in a way 

which allows third parties to add tools and applications. provided that they 

follow a number of rules and conventions which are given in this section. Unless 

you are a software developer, intending to use these technologies in your products, 

or intending to add further desktop toots. then you can skip this section (Of course 

you may just be interested in how it all works. in which case read on!) 

The FrontEnd module will act as a generic application. as described 1n the chapter 

General features on page I 0 I. It is assumed here that you are familiar with this 

chapter. and that you have a feel for how the non-interactive tools operate 

The extensions you can make fall roughly into the following categories: 

• Adding a compiler for another language- this will require all of the 

information given below. 

• Adding a utility that you wish to run under the desktop, with the same took and 

feel as the other desktop non-interactive tools ror instance you may like to 

port the UNIX sed stream ed1tor to RISC OS, with a Wimp front end- this only 

requires knowledge of how to describe an application to the FrontEnd module 

• Creating your own project management tool. similar to Make- this will requ ire 

knowledge of the message-passing protocols used with the Front End module. 

and also the format of a makefile used to maintain a project 

In this chapter you will find further technical information on the following: 

• the FrontEnd module 

• the DDEUtil s module 

• the SrcEdit editor 

• the Make project management tool. 

155 



The FrontEnd module 

The FrontEnd module 

156 

Overview 

The purpose of the Front End module is to ease the job of putting consistent Wimp 
frontends onto a number of simple tools which are normally driven from the 
command line (e.g Link. CC. ObjAsm etc) A Wimp application can then be made 
by supplying a formal description of the mapping between the Wimp interface and 
command line options. a templates fi le. !Run. !Sprites and !Boot files. a message 
file. and a ! Help file (a lso a !SetUp file if this is to be used by Make- see Make on 
page 169 for more details). 

To give you a feel for how the FrontEnd module interacts with your command line 
tool. here is a brief description of how it works. The FrontEnd module understands 
two star commands. 

*FrontEnd Start 

*FrontEnd_SetUp 

The former of these is used to invoke a Wimp front end for a tool. with an icon on 
the icon bar. the latter is used to allow Make options for the tool to be set using a 
W1mp interface. 

*FrontEnd Start 

When the FrontEnd module gets a *FrontEnd_Start command it creates a new 
instantiation of itself ca lled FrontEnd%too1name where toolname is the name 
of the tool invoked; it then enters that instantiation as the current application. and 
does a SWI Wimplnitialise to become a Wimp task Because this task stops the 
Wimp from mapping out its application workspace. by responding to service call 
OX I I. the task appears in the appl ications task list of the Task Manager display 
From this point on. the behaviour of the Wimp task is governed by the formal 
description file which was initially passed to the • FrontEnd_Start command. 

*FrontEnd_SetUp 

The •FrontEnd_SetUp command is similar. except it calls its new instantiation 
FrontEnd%Mtoo1name. and does not produce an icon on the icon bar. The 
templates for windows used by the application must be provided by you. and they 
must follow the conventions laid down later in the section Template files on 
page 159. 

When the user causes the command line tool to be run (for example by clicking on 
the Run icon in the application's dialogue box). the FrontEnd module starts up a 
task called toolname_ task running under the control of the task window 
module; thus the tool is pre-emptively multitasked. and any output the tool 



Adding your own desktop tools 

produces is stored and will be displayed in a window, if this is what the user 

wishes. When the user quits the application . the FrontEnd module ensures that 

the relevant instantiation is also removed from the RISC OS module list 

Example 

To be suitable, your command line program has to be non-interactive. This means 

it should start with a command line. then run to error or completion without any 

further user interaction. outputting reports as screen text. A compiler such as CC 

fits this description. but an editor such as SrcEdit does not. 

The tool ToANSI is a simple example of the non-interactive desktop tools You may 

find it instructive to examine the file Desc in AcornC C++. Tools. ! toansi 

Producing a complete Wimp application 

In order to produce a complete Wimp appl ication you will need to provide the 

following 

• !Run, !Boot and (possibly) !SetUp files 

• a !Sprites file 

• a Templates file 

• a Description fi le 

• a Messages file (optional) 

• a 'Help file (optional) 

These are described in more detail below. 

!Run, !Boot and !SetUp files 

Your !Boot file will be the same as for normal applications. including doing things 

like setting file types. and performing 'lconSprites commands on your sprites 

A typ1cal I Run file will look like any of those supplied w1th the desktop 

non-interactive tools. such as ! Link. ! Find, or !Diff. The size of Wimpslot does not 

depend in any way on the size of the command-li ne tool which is running under the 

FrontEnd module, but instead refers to the application workspace used by the 

module. when starting up as a Wimp task (currently a minimum of 16k). You should 

ensure that you have a command of the following form 

*Set toolname$Dir <Obey$Dir> 

157 



Producing a complete Wimp application 

158 

so that your resource files can be found. Having made sure that the FrontEnd and 
Task Window modules are loaded (by using • RMEnsure) you then issue the 
• FrontEnd_Start command with application name and full path name of the 
description file as parameters You may need the facilities provided by the 
DDEUtils module. m which case you should *RMEnsure it in your 'Run file 

For example for !Diff. the 'Run file is: 
*If "<System$Path>" • "" Then Error 0 System resources cannot be found 
•wimpSlot -Min 128k -Max 128k 
•rconsprites <Obey$Dir>. !Sprites 
*Set DiffSDir <Obey$Dir> 
*RMEnsure UtilityModule 3.10 Error This application only runs on RISC OS 3 
(version 3.10 ) or later 
*RMEnsure SharedCLibrary 3.99 Error This application requires the Shared c Library 
module (is it unplugged?) 
•RMEnsure FPEmulator 2.87 Error This application requires the FP Emulator module 
(is it unplugged?) 
•RMEnsure TaskWindow 0.47 Error This application requires the Task Window module 
(is it unplugged?) 
·~!Ensure f'rontEnd 0 System:modules. frontend 
•RMEnsure Frontend 1.15 Error You need version 1.15 of the FrontEnd module to run 
IDiff 
*RMEnsure DDEUtils 0 System:modules.ddeutils 
•RMEnsure DDEUtils 1.52 Error You need version 1.52 of the DDEUtils module to run 
!Diff 
•IHmpSlot -Min 32k -Max 32k 
•FrontEnd_Start -app Diff -desc <Diff$Dir>.desc 

A typical !SetUp tile is very Similar to a !Run file. but wdl be used when the 
FrontEnd module gets a request from Make to start up the Wimp front end for a 
tool. Lo allow the user to set oplions from a dialogue box. This file shou ld on ly 
need to do the following: 

• *Wimpslot -min 16K -max 16K 

• *Set too1name$Dir <Obey$Dir> 

• *RMEnsure FrontEnd 

• *FrontEnd_SetUp -app %0 -desc %1 -task %2 -handle %3 

Again. examples of a !SetUp file can be found in the set of non-interactive desktop 
tools. 

!Sprites file 

The !Sprites tile will contain the sprite for Lhe appl icalion icon on the icon bar. and 
also optionally a small sprite. both of which should comply with RISC OS style The 
name of the large sprite should be the same as the application (e g !Link. !Find 
etcl. 



Adding your own desktop tools 

Template files 

The set of window templates which you should supply in a fi le called Templates 

IS as follows: 

Window name Status 

proglnfo Mandatory 

SetUp Mandatory 

Details 

Should be as standard Acorn applications 
information boxes. 

Icon #I must be indirected text, with a 
buffer size large enough to accept the 
application name 

Icon #4 must be indirected text. with C:l 

buffer size large enough to accept the 
version string. 

This dia logue box is used to set the most 
common options for the command line 
tool Rarer options can be set from a 
menu by the user pressing the Menu 
button on this dialogue box. The title bar 
must be indirected text, and have a buffer 
size large enough to accept the 
appl ication name. 

Icon #0 must be indirected text (buffer 
size 12 bytes). and have a button type of 
Click. and should contain the text Run 

It is used to invoke the command line 
tool with the chosen options. 

Icon #I must be text. and have a button 
type of Click. and shou ld contain the 
text Cancel. It is used to close the 
Options dialogue box. and revert to the 
options settings as they were when the 
dialogue box was last opened 

Other icons are of your choice. and can be 
used to map to command line options. 
You must. however. follow the 
conventions described in the section 
Writing an application description on 
page 161. 

159 



Producing a complete Wimp application 

Window name Status Details 

CmdLine Mandatory Th1s dia logue box is used to show the 
command line equivalent of the options 
which the user has chosen. The til le bar 
should contain some explanatory text like 
Command Line. 

Icon #0 must be indirccted text with 
buffer size 12 bytes. with button type 
Click. and containmg the text Run. It i'> 
used to invoke the command line tool 
with the shown command line 
Icon# I must be indirected text with 
buffer size typically at least 256 bytes. and 
with a button type of Wr i teable 

Help Optional Used to display help text when the user 
selects Help from the application's main 
menu. The Litle bar shou ld contain some 
appropriate text. The w1ndow should not 
have its Auto-redraw flag set 

query Mandatory Used to ask the user if they really want to 
kill off a task which is running 
Icon #0 must be text. bullon type Click. 
and is used to reply Yes . 
Icon #I must be indirected text buffer 
sile 256 bytes 

Icon #2 must be text, button type Click, 
and is used lo reply No 

Output Optional Used to d1splay in a scrolling wmdow the 
textual output of the command line tool. 
The window's Auto-redraw tlag must 
not be set 

The title bar must be indirected text. and 
have a burrer size large enough to accept 
the application name plus a space and 
the string (Completed). 

160 



Window name Status 

Summary Optional 

xfer_send 

save 

Mandatory i f 
the Tool 
produces 
output that 
the user is 
able to save 

Mandatory if 
user is able 
to save 
anything 

Writing an application description 

Adding your own desktop tools 

Details 

Used to give a summary of the textual 
output produced by the command line 
tool 

Icon #2 must be text. w1th button type 
Click, containing the text Abort . It is 
used to abort the task. 

Icon #3 must be indirected text. with a 

buffer size large enough to hold strings 
Pause and continue. button type 
Click. It is used to pause and continue 
the task. 

Used as a save dia logue box for the 
textua l output of a tool. 

Icon #0 must be text , with button type 

Click, containing the text OK. 

Icon #2 must be indirected text. with a 
buffer size of 256. and button type 
writeable. 

Icon #3 must be i nd i rected text 

As for xfer_send, but is used to save the 
result file generated by running the tool. 
It should also have a close icon 

As previously mentioned. your application running under the rrontEnd module is 

driven by a formal description written in a language whose EBN~ (Extended 

Backus Naur Form) grammar is given in appendix FrontEnd protocols on page 185 

This section gives an explanation of the semantics of the language, and hence 

explains how to write your own description. 

As can be seen from the EBNF rule in appendix FrontEnd protocols for an applicat ion, 

the description file consists of I 0 sections. with only the first section being 

mandatory (TOOLDETAILS) Each of these sections is described separately below 

TOOLDETAILS section 

The tool details section is the only section which you must have in the description 

The section starts with the name of the tool. which must be the same as the string 

passed as the -app parameter to ~FrontF.nd_Sta rt. Thi s name wil l be used in 

window and menu title bars to identify the application 

161 



Producmg a complete Wimp application 

162 

. ·-·-···---···--···· ------·-···· 
Normally the tool will reside in your current library directory, and hence the 
command will be invoked using only the tool name. If you wish to change this you 
can specify a comrnand_ is entry. which gives a pathname for the tool. For 
example if you have an application called example. but the executable image for 
this application is held in I Runlmage in the applicat ion dJrectol)'. then you should 
have a line in the description rile saying 

comrnand_is "<example$Dir>. ! Runimage"; 

The version entry will typically be a version number and optional date for the 
tool. These will be used in the Program Information dialogue box (proglnfo) 

If your tool understands a particular file-type, then this can be entered using the 
keyword filetype This is used when the user double-clicks on a file of this type 
in a directOl)' display The effect is as if the user has dragged the file icon to your 
icon on the icon bar. 

By default the tool is run in a Wimpslot of 640k. under the Task Window module If 
you want this value to be different. then use the Wimpslot command in the 
description. 

Since the limit on RISC OS command lines is 256 characters. you may find this to 
be an unnecessarily strict limit when passing a potenUally large list of full 
path names to a tool on its command line. If you use the 
has_extended_cmdline keyword in the description. then the FrontEnd 
module wil l request space from the DDEULi ls module to place the command line 
arguments in. If the tool is written inC (or runs under any other run-time 
environment wh ich cooperates with DDEUtils) the tool will pick up the arguments 
from DDEUtils. Using this option. your command line is limited on ly by the size o f 
the writable icons in your dialogue boxes. If written in C. the tool must have been 
linked with the stubs or ANSI Lib to use this feature. 

METAOPTIONS section 

The METAOPTIONS section refers to non-application-specific options. 

If the has_auto_run keyword is used. the application's main menu option Auto 
Run will not be greyed out In addition. if you include the keyword on. then this 
option wi l l be enabled by default. Auto Run means that if a file is dragged to the 
applicat ion icon. then the tool will immediately be run. rather than first displaying 
the Options dialogue box. 

The has_ auto_save keyword refers to the Auto Save option in the application's 
main menu. and the keyword on turns this opt ion on by default. If this option is on. 
then rather than producing a Save as dialogue box to c;ave the file output of the 
tool. the tool is run to directly write to the desired output place The location 
where output should be sent is given following the has_auto_save keyword. in 



Adding your own desktop tools 

order to specify this location. you must first give an icon number in the Options 

dia logue box. whose first entry wi ll be used to determine the directory where the 

output will go (using the from icn <integer> keywords) 

For example. if you have the line: 

has_auto_save " . "!Runimage" from icn 3; 

and icon 3 of the options dialogue box contains the text: 

adf s :: 4.$.objects . filel adfs: : 4 . $.objects.file2 

then the filename adfs : : 4 . $ . objects . filel wil l be used to form the output 

filename. First the leafname file! is stripped off to leave the directory name 

adfs : : 4.$ .objects which will form the stub of the output filename. This stub 

is then manipulated by the string which is specified between the keyword 

has_auto_ save and the keyword from. You can indicate parent directories 

using any (reasonable) number of 1\ .sand can refer to the originallea fname using 

the keyword leafname (in this example leafname would map to filel I This 

leaf name can have literal strings prepended or appended to it 

If the application is to have textual output. then you can specify that you want text 

and/or summary window(s) by using the keywords has_ text_window and 

has_ summary _window. Beware that if you don't have any output windows dt all . 

then the user has no way of pausing/aborting/examining the running task. The 

default display mode is text. but thi s can be explicitly stated as text or summary 

using the keyword display _dft_is 

FILEOUTPUT section 

The FILEOUTPUT section deals with the production and sav1ng of a single output 

object. To enable the user to then save this output. it is sent to a temporary file. 

which is then copied to a permanent fi le when the corresponding icon is dragged 

to a directory display- the icon can also be dragged to another application 

By default it is assumed that the output filename for a tool is that which appears 

last on the command line with no special preceding flag If your command line tool 

requires a flag such as -o to go before the output filename. then this is specified 

using the output_option_is keyword . 

Also by default, the name which appears in the Save as dia logue box is the string 

Output. assuming that no Auto Save string has been specified. This can be 

changed using the output_dft_string keyword 

Certatn tools produce an output file or not. depending on the combination of 

options on their command line. By using the output_dft_is keyword, you can 

specify whether the default mode of operation is to produce outpu t or not. This 

163 



Producing a complete Wimp application 

164 

state will then be changed as the user chooses options from the options dialogue 
box and menu which either turn output production on or off (see the DBOX section 
and the MENU section) . 

DBOX section 

The DBOX section describes the properties of the main dialogue box used to set 
options for the command line tool 

The purpose of the icon definitions is to show how icon clicks and drags etc map 
onto command line option strings. and how these affect the state of other icons 
and menu entries. Essentially, icon numbers correspond to those numbers used in 
the template for the dialogue box 

There are four types of icon definition: 

those that map directly onto command line strings 

2 those that increase or decrease the numeric value of another icon 
3 those that cause a string to be inserted in a writable icon 
4 those that extend and contract the dialogue box. 

The most complex of these is the icon which maps to a command I inc string Such 
an icon can be of two Wimp types: 

• a writable indirccted text icon 

• o click icon. 

The former of these contributes to the command line. if it contains any text. and is 
generally used for specifying filenames to the command line tool The latter 1s 
generally used to turn flags on and off. and contributes to the command line if il is 
selected. The mapping onto the command I ine is given after the keyword 
maps_to. this may begin with an optional string literal (e g. -f l. optionally 
followed by keywords string or number These latter keywords are used for 
writable indirected text icons. and refer to their contents. If you want each item in 
the writable text icon to be preceded by a particular string. this can be specified 
using the prefix_by keyword 

You can also specify that selecting this icon causes the values of other icons to be 
used in the command line, by using the followed_by keyword These items will 
be separated by the entry given after the separator_ is keyword As discussed in 
the FILEOUTPUT section. it is possible to specify whether a tool produces output 
by default. each icon can be made to toggle this state using the keywords 
produces_no_output and produces_output. The not_saved keyword 
should be used if the value of the particular icon should not be saved when the 
user picks the Save options entry from the application's main menu 



Adding your own desktop tools 

Some examples should make this clearer 

icn 3 rnaps_to "-c"; 

This would be used for a click icon, which when selected will result in-c being 
inserted into the command line. 

icn 6 rnaps_ to "-f " string not_saved; 

This would be used for a writable indirected text icon, whose string contents 
should follow the literal -f on the command line. It would typically be used for 
specifying input filename(s) . The contents of icon 6 would not be saved when the 
user chose the Save options menu entry 

Using the increases or decreases keyword is typically used for arrow icons. 
used to increase and decrease the numeric value of another icon. The default 
amount by which the increase or decrease is made is I , but this can be changed 
using the keyword by. Minimum and maximum values can also be speci fi ed. The 
button type of such an arrow icon shou ld be click or auto-repeat 

If an icon should just be used to insert a useful string in another writable 
indirected text icon, then this is specified using the keyword inserts Whenever 

such an icon is clicked. the given string literal is inserted into the keyboard buffer. 
if the options dialogue box currently has the input focus. Its button type should be 
Click. 

The extends keyword is used for an icon which is used to toggle the options 
dialogue box, from large to small and vice versa. The from icon number is the icon 
which is used to mark the bottom of the dialogue box when small; the to icon 
number is the icon which is used to mark the bottom of the dialogue box when 
large. 

The list of icon definitions can opt ionally be followed by a list of icon default 

values. using the keyword defaults. Each icon can be listed with the keywords 
on and off for click icons. or a st ring or numeric literal value for writable 
indirected text icons. These defaults refer to those used when the tool is invoked 
via *FrontEnd_Start; if the tool has different options by default when invoked from 

Make. these are listed using the rnake_defaults keyword. 

Following this in the description is an optiona l specification of what happens when 
drags occur. from the filer or from other applications. After the keyword 
irnports_ start. which begins this part of the description. you can optionally 
specify a wild_card_is string, which is used whenever a directory is dragged to 
your application Typically this wildcard wi ll be * Hence a directory 
adfs: : 4 . $. foo dragged onto the application will expand to 
adfs: : 4. $. foo . * There then follows a list of drag_ to specifications. each of 
which gives either a specific icon number in the dialogue box. or the keywords any 

or iconbar. the icon list following the word inserts is where the filenames of 

165 



Producing a complete Wimp application 

166 

the dragged files will be inserted. with an optiona l separator string. If no separator 
string is given then a drag will overwrite the previous contents of the writable 
mdirected text icon Here are some examples 

drag_t o icn 3 inserts icn 3 ; 

This means that a drag onto icon 3. will insert the filename into icon 3. and 
subsequent drags to this icon will overwrite it 

drag_to icn 6 inserts icn 6 separator_ is 

drag_ t o any inserts icn 6 separator_ is 

dr ag_ to iconbar inserts icn 6; 

These means that a drag to icon 6. or anywhere else on the dialogue box, or to the 
icon ba r will insert the filename of the dragged icon in icon number 6. In the case 
of the iconbar. the contents of icon 6 wi ll be overwritten. 

MENU section 

The MENU section is similar to the DBOX section, except that it is used to specify 
the way that menu entries on the menu attached to the options dialogue box map 
to command l ine oplion strings. This menu is typically for less commonly used 
options. 

Each entry in the menu entry list begins with a literal string which is used to g1ve 
the text that will appear in that menu entry This is followed. after the keyword 
maps_ to, by string l iteral (which may be null) to which that menu entry maps in 
the command l ine. This is optionally fol lowed by the keyword sub_menu. in which 
case this menu entry will be given a writable submenu with the given string literal 
as its title. and w1th a buffer size given by the supplied integer value If you want 
each item in the submenu buffer to be preceded by a particular string, this can be 
specified using the prefix_by keyword. The produces_output. 
produces_no_output and not_ saved keywords are as described above for 
the DBOX section 

Menu default values can be set m a similar manner to those for the dialogue box 
icons This is done using the defaults keyword. and then following each menu 
entry with the keyword on or off depending on the desi red default state of that 
entry. If the entry has a writable submenu. this can also be given a default string or 
integer value. Also a separate set of option defaults can be set for when the 
Front End module is invoked from Make. Menu entries are numbered from I 
(ignoring the command line equ ivC:IIent entry) 



Adding your own desktop tools 

For example: 

menu start 
"First option" maps_ to "-a" ; 
"Second option" maps_to "-b " sub menu "Value : " 8; 

defaults 
menu l off , 
menu 2 on s ub_menu "42" ; 

menu e nd 

wil l result in a menu with two entries (other than the command line equivalent. 

which is always the first entry). By defau lt First option will not be ticked. but 

Second option will be ticked and its wntable submenu will contain the value 42 

DESELECTIONS section 

The DESELECTIONS section al lows you to state which Options when enabled 

shou ld disable other options. This can be done for both icons in the main options 

d1alogue box and for entries in its attached menu. For example 

icn 3 dese l ects icn 4, icn 5, menu 3; 

means that if icon 3 is selected, then icons 4 and 5 and menu entry 3 will be 

deselected. 

EXCLUSIONS section 

The EXCLUSIONS section is sim ilar to the DESELECTIONS section. except that 

the listed icons and menu entries are made unselectable (greyed out). When the 

icon or menu which ca used this exclusion is deselected. then the excluded items 

become selectable again. 

MAKE_EXCLUSIONS section 

Certain tools require that some options are made unselectable when the Front End 

module is invoked from Make. The MAKE_EXCLUSIONS sect1on allows these icons 

and menu entries to be listed. 

ORDER section 

8y default the command line for thc tool is constructed in the following order 

I the dialogue box 1cons in the order given in the DBOX section 

2 the menu entries in the order given in the MENU section 

3 the output option if appropriate 

167 



Producing a complete Wimp application 

168 

If this ordering is not satisfactory. you can give another ordering by using the 
order_is keyword followed by a list of icon numbers. menu entries and string 
litera ls. This mechanism can be used to insert string literals which always appear 
on the command line 

MAKE_ORDER section 

The MAKE_ORDER section is similar to the ORDER section. except that it gives a 
way of specifying an alternative command line ordering. when invoked from Make 

Messages files 

There are a number of textual messages (warnings and errors and the like), which 
the FrontEnd module issues. The purpose of the messages file for an application is 
to allow inlernationalisation of the messages. A messages file is supplied with 
each of the non-interactive tools. which you can use for your application; it shou ld 
be in a file ca lled <toolname$Dir> .Messages. If no such file is present. then 
FrontEnd's internal default English messages are used 

Providing interactive help 

Responses to interactive help requests are handled by the FrontEnd module In 
each of the desktop non-interactive tools directories you will find a Messages file 
for the tool. In this file are help messages for the various dialogue boxes of the 
tools. In general a message whose lag field is the name of the dialogue box, is used 
when the pointer is not over an icon. when the pointer is over an icon, the icon 
number is used to distinguish the help message. 

For example, an entry in the messages file of: 

SETUP3:This is where you specify the input filenames 

will result in the message 

This is where you specify the input filenames 

appearing in !Help's interactive help window. when the pointer is over icon number 
3 of the SetUp dialogue box. 

!Choices file 

When the user selects Save choices from the application's main menu. the current 
setting of options is saved in a file <toolname$Dir>. I choices 



Adding your own desktop tools 

The DDEUtils module 

SrcEdit 

Make 

The DDEUtils module is intended for three purposes: 

• to relax the 256 byte command line limit 

• to solve the problem of 'current directory· under the desktop 

• to provide throwback to the ed itor on finding source errors 

Further detai ls are given in append ix DDEUti/s on page 191 . 

Resource files 

A language compiler needs to supply three lines of information about itself to 

SrcEdit when it is installed . It does th is by appending these three lines to the fi le 

<SrcEdi t$Dir>. choices .languages o f the form shown in appendix SrcEdir 

{ill' formats on page I 97 

The language help file is used when the user selects a portion of his text and 

requests language help on this. The format of entries in the help file is shown in 

appendix SrcEdit file formats 

You will have noticed that when the user selects Menu on a project in Make. it is 

possible to select options for a tool by picking the name of that tool from the Tool 

options menu. Th is 1s done by Make issuing the star command • FrontEnd_SetUp. 

the FrontEnd module then replies with a Wimp message (deta ils of which are given 

in appendix FrontEnd protocols on page 185) contain ing the desired command l ine. 

In order to achieve this. a tool which is being added must append six lines to the 

file <Make$Dir> . choices . tools of the form: 

tool name 

extension 

make de f aults 

conversion rule 

description_file 

setup_ f i le 

the string used to identify a source written in th1s 

language: e.g c for the C language 

the default options for this tool when in a makefile 

i.e how to convert source files to object files 

full pathname o f file contaming application 
description 

full pathname of file containing SetUp actions for 
when tool is invoked via Make 

169 



-----·-··········-------------····------------------·--- .. 

170 



Appendices 

171 



172 



Appendix A: Makefile syntax 

Make and AMU 

This appendix covers the syntax of Makefi les understood by amu, and the way 

they are arranged by Make. If all you need to do is construct and use simple 

Mclkefiles with Make, you do not need to study this information. It is included for 

those wishing to study. modify or construct Makefiles manually 

Makefiles may be constructed by hand, using a text ed itor such as SrcEdit, or 

semi-automatica lly using Make. For more details of operating Make. see the 

chapter Make on page 57. Makefiles may be used to run a make job using either 

Make or AMU. In both cases. make jobs operate by the command line tool amu 

interpreting the Makefile text and issuing command lines to other tools The 

command line tool amu is installed in your library directory. 

Command execution 

Amu executes commands by calling the C library function system, once for each 

command to be executed In turn. system issues an OS_CLI SWI to execute the 

command. Before calling OS_CLI. system copies its caller to the top end of 

application workspace and sets the workspace limit just below the copied 

program. Any command executed by amu therefore has less memory to execute in 

than amu had initiall y (the difference being the size of amu plus the size of amu's 

working space). 

When the command returns. amu will be copied back to its origina l location and 

will continue. unless. of course. the command set a bad (non-0) value in the 
environment variable SysSReturnCode (the C library automatically sets 

Sys$ReturnCode to the value returned by main () or passed to exit ( ) ) . If you 

have limited memory on your computer, or you are trying to run amu in a limited 

Wimpslot under the desktop. and a program (such as the C compiler) to be run by 

amu needs more memory than is left. you can instruct amu not to execute 

commands directly, but to write them to an output window to be saved and 

executed later (see the Don't execute option of Make and AMUI Of course, in th1s 

case. execution is not terminated or modified by a non-0 return code from a 

command. 

173 



Makefile basics 

Makefile basics 

174 

Finally, note that there is a RISC OS command length limit of 255 characters The 
desktop tools such as the linker and C compiler cooperate w1th the DDEUtils 
module to allow much longer command lines. but care must be taken to avoid 
generating long command l ines for other operations. such as wipe, etc. 

In its simplest form, a Makefile consists of a sequence of entries which describe 

• what each component o f a system depends on: 

• what commands to execute to make an up-to-date version of that component. 

Everything else that you can express in a Makefile is designed to make the JOb of 
description easier for you. 

Amu performs two fu nctions for you . Fi rstly, i t expands your descri ption into the 
simple form just described: a sequence of explicit ru les about how to make each 
component of a system Then it decides which rules need to be applied to make a 
completely up-to-date. consistent system. This it does by deciding which 
components are older than any of the files they depend on. It then executes the 
commands associated wi th those entries. in an appropriate order. 

An example will make all this clear. so let's look at part of the Makefile for amu 
itself 

amu : o. amu $ . 301 . clx . o . clxl ib 

o . amu : 

install : 

link - o amu o . arnu $.CLib. o . Stubs 
squeeze arnu 

c. arnu $ . 301 . clx . o . c lxlib 
cc -I$ . 301.clx c . arnu 

copy a mu %. arnu -cfq 
remove arnu 
remove o . arnu 

Each entry consists of 

• a ta rget, fol lowed by a colon character. followed by 

• a list of files on which the target depends. followed by 

• a list of commands to execute to make the target up to date 

Each command line begins with some white space (i f you want your Makefile to be 
portable to UNIX systems you shou ld begin these lines with a Tab character) For 
example. amu itself is made from o . amu. the compiled amu program. and a 



Makefile syntax 

proprietary library called$. 30l.clx.o.clxlib. If either of these files is newer 

than amu. or if amu does not yet exist, then the commands link -o amu . 
followed by squeeze amu, shou ld be executed. 

But what if o . amu doesn't yet exist or is not itself up to date? Amu wi ll check this 

for you and will not use o. amu without first making it up to date. To do this it will 
execute the command(s) associated with the o . amu entry. 

Thus amu might well execute for you 

cc -I$.30l.clx c.amu 
link -o amu o.amu $.CLib.o.Stubs 
squeeze amu 

As you can see. if you do this more than once - for example. because you are 
developing the program being managed by amu- it will save you many keystrokes. 
Now suppose you don't have $. 3 01 . c lx. o. clxl ib. What then? Well . the 
Makefile doesn't instruct amu how to make this so it can do no more than tell you 
so. Either you must modify the Makefile to say how to make it or. more likely, 
obtain a copy ready-made. 

File name truncation 

Machines that have file name truncation configured off can result in error 
messages being displayed where a Makefile contains a rule where a (non -flle) 
target name has more than I 0 characters. 

For example. in the following Makefile extract: 

install rom: ${TARGET} 
${CP} ${TARGET} ${DESTINATION}.${TARGET} ${CPFLAGS} 
@echo install rom complete 

typing in· 

*amu install rom 

would result tn the following error message. 

AMU: failed to read time stamp for 'install rom' 

If you are going to use long target names you must ensu re that file name 

truncation is configu red on. 

175 



Makefile structure 

Macros as targets 

The first target in a Makefile cannot be a macro If you need to use a macro in this 
way then you should insert an ·extra· target. 

For example: 

all: ${PROG} 

${PROG}: myprog . o 
@echo ${PROG} r ebuilt 

Makefile structure 

176 

Makefiles contain normal ASCII text. and are of type OXFEl (Makefile) For 
backwards compatibil ity they may also be used with text (OXFFF) file type. though 
these cannot be adjusted automatically by Make. 

A Makefile consists of a sequence of logical lines A logical line may be continued 
over several physical lines provided each but the last line ends with a \ For 
example: 

# This is a comment line \ 
continued on the next physical line \ 
and on the next, but not thereafter . 

A comment is introduced by a hash character# and runs to the end of the logical 
line. The active comment line: 

#Dynamic dependencies : 

is interpreted by amu as a marker for the start of dependencies to be kept up to 
date during a make job (see Makefiles constructed by Make on page 181 ). All other 
comment l ines are ignored by amu. 

Otherwise there are four kinds of non-empty logical lines in a Makefile: 

• dependency 11 nes 

• command lines 

• macro definition lines 

• rule and other special lines 

Dependency lines have the form. 

space-separated-list-of-targets COLON space-separated-list-of-prerequisites 



For example 

amu : o . amu $ . 301 .clx.o.clxlib 
o . d35 o . d36 o .d37 : h.util 

Makefile syntax 

A dependency line cannot begin with white space. Spaces before the colon are 
optional. but some white space must fol low to distinguish a colon separating 
targets and prerequisites from a colon as part of a RISC OS filename 

For example 

adfs::4 . $ . library . amu: o . amu ••• 

(Although a space after the colon is not required by UNIX's make utility. omission 
of it is rare in UNIX Makefiles). 

A line with multiple targets is shorthand for several lines. each with one target and 
the same right-hand side (and the same associa ted commands. if any). Multiple 
dependency lines referring to the same target accumulate. though only one such 
line may have commands associated with it (amu would not know in what order to 
execute the commands otherwise). For example 

amu : o.amu 
a.mu: $.301.clx.o.clxlib 

is exactly equivalent to the single line form given earlier. In general the single line 
form is easier for you to write whereas the multi-line form is more readily 
generated by a program (for example. Make wil l generate a list of lines of the form 
o. foo: h. thing. one for each #include thing . h inc. foo). Command 
lines immediately follow a dependency li ne and begin with white space. 

For maximum compatibility with UNIX Makefiles ensure that the first character of 
every command line is a Tab. Otherwise one or more spaces will do. A sem1·colon 
may be used instead of a new line to introduce commands. This is often used when 
there are no prerequisites and only a single command associated w1th a target. For 
example: 

clean:; wipe o.* -cfq 

Note that. in this case. no white space need follow the colon. 

177 



Makefile structure 

178 

Macro definition lines are lines of the form 

macro-name = some text to the end of the logical line 

For example: 

CC = nee 
CFLAGS = -fah -c -I$.clib 
LD = link 
LIB = $.CLib.o.clxlib $.CLib.o.Stubs 
CLX = $ • 3 0 1. c lx 

The= can be surrounded with white space. or not. to taste. Thereafter. wherever 
${name} or $ (name) is encountered if name is the name of a macro then the 
whole of$ {name} is replaced by its definition A reference to an undefined macro 
simply vanishes. An example which uses the above macro definitions. and which is 
taken from the Makefile for amu itself. is: 

amu: amu.o $(CLX).o . clxlib 
$(LD) -o amu ${LFLAGS} o.amu ${LIB} 

which expands to 

amu: amu.o $.30l.clx.o.clxlib 
link -o amu o.amu $.CLib.o.clxlib $ . CLib . o . Stubs 

Note that $ {LFLAGS} expands to nothing 

By using macros intelligently, you can minimise the effort needed to move 
Makefi les from computer to computer: for example. dealing with varying locations 
for prerequisites. or centralising what would otherwise be distributed through 
many lines o f text. It is obviously much easier to add -g to a CFLAGS= l1ne to 
make a debuggable version of the compiler than it is to add -g to 28 separate cc 
commands Simi larly, using$ ( cc) and CC=cc. rather than just cc makes it very 
easy to use a different version of cc . just change the definition of the macro Whilst 
this may not seem very useful in a smal l Makefile. it is common practice when 
describing larger systems such as the C compiler Macros are used extensively in 
Makefiles constructed by Make. 



Makefile syntax 

Advanced features 

File naming 

To help you move MS-DOS and UNIX Makefi les to RISC OS, or to develop Makefiles 

under RISC OS for export to MS-DOS or UN IX, both amu and the C compi ler accept 

three styles of file naming 

VPATH 

RISC OS native 

UNIX-like 

MS-DOS-Iike 

$.301-cfe.c.pp 

/301/c f e/pp . c 

\301\cfe\pp.c 

~ . include.h.defs 

.. /include/defs . h 

.. \include\defs.h 

(All three of these examples refer to the same two RISC OS files.) 

The l inker offers more limited support; in essence, it recognises thing. o and 

o. thing as referring to the same RISC OS fi le (o . thing). In practice. object fi les 

almost always live local ly (that's the on ly place the RISC OS and UNIX C compilers 

will put one) so this support is fairly complete 

Amu will even accept a mixture of naming styles though this practice should be 

discouraged 

The mapping between different naming styles cannot be complete (consider the 

UNIX analogue of adfs : :0.$ .Library or net#1 . 251 : src. amu) However. it 

is usually sufficient to take much of the hard work out of moving reasonably 
portable Makefilcs. 

Usually. amu looks for files relative to the work directory or in places implicit in the 

filename The example given earlier contains the line 

amu : amu . o $ . 301 . clx.o.clxlib 

which refers to 

@.o.amu (in @. o) and $.301.clx.o.clxlib ( in $ . 30l.clx.o) 

Sometimes. particu larly when dealing wilh multiple versions of large systems. it is 

conven ient to have a complete set of object files loca lly, a few sources loca lly, but 

most sources in a central place shared between versions. For example, we can 

build different versions of the C compiler this way If the macro VPATH is defined. 

then amu will look in the li st of places defined in it for any files it can't find m the 

places implicit in their names. For example. we might have compiler sources in 

somewhere. arm. somewhere. mip. somewhere . c fe and put the compiler 

Makefile in somewhere . ccriscos. It might contain the following VPATH 

definition 

179 



Advanced features 

VPATH=~.arrn ~.rnip ~ .cfe 

and then dependency lines like 

# note that UNIX VPATHs 
# separate path elements 
# with colons, not spaces 

o.pp: c . pp # ~ . cfe.c . pp, via VPATH 
cc $(ccflags) -o o .pp $? 

o.cg: c .cg # ~ .mip.c.cg, via VPATH 
cc $(ccflags) -o o . cg $? 

Rule patterns, .SUFFIXES, $@, $*, $< and $? 

180 

All the examples given so far have been written out longhand. with explicit rules for 
making targets. In fact. amu can make inferences if you supply the appropriate rule 
patterns. These are specified using special target names consisting of the 
concatenation of two suffixes from the pseudo-dependency • SUFFIXES. This 
sounds very complicated. but is actually qutte simple For example 

. SUFFIXES: 
arnu : 
.c.o:; 

.o . c 
o.arnu 
$(CC) $(CFLAGS) -o $@ c.$* 

(Note the order here • c. o makes a • a-like thing from a • c-like thtng). 

The rule pattern • c. o describes how to make • o-like things from • c -like things If. 
as in the above fragment there is no explicit entry describing how to make a 
. a-like thing (o . arnu. in the above example) amu will apply the first rule it has for 
making • a -like things Here. order is determined by order in the . SUFFIXES 
pseudo-dependency For example. suppose • SUFFIXES were defined as 
• o . c • f and that there were two rules . • c . o : ••• and . f . o: . • Then amu 
would choose the . c. o rule because • c precedes • f in the . SUFFIXES 
dependency. In applying the • c . o rule, amu infers a dependence on the 
corresponding . c-like thing- here c . amu. So. in effect. it infers 

o.arnu : c.arnu 
$(CC) $(CFLAGS) -o o.amu c.arnu 

Note that. in the commands.$@ is replaced by the name of the target and$* by 
the name of the target with the ·extension' deleted from it. In a similar fashion. $< 
refers to the list of inferred prerequisites. So the above example could be rewntten 
using the rule: 

.c.o:; $(CC) $(CFLAGS) -o $@ $< 

However. if a VPATH were being used. this second form is obligatory Consider. for 
example. the fragment : 



Makefi/e syntax 

VPATH=A.arm A.mip A.cfe 

cc: • . • . o.pp •••• 
• c.o:; $(CC) $(CFLAGS) -o $@ $< 

There is no explicit rule for making o. pp, so amu will apply the rule pattern 

c . o : ? . This might expand to: 

o .pp: A.cfe.c .pp 
$(CC) $(CFLAGS) -o o . pp A.cfe .c.pp 

which has a much more useful effect than · 

$(CC) $(CFLAGS) -o o.pp c.pp 

Finally $? can be used in any command to stand for the list of prerequisites with 

respect to which the target is out of date (which may be only some of the 

prerequisites). 

Use of :: 

If you use : : to separate targets from prerequisites. rather than : . the right-hand 

sides of dependencies which refer to the same ta rgets are not merged 

Furthermore. each such dependency can have separate commands associated with 

it. Consider. for example: 

o . tl:: c . tl h.tl 
cc -g -c c.tl # executed if o.tl is out of 

# date wrt c.tl or h.tl 

o.tl: : c.tl h.t2 
cc -c c.tl # executed if o.tl is out of 

# date wrt c.tl or h.t2 

These features are used extensively by Make in the construction of Makefilcs 

Prefix$Dir 

The DDEUtils module provides an environment variable Prefix$Dir set to the 

work directory This IS provided to allow you to execute binaries placed in the work 

directory 

Makefiles constructed by Make 

A Makefile constructed by Make. i.e used to mainta in a project is a file of type 

OXFEl {Make file) This text is arranged into a number of sections which are 

separated by active comments. 

181 



Makefiles constructed by Make 

182 

When maintain ing a project the meta-symbol @ is u!:.ed to stand for the path name 
of the work directory This overcomes the problem of a current directory not being 
appropriate under the RISC OS desktop If the absolute filename of a Makefile IS: 

adfs ::4. $ . any . thing .makefile 

then all fi lenames for the pro ject can use@ to replace adfs: :4 . $ . any. thing 

For example: 

adfs::4.$-any-thing.c.foo 

become~ denoted by 

@.c.foo 

Amu is invoked with the -desktop flag to indicate that @ shou ld be expanded 

Tools like cc and objasm which must produce dependency information are invoked 
with il flag -depend ! Depend 

Below. we describe each of the Makefilc sections. beginning w1th then 
corresponding active comments· 

# Project : 
project_ name 

# Toolflags : 

# Final targets: 

# User -editable 
dependencies: 

# Static 
dependencies: 

# Dynamic 
dependencies: 

This gives a name to be used for the pro ject in the 
Opensu bmen u. 

This sect ion has a set of default flags for each of the 
tools wh1ch have registered themselves with !Make. 
for automatic inclusion in a Makefile. Each ru le would 
be o f the type 

too1FLAGS = •••• 

This section contains the rules for making the final 
targets of the pro ject 1:or example 
!Runimago : link $(l i nkfla gs ) -o !Runl ma ge - vi a objec LS 

This section is left untouched by !Make, and can freely 
be ed ited by the user using a text ed1tor 

Th is section contains ru les for making an object file 
from its corresponding source. It does no t refer to 
include files and the like (described be low in the 
section Dynamic dependencies I 

This section contains the ru les which are created by 
!Make by running the relevant tool on a source fi le to 
ascertoin its dependencies (e.g. cc -depend) . 



Makefile syntax 

Miscellaneous features 

The special pseudo-target • SILENT tells amu not to echo commands to be 
executed to your screen. Its effect is as ir you used the Make or AMU option Silent 

The specia l pseudo-target • IGNORE tells amu to ignore the return code from the 

commands it executes. Its effect is as if you used the Make or AMU option Ignore 

return codes 

A command line in a Makefile. the first non-white-space character of which 1s (a . is 

locally silent. lUSt that command is not echoed This is only rarely useful 

A command line. the first non-white-spdce character of which IS- has 1ts return 

code ignored when it is executed. This I'> extremely useful in Makefiles which use 

commands such as diff which cannot sell he return code conventionally 

The special macro MFLAGS is given the value ot the command line arguments 
passed to amu This is most useful when a Makefile itself contains amu commands 

(for example. when a system consists of a collection of subsystems. Cdch de<;cribed 

by its own Makefile) MFLAGS allows the same command line arguments to be 

passed to every invocation of amu. even the recursive ones. For example you 

might invoke amu like this: 

* amu -k LIB=$.experiment.new.lib.grafix 

and the Mdkefile might conta in entries like 

subsys_l : $(COMMON) $(HDRS1) 
dir subsysl 
amu $(MFLAGS) 
back 

183 



184 



Appendix B: FrontEnd protocols 

Star Commands 

'1\vo star commands arc supported: 

*Fr ontEnd Start -app <applicati on name> 
-desc <description_filename> 

*FrontEnd_SetUp -app <application_name> 
-desc <description_filename> 
-task <task-id of caller> 
-handle <app-specific_ handle> 
-toolflags <filename> 

The application specific handle can be used by the cal ler to identify return 

messages. if many • FrontEnd_SetUp commands have been made. 

EBNF Grammar of Description Format 

The followi ng is an EBNF grammar for an application description 

Note Blank lines and characters followmg #(up to newline) are 1gnored 

APPLICATION : : = TOOLDETAILS 
[METAOPTIONS] 
(FILEOUTPUT] 
[DBOX] 
[MENU] 
[DESELECTIONS] 
[EXCLUS IONS ] 
[MAKE_ EXCLUSIONS] 
[ORDER] 
[MAKE_ORDER] 
<EOF> 

TOOLDETAILS :: = tool_details_ start 
name <s t r i ng> " ; " 
(command is <string>;] 
version <number_ and_ optional_date> 
II • " , 
[filetype &<3digit hexnumber> ";"] 

185 



EBNF Grammar of Descrtption Format 

186 

[wimpslot <integer>k ";"] 
[has extended cmdline ";"] 

tool details end 

METAOPTIONS ::= metaoptions_start 
[has_auto_run [on] ";"] 
[has_ auto_save [on] 

FILEOUTPUT 

DBOX 

MENU 

{"~."}[<string>][leafname] 

[<string>) from icn <integer>" ; "] 
[has_text_window ";"] 
[has_ summary_window ";"] 
[display_dft_ is text l summary ";"] 

metaoptions_end 

: := fileoutput_start 
[output_option_is <string>" ;"] 
[output_ dft_string <string>";"] 
(output_ dft_is (produces_output l 
produces_no_output) ";"] 

fileoutput_ end 

: : = dbox start 
ICONS 

[ICONDEFAULTS] 
[IMPORTS] 

dbox end 

:: = menu start 
MENULIST 
[MENUDEFAULTS] 

menu end 

#--------------------------------------------------------
MENULIST : : = { MENUENTRY } 

MENUENTRY :: = <string> maps_to <string> 
[sub_menu <string> <integer> 

[prefix_ by <string>]] 
[produces_no output! 
produces_output] 
[not_ saved) ";" 

MENUDEFAULTS : : = defaults 
menu <integer> on I off [sub_menu 

<string> 
I <integer> 



FrontEnd protocols 

{ "," menu <integer> on I off ( sub_menu 
<string> 
I <integer> 

} 

(make_defaults 
menu <integer> on I off [sub_ menu 

<string> 
I <integer> 

{ 

menu <integer> on I off [sub_menu 
<string> 

I <integer> 
} 

#--------------------------------------------------------
ICONLIST : : = icn <integer> { "," icn <integer> } 

ENTRYLIST : : = menu <integer> { "," menu <integer> } 

ICON ENTRYLIS:: = menu I icn <integer> { "," menu I icn 
<integer> } 

#--------------------------------------------------------
ICONS : : = icons start 

ICONDEFLIST 
icons end 

ICONDEFLIST : : = { ICONDEF } 

ICONDEF :: = icn <integer> ( maps_ to ((<string>] 
[CONVERSION]) 

(prefix_by <string>] 
[followed_ by (spaces] OPTLIST] 
(separator_is <string>] 
(produces_no_output 
lproduces_output] 
(not saved] ) 
I (increasesldecreases icn 

<integer> 
(by) <integer> (max <integer>] 

[min <integer>] 

187 



EBNF Grammar of Description Format 

188 

liMM S&WWWW;;gw-w 

inserts <string>";" 
extends from icn <integer> 

to icn <integer> 

OPTLIST : : = OPTENTRY { ", " OPTENTRY } 

OPTENTRY : : = icn <integer> 

CONVERSION :: = string I number 

ICONDEFAULTS : : = defaults 
icn <integer> on I off 
I <integer> 
{ "," icn <integer> on 
<string> I <integer> 
} 

(make_defaults 
icn <integer> on I off 
I <integer> 
{ "," icn <integer> on 
<string> I <integer> } 

<string> 

off 

<string> 

off 

--· 

#--------------------------------------------------------
DESELECTIONS :: = deselections start 

DESELECTIONLIST 
deselections end 

DESELECTIONLIST: : ={ DESELECT} 

DESELECT : : = icn <integer> deselects 
ICON_ENTRYLIST ";" 
I menu <integer> deselects 
ICON_ENTRYLIST ";" 

#--------------------------------------------------------
EXCLUSIONS : := exclusions start 

EXCLUSIONLIST 
exclusions end 

EXCLUSIONLIST:: = {EXCLUDE} 



EXCLUDE :: = icn <integer> excludes 
ICON_ENTRYLIST ";" 
I menu <integer> excludes 
ICON_ ENTRYLIST ";" 

FrontEnd protocols 

#--------------------------------------------------------
MAKE EXLUSIONS::=make excludes ICON ENTRYLIST 

ORDER 

MAKE ORDER 

: := order is 
(menulicn <integer>) <string> 

output 
{ "," (menu I icn <integer>) 

<string> I output} 

: : = make order is - -
(menulicn <integer>) I <string> 

output 
{ "," (menu l icn <integer>) 

<string> I output} 

#--------------------------------------------------------
IMPORTS 

IMPORTLIST 

IMPORT 

: := imports_start 
[wild_ card_is <string>";" ] 
IMPORTLIST 

imports_end 

: := { IMPORT } 

: := drag_ to 
(icn <integer>lanyliconbar) 
inserts 
ICONLIST 
[separator_ is <string>] 

189 



WIMP Message returned after a *FrontEnd_SetUp 

WIMP Message returned after a *FrontEnd_SetUp 

190 

When an application like Make does a *FrontEnd SetUp command. the FrontEnd 
module replies to that application when the user has chosen his options with a 
WIMr message of the rormat 

Byte offset 

+16 

+20 

+24to+'36 

+'~6 

Contents 

reason code Ox00081400 
handle which was passed to •J·rontEnd_SetUp 
application nnmc 

null-terminated command-line options 



Appendix C: DDEUtils 

The DDEUtils module performs three functions These functions have been 

comb1ned in one module for convenience: 

• Filename prefixing This allows d unique current working eli rectory to be set 

for each task running under RISC OS 

• Long command lines A mechanism for passing long command lines(> 255 

characters) between programs (e g between AMU and Linkl 

• Throwback. Throwback allows a language processor (e.g. CC or ObjAsm) to 

inform an editor that an error has occurred whi le processing a source fi le The 

editor can then display the source file at the location of the error 

These functions are described individually in the rest of the chapter 

Filename prefixing SWis 

DDEUtils_Prefix (&42580) 

E.ntry: 

Exit: 

Error. 

Use 

RO = Pointer to 0 terminated directory name. or RO = 0 

All registers preserved 

None 

Th1s sets a directory name to be prefixed to all relative filenames 

used by this task. If 1~0 = 0 this removes any previously set prefix If 

you use this SWI within a program to set a directory prefix you 

should ca ll it again with RO = 0 immedia tely before exiting your 

program 

Filename prefixing *Commands 

*Prefix [directory) 

This sets the specified directory name to be prefixed to all relative filenames used 

by this task • Prefix with no arguments removes any previously set prefix 

The system variable <Prefix$Dir> is set to the prefix used for the currently 

executing task. This can be set by you , and this wi ll have the same effect as *Prefix. 

191 



Long command line SW/s 

Long command line SWis 

192 

These SWis are used to pass long command lines between programs Typically they 
will be called by library veneers For example. the C run-time library initialisation 
ca lls DDEUtils_ GetCLSize and DDEUtils_ GetCL to fetch any long 
command lines set up by a ca lling program and calls DDEUtils_SetCLSize and 
DDEUtils_SetCL in the system library call 

DDEUtils_SetCLSize (&42581) 

Entry RO =Length of command line buffer required 

Exit: RO destroyed 

Error: None 

Use This SWI should be called by a program when it has a long 
command line which it wishes to pass to another program The SWI 
should be called with the length of the command line in RO A buffer 
of suitable size is allocated in the RMA 

DDEUtils_SetCL (&42582) 

Entry. 

Cxit: 

Error: 

RO = Pomter to zero terminated command line tail 

All registers preserved 

Possible errors are 

CLI buffer not set 

This error is generated if the program has not previously called 
DDEUtils SetCLSize to establish the size of the command line 

Use This shou ld be ca lled after ca lling DDEUtils_ SetCLSize to set 
the size of the command line buffer RO contains a pointer to the 
command tail (i e the command line w1thout the name of the 
program to be run) . 

DDEUtils GetCLSize (&42583) 

Entry· 

Exit. 

Error· 

Use: 

don 't care 

RO = Size of command line 

None 

This is ca lled by a program which may have been run with a long 
command line The size of the command line is returned m RO. 0 is 
returned if no command line has been set. 



DOEUtils 

DDEUtils_GetCl (&42584) 

Throwback SWis 

Entry RO Pointer to buffer to receive command line 

Exit: All registers preserved 

Error: None 

Use: This SWI is called to fetch the command line. The command line is 
copied into the buffer pointed to by RO. 

DDEUtils_ThrowbackRegister (&42585) 

Entry: 

Exit: 

Error: 

RO = task handle of caller 

All registers preserved 

Possible errors are: 

Another task is registered for throwback 
Throwback not available outside the desktop 

Use: This registers a task which is capable of dealing with throwback 
messages. with the throwback module. The task handle will be used 
in passing Wimp messages to the caller, when they are generated by 
an application. 

DDEUtils_ ThrowbackUnRegister (&42586) 

Entry: RO =task handle of caller 

Exit: All registers preserved 

Error Possible errors are 

Task not registered for throwback 
Throwback not available outside the desktop 

Use: This call should be made when the Wimp task which registered itself 
for throwback is about to exit. 

DDEUtils ThrowbackStart (&42587) 

Entry: 

Exit· 

Error 

don't care 

All registers preserved 

Possible errors are: 

No task registered for throwback 
Throwback not available outside the desktop 

193 



Throwback SW/s 

194 

Use: When a non-desktop tool detects errors in the source(s) it is 
processing, and throwback is enabled. the tool shou ld make this 
SWI to sta rt a throwback session. 

DDEUtils_ThrowbackSend (&42588) 

Entry: 

If 

If 

If 

Exit 

Error. 

RO = reason code 
R2-R'5 =depends on reason code (see below) 

RO = 0 (Th rowback_ReasonProcessingJ 
R2 = pointer to nul-terminated full path name of ti le being 

processed 

RO = I (Throwback_ReasonErrorDetails) 
R2 = pointer to nul-terminated full pathname of tile being 

processed 
R3 = l ine number of error 
R4 = severity of error 

0 for warnmg 
= I for error 
= 2 for serious error 

R'5 = pointer to nul-terminated description of error 

RO = 2 (Throwback_ReasonlnfoDetails) 
R2 = pointer to nul-terminated full pathname of ti le being 

processed 
R3 = line number to which 'informational' message refers 
R4 = must be 0 
R5 = pointer to nul-terminated 'informational' message 

RO-R4 prese rved 

Poss1ble errors are 

No task registered for throwback 
Throwback not available outside the desktop 

Use This SWI should be called with reason 

Throwback_ReasonProcessing 

once. when the first error in processing a file was found Then it 
should be called once for each error found . with the reason 

Throwback ReasonErrorDetails 

or for each informational line that needs displaying with the reason · 

Throwback ReasoninfoDetails 



DDEUtils 

DDEUt i l s _ThrowbackEnd (&42589) 

Exit: All registers preserved 

Erro r Poss ible errors are: 

No task registered for throwback 
Throwback not available outside the desktop 

Throwback WIMP messages 

These messages a re sent by the DDEUtils module to an editor that has registered 
itself fo r throwback using the SWI DDEUt i ls_ThrowbackRegister You only 
need to know about the m if yo u wa nt to write your own edito r. 

Byte Offset 

+16 

Contents 

DDEUtils_ ThrowbackSta rt (& 42580) 

The tra nslato r the n passes messages giving full info rmation on each e rror. o r each 
'informational' message. to the editor 

A complete series of messages sent by the translator to the editor is described by 
the grammar below Items in< .> are individual Wimp messages. identified by 
thei r reason code 

ErrorDialogue ::= 

ErrorsWhileProcessing ::= 

ErrorFoundin : : = 

InfoDialogue ::= 

InfoDetails ::= 

<DDEUtils ThrowbackStart> 
ErrorsWhileProcessing 
{ErrorsWhileProcessing} 
<DDEUtils ThrowbackEnd> 

<DDEUtils_ProcessingFile> 
ErrorFoundin {ErrorFoundin} 

<DDEUtils Errorin> 
<DDEUtils ErrorDetails > 

<DDEUtils ThrowbackStart> 
InfoDetails{InfoDetails} 
<DDEUtils ThrowbackEnd> 

<DDEUtils InfoforFile> 
<DDEUtils InfoDetails> 

195 



Throwback WIMP messages 

196 

- .._. .... ••• - ---· 
The format of such Wimp messages is as follows: 

Byte Offset 

+16 
+20 

Byte Offset 

+16 
+20 

Byte Offset 

+16 
+20 
+28 

+32 

Byte Offset 

+16 

Byte Offset 

+16 
+20 

Byte Offset 

+16 
+20 

+28 
+32 

Contents 

DDEUtils_ProcessingFi le (&4258 1) 
Nul-terminated filename 

Contents 

DDEUtils_Errorsln (&42582) 
Nul-terminated filename 

Contents 

DDEUtils ErrorDetails (&42583) 
Line number 

Severity 
= 0 for warning 
= I for error 
= 2 for serious error 

Nu !-terminated description 

Contents 

DDEUti Is_ ThrowbackEnd ( &42584) 

Contents 

DDEUtils_lnfo forFile (&42585) 
Nul-term inated filename 

Contents 

DDEUtils_lnfoDetail s (&42586) 
Line number 

must be 0 

Nul-terminated 'informational' message 

. 



Appendix D: SrcEdit file formats 

Language File Format 

language_name 

searchpath is a comma-separated list of full pathnames for default search 
path when loading from a selection Note that each item in this 
list should either be a path variable (e.g. c: ). or be terminated by 
a dot (this line can be left blank. though putting@ . on the line 
would be preferable) 

helppath is the full pathname of language help file (this line can be left 
blank. though pulling@. on the line would be preferable) 

Help File Format 
%<keyword> 

<line 1 of help text> 

<line 2 of help text> 

<line 3 of help text> 

<line 4 of help text> 

etc 

There is no limit on the number of help lines for a given keyword 

197 



198 



Appendix E: Code file formats 

Terminology 

This appendix defines three file formats used by the Desktop tools to store 
processed code and the format of debugging data used by DDT 

e AOF- ARM Object Format 

• ALF- Acorn Library Format 

• AlF- ARM Image Format 

• ASD ARM Symbolic Debugging Format. 

Desktop tools language processors such as CC and ObjAsm generate processed 
code output as AOF files. An ALF file is a collection of AOF files constructed from a 
set of AOF files by the LibFile tool. The Link tool accepts a set of AOF and ALF files 
as input. and by default produces an executable program file as output in AlF 

Throughout this appendix the terms byte. half word, word, and string are used to mean 
the following: 

Byte: 8 bits, considered unsigned unless otherwise stated, usually used 10 store flag 
bits or characters. 

Half word: 16 bits. or 2 bytes, usually unsigned. The least significant byte has the 
lowest address (DEC/lntel byte sex. sometimes called little e'1dian) . The address of a 

half word (i e of its least significant byte) must be divisible by 2 

Word· 32 bits. or 4 bytes. usually used to store a non-negative value The least 
significant byte has the lowest address 1 DlC/Intel byte sex, sometimes called little 
endian) The address of a word (i e. of its least significant byte) must be divisible 
by 4. 

String: A sequence of bytes terminated by a NUL (OXOO) byte. The NUL is part of the 
string but is nor counted in the st ring's length. Strings may be aligned on any byte 
boundary. 

Note: a word consists of 32 bits. 4-bytc aligned. within a word. the least sign1ficant 
byte has the lowest address. This is DEC/lntel , or little endian. byte sex not 

IBM/Motorola byte sex. 

199 



Byte Sex or Endian-ness 

Byte Sex or Endian-ness 

Alignment 

There are two sorts of AOF or ALF: little-endian and big-end ian. 

In little-end ian AOF or ALF. the least significant byte of a word or half-word has the 
lowest address of any byte in the (half-)word This byte sex is used by DEC. Intel 
and Acorn. amongst others. 

In big-end ian AOF or ALF. the most significant byte of a (half- )word has the lowest 
address This byte sex IS used by IBM. Motorola and Apple amongst others 

For data in a file. address means 'offset from the start of the file· 

There is no guarantee that the end ian-ness of an AOF or ALF file wi II be the same 
as the end1an-ness of the system used to process it (the endian-ness of the file is 
always the same as the end ian-ness of the target ARM system). 

The two sorts of AOF or ALF cannot. be mixed (the target system cannot have 
mixed end ian-ness· it must have one or the other) Thus the ARM linker will accept 
inputs of either sex and produce an output of the same sex. but will reject inputs of 
mixed end ian-ness. 

Strings and bytes may be aligned on any byte boundary. 

AOF and ALF' fields defined in this appendix make no usc of half-words and align 
words on 4-byte boundaries 

Within the contents of an AOF' or ALF file the alignment of words and half-words is 
defined by the use to which AOF or ALF is being put 

For all current ARM based systems. words are aligned on 4-byte boundaries and 
half-words on 2-byte boundaries 

Undefined fields 

200 

fields not explicitly defined by this appendix are implicitly reserved to Acorn It is 
required that all such fields be zeroed. Acorn may ascribe meaning to such fields at 
any time, but will usua lly do so in a manner which gives no new meaning to zeroes 



AOF 

Code file formats 

ARM object format files are output by language processors such as CC and 

ObjAsm 

Chunk file format 

A chunk is accessed via a header at the start of the file The header contains the 

number. size, location and identity of each chunk in the file. The size of the header 

may vary between different chunk fi les but is fixed for each file. Not all entries in a 

header need be used, thus limited expansion of the number of chunks is permitted 

without a wholesale copy A chunk file can be copied without knowledge of the 

contents of the individual chunks. 

Graphica lly, the layout of a chunk file is as follows· 

I -----chunkF1Ield 
--- ---

MaxChunks 

NumChunks 

Fixed part of header 
· ~ occupies 3 words and 
I describes what follows 

entry1 4 words per entry 

entry2 

entry "MaxChunks" End of header (3 + 4*MaxChunks) words 

chunk 1 Start of data chunks 

chunk "NumChunks" 

ChunkFileid marks the file as a chunk file. Its value is OxC3CBC6C5 The 

endian-ness of the chunk file can be deduced from this value (if, when read as a 

word, it appears to be OxC5C6CBC3 then each word value must be byte-reversed 

before use) 

201 



Object file format 

The MaxChunks field defines the number of the entries in the header. fixed when 
the file is created. The NurnChunks field defines how many chunks are currently 
used in the file. which can vary from 0 to MaxChunks. The value of NurnChunks is 
redundant as it can be found by scanning the entries 

Each entry in the header comprises four words in the following order: 

chunkid is an 8-byte field identifying what data the chunk contains 
(note that this is an 8-byte field. not a 2-word field. so it 
has the same byte order independent of endian-ness) 

fileOffset is a one word field defining the byte offset within the file of 
the start of the chunk. All chunks are word-aligned. so it 
must be divisible by four. A value of zero indicates that the 
chunk entry is unused 

size a one word field defining the exact byte size of the chunk 
(which need not be a multiple of four) . 

The chunkid field provides a conventional way of identifying what type of data a 
chunk contains. It is split into two parts. The first four characters conta in a unique 
name allocated by a central authority (Acorn). The remaining four characters can 
be used to identify component chunks within this domain. The 8 characters are 
stored in ascending address order. as if they formed part of a NUL-terminated 
string (which they do not). independently of endian-ness. 

For AOF files. the first part of each chunk's name is OBJ _: the second components 
are defined later in this section 

Object file format 

202 

Each piece of an object file is stored in a separate. identifiable. chunk AOF defines 
five chunks as follows: 

Chunl< Chunk Name 

Header OBI_IIEAD 

Areas OBI .AREA 

Identification OBUDFN 

Symbol Table OBI_SYMT 

String Table OBI_STRT 

Only the header and areas chun ks must be present. but a typical object file will 
contain all five of the above chunks. 



Code file formats 

Each name in an object file is encoded as an offset into the string table, stored in 

the OBI_STRT chunk (see String table cliunk (OBI_STRT) on page 217) This allows 

the variable-length nature of names to be factored out from primary data formats 

A feature of chunk file format is that chunks may appear in any order in the file. 

However. language processors which must also generate other object formats

such as Unix's a. out format- should use this flexibility ca utiously 

A language translator or other system utility may add additional chunks to an 

object file, for example a language-specific symbol table or language-specific 

debugging data, so it is conventional to allow space in the chunk header for 

additional chunks, space for eight chunks is conventional when the AOF file is 

produced by a language processor which generates all five chunks described here. 

The header chunk should not be confused with the chunk file's header 

Format of the AOF header chunk 

The AOF header is logically in two parts, though these appear contiguously in the 

header chunk. The first part is of fixed size and describes the contents and nature 

of the object file. The second part is variable in length (specified in the fixed part) 

and is a sequence of area declarations defining the code and data areas within 

the OB)_AREA chunk. 

The AOF header chunk (OBI_HEAD) has the following format: 

I 
Object f1le type 

Version ld 

Number of areas 

~ Number of Symbols 

Entry Area index 

I 
Entry Offset 

1st Area Header 

L 2nd Area Header 

L nth Area Header 

I 

I 
~ 6 words in the fixed part 

5 words per area header 

(6 + (S*Number of Areas)) words in 
the AOF header 

203 



Object file format 

204 

Object file type 

OxC5E2D080 marks the file as being in relocatable object format (the usual output 
of compilers and assemblers and the usual input to the linker). 

The end ian-ness of the object code can be deduced from this value and shall be 
identical to the endian-ness of the containing chunk file. 

Version ID 

Encodes the version of AOF to which the object file complies. version 1.50 is 
denoted by decimal 150; version 2.00 by 200; version 3.10 by 31 0; and this version 
3. 1 I by decimal 31 1 (Ox 137). 

Number of areas 

The code and data of the object fi le is presented as a number of separate areas. in 
the OBI_AREA chunk, each with a name and some attributes (see below). Each 
area is declared in the (variable-length) part of the header which immediately 
follows the fixed part. The value of the Number of Ar eas field defines the 
number of areas in the file and consequently the number of area declarations 
which follow the fixed part of the header 

Number of symbols 

If the object file contains a symbol table chunk OBI_SYMT. then this field defines 
the number of symbols in the symbol table. 

Entry address area/ entry address offset 

One of the areas in an object file may be designated as containing the start address 
of any program which is linked to include the fi le. If this is the case. the entry 
address is specified as an Entry Area Index, Entry Offset pair. Entry 
Area Index. in the range I to Number of Areas. gives the ! - origin index 1n 
the following array of area headers of the area containing the entry point. The entry 
address is defined to be the base address of this area plus Entry Offset 

A value of 0 for area-index signifies that no program entry address is defined by 
this AOF file. 



Code file formats 

Format of area headers 

The area headers fo llow the fixed part of the AOF header. Each area header has the 

following form: 

Area name 

~
Attributes + Alignment 

Area size 

Number of relocations 

Base address or zero 

Area name 

(offset into string variable) 

l 
5 words in total 

Each area within an object file must be given a name which is unique amongst all 

the areas in the file Area Name gives the offset of that name in the string table 

(stored in the OB]_STRT chunk- see String table chunk (OBLSTRT) on page 217) 

Area size 

This field gives the size of the area in bytes, which must be a multiple of 4. Unless 

the Uninitialised bit (bit 4) is set in the area attributes (see Attributes and 
Alignment on page 205). there must be this number of bytes for this area in the 

OB]_AREA chunk. If the Uninitialised bit is set. then there shall be no 

initialising bytes for this area in the OBI AREA chunk. 

Number of relocations 

This word specifies the number of relocation directives which apply to this area. 

(equivalently: the number of relocation records following the area's contents in the 

OBI_AREA chunk- see Format of tf1e areas chunk on page 21 0) 

Attributes and Alignment 

Each area has a set of attributes encoded in the most-significant 24 bits of the 

Attributes+ Alignment word. The least-sign ificant 8 bits of this word encode the 

alignment of the start of the area as a power of 2 and shall have a value between 2 

and 32 (this value denotes that the area shou ld start at an address divisible by 
2ahgnment). 

The linker orders areas in a generated image first by attributes. then by the 

(case-significant) lexicographic order of area names. then by position of the 

containing object module in the link list. The position in the link list of an object 

module loaded from a library is not predictable. 

205 



Object file format 

206 

The precise significance to the linker of area attributes depends on the output 
being generated 

Bit 8 

Bit 8 encodes the absolute attribute and denotes that the area must be placed at 
its Base Address. This bit is not usually set by language processors 

Bit 9 

Bit 9 encodes the code attribute. if set the area contains code; otherwise it 
contains data. 

Bits 10 and II 

Bits 10, II encode the common block definit ion and common block 
reference attributes. respectively. 

Bit 10 specifies that the area is a common block definition 

Bit II defines the area to be a reference to a common block, and precludes the area 
having initialising data (see Bit 12, below) . In effect. bit I I implies bit 12. 

If both bits 10 and II are set. bit II is ignored 

Common areas with the same name are overlaid on each other by the linker. The 
Area Size field of a common definition area defines the size of a common 
block. All other references to this common block must specify a size which is 
smaller or equal to the definition size. If. in a link step, there is more than one 
definition of an area with the common definition attribute (area of the given name 
with bit I 0 set), then each of these areas must have exactly the same contents. If 
there is no definition of a common area. its size will be the size of the largest 
common reference to it. 

Although common areas conventiona lly hold data, it is quite legal to use bit 10 in 
conjunction with bit 9 to define a common block containing code This is most 
useful for defining a code area which must be generated in several compilation 
units but which should be included in the final image only once 

Bit 12 

Bit 12 encodes the zero- initialised attribute, specifying that the area has no 
initialising data in this object file. and that the area contents are missing from the 
OBLAREA chunk. Typically, this attribute is given to large uninitialised data areas. 
When an unin it ialised area is included in an image, the l inker either includes a 
read-write area of binary zeroes of appropriate size, or maps a read-write area of 
appropnate size that will be zeroed at image start-up time. This attribute is 
incompatible with the read-on ly attribute (see Bit 13. below). 



Code file formats 

Whether or not a zero-initialised area is re-zeroed if the image is re-entered is a 

property of the relevant image format and/or the system on which it wil l be 

executed. The defi nition of AOF neither requi res nor precludes re-zeroing. 

To summarise bits I 0. I I and 12 interact as follows: 

12 II 10 Interaction 

0 0 I Initialised common defini tion 

0 I Initialised common defini tion 

0 0 Unin itia lised reference to common block 

0 I Uninitialised reference to common block 

0 Uninitialised reference to common block 

I I Uninitialised reference to common block 

0 0 Zero-in it ial ised (bss = unnamed common reference) 

So. an init ialised common definition is inferred if bit I 0 is set and bit I I is not. a 

Zero-initia lised area is inferred if bit 12 is set and both bits I 0 and II are unset. all 

other bit combinations infer an uninitialised reference to common block. 

Bit 13 

Bit I '3 encodes the read only attribute and denotes that the area wi ll not be 

modified following relocation by the li nker. The linker groups read-on ly areas 

together so that they may be write protected at run-time. hardware permitting 

Code areas and debugging tables should have this bit set The setting of this b1t is 

incompatible with the setting of bit 12 

Bit 14 

Bit 14 encodes the position independent (PI) attribute. usually only of 

significance for code areas. Any reference to a memory address from a PI area must 

be in the form of a link-time-fixed offset from a base register (e.g a PC-relative 

branch offset). 

Bit 15 

Bit 15 encodes the debugging table attribute and denotes that the area 
contains symbolic debugging tables. The linker groups these areas together so 

they can be accessed as a single continuous chunk at or before run-time (usually, a 

debugger will extract its debugging tables from the image file prior to start ing the 

debuggee). 

Usually. debugging tables are read-only and. therefore, have bit 13 set also. In 

debugging table areas. bit 9 (the code attribute) is ignored. 

207 



Object file format 

208 

Bits 16-19 encode additional attributes of code areas and shall be non-0 only 1f the 
area has the code attribute (bit 9 set) 

Bit 16 

Bit 16 encodes the 32-bit PC attribute. and denotes that code in this area complies 
with a 32-bit variant of the ARM Procedure Call Standard (APCS). For details. refer 
to '32-bit PC vs 26-bit PC'. Such code may be incompatible with code which 
complies with a 26-bit variant of the APCS 

Bit 17 

Bit 17 encodes the reentrant attribute, and denotes that code in this area 
complies with a reentrant variant of the ARM Procedure Call Standard 

Bit 18 

Bit 18. when set. denotes that code in this area uses the ARM's extended 
float i ng-point inst ruct ion set Specifically, function entry and ex1t use 
the LFM and SFM floating-point save and restore instructions rather than multiple 
LDFEs and STFEs. Code with th is attribu te may not execute on o lder ARM-based 
systems 

Bit 19 

Bit 19 encodes the No Software Stack Check attribute, denoting that code 
in this area complies with a variant of the ARM Procedure Call Standard without 
software stack-limit checking. Such code may be incompatible with code which 
complies with a l imit-checked variant of the APCS. 

Bits 20-27 encode additional attributes of data areas. and shall be non-0 only if the 
area does not have the c ode attribute (bit 9) unset 

Bit 20 

Bit 20 encodes the based attribute, denoting that the area is addressed via 
link-time-fixed offsets from a base register (encoded in bits 24-27) Based areas 
have a special role in the construction of shared l ibraries and ROM-able code. and 
are treated specia lly by the l inker. 

Bit 2 I 

Bit 21 encodes the Shared Library Stub Data attribute. In a link step 
involving layered shared libra ri es. there may be several copies of the stub data for 
any library not at the top level. Jn other respects. areas with this attribute are 
treated like data areas with the common definition (bit 10) attribute Areas which 
also have the zero initialised attribute (bit 12) are treated much the same as areas 
with the common reference (bit II ) attribute. 



Code file formats 

This attribute is not usually set by language processors. but is set only by the 

linker. 

Bits 22~23 

Bits 22-23 arc reserved and shall be set Lo 0 

Bits 24-27 

Bits 24-27 encode the base register used to address a based area . If the area 

does not have the based attribute then these bits shall be set to 0 

Bits 28~31 

Bits 28-31 are reserved and shall be set to 0 

Area Attributes Summary 

Bit Mask 

8 OxOOOOOIOO 

9 Ox00000200 

10 Ox00000400 

II Ox00000800 

12 OxOOOOlOOO 

13 Ox00002000 

14 Ox00004000 

15 Ox00008000 

Code areas only 

16 OxOOOIOOOO 

17 

18 

19 

Ox00020000 

Ox00040000 

Ox00080000 

Data areas only 

20 OxOOlOOOOO 

21 Ox00200000 

24-27 OxOFOOOOOO 

Attribute Description 

Absolute attribute 

Code attribute 

Common block definition 

Common block reference 

Uninitialised (0-initialised) 

Read o nly 

Positio n independent 

Debugging tables 

Complies with the 32-bit APCS 

Reentrant code 

Uses extended FP inst set 

No software stack checking 

Based area 

Shared library stub data 

Base register for based area 

209 



Object file format 

210 

Format of the areas chunk 

The areas chunk (Chunkld of OBLAREA) contains the actual areas (code. data. 
zero- initialised data. debugging data. etc.) plus any associated relocation 
information. Graphically. an area's layout is: 

Area 1 j Area 1 relocation 

I J 
Area n 

Area n relocation 

An area is simply a sequence of byte values. The endian-ness of the words and 
half-words within it sha ll agree with that of the containing AOF file. 

An area is followed by its associated table of relocation directives (if any) An area 
is either completely initialised by the values from the file or is initialised to zero. as 
specified by bit 12 of its area attributes. 

Bolh the area con Lents and the table of relocation directives are aligned to 4-byte 
boundaries. 

Relocation directives 

A relocation directive describes a value which is computed at link Lime or load 
time. but which cannot be fixed when the object module is created 

In the absence of applicable relocation directives. the value of a byte, halfword. 
word or instruction from the preceding area is exactly the value that will appear in 
the final image. 

A field may be subject to more than one relocation . 

Pictonally. a relocatiOn directive looks like: 

Offset 

1 I" I B I A I R I FT I 24-bit SID 

Offset 

Offsel is the byte offsel in the preceding area of the subject fi eld to be relocated by 
a value calculated as described below. 



Code file formats 

SID (Subject Identification) 

The interpretation of the 24-bit SID field depends on the A bit. 

If A (bit 27) is I . the subject field is relocated (as further described below) by the 

va lue of the symbol of wh ich SID is the 0-origin index in the symbol table chunk. 

If A (bit 27) is 0. the subject field is relocated (as further described below) by the 
base of the area of which SID is the 0-origin index in the array of areas. (or. 

equivalently. in the array of area headers) 

FT (Field Type) 

The 2-bit field type FT (bits 25. 24) describes the subject field: 

00 the field to be relocated is a byte 

01 the field to be relocated is a ha lf-word (2 bytes) 

10 the field to be relocated is a word (4 bytes) 

I I the field to be relocated is an instruction or instruction sequence 

Bytes. halfwords and instructions may only be relocated by values of su1tably small 
size Overnow IS faulted by the linker 

An ARM branch, or branch-with-link instruction is always a suitable subject for a 

relocation directive of field type instruction. 

II (Instruction Instruction) 

If the subject field is an instruction sequence (FT = II ). then Offset addresses the 
first instruction of the sequence and the II field (bits 29 and 30) constrains how 
many instructions may be modified by this directive: 

00 no constraint (the linker may modi fy as many contiguous instructions as 
it needs to) 

01 the linker will modify at most I instruction 

I 0 the linker will modify at most 2 instructions 

II the l inker wil l modify at most 3 instructions 

211 



Object file format 

212 

R (relocation type) 

The way the relocation value is used to modify the subject field is determined by 
the R (PC-relative) bit, modified by the B (based) bit 

R (bit 26) = I and B (bit 28) = 0 specifies PC-relative relocation: to the subject field 
is added the difference between the relocation value and the base of the area 
containing the subject field In pseudo C: 

subject_field • subject_field + (relocation_value -
base_of_area_containing(subject_field)) 

As a special case. if A is 0. and the relocation value is specified as the base of the 
area containing the subject field . then it is not added and: 

subject_field = subject_field -
base_of_area_containing(subject_field) 

This caters for relocatable PC-relative branches to fixed target addresses. 

If R is I. B is usually 0. If B is 1 this is used to denote that the inter-link-unit value 
of a branch destination is to be used. rather than the more usual intra-link-unit 
value (this allows compilers to perform the tail-call optimisation on reentrant 
code) . 

R (bit 26} = 0 and B (bit 28) = 0. specifies plain additive relocation the relocation 
value is added to the subject field In pseudo C 

subject_field = subject_ field + relocation_value 

R (bit 26) = 0 and B (bit 28) = I. specifies based area relocation. The relocation 
value must be an address within a based data area. The subject field is 
incremented by the difference between this value and the base address of the 
consolidated based area group (the linker consolidates all areas based on the 
same base register into a single. contiguous region of the output image). In 
pseudo C: 

subject_field = subject_field + (relocation_value -
base_of area_group_containing(relocation_value)) 

For example. when generating reentrant code. the C compiler will place address 
constants in an adcon area based on register sb. and load them using sb relative 
LDRs. At link time. separate adcon areas wil l be merged and sb will no longer 
point where presumed at compile time. B type relocation of the LDR instructions 
corrects for this 

Bits 29-31 

Bit 31 of the relocation flags word sha ll be I . and (unless FT bits are II) bits 29 and 
30 shall be 0. 



Code file formats 

Format of the symbol table chunk 

The Number of Symbols field in the fixed part of the AOF header (OBLSTRT) 
defines how many entries there are in the symbol table. Each symbol table entry 
has the following format: 

Name 

Name 

Attributes 

Value 

Area name 

4 words per entry 

This value is an index into the string table (in chunk OBj_STRT) and thus locates 
the character string representing the symbol. 

Value 

This is only meaningful if the symbol is a defining occurrence (bit 0 of Attributes 
set). or a common symbol (bit 6 of Attributes set): 

• if the symbol is absolute (bits 0.2 of Attributes set). this field contains the 
value of the symbol 

• if the symbol is a common symbol (bit 6 of Attributes set). this field contains 
the byte-length or the referenced common area 

• otherwise. Value is interpreted as an offset from the base address of the area 
named by Area Name. which must be an area defined in this object file 

Area Name 

is meaningful only if the symbol is a non-absolute defining occurrence (bit 0 of 
Attributes set, bit 2 unset). In this case it gives the index into the string table for 

the name of the area in which the symbol is defined (which must be an area in this 
object file). 

213 



Object file format 

Symbol Attributes 

214 

The Symbol Attributes word is interpreted as follows: 

• Bit 0 denotes that the symbol is defined in this object file. 

• Bit I denotes that the symbol has global scope and can be matched by the 
linker to a similarly named symbol from another object file 

Specifically: 

Bits I and 0 

01 (bit I unset,bitOsetl 
denotes that the symbol is defined m this object file and has scope 
limited to this object file (when resolving symbol references. the 
linker will on ly match this symbol to references from within the 
same object file). 

10 (bit I set. bit 0 unset) 
denotes that the symbol is a reference to a symbol defined in 
another object file. If no defining instance of the symbol is found 
the l inker attempts to match the name of the symbol to the names 
of common blocks If a match is found it is as if there were defined 
an identically-named symbol of global scope, hav1ng as its value the 
base address of the common area 

II denotes that the symbol is defined in this object file with globa l 
scope (when attempting to resolve unresolved references. the l inker 
will match this definition to a reference from another object file) 

00 Reserved by Acorn 

Bit 2 

Bit 2 encodes the absolute attribute which is meaningful on ly if the symbol is a 
defining occurrence (bit 0 set) If set it denotes that the symbol has an absolute 
value. for example, a constant. If unset, the symbol's value IS relative to the base 
address of the area defined by the Area Name field of the symbol. 

Bit 3 

Bit 3 encodes the case insensitive reference attribute which is meaningful only if 
bit 0 is unset (that is, 1f the symbol1s an external reference) If set. the linker will 
ignore the case of the symbol names it tries to match when attempting to resolve 
thi s reference. 



Code file formats 

Bit 4 

Bit 4 encodes the weak attribute which is meaningful only if the symbol is an 
externa l reference, (bits l ,0 = l 0) . It denotes that it is acceptable for the reference 

to remain unsa ti sfied and for any fields reloca ted via it to remain unreloca led. The 
linker ignores weak references when deciding which members to load from an 
object library. 

Bit 5 

Bit 5 encodes the strong attribute which is meaningful only if the symbol is an 
external defining occurrence (if bits I .0 ll) In turn. this attribute only has 
meaning if there is a non-strong, external definition of the same symbol1n another 
object file. In this case, references to the symbol from outside of the file conta ining 
the strong definition. resolve to the strong definition. while those within the file 
containing Lhe strong definition resolve to the non-strong definition. 

This attribute allows a kind of link-time indirection to be enforced. Usual ly, a 
strong definition will be absolute. and will be used to implement an operating 
system's entry vector having the forever binary property. 

Bit 6 

Bit 6 encodes the common attribute. which is meaningful only if the symbol is an 
external reference (bits l .0 = I 0). If set, the symbol is a reference to a common area 
with the symbol's name. The length of the common area is given by the symbol's 
Value field (see above). The linker treats common symbols much as it treats 
areas having the Common Reference attribute- all symbols with Lhe same name 
are assigned the same base address. and the length allocated is Lhe maximum of 
all specified lengths. 

If the name of a common symbol matches the name of a common area. then these 
are merged and the symbol identifies the base of the area. 

All common symbols for which there is no matching common area (reference or 

definition) are collected into an anonymous. linker-created, pseudo-area 

Bit 7 

Bit 7 is reserved and shall be set to 0. 

215 



Object file format 

216 

Bit 8~ 11 

Bits 8-11 encode additional attnbutes of symbols defined 1n code areas 

Bit 8 encodes the code datum attribute which is meaningful only if this 
symbol defines a location within an area having the Code attribute. It denotes 
that the symbol identifies a (usually read-only) datum. rather than an 
executable instruction. 

Bit 9 encodes the floating-point arguments In floating-point registers 
attribute. Th is is meaningful only if the symbol identifies a function entry 
point A symbolic reference with this attribute cannot be matched by the linker 
to a symbol definition which lacks the attribute 

B1t I 0 is reserved and shall be set to 0. 

Bit l l is the simple leaf function attribute which is meaningful only if this 
symbol defines the entry point of a sufficiently simple leaf function (a leaf 
function is one which calls no other function) For a reentrant leaf function it 
denotes that the function's inter-link-unit entry point is the same as its 
mtra-link-unit entry point 

Bit 12-31 

Bits 12-'31 are reserved and shall be set to 0 



Symbol Attribute Summary 

Bit Mask 

0 OxOOOOOOOI 

I Ox00000002 

2 Ox00000004 

3 Ox00000008 

4 OxOOOOOOIO 

5 Ox00000020 

6 Ox00000040 

Code symbols only 

8 OxOOOOOIOO 

9 

II 

Ox00000200 

OxOOOOOBOO 

Attribute Description 

Symbol is defined in this file 

Symbol has globa l scope 

Absolute attribute 

Case insensitive attribute 

Weak attribute 

Strong attribute 

Common attribute 

Code area datum attribute 

FP args in FP regs attribute 

Simple leaf function attribute 

String table chunk (OBJ_STRT) 

Code file formats 

The string table chunk contains all the print names referred to from the header and 

symbol table chunks This separation is made to factor out the variable length 

characteristic of print names from the key data structures. 

A print name is stored in the string table as a sequence of non-control characters 

(codes 32-126 and 160-255) term inated by a NUL (0) byte, and is identified by an 

offset from the start of the table. The first 4 bytes of the string table contain its 

length (including the length of its length word). so no valid offset into the table is 

less than 4. and no table has length less than 4 . 

The endian-ness of the length word shall be identical to the endian-ness of the 

AOF and chunk files contain ing it. 

Identification chunk (OBJ_IDFN) 

This chunk shou ld contain a string of printable characters (codes l 0-13 and 32-126) 
terminated by a NUL (0) byte. which gives information about the name and version 

of the tool wh ich generated the object file. Use of codes in the range 128-255 is 

discouraged. as the interpretation ot these values is host dependent. 

217 



ALF 

ALF 
ALF is the format of linkable libraries (such as the C RISC OS Toolbox library 
toolboxlib) 

Library file format 

218 

For library files. the first part of each chunk's name is 'LIB_': fo r object libraries, Lhe 
names of the additiona l two chunks begin with 'Of L_' 

Each piece of a library file is stored in a ~epa rate. identifiable chunk. named as 
fol lows 

Chunk Chunk Name 

Directory LIB DIRY 
Time-stamp LIB TIME 
Version LIB VSRN 

Data LIB DATA 

Symbol table OFL SYMT - object code libraries only 
Time-stamp OFL TIME -object code librari es only 

There may be many LIB_DATA chunks in a library one for each library member In 
all chunks. word values are stored with the same byte order as the target system. 
strings are stored in ascending address order. which is independent of ta rget byte 
order. 

LIB DIRY 

The LIB_DIRY chunk contains a d irectory of the modules in the library. each of 
which is stored in a LIB_DATA chunk. The directory size is fixed when the library is 
crea ted. The directory consists of a sequence of variable length entries, each an 
integral number of words long. The number o f directory entries is determined by 
the size of the LIB_DIRY chunk 

This is shown pictoria lly in the following diagram. 

Chunklndex 

Entry length 

Data length 

Data 

the size of this LIB DIRY chunk 
(an integral number of words) 

the size of the Data 
(an integral number of words) 



Code file formats 

Chunklndex 

Chunklndex is a word containing the 0-origin index within the chunk file header of 

the corresponding LIB_DATA chunk. Conventionally, the first 3 chunks of an OF! . 

fi le are LIB_DIRY. LI B_ TIME and LIB_ VSRN, so Chunklndex is at least '3. A 

Chunklndex of 0 means the directory entry is unused. 

The corresponding LIB DATA chunk entry gives the offset and size of the library 

module in the library file 

EntryLength 

EntryLength is a word containing the number of bytes in this UB_DIRY entry, 

always a multiple of 4 

Data Length 

Data 

Data Length is a word containing the number of bytes used in the data section of 

this LIB_DIRY entry, also a multiple of 4 

The Data section consists of, in order: 

• a 0-terminated string (the name of the library member) 

• any other information relevant to the library module (often empty) 

• a 2-word, word-a l igned time stamp. 

Strings shou ld contain on ly IS0-8859 non-control characters (codes 10-311. 127 

and 128+10· 3 I I are excluded). 

The string field is the name used to identify this library module Typ1cally it is the 

name of the file from which the library member was created. 

The format of the time stamp is described in Timr Slamps on page 220. Its value is 

an encoded version of the last-modified time of the file from which the library 

member was created 

To ensure maximum robustness with respect to earlier, now obsolete. versions of 

the ARM object l ibrary format: 

• Applications which create libraries or library members should ensure that the 

LIB DIRY entries they create contain valid time stamps. 

• Applications which read LIB_DIRY entries should not rely on any data beyond 

the end of the name string being present, un less the d ifference between the 

DataLength field and the name-string length allows for it. Even then. the 

contents of a time stamp should be treated cautiously and not assumed to be 

sensible 

219 



Library file format -

220 

-- --- - - ····------
Applications which write LIB_DIRY or OFL_SYMT en tries should ensure that 
padding is done with NUL (0) bytes: applications which read LIB_DlRY or 
OFL .. SYMT entries should make no assumptions about the values of padding bytes 
beyond the first. string-terminating NUL byte. 

Time Stamps 

A library time stamp is a pair of words encoding the following: 
• a 6-byte count of cent i-seconds since the start of the 20th century 
• Cl 2-byte count of microseconds since the last centi-second (usually OJ 

centiseconds since 00:00:00 first (most significant) word 
1st January 
1900 I u-seconds second (least significant) word 

The first word stores the most significant 4 bytes of the 6-byte count. the least 
significant 2 bytes of the count are in the most significant half of the second word. 

The least signi ficant half of the second word contains the microsecond count and 
is usually 0 

Time stamp words are stored in target system byte order: they must have the same 
end ian-ness as the conta ining chunk file 

LIB TIME 

The LIB_ TIME chunk contains a 2-word time stamp recording when the library was 
last modified It is. hence. 8 bytes long. 

LIB_VSRN 

The version chunk contains a single word whose value is I 

LIB DATA 

A LIB_DATA chunk contains one of the library members indexed by the LIB_DIRY 
chunk. The end ian-ness or byte order of this data is. by assumption. the same as 
the byte order of the conta ining library/chunk file. 

No other interpretation is placed on the contents of a member by the library 
management tools. A member could itself be a file in chunk file format or even 
another library. 



Code file formats 

Object Code Libraries 

An object code library is a library file whose members are files in ARM Object 

Format (see section AOF on page 20 I ror details) . 

An object code library contains two additional chunks an external symbol table 

chunk named OFL SYMT; and a time stamp chunk named OFL_ TIME. 

OFL SYMT 

The external symbol table conta ins an entry for each external symbol defined by 

members o f the library, together with the index or the chunk con tain ing the 

member defining that symbol. 

The OFL .. SYMT chunk has exactly the same format as the LIB_DIRY chunk except 

that the Data section of each entry contains only a string, the name of an external 

symbol. and between I and 4 bytes o r NUL padding, as follows: 

Chunklndex 

Entrylength 

Data length 

~ternal Symbol Namj 

Padding 

the size of this OFL SYMT chunk 
(an integral number of words) 

the size of the External Symbol Name and 
Padding (an integral number of words) 

OFL_SYMT entries do not contain lime stamps. 

OFL TIME 

The OFL. TIME chunk records when the OFL_SYMT chunk was last modified and 

has the same format as the LIB_ TIME chunk (see Time Stamps on page 220) 

221 



AIF 

AIF 
ARM Image Format (AIFl is a s1mple format for ARM executable images. which 
consists of a 128 byte header fol lowed by the image's code. followed by 1 he image's 
init ialised static data 

Properties of AIF 

222 

1\vo variants of AIF exist. 

• Executable AIF (in wh ich the header is part of the image 1tself) can be 
executed by enteri ng the header at its first word. Code in the header ensures 
the image is properly prepared for execution before being entered at its entry 
address 

• Non~executable AIF (in wh ich the header is noL pa rt o f the image. but merely 
describes it) is intended to be loaded by a program which interprets the 
header. and prepares the following image for execution. 

The two navours o f AI Fare d istingu ished as follows: 

• The fourth word of an executable AIF header is BL e ntrypoint The most 
significant byte of this word (in the target byte order) is OxCB. 

• The fourth word of a non-executable AIF image is the offset of its entry point 
from its base address. The most significant nibble of this word (in the target 
byte order) is OxO. 

The base address of an executable AIF image is the address at which its header 
should be loaded; its code starts at base + Ox80. The base address of a 
non-executable AIF image is the address at which its code should be loaded. 

Executable AIF 

The following remarks about executable AIF apply also to non-executable AI F. 
except that loader code must in terpret the AIF header and perform any requ ired 
decompression. relocation. and creation of zero-initialised data Compression and 
relocation are. of course. optional. AIF is often used to describe very s1mple 
absolute images. 

It is assumed that on entry to a program in ARM Image Format (AIFJ. the general 
reg1sters contain noth1ng of value to the program (the program is expected to 
communicate with i ts operating environment using SWI instructions or by ca lli ng 
functions at known. fixed addresses). 



Code file formats 

A program image in AI~M Image Format is loaded into memory at its load address. 

and entered at its first word The load address may be 

• an implicit property of the type of the file containing the image (as is usual 

with UNIX executable file types. Acorn Absolute file types. etc.) 

• read by the program loader from offset Ox28 in the file containing the AIF 

image 

• given by some other means. e g by instructing an operating system or 

debugger to load the image at cl ~pecified address in memory 

An AIF image may be compressed and can be self-decompressing (to support 

faster loading from slow peripherals and better use of space in ROMs and delivery 

media such as floppy d1scs). An AIF 1mage is compressed by a separate utility 

which adds self-decompression code and data tables to it. 

If created with appropriate linker options. an AIF image may relocate itself at load 

time. Two kinds of self-relocation are supported: 

• relocate to load address (the image can be loaded anywhere and will execute 

where loaded) 

• self-move up memory, leaving a fixed amount of workspace above, and 

relocate to this address (the image is loaded at a low address and will move to 

the highest address which leaves the required workspace free before executing 

there) 

The second kind of self-relocation can on ly be used if the target system supports 

an operating system or monitor call which returns the address of the top of 

avai lable memory. The ARM linker provides a simple mechanism for using a 

modified version of the self-move code illustrated in Self-Move and Self-Relocation 

Code on page 228, allow1ng AIF to be easily tailored to new environments. 

AIF images support being debugged by the Desktop debugging tool (DDT) 

Low-level and source-level support are orthogona l, and both. either. or neither 

kind of debugging support need be present in an AIF image. 

For details of the format of the debugging tables see ASD on page 231 

References from debugging tables to code and data are in the form of relocatable 

addresses. After loading an image at its load address these values are effectively 

absolute References between debugger table entries are in the form of offsets 

from the beginning of the debugging data area Thus. following relocation of a 

whole 1mage. the debugging data area itself is position independent and may be 

copied or moved by the debugger. 

223 



The Layout of AIF 

The Layout of AIF 

224 

The layout of a compressed A IF' image is as fo llows: 

Header 

Compressed image 

Decompression data This data is position-independent 

Decompression code This code is position-independent 

The header is small. fixed in size. and described below. In a compressed AIF image, 
the header is not compressed. 

An uncompressed image has the following layout: 

Header 

Read-only area 

Read-write area 

Debugging data (optional) 

Self-relocation code 

L_.."""''~" u" _j 

Position-independent 

List of words to relocate, terminated by -1 

Debugging data is absent unless the image has been linked using the linker's - d 
option and. in the case of source-level debugging, unless the components of the 
image have been compiled using the compiler's -g opt ion. 

The relocation list is a list of byte offsets from the beginning o f the AIF header. of 
words to be relocated. followed by a word containing - I The relocation of 
non-word values is not supported. 



Code file formats 

After the execution of the self-relocation code- or if the image is not 

self-relocating -the image has the following layout: 

Header 

Read-only area 

Read-write area 

Debugging data (optional) 

At this stage a debugger is expected to copy any debugging data to somewhere 

safe. otherwise it will be overwritten by the zero-initiali sed data and/or the 

heap/stack data of the program. A debugger can seize control at the appropriate 

moment by copying, then modifying, the third word of the AIF header (see AIF 

Header Layout on page 226). 

225 



The Layout of AIF 

AIF Header Layout 

226 

00 BL DecompressCode 

04 

I 
BL SelfRelocCode 

~ 08 BL DBGinit/Zerolnit ..___. - --
oc BL lmageEntryPoint 

or 
EntryPoint offset 

~ 10 I P"'9cam e,;, '"'"' 
14 Image ReadOnly size 

18 Image ReadWrite size 

1C b moge Oeb"g ,;,. 

~ 20 mage zero-init size 

24 Image debug type 

28 Image base 

2C Work space 

---
30 Address mode: 26/32 

+3 flag bytes 

34 Data base 

38 Two reseNed words Ht"•llyO ... 
~ 40 Debug lnit lnstr> 

44 ero-init code 
{14 words as below) 

Notes 

NOP is encoded as MOV rO. rO. 

NOP 0 if the image is not compressed 

NOP 0 if the image is not self-relocat ing 

NOP 0 if the image has none 

BL to make header addressable via R14 ... 
... but the application shall not return ... 
Non-executable AIF uses an offset, not BL 

... last ditch in case of return 

Includes header size if execu1able AIF; 
excludes header size if non-executable AIF 

Exact size - a multiple of 4 bytes 

Exact size - a multiple of 4 bytes 

Exact size - a multiple of 4 bytes 

0,1 ,2 or 3 (see below) 

Address the image {code) was linked at 

Min work space - in bytes - to be reseNed 
a self-moving relocatable image 

LS byte contains 26 or 32 
bit 8 set when using a separate data base 

Address the image data was linked at 

NOP if unused 

Header is 32 words long 

BL is used to make the header addressable via rl4 in a position-Independent 
manner, and to ensure that the header will be position-independent. Care is taken 
to ensure that the instruction sequences which compute addresses from these r 14 
values work in both 26-bit and 32-bit ARM modes. 



Code file formats 

Program Exit Instruction will usually be a SWI causing program termination On 
systems which lack this. a branch-to-self is recommended. Applications are 
expected to exit directly and not to return to the AIF header. so this instruction 
shou ld never be executed. The ARM linker sets this field to SWI Ox I I by defau lt, but 

it may be set to any desired va lue by provid ing a template for the AIF header in an 
area called Air II DR in the first object file in the input list to Link. 

Image ReadOnly Size includes the size of the AIF header only if the AIF type is 

executable (that is. if the header itself is part of the image). 

An AIF image is re-startable if. and only if. the program it contains is re-startable 
(note: an AIF image is not reentrant). If an AIF image is to be re-started then. 
following its decompression. the first word of the header must be set to NOP 
Similarly, following self-relocation. the second word of the header must be reset to 
NOP This causes no addi tional problems with the read-only nature of the code 
segment: both decompression and relocation code must write to it. On systems 
with memory protection, both the decompression code and the self-relocation 
code must be bracketed by system calls to change the access status of the 
read-only section (first to writable. then back to read-only). 

The image debug type has the following meaning: 

0: No debugging data are present 

I : Low-level debugging data are present. 

2: Source level (ASDJ debugging data are present 

3: I and 2 are present together. 

All other values of image debug type are reserved to ARM Ltd. 

Debug Initialisation Instruction (if used) is expected to be a SWI instruction 

which alerts a resident debugger that a debuggable image is commencing 
execution Of course there are other possibilities within the AIF framework The 
linker sets this field to NOP by default. but it can be customised by providing your 
own template for the AIF header in an area called AIF _HDR in the first object file in 
the input I ist to Link. 

The Address mode word (at offset Ox30) is 0, or contains in its least significant 
byte (using the byte order appropriate to the target): 

• the value 26, indicating the image was linked for a 26-bit ARM mode. and may 
not execute correctly in a 32-bit mode 

• the value 32, indicating the image was linked for a 32-bit ARM mode. and may 
not execute correctly in a 26-bit mode 

A value of 0 indtcates an old-style 26-bit Air header 

227 



Zero-Initialisation Code 

If the Address mode word has bit 8 set ((address_mode & Ox I 00) != 0). then the 
image was linked with separate code and data bases (usually the data is placed 
immediately after the code) . In this case. the word at offset Ox34 contains the base 
address of the image's data. 

Zero-Initialisation Code 

228 

The Zero- initialisation code is as follows· 

Zero! nit 
NOP or <Debug Init I ns t ruction> 
SUB ip , lr , pc base+l2+[PSRJ-(Zeroinit+l2+PSR]) 

= base-Zeroinit 
ADD ip, pc, ip base-Zeroinit+Zeroinit+l6 

= base+l6 
LDMIB ip , {rO,rl,r2,r3} various sizes 
SUB ip, ip, #16 image base 
LOR r2, [ip, #48) flags 
TST r2, #256 separate data area? 
LDRNE ip, [ip, #52] Yes, so get it ... 
ADDEQ ip , ip , rO No, so add + RO size 
ADD ip, ip, rl + RW size = base of 0-init area 
MOV rO, #0 
CMPS r3, #0 

00 MOVLE pc, lr nothing left to do 
STR rO , [ ip ] , #4 
SUBS r3, r3, #4 
B \BOO 

Self-Move and Self-Relocation Code 

This code is added to the end of an AIF image by the linker. immediately before the 
list of relocations (which is terminated by - I) Note that the code is entered via a 
BL from the second word of the AIF header so. on entry, r 14 points to 
AIFHeader + 8. In 26-bit ARM modes. rl 4 also contains a copy of the PSR flags. 

On entry, the relocation code ca lcu lates the address of the AIF header (in a 
CPU-independent fashion) and decides whether the image needs to be moved If 
the image doesn't need to be moved, the code branches to R(elocateOnly). 



RelocCode 
NOP 

SUB ip, lr, pc 

ADD ip, pc, ip 
SUB ip, ip, #12 
LOR rO, RelocCode 
STR rO, [ip, #4] 
LOR r9, [ip, #&2C) 
CKPS r9, #0 
BEQ RelocateOnly 

Code file formats 

required by ensure_byte_order() 
and used below. 
base+8+[PSR)-(RelocCode+l2+[ PSR]) 
= base-4-RelocCode 
base-4-RelocCode+RelocCode+l6 = base+12 
-> header address 
NOP 
won't be called again on image re-entry 

; min free space requirement 
; 0 => no move, just relocate 

If the image needs to be moved up memory, then the top of memory has to be 
found. Here. a system service (SWI Ox I 0) is cal led to return the address of the top 
of memory in r I . This is. of course. system speci fic and should be replaced by 
whatever code sequence is appropriate to the environment 

LOR 
ADD 
SWI 

rO, [ip, #&20] 
r9, r9, rO 
#&10 

image zero-init size 
; space to leave = min free + zero init 
; return top of memory in r1. 

The following code calculates the length of the image inclusive of its relocation 
data. and decides whether a move up store is possible 

ADR r2, End -> End 
01 LOR rO, [r2], #4 load relocation offset, increment r2 

CMNS rO, #1 terminator? 
BNE \B01 No, so loop again 
SUB r3, r1, r9 MemLimit - free Space 
SUBS rO, r3, r2 amount to move by 
BLE RelocateOnly not enough space to move ... 
BIC rO, rO, #15 a multiple of 16 0 0 0 

ADD r3, r2, rO End + shift 
ADR r8, \F02 intermediate limit for copy-up 

Finally, the image copies itself four words at a time. being careful about the 
direction of copy, and jumping to the copied copy code as soon as it has copied 
itself. 

02 LDMDB r21, {r4-r7} 
STMDB r31, {r4-r7} 
CMPS r2, r8 copied the copy loop? 
BGT \B02 not yet 
ADD r4, pc, rO 
MOV pc, r4 jump to copied copy code 

03 LDMDB r21, {r4-r7} 
STMDB r3 1, {r4-r7} 
CMPS r2, ip copied everything? 
BGT \B03 not yet 
ADD ip, ip, rO load address of code 
ADD lr, lr, rO relocated return address 

229 



Zero-Initialisation Code 

230 

Whether the image has moved 1tself or not. control eventually amves here. where 
the list of locations to be relocated is processed. Each location is word sized and is 
relocated by the difference between the address the image was loaded at (the 
address of the AIF header) and the address the image was linked at (stored at offset 
Ox28 in the AIF header) 

RelocateOnly 
LOR rl, 
SUBS rl, 
MOVEQ pc, 
STR ip, 
ADR r2, 

04 LOR rO, 
CMNS rO, 
MOVEQ pc, 
LOR r3, 
ADD r3, 
STR r3, 
B %604 

End 

(ip, #&28] 
ip , rl 
lr 
(ip, #&28) 
End 
(r2 I, #4 
#1 
lr 
(ip, rO) 
r3, r l 
[ip, rO) 

header + Ox28 • code base set by Link 
relocation offset 
relocate by 0 so nothing to do 
new image base ~ actual load address 
start of reloc list 
offset of word to relocate 
terminator? 
yes •> return 
word to relocate 
relocate it 
store it back 
and do the next one 
The list of offsets of locations to 
relocate starts here, terminated by -1 

You can customise the self-relocation and self-moving code generated by Link by 
providing your version of it in an area called AIF _RELOC in the flrst object file in 
Link's input list 



ASD 

Code file formats 

Acknowledgement: This design is based on work originally done for Acorn 
Computers by Topexpress Ltd. 

This section specifies the format of symbolic debugging data generated by ARM 

compilers. which is used by the Desktop debugging tool (DDT) to support high 
level language oriented. interactive debugging 

For each separate compilation unit (called a section) the compiler produces 

debugging data. and a special area in the object code (see section AOF on 
page 20 I for an explanation of ARM Object Format. including areas and their 
attributes) Debugging data are position independent, containing only relative 
references to other debugging data within the same section. and relocatable 
references to other compi ler-generated areas. 

Debugging data areas are combined by the linker into a single contiguous section 
of a program image. For a description of the linker's principal output format see 

section AIF on page 222. 

Since the debugging section is position-independent. the debugger can move it to 
a safe location before the image starts executing If the image is not executed 
under debugger control. the debugging data are simply overwritten 

The format of debugging data allows for a variable amount of detail. This 
potentially allows the user to trade off among memory used. disc space used, 
execution Lime. and debugging detail. 

Assembly-language level debugging is also supported, though in this case the 
debugging tables are generated by the linker. If required, the assembler can 

generate debugging table entries relating code addresses to source lines. 
Low-level debugging tables appear in an extra section item. as if generated by an 
independent compilation (see Debugging Data Items in Detail on page 234) Low-level 
and high-level debugging are orthogonal facilities. though DDT allows the user to 
move smoothly between levels if both sets of debugging data are present in an 
image. 

Order of Debugging Data 

A debug data area consists of a series of items. The arrangement of these items 
mimics the structure of the high-level language program itself. 

For each debug area. the first item is a section item. giving global information 
about the compilation. including a code identifying the language, and nags 
indicating the amount of detail included in the debugging tables. 

231 



Endian-ness and the Encoding of Debugging Data 

Each datum, funclion. procedure etc .. definition in the source program has a 
corresponding debug data item: these items appear in an order corresponding to 
the order of definitions in the source. This means that any nested structure in the 
source program is preserved in the debugging data. and the debugger can use this 
structure to make deductions about the scope of various source-level objects. Of 
course. for procedure definitions. two debug items are needed a procedure item 
to mark the definition itself. and an endproc item to mark the end of the 
procedure's body and the end of any nested definitions. If procedure definitions 
are nested then the procedure-endproc brackets are nested too. Variable and type 
definitions made at the outermost level. of course. appear outside of al l 
procedure/endproc items. 

Information about the relationship between the executable code and source files is 
collected together and appears as a ftlelnfo item. which is always the final item in 
a debugging area. Because of the C language's #include faci lity. the executable 
code produced from an outer-level source file may be separated into disjoint 
pieces interspersed with that produced from the included files Therefore, source 
files are considered to be collections of 'fragments'. each corresponding to a 
contiguous area of executable code. and the fileinfo item is a list with an entry for 
each file, each in turn containing a list with an entry for each fragment The fileinfo 
field in the section item addresses the fileinfo item itself. In each procedure item 
there is a 'fi leentry' field. which refers to the file-list entry for the source fi le 
containing the procedure's start. there is a separate one in the endproc item 
because it may possibly not be in the same source file. 

Endian-ness and the Encoding of Debugging Data 

232 

The ARM can be configured to use either a little-endian memory system (the least 
significant byte of each 4-byte word has the lowest address). or a big-endian 
memory system (the most significant byte of each 4-byte word has the lowest 
address). 

In general. the code to be generated varies according to the endian-ness (or 
byte-sex) of the target The linker has insufficient information to change an object 
file's byte sex. so object files are encoded using the byte order of the intended 
target, independently ofthe byte order of the host system on which the compiler or 
assembler runs. The linker accepts inputs having either byte order. but rejects 
mixed sex inputs. and generates its output using the same byte order. 

This means that producers of debugging tables must be prepared to generate them 
in either byte order. as required . In turn . this requires definitions to be very clear 
about when a 4-byte word is being used (wh ich wi ll require reversal on output or 
input when cross-sex compi ling or debugging). and when a sequence of bytes is 
bemg used (which requires no special treatment provided it is written and read as 
a sequence of bytes in address order) 



Code file formats 

Representation of Data Types 

Several of the debu€ging data items (e.€. procedure and variable) have a type word 
field to identify their data type . Th is field contains. in the most significant 2tl bits, 

a code to idenliry a base type. and in the least signi ficant 8 bits. a pointer count: 

0 to denote the type itself 
I to denote a pointer to the type 
2 to denote a pointer to a pointer to . 
etc 

For simple types the code is a positive integer as follows. (all codes are decimal) 

void 0 
signed integers 

single byte 10 
hal f-word II 
word 12 

unsigned integers 
single byte 20 
half-word 21 
word 22 

floating point 
float 30 
double 31 
long double 32 

complex 
single complex 4 1 
double complex 42 

functions 
function 100 

For compound types (arrays. structures. etc 1 there is a special kind of debug data 
item (array. struct. etc 1 to give details such as array bounds and field types The 
type code for compound types is ne€ative. the ne€ation of the 1 byte) offset of the 
debug item from the start of the debugging area 

If a type has been given a name in a source program. it wi ll €ive rise to a type 

debug€ing data item which conta ins the name and a type word as defined above If 
necessary, there wil l also be a debugging data item. such as an array or struct 

item, to define the type itself. In that case the type word will refer to this item 

Set types in Pascal are not treated in detail the only information recorded for them 
is the total size occupied by the object in bytes Neither are Pascal hie variables 
supported by the debugger. since their behav1our under debugger control is 
unlikely to be helpful to the user. 

233 



Representation of Source File Positions 

FORTRAN character types are supported by specia l kinds of debugging data 1tem. 
the format of which is specific to each FORTRAN compiler. 

Representation of Source File Positions 
Several of the debugging data items have a sourcepos field to iden tify a position 
in the source file. This field conta ins a line number and character position within 
the line packed into a single word. The most significant 10 bits encode the 
character offset (0-based) from the start of the line and the least-significant 22 b1ts 
give the line number. 

Debugging Data Items in Detail 

234 

The Code and Length Field 

The first word of each debugging data item contains the byte length of the item 
(encoded in the most signi ficant 16 bits). and a code identifying the kind of item 
(in the least significant 16 bits). The defined codes are 

section 

2 procedure/function definition 

3 endproc 

4 variable 

5 type 

6 struct 

7 array 

8 subrange 

9 set 

10 fileinfo 

II contiguous enumeration 

12 discontiguous enumeration 

13 procedure/function declaration 
14 begin naming scope 

15 end naming scope 

The meaning of the second and subsequent words of each item is defined below. 

If a debugger encounters a code it does not recognise. it should use the length 
field to skip the item entirely This discipline allows the debugg1ng tables to be 
extended without invalidating existing debuggers 



Code file formats 

Text Names in Items 

Where items include a string field. the string is packed into successive bytes 
beginning with a length byte. and padded at the end to a word boundary w1th 0 
bytes. The length of a string is in the range 10 .255 1 bytes 

Offsets in File and Addresses in Memory 

Where an item contains a field giving an offset in the debugging data area (usually 
to address another item). this means a byte offset from the start of the debugging 

data for the whole section (in other words. from the start of the section item). 

When the same structure is used to map debugging data in memory an offset field 
may be used to hold a pointer to another debug item in memory, rather than the 
offset of it in the debug area. 

Section Items 

A section item is the first item of each section or the debugging data. After its code 

and length word it contains the fields l isted below. First there are 4 flag bytes 

lang 

flags 

unused 

asdversion 

a byte identifying the source language 

a byte describing the level or detail 

a byte version number of the debugging data 

The following language byte codes are defined: 

LANG_NONE 0 Low-level debugging data only 

LANG_C I C source level debugging data 

LANG_PASCAL 2 Pascal source level debugging data 

LANG FORTRAN 3 FORTRAN 77 source level debugging data 

LANG_ASM 4 ARM Assembler line number data 

All other codes are reserved to ARM. 

The flags byte uses the following mask values: 

1 debugging data contains line-number information 

2 debugging data contains information about top-level variables 

3 both or the above 

The asdversion byte should be set to 3 the version of this definition 

235 



Debugging Data Items in Detail 

236 

ww:••••ew •••••• -
The nag bytes are followed by the following word-sized fields: 

codes tart 

data start 

codesize 

datasize 

fileinfo 

debugsize 

name or nsyms 

address of fi rst instruction in this section 

address of start of static data for this section 
byte size of executable code in this section 
byte size of the static data in this section 

offset in the debugging area of the fileinfo item for this 
section (0 if no fileinfo item present) 

total byte length of debug data for this section 
string or integer 
(the first byte of string is the string's length. followed by 
a non-NULL-terminated string of characters with NULL 
padding up to the next word boundary) 

codestart and datastart are addresses, relocated by the linker The fileinfo field. 
nominally an offset, is also used as a pointer when this structure is mapped 1n 
memory The fileinfo field is 0 if no source file information is present. 

The name field contains the program name for Pascal and FORTRAN programs For 
C programs it contains a name derived by the compiler from the root file name 
(notionally a module name). In each case the name is s1mllar to a variable name in 
the source language For a low-level debugging section (language 0). the field is 
treated as a 4 byte integer giving the number of symbols following 

For linker-generated low-level debugging data. the fields have the following values 

language 

codestart 

datastart 

codesize 

datasize 

file info 

nsyms 

debugsize 

0 

I mageSS ROSS Base 

lmageSSRWSSBase 

lmageSSROSSLimit- lmageSSROSSBase 
lmageSSRWSSLimi t- lmageSSRWSSBase 

0 

number of symbols in the following debugging data 
total size of the low-level debugging data including the 
size of this section item 

For linker-generated low-level debugging data. the sect1on item is followed by 
nsyms symbol items. each consisti ng of 2 words: 

sym 

value 

flags+ byte offset in string table of symbol name 
the value of the symbol 



Code file formats 

sym encodes an index into the string table in the 24 least significant bits. and the 
following flag va lues in the 8 most significant bits· 

ASD_GLOBSYM 0 if the symbol is absolute 

ASD_ABSSYM OxOIOOOOOOL if the symbol is global 

ASD TEXTSYM Ox02000000L if the symbol names code 

ASD_DATASYM Ox04000000L if the symbol names data 

ASD_ZINITSYM Ox06000000L if the symbol names 0-initialised data 

Note that the linker reduces all symbol values to absolute values. so that the flag 
values record the history. or origin. of the symbol in the image. 

Immediately following the symbol table is the string table. in standard AOF format 
It consists of 

• a length word 

• the strings themselves. each terminated by a NUL (0) 

The length word includes the size of the length word. so no offset into the string 
table is less than 4 The end of the string table is padded with NULs to the next 
word boundary (so the length is a multiple of 41 

Procedure Items 

A procedure item appears once for each procedure or function definition in the 
source program Any definitions within the procedure have their related debugging 
data items between the procedure item and its matching endproc item. After its 
code and length field, a procedure item conta ins the following word-sized fields 

type 

args 

sourcepos 

startaddr 

entry 

endproc 

the return type if this is a function. else 0 
(see Representali011 of Data Types on page 233) 

the number of arguments 

the source position of the procedure's start 
(see Representation of Data Types on page 233 l 

address of l st instruction of procedure prologue 

address of I st instruction of the procedure body 
(see note below) 

offset of the related endproc item (in file) or pointer to 
related endproc item (in memory) 

237 



Debugging Data Items in Detail 

238 

type 

fileentry 

name 

the return type if this is a function. else 0 
(see Representation of Data Types on page 233) 

offset of the Hie list entry for the source file (in file) or a 
pointer to i1 (i n memory) 

string 
(the first byte o f string is the string's length. followed by a 
non-NULL termtnated string of characters with NULL 
padding up to the next word boundary) 

The entry field addresses the fi rst instructi on following the procedure prologue 
That is. the first address at which a high-level breakpoint could sensibly be set The 
startaddr field addresses the start of the prologue That is. the instruction at which 
control arrives when the procedure is called. 

Label Items 

A label in a source program is represented by a special procedure item with no 
matchtng endproc. (the endproc field is 0 to denote this). Pascal and FORTRAN 
numerica l labels are converted by their respective compilers into strings prefixed 
by $n. 

For FORTRAN77. multiple entry points to the same procedure each give rise to a 
separate procedure 1tem. all of wh1ch have the same endproc offset referring to the 
unique. matching endproc item 

Endproc Items 

An endproc item marks the end of the debugging data items belonging to a 
particular procedure It also contains information relating to the procedure's 
return After its code and length field, an endproc item contains the following 
word-sized fields: 

sourcepos 

endpoint 

fi leentry 

nreturns 

retaddrs 

position in the source file of the procedures end 
1 see Represe11tation of Source File Positions on page 2341 

address of the code byte after the compiled code for the 
procedure 

offset of the fi le- list entry for the procedure's end 1 in fi I e) 
or a pointer to it (in memory) 

number of procedure return points (may be 0) 
array of addresses of procedure return code 



Code file formats 

If the procedure body is an infinite loop. there will be no return point. so nreturns 
will be 0. Otherwise each member of retaddrs should point to a suitable locatiOn at 
which a breakpoint may be set 'at the exit of the procedure·. When execution 
reaches this point. the current stack frame shou ld still be for this procedure. 

Variable Items 

A variable item contains debugging data relating to a source program variable. or a 
formal argument to a procedure (the first variable items in a procedure always 
describe its arguments). After its code and length field. a variable item contains 

the following word-sized fields: 

type 

sourcepos 

storageclass 

location 

name 

type of this variable 
(see Representation of Data Types on page 233) 

the source posilion of lhe variable 
(see Representation of Source File Positions on page 2'34) 

a word encoding the variable's storage class 

see explanation below 

string 
(the first byte of string is the string's length. followed by 
a non-NULL-terminated string of characters with NULL 
padding up to the next word boundary) 

The following codes define the storage classes of variables 

I external variables (or FORTRAN common) 

2 static variables private to one section 

3 automatic variables 

4 register variables 

5 Pascal ·var arguments 

6 FORTRAN arguments 

7 FORTRAN character arguments 

The meaning of the localion field of a variable item depends on the storage class; 
it contains: 

• an absolute address for static and externa l variables (relocated by the linker) 

• a stack offset (an offset from the frame pointer) for automatic and var type 
arguments 

• an offset into the argument list for FORTRAN arguments 

• a register number for register variables. (the 8 floating point registers are 

numbered 16 23) 

239 



Debuggmg Data Items in Detail 

240 

- --- ---· ·---------
No account is taken of variables which ought to be addressed by +Ve offsets from 
the stack-pointer rather than -ve offsets from the frame-pointer 

The sourcepos field is used by the debugger to distinguish between different 
definitions having the same name (e g. identically named variables in disjoint 
source level naming scopes such as nested blocks in C) 

Type Items 

A type item is used to describe a named type in the source language (e.g a typedef 
in Cl After its code and length field, a type item contains two word-sized fields: 

type 

name 

Struct Items 

a type word (see Representation of Data Types on page 2331 
string 
[the first byte of string is the string's length, followed by 
a non-NULI.-terminated string of cha racters with NULL 
padding up to the next word boundary) 

A struct item is used to describe a structured data type ( e g. a struct in Cor a record 
in Pascal) After its code and length field. a struct item contains the following 
word-s1zed fields 

fields 

size 

fieldtable ... 

the number of fields in the structure 
total byte size of the structure 

an array of fields struct field items 

Each struct field item has the following word-sized fields 

offset 

type 

name 

byte offset of this field within the structure 
a type word (see Representation of Data Types on page 2'33) 
string 
(the first byte of string is the string's length followed by 
a non-NULL-terminated string of characters with NULL 
padding up to the next word boundary) 

Union types are described by struct items in which all fields have 0 offsets. 

C bit fields are not treated in full detail a bit field is simply represented by an 
integer starting on the appropriate word boundary (so that the word contains the 
whole field) . 



Code file formats 

Array Items 

An array item is used to describe a one-dimensiona l array Multi-dimensional 
arrays are described as ·arrays of arrays' Which dimension comes first is 
dependent on Lhe source language (which is different for C and FORTRAN) After 

its code and length field. an array item contains the following word-sized fields. 

size 

flags 

total byte size of the array 

see below 

base type 

lowerbound 

upperbound 

a type word (see Repn'SI'nlation of Data Types on page 2'Bl 

constant value or location of variable 

constant value or location of variable 

If the size field is zero. debugger operations atfecting the whole array, rather than 

individual elements of it. are forbidden . 

The followin~ mask values are defined for the flags field 

ARRAY UNDI:.I LBOUND I lower bound is undefined 

ARRAY _CONST_LBOUND 2 lower bound is a constant 

ARRAY _UNDEF_ UBOUND 4 upper bound is undefined 

ARRAY_CONST_UBOUND 8 upper bound is a constant 

ARRAY _VAr~_LBOUND 16 lower bound is a varidble 

ARI~AY VAR_UBOUND '32 upper bound is a variable 

A bound is described as undefined when no information about it is avai lable. 

A bound is described as constant when its value is known at compile time In this 

case the corresponding bound field gives its value 

If a bound is described as variable. the offset field identifies a variable debug item 

describing the location containing the bound . In a debug area in an ob1ect file. the 

offset field contains the offset from the start of the debug area to the variable 1tem. 

in memory it contains a pointer to the corresponding variable item Note that a 

variable item may be used to describe a location known to the compiler. which 
need not correspond Loa source language variable. 

241 



Debugging Data Items in Detail 

242 

: ••• w•••••••elri .. a•••--• •••·•• c• *** **** ;; 

Subrange Items 

A subrangc item is used to describe a subrange typed in Pasca l. It also serves to 
describe enumerated types in C. and scalars in Pascal (in which case the base type 
is understood to be an unsigned mteger of appropriate SIZe) After its code and 
length field, a subrange item contains the following word sized fields 

sizeandtype 

lb 

hb 

see below 

low bound of subrange 

h1gh bound of subrange 

The sizeandtype fie ld encodes the byte size of container for the subrange ( I, 2 or 4 l 
in its least significant 16 bits and a simple type code (see Represe~tlalioll of Data Typt's 
on page 23 3) in its most significant 16 bits. The type code refers to the base type of 
the subrange. 

For example. a subrange 256. 51 I o f unsigned short might be held in I byte 

Set Items 

A set item is used Lo describe a Pascal set type. Currently. the description is only 
partial After its code and length field. a set item consists of a single word 

size byte size of the object 

Enumeration Items 

An enumeration item describes a Pascal or C enumerated type. After its code and 
length word. the description of a ·contiguous enumeration' contains the following 
word-sized fields 

type 

count 

base 

nametable 

a type word describing the type of the container for the 
enumeration (see Representation of Data Types on page 233) 
the ca rdinality of the enumeration 

the first (lowest) value (may be -vel 
a character array containing 'count' names 
(see Text Nami'S in items on page 235) 
(the first byte of name is the name's length, fo llowed by a 
non-NULL-terminated string of characters with NULL 
padding up to the next word boundary) 



Code file formats 

The description of a discontiguous enumeration (such as the C enumeration enum 

bits (bitO I. bit 1 2, bit2=4. bit3=8. bit4= 161} contains the following fields after its 

code and length word: 

type 

count 

nametable 

as above 

as above 

a table of count (value . name) pairs 

Each nametable entry has the following format (which is variable in length) 

val 

name 

a word describing the enumerated value ( (12/4/8/16 1n the 

example) 

the name of the enumerated element (may be several 
words long) 
(the first byte of name is the name's length. followed by a 
non-NULL-terminated string of characters with NULL 

padding up to the next word boundary) 

Function Declaration Items 

After its code and length word. a function declaration item contains the following 

fields 

type 

argcount 

args 

a type word (see Representation of Data Types on page 233 1 
describing the return type of the function or procedure 

the number of arguments to the function 

a sequence of argcount argument description items 

Each argument description item contains the following: 

type 

name 

a type word (see Repn•senlalwn of Data Types on page 233) 

describing the type of the argument 

the name of the argument (may be several words) 
(the first byte of name is the name's length. followed by a 
non-NULL-terminated string of characters with NULL 
padding up to the next word boundary) 

An argument descriptor need not be named. in this case the length of the name is 

zero. and the name field is a single zero word . 

Begin and End Naming Scope Items 

These debug items are used to mark the begmning and end of a naming scope 
They must be properly nested in the debug area. 

243 



Debugging Data Items in Detail 

244 

In each case. after the code and length word there is one word-s1zcd field. 

codeadd ress 

Fileinfo Items 

address of the start/end of scope (determined by the code 
word) 

A fi lei nfo item appears once per section. after a II other debugging data i terns If the 
fileinfo item is too large for its length to be encoded in 16 bits. its length field must 
be written as 0 (since this is the last item in a section and the section header 
contains the length of the whole section. the length field is strictly redundant. 

L.:ach source file is described by a sequence of fragments Each fragment describes 
a contiguous region of the file. within which the addresses of compiled code 
increase monotonically with source file position. The order in which fragments 
appear in the sequence is not necessarily related to the source file positions to 
wh ich they refer. 

Note that for compilations which make no use of the #mclude faCility. the list of 
fragments may have only one entry. and all line-number informa tion can be 
contiguous. 

After its code and length word the fileinfo item is a sequence of file entry items 
with the following format 

len 

date 

fi lename 

fragment data 

length of this entry in bytes (including the length o f the 
following fragments) 

date and time when the file was last modified may be 0. 
indicating not ava ilable. or unused ) 
string (or"· if the name is not known) 
(the first byte of string is the stnng·s length. followed by 
a non-NULL-terminated string of characters with NULL 
padd ing up to the next word boundary) 

see below 

If present. the date field contams the number of seconds since the beginning of 
1970 (the Unix date origin). 

Following the final file entry item. is a single 0 word marking the end of the 
sequence 

The fragment data is a word giving the number of follow ing fragments fol lowed by 
a sequence o f fragment items: 

n 

fragments ... 

number of fragments following 

n fragment items 



Code file formats 

Each fragment item consists of 5 words, followed by a sequence of byte pairs and 
half word pairs. formatted as follows 

size 

fi rstl i ne 

last line 

codestart 

codesize 

line1nfo .. 

length of th is fragment in bytes (including length o f 
following lineinfo items) 

l inenumber 

linenumber 

pointer to the start of the fragment's executable code 

byte size of the code 1n the fragment 

a variable number of bytes matching line numbers to 
code addresses 

Each l ineinfo item describes a source statemen t and consists o f a pair of 
(unsigned) bytes. possibly followed by a two or three (unsigned) ha lf words. (each 
ha lf word has the byte ordering appropriate to the target memory system's 

endian-ness or byte sex). 

The short form (pa ir of bytes) lineinfo item is as follows: 

codeine 

lineinc 

# bytes of code generated by this statement 

#source space occupied by this statement 

lineinc describes how to ca lcu late the source position (line, column) of the next 
statement from the source position of this one 

If lineinc is in the range 0 sand< 64, the new position is (line+lineinc. l ). 
If l ineinc 0!: 64. the new position is (line, column+lineinc -64) 

The number of bytes of code generated for a statement may be zero. provided the 
line increment IS non-zero (such an item may describe a block end or block start. 
for example) . 

It is not possible to describe a statement which generates no code and no line 
number increment. as that encoding is used as an escape to the long form line1nfo 

items described below. 

If codeine is grea ter than 255, or lincinc is required to describe a line number 
change greater than 63 or a column change greater than 19 1, then both bytes are 
written to describe 0 increments, and the rea l va lues are given in the following two 
or three (unsigned) half words. (Note I hat I here are two ways to describe 0 
increments 0 lines and 0 columns wh ich serves to discriminate between the two 

245 



Debuggmg Data Items in Detail 

246 

2•••••••• • ••••••••••••••••••••we••e••• e 

half word and three half word forms). If the starting column for the next statement 
is I. the two half word form is used. which in effect is a triple of half words as 
fo llows· 

zero 

lineinc 

codeine 

2 zero bytes 

#source lines occup1ed by this statement 
#bytes of code generated by this statement 

Note that the order of the line1nc and codemc half words IS the reverse of the 
corresponding bytes 

If the sta rting column for the next statement is not I. the three halt word form is 
used. which in effect is a quadruple of half words. as follows 

lineinc 

codeine 

newcol 

codeine= 0. lineinc = 64 

#source lines occupied by this statement 
# bytes of code generated by this statement 
starting column for the next statement 

Note as above that the order of the I i nei nc and codei nc ha If words is the reverse o f 
the corresponding bytes Note also that the column item here is the absolute 
column number for the next statement. and not an increment as in the two byte 
form 

(This encod ing of linc info items is an incompatible change from the previous 
format (version 2) in that format. lineinc in a two byte lincinfo item always 
describes a line increment. and accordingly, there is no four half word form. 
Programs interpreting asd tabl es should interpretlineinfo items differently 
according to the table format in the section item l 



Appendix F: ARM procedure call standard 

This Appendix relates to the implementation of compiler code-generators and 
language run-t ime library kernels for the Advanced RISC Machine (ARM) but is 

also a usefu l reference when interworking assembly language with high level 

language code. 

The reader should be familiar with the ARM's instruction set. floating-point 
instruction set and assembler syntax before attempting to use thi s information to 
implement a code-generato r. In order to write a run-time kernel for a language 
implementation. additiona l information specific to the relevant ARM operating 
system will be needed (some information is given in the sections describing the 
standard register bindings for this procedure-call standard) 

The main topics covered in this Appendix are the procedure call and stack 
disciplines These disciplines are observed by Acorn's C language implementation 
for the ARM and. eventually, wi II be observed by other high level language 
compilers too. Because Cis the first -choice implementation language for RISC OS 
applications. the utility of a new language implementation for the ARM will be 
related to its compatibility with Acorn 's implementation o f C. 

At the end of this document are several examples of the usage of th is standard. 
together with suggestions for generating eflective code for the ARM 

The purpose of APCS 
The ARM Procedure Call Standard (APCS) is a set of ru les which regulate and 
facil itate ca lls between separately compiled or assembled program fragments 

The APCS defines: 

• constrain ts on the use o f registers 

• stack conven ti ons 

• the format of a stack-based data structure used by stack tracing programs to 
reconstruct the sequence of outstanding calls (i.e nested funct1on calls 

awaiting completion) 

• the pass1ng of machine- level arguments. and the return of machine-level 
results at externa lly visible function/procedure calls 

247 



The purpose of APCS 

········--- --·· 
• support for the ARM shared library mechanism. a standard way for shared 

(reentrant) code to address the static data of its clients. 

Since the ARM CPU is used in a wide variety o f systems. the APCS is not a single 
standard. but a consistent family of standards See APCS l'ananls on page 257 for 
details of the variants in the family lmplementors of run lime sy-;tcms. operating 
systems. embedded control monitors. etc. must choose Lhe varianl( s) most 
approprir~te to their requirements 

Naturally. there can be no binary compatibility between program fragments wh1ch 
conform to different members of the APCS family Those concerned with long-term 
binary compatibi lity must choose their options carefu lly. 

Note: ·function· is used to mean function. procedure or subroutine 

Design criteria 

248 

Throughout its history. the APCS has compromised between fastest. smal lest and 
easiest to use 

The criteria considered to be important are: 

• Function call should be fast and it should be easy for compilers to optimise 
function entry sequences 

• The function call sequence should be as compact <Js possible 
• Extensible stacks and multiple stacks should be accommodated 
• The standard should encourage the production of reentrant code. w1th 

writable data separated from code. 

• The standard should be simple enough to be used by assembly language 
programmers. and should support simple approaches to link editing. 
debugging and run-time error diagnosis 

Overall. compact code and a cler1r definition have been ranked most highly, with 
simplicity and ease of use ahead of performance in matters of fine detail where the 
impact on performance is small 



ARM procedure call standard 

The ARM Procedure Call Standard 

This section defines the ARM Procedure Cal l Standard. 

A program fragment which conforms to the APCS while making a ca ll to an external 

function (one which is visible between compi ldlion units) is said to be co11/ormi~rg !\ 

program which conforms to the APCS at all instants of execution is said to be 

·strictly conforming' or to 'conform strictly 

'lote In general. compiled code is expected to be strictly conforming, hand-wntten 

code merely conforming 

Whether or not (and when) program fragments for a particular ARM· based 

environment are required to conform strictly to the APCS is part of the definition of 

that environment 

In the fol lowing sections. clauses following ·sholl' <Jnd 'sha l l not' are obligc1 lions 

which must be met in order to contorm to the APCS. 

Register names 

The ARM has 15 visible general registers. a program counter regrster and X 

floating-point regrsters 

In non-user machine modes. some general registers are shadowed In all modes 

the availdbilrty of the floating-point instruction :;et depends on the processor 

model hardware and operating system 

249 



The ARM Procedure Call Standard 

250 

General registers 

Name Number APCS Role 

al 0 argument l I integer result I scratch register 
a2 l argument 2 I scratch register 
a3 2 argument 3 I scratch register 
a4 3 argument 4 I scratch register 

vi 4 register variable 
v2 5 register variable 
v3 6 reg1ster vanable 
v4 7 register variable 
v5 8 register variable 

sblv6 9 static base I register variable 
sllv7 10 stack limit I stack chunk handle I reg varic~b le 
fp II frame pointer 
ip 12 scratch register I new-sb in inter-link-unit ca lls 
sp 13 lower end of current stack frame 
I r 14 link address I scratch register 
pc 15 program counter 

The 16 integer registers are divided into 3 sets 

• argument registers which can also be used as scratch registers o r c1s 
cal ler saved register vari<Jbles. 

• callee·saved reg1sters. conventionally used as register variables. 
• registers which have a dedicated role. at least some of the time. in at least one 

variant of APCS-3 (see APCS l'artcwls on page 257) 

The 5 frame registers fp, ip. sp. lr and pc have ded ica ted roles in all variants of the 
APCS 

The ip register has a dedicated role only during function ca ll. at other times it may 
be used as a scratch register 

Note Conventionally, ip is US('d by compiler code generators as the/a local code 
genera tor temporary register 

There are dedicated roles for sb and sl in some variants of the APCS. in other 
vanants they may be used as cal lee-saved registers. 

The APCS permits lr to be used as a register variable when not in use during a 
function call. It further permits an ARM system specification to forbid such use in 
some. or all . non-user ARM processor modes 



ARM procedure call standard 

Floating point registers 

Each ARM floating-point (FPI register holds one FP value of single. double. 

extended or internal precision. A single precision ve~lue occupies I machine word. 

a double-precis ion value 2 words; an extended precision value occupies 3 words. 

as docs an internal precision value 

Name Number APCS Role 

to 0 FP argument I I FP result I FP scratch register 

f I FP argument 2 I FP scratch register 

f2 2 FP argument 3 I FP scratch register 

f3 3 FP argument 4 I FP scratch register 

f4 4 floating point register variable 

f'5 '5 floating point register variable 

f6 6 floa li ng point register variable 

f7 7 floating point register variable 

The floaUng-point (FP) reg1sters are d1vided into two sets. analogous to the 

subsets a I -a4 and v l-v'51v7 of the general registers· 

• registers f0-f3 need not be preserved by ca lled tunctions. fO is the FP resu lt 

reg1-.ter and f0-f3 may hold the first four FP arguments (see Data retnesentatimt 
and argument passing on page 25'5 and APCS 1•ariants on page 2'57) 

• registers f4-f7. the so called ·varinble' registers. preserved by cnllees. 

The Stack 

The stack is a singly-linked list of ·activation records'. linked through a ·stack 

backtri:lce data structure· (see below!. stored at the high-address end of each 

activation record. 

The stack shall be readable and writable by the executing program 

Each contiguous chunk of the stack '>hall be allocated to activation records in 

descending address order At all instdnts of execution. sp shall point to the lowe<>l 

used address of the most recently allocated activation record. 

There may be multiple stack chunks. and there are no constraints on the ordering 

of the'>e chunks in the address space 

Associated with sp is a possibly-implicit stack chunk limit. below which sp shall 

not be decremented (see APCS varrants on page 2'571 

At al l instants of execution, the memory between sp and the stack chunk limit shall 

contain nothing of value to the executing program it may be modified 

unpredictably by the execution environment. 

251 



The ARM Procedure Call Standard 

252 

= = = -w•••••••••w•w•••••••••••••ea 

The stack chunk limit is said to be implicit 1f chunk overnow is detected and 
handled by the execution environment. Otherwise it is expl icit 

If the stack chunk limit is imp I icit sl may be used as v7. an additional callee-saved 
variable register 

If the conditions of the remainder of this subsection hold at al l instants of 
execution. then the program conforms strictly to the APCS: otherwise. if they hold 
at and during external (inter-compilation unit-visible} function calls the program 
merely conforms to the APCS 

If the stack chunk li mit is expl icit. then : 

• sl shal l point at least 256 bytes above it 

• sl shall identify the current stack chunk in a system-defined manner 
• at all times. sl sha ll identify the same chunk as sp points into. 

Note: sl ~stack chunk limit+ 256 allows the most common lim1t checks to be made 
very cheaply during function entry 

This final requirement implies that on changing stack chunks. sl i'lnd sp musl be 
loaded simu ltaneously by means of an 

LDM ... , { ... , sl, s p}. 

In general. this means that return from a function executing on an extension 
chunk. to one executing on an earlier-a llocated chunk. should be via an 
intermediate function invocation specially fabricated when the stack was 
extended 

The values of sl, fp and sp shall be multi ples of 4 

The stack backtrace data structure 

The va lue 1n fp shall be zero or sha ll poin t to a list of stack backtrace data 
structures which partially describe the sequence of outstand ing function cal ls 

If this constraint holds when external functions are called. the program is 
conforming. if it holds at all Instants of execution. the program 1s strictly 
conform ing). 



ARM procedure call standard 

The stack backtrace data structure has the format shown below 

fp points to here: [Save code pointer 

return link value 

return sp value 

,, return lp value 

saved v6 value 

saved v5 value 

saved v4 value 

II 
saved v3 value 

saved v2 value 

saved v1 value 

Optional saved a4 value 

values 

II 
saved a3 value 

saved a2 value 

saved at value 

saved 17 value 

II 
saved 16 value 

saved 15 value 

saved 14 value 

[fp] 

[fp, #-4) 

[fp, #-8) 

[fp, #-12] 

three words 

three words 

I 
three words 

three words 

The above picture shows between four and twenty ·six words. with those words 

higher on the page being at higher addresses in memory. The values shown inside 

the large brackets are optional. and their presence need not imply the presence of 

any other The floating point values are stored in an internal format. and occupy 

three words each 

Function Invocations and backtrace structures 

If function invocation A ca lls function 1:3. then A is called a direct ancestor of the 

invocation of B. If invocation Alii ca ll s invocation A121 calls .. calls B. then each of 

the AI i 1 is an ancestor of Band invocation AI i I is more recent than invocation Alii 
if i > j. 

The return fp value sha ll be 0. or shal l be a pointer to a stack backt race data 

structure created by an ancestor oft he function invocation which created the 

backtrace structure pointed to by fp No more recent ancestor shall have created a 

backtrace structure 

Note: There may be any number of tail-called invocations between invocations 

which create backtrace structures. 

The return link value. return sp value and return fp value arc. respectively. the 

values to restore to pc. sp and fp at function exit 

253 



The ARM Procedure Call Standard 

254 

In the 32-bit PC variant of the APCS. the save code pointer shall point twelve 
bytes beyond the start of the sequence of instructions that created the stack 
backtrace data structu re. 

In the 26-bit PC variant of the APCS. the save code pointer. when cleared of PSR 
and mode bits. shall point twelve bytes beyond the start of the sequence of 
instructions that created the stack backtrace data structure. 

Control arrival 

At the instant when control arrives at the target function 
• pc contains the address ot an entry point to the target function 

(reentrant functions may have two entry points). 
• lr shall contain the value to restore to pc on exit from the function (the return 

link value - see The stack /)acktrace data structure on page 2521 
Note: In 26-bit variants oft he APCS lr contains the PC+ PSR value to restore 
to pc on exit from the function (see APCS 1•ariants on page 2'57) 

• sp shall poin t at or above the current stack chunk l imit: if the limit is explicit . it 
shall point at least 256 bytes above it (see Tlie Stack on page 2'51 1 

• fp shall contain 0 or shall point to the most recently crea ted stack backtracc 
structure (see T(l£' stack back trace data structure on page 2521 

• the space between sp and the stack chunk limit shal l be readable. writable 
memory which can be used by the ca lled funct ion as temporary workspace. 
and overwritten with any va lues before the function returns (see The Stack on 
page 251) 

• arguments sha ll have been marshalled as described below. 

If the target function is reentrant (see Tilt' Stack on page 2'51) then it has two entry 
points and control arrives: 

• at the 'intra-link-unit entry point' if the caller has been directly linked with the 
callee 

• at the 'inter-link-un it entry point' if the caller has been separately linked with a 
'stub· of the callee 

Note Sometimes the two entry poin ts are at the same address. usually they will be 
separated by a single instruction 

On Mrival at the intra- link-unit entry point, sb shall identify the static data of the 
link unit which contains both the ccJIIcr and the callee 

On arrival at the inter 1ink-un1t entry point, ip shall identify the static data oft he 
link unit conta ining the target function, or the target function shall make neithrr 
direct nor ind1rect use of static data 



ARM procedure call standard 

In practice this usually means the callee must be a leaf function mak1ng no direct 

use of static data 

The way in which sb 'identifies· the stat1c data of a link unit is not specified by the 

APCS. 

If the call is by tail continuation, 'calling function ' means that which would be 

returned to, were the tail continuation converted to a return). 

If code is not required to be reentrant or sharable then sb may be used as v6. an 

add itiona l variable register. 

Data representation and argument passing 

Argument passing in the APCS is defined m terms of an ordered list of 

machine-level values passed from the c<.~ller to the callee. and a 5ingle word or 

float ing point result passed back from the ca llee to the caller. Each value in the 

argument list shall be 

• a word-sized. integer value 

• a floating point value (of size I. 2 or 3 words) 

A callee may corrupt any of its arguments. howsoever passed. 

Note The APCS does not define the layout in store of records. arrays and so forth . 

used by ARM-targeted compilers for C. Pascal. Fortran 77 etc nor does it 

prescnbe the order in wh1ch language-level arguments are mapped into the1r 

machine-level representations. In other words. the mapping from language-level 

data types. and arguments to APCS words is defined by each language 

implementation. not by the APCS. Indeed, there is no formal reason why two 

ARM-targeted implementations of the same language should not use different 

mappings and. hence not support cross-calling. Obv1ously. it would be very 

unhelpful to stand by this formal position so implementors are encouraged to 

adopt not just the letter of the APCS but also the natural mappings of source 

language objects into argument words Guidance about this is given inC Languagr> 

calling COIII't'lllions on page 259. 

At the instant control arrives at the target function. the argument list shall be 

allocated as follows 

• In APCS variants which support the passing of floating-point arguments in 

floating-point registers (see APCS variants on page 257). the first four 

floating-point arguments (or fewer If the number of floating-potnt arguments 

is less than four) shall be in mach1nc registers f0-f3. 

• The first four remain ing argumen t words (or fewer if there arc fewer than four 

argument words remaining in I h<' argument list) shall be in mt~chine registers 

al a4 

255 



The ARM Procedure Call Standard 

256 

• The rema inder of the argument list (if anyl shal l be in memory, at the 
location addres~ed by sp and higher-addressed words thcreaher 

A floating-po int value not passed in a floating-point register is treated as I 2 or '3 
integer values. as appropriate to its precision 

Control return 

When the return link value for a function call is placed in the pc 
• sp. fp, sllv7. sb/v6. vl -v5. and f4-f7 shall contain the same va lues as they 

did at the instant of control arnval 

• if the function return s a simple value of size one word or less. then that va lue 
shall be in al 
Note. a language implementation is not obliged to cons1der all smgle-word 
values simple Sc•e C Language calling conventions on page 259) 

• if the function returns a s1mple floating point value then that value c,hall be in 
fO 

The values o f ip. lr. a2-a4 . fl-f3 and any stacked arguments are undefined 
The definit ion of control return means that this is a ·callee saves· stand,ud 

Note. In '32-bit ARM modes the caller's PSR flags are not preserved across a 
function call In 26-bit ARM modes. the caller's PSR flags are naturally reinstated 
when the retu rn link pointer is placer! in pc. Note that the N. z. C and v flags lro rn 
lr at the instant of entry must be reinstated. it is not sufficient merely to preserve 
the PSR across the call Consider. a function ProcA which tail continues to ProcB 
as fol lows: 

CMPS al, #0 
MOVLT a2, #255 
MOVGE a2, #0 
B ProcB 

If ProcB merely preserves the flags it sees on entry. rat her thc-m restoring those 
from lr. the wrong flags may be set when ProcB returns direc to ProcA's caller 
Sec APCS ''ariants on page 257). 



APCS variants 

ARM procedure call standard 

There are. cu rrently, 2 x 2 x 2 x 2 = I 6 APCS variants. derived from four independent 

choices 

The first cho1ce- 32-bit PC vs 26-bit PC - is fixed by your ARM CPU 

The second choice - implicit vs explicit stack-limit checking- is fixed by a 

combination of memory-management hardware and operating system software i[ 

your ARM-based environment supports implicit stack-limit checking then use it. 

otherwise use explicit stack-limit checking 

The third choice - of how to pass floating-po int arguments- supports efficient 

argument passing in both of the following circumstances 

• the floating point Instruction set IS emulated by software and floating point 

operations are dynamically very rare 

• the floating point instruction set is supported by hardware or floating point 

operations are dynamically common. 

In each case, code conforming to one variant is not compatible with code 

conforming to the other. 

Only the choice between reentrant and non-reentrant vanants is a true user level 

choice. Further. as the alternatives are compatible. each may be used where 

appropriate. 

32-bit PC vs 26-bit PC 

Older ARM CPUs and the 26-bit compatibility mode of newer CPUs usc a 24-bit 

word-address program counter, and pack the 4 status flags (NZCV) and 2 

interrupt-enable flags (IF) into the top 6 bits of r15 , and the 2 mode bits (mO. ml ) 

into the least-significant bits of r lS Thus rlS implements a combined PC+ PSR 

Newer ARM CPUs use a 32-bit program counter (in rl 5) and a separate PSR. 

In 26-bit CPU modes. the PC + PSR is written to rl4 by an ARM branch with link 

mstruction. so it is natural for the APCS to require the reinstatement of the caller's 

PSR at function exit (a ca ller's PSR is preserved across a function call) 

In 32-bit CPU modes this reinstatement would be unacceptably expensive in 

comparison to the gain from it. so the APCS does not require it and a caller's PSI~ 

flags may be corrupted by a function call. 

Implicit vs explicit stack-limit checking 

ARM-based systems vary widely in the sophistication of their memory 

management hardware Some can easily support multiple. auto-extending stacks, 

while others have no memory management hardware at all . 

257 



APCS variants --

258 

Safe programming practices demand that stack overflow be detected. 

The APCS defines conventions for software stack-limit checking sufficient to 
support efficiently most requirements (including those of multiple threads and 
chunked stacks). 

The majority of ARM-based systems are expected to require software stack-limit 
checking 

Floating~point arguments in floating~polnt regJsters 

HIStorically, many ARM-based systems have made no use of the floating point 
instruction set. or they used a software emu lation of it. 

On systems using a slow software emulation and making little use of 
floating-point. there is a small disadvantage to passing floating-point arguments 
in floating-point registers: all variadic functions (such as printf) become slower, 
while only function calls which actually take floating-point arguments become 
faster. 

If your system has no floating-point hardware and is expected to make little use of 
floating point. then it is better not to pass floating-point arguments in 
floating-point registers. Otherwise. the opposite choice is best 

Reentrant vs non~reentrant code 

The reentrant variant of the APCS supports the generation of code free of 
relocation directives (position independent and addressing all data (indirectly) via 
a static base register). Such code is ideal for placement in ROM and can be 
multiply threaded (shared between several client processes) 

In general, code to be placed in ROM or loaded into a shared library is expected to 
be reentrant. while applications are expected not to be. 

See also C Language calling conventions on page 259. 

APCS~2 compatibility 

APCS-2- the second definition of The ARM Procedure Call Standard- is described 
in the RISC OS 3 Programmer's Reference Manual. 

APCS-R (APCS-2 for Acorn's RISC OS) is the following variant of APCS 3 
e 26-bit PC 

• explicit stack-l imit checking 

• no passing of floating-p01nt arguments in floatmg-point registers 
• non-reentrant code 

with the Acorn-specific constraints on the use of sl noted in APCS-2 



ARM procedure calf standard 

APCS-U (APCS-2 for Acorn's RISCiX) is the following variant of APCS-3: 

e 26-bit PC 

• implicit stack-limit checking (with sl reserved to Acorn) 

• no passing of floating-point arguments in floating-point registers 

• non-reentrant code 

The (in APCS-2) obsolescent APCS-A has no equivalent in APCS-3 

C Language calling conventions 

Argument representation 

A floaling point value occupies I. 2, or 3 words. as appropriate to its type. Floating 

point va lues are encoded in IEEE 754 format, with the most sign ificant word of a 

double having the lowest address. 

The C compiler widens arguments of type float to type double to support 

inter-working between ANSI C and classic C. 

Char, short. pointer and other integral values occupy I word in an argument list. 

Char and short values are widened by the C compiler during argument marshalling. 

On the ARM, character<; are naturally unsigned In -pee mode. the C compiler treats 

a plain char as signed. widening its value appropriately when used as an argument. 

(classic C lacks the signed char type, so plain chars are considered signed: ANSI C 

has signed, unsigned and plain chars, the thi rd. conven tionally reflecting the 

natural signedness of characters). 

A structured value occupies an integral number of integer words (even if it contains 

only floating point values) 

Argument list marshalling 

Argument values are marshalled in the order written in the source program. 

If passing floating-point ( FP) arguments in FP registers, the first 4 FP arguments are 

loaded into FP registers. 

The first 4 of the remaining argument words are loaded into a l -a4, and the 

remainder are pushed on to the stack in reverse order (so that arguments later in 

the argument list have higher addresses than those earlier in the argument list) As 

a consequence. a FP value can be passed in integer registers. or even split between 

an integer register and the stack. 

259 



C Language calling conventions 

260 

This follows from the need to support variadic functions. (functions having a 
variable number of arguments. such as printf, scan f. etc.) Alternatives wh1ch avoid 
the passin~ of FP values in integer registers require that a caller know tha t a 
variadic function is being called and use different ar~ument marshalling 
conventions for variadic and non-variadic functions. 

Non-simple value return 

A non-simple type is any non noating-point type of size greater than I word 
(including structures containing only rloating-point fields). and certain I word 
structured types 

A structure is ca lled integer- like if its size is less than or equal to one word. and the 
offset of each of its addressable sub-fields is zero An integer-like structured result 
is considered simple and is returned 1n al. 

struct {int a : 8, b : 8, c : 8, d:8 ; } and 
union { int i ; char *p; } are both integer-like, 

struct {char a ; char b ; char c ; chard ; } is not 

A multi-word or non-integer-like result is returned to an address passed as an 
additional first argument to the function call. At the machine level: 

TT tt = f(x, ... ); 

is implemented as : 

TT tt; f(&tt, x, .. . ); 

Function entry 

A complete discussion of function entry is complex; a few of the most important 
issues and special cases arc discussed here. 

The important issues for function entry are: 

• establishing the static base (if the function is to be reentrant) 
• creating the stack backtrace data structure (if needed) 
• saving the floating point variable registers (if required) 
• checking for stack overflow (if the stack chunk limit is explicit). 

A function is cal led leaf if its body contains no function ca lls 

If function F calls function G immediately before an exit from F. the call- exit 
sequence can often be replaced instead by a return to G. After this transformation. 
the return toG is called a tail call or tail continuation. 



ARM procedure call standard 

There are many subt le difficulties with lail continuations. Suppose stacked 
arguments are unstacked by callers (almost mandatory for variadic ca l lees). then G 

cannot be directly tail cal led if G itself takes stacked arguments. This is because 

there is no return to F to unstack them Of course. if this call toG takes fewer 

arguments than the current call to F. then some of F"s stacked arguments can be 

replaced by G's stacked arguments. However. this can be hard to assert ifF is 

variadic. More stra ightforwardly. there may be no tail-call of G if the address of any 

o fF's arguments or local variables has 'leaked out' of F. This is because on return to 

G. the address may be invalidated by adjustment of the stack pointer. In general. 

this precludes tail ca lls if any local variable or argument has its address taken 

If a funct ion is a leaf function. or all function calls from its body are tail calls and. 

in both cases. the function uses nov-registers (v l-v7) then the function need 

create no stack backtrace structure (such funct ions will also be termed ·frameless· ). 

A leaf function wh ich makes no use of static data need not establish a static base. 

Function entry- establishing the static base 

The ARM shared library mechanism supports both the direct linking together of 

functions into a link unit. and the indirect linking of funct1ons with the stubs of 

other link units. Thus a reentrant function can be entered directly via a call from 

the same link unit (an intra-l ink-unit call), or indirectly via a function pointer or 

direct call from another link unit (an inter-link-unit ca ll) . 

The general scheme for establishing the c;tatic base in reentrant code is· 

intra MOV ip, sb intra link unit (LU) calls target here 

inter ; inter-LU calls target here, having loaded 
; ip via an inter-LU or fn-pointer veneer. 

<create backtrace structure , saving sb> 

MOV sb, ip ; establish sb for this LU 

<rest of entry> 

Code which is not reqUired to be reentrant need not use a static base. Code which 

is reentrant is marked as such. which allows the linker to create the inter-l.U 

veneers needed between independent reentrant l ink units. and between reentrant 

and non-reentrant code. 

Function entry - creating the stack backtrace structure 

For non-reentrant . non-variadic funct1ons the stack backtrace structure can be 

created in just 3 instructions. as follows· 

MOV ip, sp save current sp, ready to save as old sp 

STMFD sp!, {al-a4, vl-v5, sb , fp , ip, lr, pc} ; as needed 

SUB fp, ip , #4 

261 



C Language calling conventions 

262 

Each argument register a l-a4 need on ly be saved if a memory locatton is needed 
for the corresponding parameter (because it has been spi lled by the register 
allocator or because its address has been taken) 

Each of the registers v l-v7 need only be saved if it used by the called function The 
minimum set of registers to be saved is {fp, old-sp. lr. pc). 

A reentrant function must avoid using ip in its entry sequence: 

STMFD sp!, {sp, lr, pc} 
STMFD sp!, {al- a4, vl-vS, sb, fp} ; as needed 
ADD fp, sp, #8+4*l{al-a4 , vl-vS , sb, fp}l ; as used above 

sb (aka v6) must be saved by a reentrant function if it calls any function from 
another link unit (which would alter the value in sb) Thts means that. in general. 
sb must be saved on entry to all non-lear. reentrant functions. 

For variad ic functions the entry sequence is more complicated again Usually. it 
will be desired or required to make a contiguous argument list on the stack For 
non-reentrant variadic functions this can be done by 

MOV 
STMFD 
SFMFD 
STMFD 
SUB 

ip, sp 
sp!, {al-a4} 
fO, 4, (sp) 
sp!, {vl-v6, fp, 
fp, ip, #20 

save current sp, ready to save as old sp 
push arguments on stack 
push FP arguments on stack ... 
i p, lr , pc} ; as needed 
if all of al- a4 pushed ... 

It is nol necessary Lo push arguments corresponding to fixed parameters (though 
saving a l -a4 is little more expensive than just saving say a3-a4) 

If floating point arguments are not being passed in floating point regtsters then 
there is no need for the SF'MFD. SFM is not supported by the issue- I floating-point 
instruction set and must be simulated by 4 STFEs. See Function 01Lry- saving and 
restoring noating point registers below 

For reentran t variadic functions. the requirements are yet more compl icated and 
the sequence becomes less elegant. 

Function entry - saving and restoring floating point registers 

The issue-2 floating-point instruction set defines two new instructions. Store 
Floating Multiple (SFM) and Load Floating Multiple (LFM). for saving and 
restoring the floating-point registers as follows· 

• SFM and LFM are exact inverses; 

• a SF'M wi ll never trap, whatever the IEEE trap mode and the va lue transferred 
(unlike a STFE which can trap on storing a signalling NaN); 



ARM procedure call standard 

• SFM and LFM transfer 3-word internal representations of floating point 

values which vary from implementation to implementation. and which. in 

general. are unrelated to any of the supported IEEE representations: 

• any 1-4, cycl ica lly contiguous floating-poin t registers can be transferred by 

SFM/LFM (e.g. (f4-f7}, (f6, f7. fO}. {f7, fO}. {f1}). 

On function entry. a typical use of SI·M might be as follows: 

SFMFD f4, 4, (sp) l ; save f4-f7 on a Full Descending stack, 
; adjusting sp as values are pushed. 

On function exit, the corresponding sequence might be as follows· 

LFMEA f4, 4, (fp, #-N] ; restore f4-f7; fp - N points just 
; above the floating point save area. 

On function exit. sp-relative addressing may be unavai lable if the stack has been 

disconliguously extended. 

In issue-1 instruction set compatibility modes. SFM and LFM have to be simulated 

using sequences of STFI:.s and LDFI:.s 

Function entry· checking for stack limit violations 

In some environments. stack overflow detection will be implicit· an off stack 

reference will cause an address error or memory fault which may in turn. cause 

stack extension or program termination 

In other environments. the val idity of the stack must be checked on function entry 

and. perhaps at other times. There arc three cases: 

• the function uses 256 bytes or less of stack space 

• the function uses more than 256 bytes of stack space. but the amount is 

known and bounded at compile time 

• the function uses an amount of slack space unknown unti l run t ime. 

The third case does not arise inC save with stack-based implementations of the 

non-standard. BSD-Unix alloca() funct1on. The APCS does not support alloca() 1n a 

straightforward manner 

In Modula-2, Pasca l and other languages there may be arrays created on block 

entry or passed as open array arguments. the size of which is unknown until run 

time These are located in the callee's stack frame. so impact stack limit checking 

In practice. this adds little complication. as discussed in Stack limit cf1ecking

vari-sized frames on page 264. 

263 



C Language calling conventions 

264 

--- ----------------···---· WMC:W 

The check for stack limit violation is made at the end of the function entry 
sequence. by which time ip is ava ilable as a work register. If the check fails, a 
standard run-time support function ('_rt_stkovf_split_small' or 
·_rt_stkovf_split_big') is ca lled Each environment which supports explicit stack 
limit checking must provide these functions. which can do one of the following 
• terminate execution 

• extend the existing stack chunk, decrementing sl 

• allocate a new stack chunk, resetting sp and sl to point into it. and 
guaranteeing that an immediate repeat of the limit check will succeed. 

Stack limit checking- small , fixed frames 

For frames of 256 bytes or less the limit check is as follows: 

<create stack backtrace structure> 

CMPS sp, sl 
BLLT l __ rt_stkovf_split_smalll 
SUB sp, sp, #<size of locals> ; <= 256, by hypothesis 

Th is adds 2 instructions and. in genera l, only 2 cycles to function entry. 

After a cal l to _rt ,stkovf_split .small . fp and sp do not. necessarily. point into the 
same stack chunk. Arguments passed on the stack must be addressed by offsets 
from fp, not by offsets from sp 

Stack limit checking - large, fixed frames 

For frames bigger than 256 bytes. the limit check proceeds as follows. 
SUB ip, sp, # FrameSizeBound 
CMPS ip, sl 
BLLT l_rt_stkovf_spl it_big 
SUB sp, sp, #InitFrameSize 

; can be done in 1 instr 

; may take more than 1 instr 

r rameSizeBound can be any convenient constant at least as big as the largest 
frame the function will use. Note that functions containing nested blocks may use 
different amounts of stack at different instants during their execution 

lnitFrameSize is the initial stack frame size: subsequent ad justments within the 
called function require no limit check. 

After a call to _rt_stkovf_split_blg, fp and sp do not. necessarily. point into the 
same stack chunk. Arguments passed on the stack must be addressed by offsets 
from fp, not by offsets from sp. 

Stack limit checking • vari-sized frames 

(For Pascal-like languages) 



ARM procedure call standard 

The handling of frames the size of which is unknown at compile time. 1s identical to 

the handlmg of large frames. save that 

• the computation of the proposed new stack pointer is more complicated. 

invo lving arguments to the function itself 

• the addressing oft he vari-sized objects is more complicated than the 

addressing of fixed size objects need be 

• the Vi:lri-sized objects have to be initialised by the called function . 

The general scheme for stack layout in this case is as follows. 

Stack-based arguments 

Area for vari-sized obJects, 
passed by value or created on 
block entry 

fp points here 

sp pomts here 

Objects notionally passed by value t-lre actually passed by reference and copied by 

the callee. 

The cal lee addresses the copied obJeCts via pointers located in the hxed size part 

of the slack frame. immediately above sp. These can be addressed relative to sp 

The original arguments are all addressable relative to fp. 

After a call to _rt_stkovf_split_blg. fp and sp do not. necessanly, pomt into the 

same stack chunk Arguments passed on the stack must be addressed by ofrsets 

from fp, not by offsets from sp. 

If a nested block extends the stack by an amount which can't be known until run 

time then the block entry must include a stack limit check 

Function exit 

A great deal of design effort has been devoted to ensuring that function exit can 

usually be implemented in a single instruction (this is not the case if lloating-point 

registers have to be restored) Typically there are at least as many function exits as 

entries. so it is always advantageous to move an instruction from an exit sequence 

265 



Some examples 

to an entry sequence, (Fortran may violate this rule by virtue of multiple entries. 
but on average the rule still holds true) If exit IS a single instruction then. in 
mul ti-exit functions, further instructions can be saved by replacing branches to a 
single exit by the exit instructions themselves 

Exit from functions which use no stack and save no floating point registers is 
part icularly simple: 

MOV pc, l r 

(26-bil compatibility demands MOVS pc, lr to reinstate the caller's PSR flags. but 
this must not be used in 32-bit modes) 

Exi t from other functions which save no floating-point registers is by: 
LDMEA fp, {v l -v5, s b, fp, sp, pc } ; a s saved 

Here, it is crucial that fp points just below the save code pointer, as this value is 
not restored (LDMEA is a pre-decrement mul tiple load) (26-bil compatibility 
demands LDMEA fp, {regs)", to reinstate the caller's PSR flags. but th1s must not 
be used in 32-bit modes ). 

The saving and restoring of floating-point registers is discussed above 

Some examples 

266 

This section is not intended to be a general guide to the writing of code generators. 
but it seems worthwh ile to highlight some o f the optimisations tha t appear 
particularly relevant to the ARM and to this standard 

In order to make effective use of the APCS. compi lers must compile code a 
procedure at a t ime. Line at a time compilation is insufficient 

In the case of leaf functions, much of the standard entry sequence can be omitted. 
In very small functions. such as those that frequently occur implementing data 
abstractions. the function-call overhead can be tiny. 

Consider: 

typedef struct { ... ; i nt a; ... } foo; 
int foo_ get_ a(foo* f) {return(f-a);} 

The function foo_get_a can compile to just: 

LOR 
MOV 

al, [al, #aOf f set) 
pc, lr MOVS in 26-bit modes 

In functions with a condit ional as the top level statement, in wh1ch one or other 
arm of the conditional is leaf (calls no functions), the formation o f a stack frame 
can be delayed 



ARM procedure call standard 

For example, the C function : 

int get(Stream *s) 
{ 

} 

if (s->cnt > 0) 
{ --s; 

return *(s-p++); 

else 

.. could be compiled (non-reentrantly) Into: 

get MOV a3, 
if (s->cnt > 

LOR a2, 
CMPS a2, 

t ry the fast 
SUBGT a2, 
STRGT a2, 
LDRGT a2, 
LDRBGT al, 
STRGT a2, 
MOVGT pc, 

al 
0) 
[a3, #cntOffset ] 
#0 
case,frameless and heavily conditionalized 

a2, #1 
[a3, #cntOffset] 
[a3, #pOffset) 
[a2], #1 
[a3, #pOffset) 
lr 

e l se, form a stack frame and handle the rest as normal code 

MOV ip , sp 
STMDB sp!, {vl-v3, fp , ip , lr, pc} 
CMP sp, sl 
BLLT l __ rt_ stkovf_split_smalll 

LDMEA fp, {vl-v3, fp, sp , pc} 

Th1s 1s only worthwhile if the test can be compiled using any spa re of a l-a4 and ip. 

as scratch registers This technique can significantly accelerate certain 
speed-critical functions. such as read and write character 

Finally, it is often worth applying the tail ca ll optimisation. especially to 

procedures which need lo save no registers. 

For example: 

extern void *malloc(size_t n) 

{ 
return primitive_ alloc(NOTGCABLEBIT, BYTESTOWORDS(n)); 

267 



The APCS in non-user ARM modes 

is compiled (non-reentranlly) by the C compiler into: 

malloc 
ADD 
MOV 

MOV 

B 

al, al, #3 
a2, al, LSR #2 
al, #1073741824 
primitive_alloc 

15 
15 - BYTE5TOWORD5(n) 
lS - NOTGCABLEBIT 
1N+25 = 45 

In this case, the optimisation avoids saving and restoring the call-frame registers 
and saves 5 instructions (and many cycles- 17 S cycles on an uncached ARM with 
N 251. 

The APCS in non-user ARM modes 

268 

There are some consequences of the ARM's architecture which, while not explicit in 
the ARM Procedure Call Standard. need to be understood by implementors of code 
intended to run in the ARM's SVC and IRQ modes 

An IRQ corrupts rl4_irq, so IRQ-mode code must run with IIWs off until rl4_irq 
has been saved. 

A general solution to this problem is to enter and exit IRQ handlers written in 
h1gh-level languages via hand-crafted wrappers. which on entry save r l4_irq, 
change mode to SVC, and enable IRQs: and on exit restore the saved r l 4_i rq, IRQ 
mode and the IRQ-enable state Thus the handlers themselves run in SVC mode. 
avoiding the problem in compiled code 

SWis corru pt rl4_svc. so care has to be taken when call ing SWis in SVC mode 

In high-level languages, SWis are usually called out of line so it suffices to save 
and restore rl4 in the ca lling veneer around the SWL If a compiler can generate 
in-1 ine SWis, t hen it should, of course. also generate code to save and restore r 14 
in-line around the SWI. unless it is known that the code will not be executed in SVC 
mode. 

Aborts and pre-ARM6- based ARMs 

With pre-ARM6-based ARMs tARM2, ARM3). aborts corrupt rl4_svc. This means 
that ca re has to be taken when causing aborts in SVC mode. 

An abort in SVC mode may be symptomatic of a fata l error or it may be caused by 
page faulting in SVC mode. Page faulting can occur because an instruction needs 
to be fetched from a missing pi:lge (causing a preletch abort). o r because of an 
attempted data access to a missing page The latter may occur even if the 
SVC-mode code is not itself paged, (consider an unpaged kernel accessing a paged 
user-space) 



ARM procedure call standard 

A data abort is recoverable provided r 14 con tains nothing of value at the instant of 

the abort. This can be ensured by: 

• saving R 14 on entry to ever.,r function and restoring it on exit: 

• not using R 14 as a temporary register in any function: 

• avoiding page faults (stack faults) in function entry sequences 

A prefetch abort is harder to recover from, and an aborting 1-31. instruction cannot 

be recovered. so special action has to be taken to protect page faulting function 

cal ls. 

In code compiled from C. rl4 is saved in the 2nd or 3rd instruction of an entry 

sequence. Aligning all functions at addresses which are 0 or 4 modulo 16. ensures 

the critical part of the entry sequence cannot prefetch-abort. A compiler can do 

this by padding code sections to a multiple of 16 bytes, and being careful about the 

alignment of functions within code sections. 

Data-aborts early in function entry sequences can be avoided by using a software 

stack-limit check. 

A possible way to protect BL instructions from prefetch-aborts. is to precede each 

BL by a 

MOV ip, pc 

instruction. If the BL faults. the prefetch abort handler can safely overwrite rl 4 with 

ip before resuming execution at the target of the BL lf the prefetch abort is not 

caused by a BL then this action is harmless. as rl4 has been corrupted anyway, 

(and. by design, contained nothing of value at any instant a prefetch abort could 

occur). 

269 



270 



Index 

Symbols 
• DebugiAF 23 
•filer_opendir 95 
*FrontEnd SetUp 156. 169 
•rrontEnd_Start 156,158.165 

invoking using command_is 161 
* lconSprites 157 
*Prefix 191 
* RMEnsure 158 
*RMTidy 144 
•spool 95 
*wimpSiot 95 

A 
a.out format 203 
Acorn C/C++ 

directory structu re I 0 
Acorn Library Format see ALF 
Acorn Make Utility see AMU 
AIF 135. 199,222 

debuggrng 223 
executable 222 
layout of an image 224 
layout of an uncompressed image 224 
layout of the header 226 
non-executable 222 
relocation 223 
self-move 228 
self-relocation 223. 228 
zero-initialisation 228 

ALF 199 218 
alignment 200 
Chunklndex 219 
Data 219 

Data Length 219 
EntryLength 219 
LIB DATA 220 
LIB_DIRY 218 
LIB_TIME 220 
LIB_VSRN 220 
library file chunks 218 
object code libraries 221 
OFL_SYMT 22 1 
OFL_TIME 22 1 
Time stamps 220 

AMU 107-110 
Application menu 109 
command line 110 
controlling operation 108 
SetUp dialogue box I 08 
SetUp menu 108 
specifying makefile to be used 108 
specifying targets 108 

amu command line tool 107 
AOF 199 

alignment 200 
area attributes 209 
area name 205 
area size 205 
AREAs 140 

attributes 145 
packing 142 

attributes and al ignment 205 
chunk file format 20 1 
entry address area/ entry address offset 204 
files 127 
format of area headers 205 
format of the areas chunk 210 
format of the symbol table chunk 213 
header chunk format 203 
identification chunk (OBUDFNl 217 

271 



Index 

number of areas 204 
number of relocations 205 
relocation directives 210 

..... 

string table chunk {OBI_STRT) 217 
symbol attributes 214 
symbol table 204 

APCS I '39. 247-269 
APCS-2 compatibility 258 
argument passing 255 
C language calling conventions 259 

argument list marsha lling 259 
argument representation 259 
non-s1mple value return 260 

data representation 255 
design criteria 248 
exnmples 266 
function entry 260 
non user ARM modes 26R 
purpose 247 
registers 249 

floating pomt 251 
general 250 

stack 251 
stack backtrace 252 
variants of APCS 257 

application description 
arrow icons 165 
DBOX section 164 
FILEOUTPUT section 163 
icon default values 165 
icon types 164 
METAOPTIONS section 162 
toggling dialogue box s1ze 165 
TOOLDETAILS section 161 

applications 
adding new ones 155 
porting to RISC OS 155 

Arm Object Format sr>e AOF 
ARM Procedure Call Standard see APCS 
arrow icons 165 
ASD 231-246 

compilation units {sections) 231 
data encoding 232 

272 

i i ; i s , ........... . 

data 1tems 234 
Array item 24 I 
code and length field 234 
Fndproc item 238 
E.numerat1on item 242 
Filcinfo item 244 
Function Declaration item 243 
Label item 2'3R 
offsets 235 
Procedure item 237 
Scope items 24 '3 
Section item 235 
Set item 242 
Struct item 240 
Subrange item 242 
text names 23'5 
Type 1tem 240 
Variable item 239 

data types 233 
debug data areas (items) 2'31 
end1an memory systems 232 
order of 231 
Source file position 234 
sourcepos field 234 

Auto Run option 
enabling 162 

Auto Save option 
enabling 162 

B 

MWMMWt 

! Boot file. for new \VIM P application 15 7 
breakpoints 

setting 27 
on addresses and low-level 

expressions 32 
on procedure names 27 

byte 
definition 199 
sex 199 



c 
C module header generator {CMHG) 144 

chunk file 
chunkld 202 
format 201 
header entries 202 
layout 201 
offset 202 

command line interlace I 04 
DecAOF 113 
Diff 118 
Find 125 
LibFile 131 
Link 146 
ObjSize 150 
Squeeze 152 

command lines 
passing long command lines see DDI:.Utils 

module 
compi ler 

adding a new one 155 

compiling a program 
with debugging information 21 

Context window 24 

controlling DDT execution 33 

0 
DBOX 164 
DDEUtils module 155, 169. 191 

!DDT 23 
DDT 19-56 

access ing nested variables 30 
breakpoints 

on addresses and low-level 
expressions 32 

on procedure names 27 

Context window 24 
enabling debugging 21 
error messages 24 
example session 49 

execution control 3'3 
limitations 19 
linking a program 22 
main menu 26 
menu options 

•commands 47 

Breakpoint 36 
Ca ll 35 
Change 44 

Continue 33 
Debug 23 
Display 40 
Find 47 
llelp 48 
Log 46 
Options 45 
Ouit 48 
Single step 33 
Trace 38 
Watchpoint 37 

menu shortcuts 
Breakpoint 37 

Continue 33. 48 
Display 40 
Single step 34 
Watchpoint 38 

preparing a program 21 

Index 

program examination and modification 40 

specifying program objects 26 
starting a debugging session 23 
Status window 24 

watchpoints 
on variable names 28 

debugging 
source-level 22 

debugging see also DDT {desktop debugging tool l 
DecAOI: 

AppliCation menu 112 
command line interface 113 

menu options 
Command line 11 2 

Output window 11 3 

Set Up 

273 



Index 

dia logue box Ill 
menu 112 

SetUp options 
Area contents II I 
Area declarations I 12 
Debug I l l 
Files 111 
On ly area declarations Ill 
Relocation directives 112 
String table Ill 
Symbol table I ll 

demonstration program 9 
desktop utility 

add ing a new one 155 
Diff 

Application menu 117 
command line interface 11 8 
menu options 

Command line 116 
Dir structure 116 
Equate CR/LF 1 16 
Expand tabs 11 6 
Fast 116 
Large files 116 
Squ idge 116 

Output window 117 
SetUp 

dialogue box II 5 
menu 116 

SetUp options 
Case insensitive 115 
Expand tabs 11 5 
Remove spaces I 15 
Squash spaces I 15 

directory structu re o f Acorn C/C++ 10 

E 
EBNF rule. for application 161 
Entry points S£'1' Link menu options 
environment variables II 

CSPath II 

274 

DDESPath II 
RunSPath I I 

error messages 
DDT 24 

error throwback 193 
Errors 

linking a program 139 
extracting files 

LibFile 129 

F 
file formats 

Alf 222-230 
ALF 218-221 
AOF 201-217 
SrcEd it 197 
undefined fields 200 

file type 
Text 73 

filename prefixing see DDEUtils modu le 
FILF.OUTPUT 163 
Find 

Appl ication menu 124 
command line interface 125 
menu options 

Allow 123 
Command line 123 
Grep style 123 

Output window 124 
SetUp 

dialogue box 119 
menu 123 

SetUp options 
Case insensit ive 120 
Fi lenames only 120 
Files 11 9 
Line count on ly 120 
Patterns I 19 
Throwback 120 
Verbose 120 
Wildcards 120 



SetUp wi ldcard fi lenames 
OorMore I 2'3 
OorMore filename chs. 122 
Filename ch I 22 
Or 123 
Sub-directones 122 

SetUp wildcard P<ltterns 
0 o r more 122 
I or more 122 
Alphanum I 2 I 
Any 121 
Ctrl 121 
Digit 121 
Newline 12 I 
Normal 12 1 
Not 121 
Set 121 

finding 
text in a file 77 

fonts see SrcEdit (fonts) 
format of AOF area headers 205 

rrontEnd 
producing new RISC OS applications I 56 

rrontEnd module 155, 156-168 

H 

operation when command line tool is 
run 156 

halfword 199 
hardware requirement for Acorn CIC++ 7 

icon types 164 
IMPORT directive 144 
installing Acorn C/C-+ 

configuration options 8. 9 
demonstration program 9 
hardware requirement 7 

invoking a WIMP frontend for a tool 156 

K 
KFF.P directive 22 

L 
language processors- output format 199 
Ll B_DATA 220 
LIB_DIRY 218 

LIB_ TIME 220 
LIB_VSRN 220 
Libfile 127-132 

command line interface 131 
extracli ng files 129 
li mitations when creating libraries 130 
menu options 

Command line 128 
List symbol table 128 
Null timestamps 130 
Via file 128 

Output window 129 
SetUp 

dialogue box 127 
menu 128 

SetUp options 

libraries 

Create 127 
Delete 127 
extract 127 
File list 127 
Insert 127 
Library 127 
List library 128 
Object library 128 

I inking I '39 
symbol references 139 

library archives 
AOF files 127 

Link 1~5-147 

AIF 135 
command line interface 136. 146 
error'i I '39 

Index 

275 



Index 

IMPORT direclive 144 
inter-area references 142 
libraries 139 
linking with the overlay manager 142 
loading 135 
menu opt1ons 

Base 137 
Command l ine 136 
Debug 136 
Entry 137 
Link map 136. 138, 142 
0Jo case 137 
Overlay 137.141 
Relocatable AIF 137 
Verbose 13H 
Via file 137 
Workspace 136 137. 144 
X-Ref 136 142 

Output window I '38 
overlaying programs 140 
predefined symbols 145 
relocatableAIF images 143 
relocatable module format (RMF) 135 
relocatable modules 144 
SetUp 

dialogue box 135 
menu 136 

SetUp options 
AIF 13'5 
Binary 136 
Files 135 
Module 135 
Relocatable AIF 136 

specifying files to be linked 135 
utility programs 144 

linking 
preparing to debug a program 22. 136 

little end ian 199 

276 

M 
Mclke 15. 107. 169 

command execution 173-174 
command line tools 68 
invoking 57 
Makefiles 

conventiona l Makefiles 66 
editing 66 
file naming 179 
format 67 
specifying I 08 
structure 176 

menu options 
In fo 57 
Open 57 
Options 57 

MFLAGS macro 183 
Output window 64 
programmer interface 68 
projects 58 

add ing a member 6 1 
adding a target 62 
creating a final target 64 
creating a new project 59 
final targets 58 
listing members 61 
opening a project 60 
removing a member 61 
removing a project 64 
setting tool options 63 
touching members 62 

rule patterns 180-181 
tool options. message passing 69 
VPATH macro I 79 
WIMP message format 69 

Make project management tool I 55 
M ETAOPTIONS 162 
module headers 

creating in assembler 145 
multi- tasking 

pre-emptive multi-tasking 156 



N 
nested variables 

accessing 1 n DDT 30 

0 
OBL 

name of AOF files 202 
OBI_AREA 

areaschunk 210 
OBI.IDFN 217 
OBI_STRT 217 
ObjAsm 

KEEP directive 22 
object file 

format 202 
chunk names 202 

type 204 
ObjSize 

Application menu 149 

command line interface 150 
menu options 

Command l ine 149 
Output window 150 
SetUp 

dialogue box 149 
menu 149 

SetUp options 
Files 149 

OFL_SYMT 221 
OFL_TIME 221 
output formats in Link 138 

AIF 135 
binary 136 
RMF 135 

Output window 
DecAOF 113 
Diff 117 
Find 124 
LibFile 129 
Link 138 

ObjSize 150 
Squeeze 152 

overlay description files 14 I 
overlay manager 

l inking 142 
overlaying programs 140 

p 
packing 

AREAs 142 
parent directories 

indicating with''- 163 
porting appli cations to RISC OS 155 

predefined linker symbols 145 
PrefixSDi r 181 
procedure names 

setting breakpoints in DDT 27 
program objects 

specifying in DDT 26 
pro1ect management tool 

creating 155 
prorects see MAKE 

R 
relocatable AIF images 143 
rclocatable module area ( RMA) 144 

relocatable modu le format (RMI''l 135 

relocatable modules 144 

relocating applications on the stack 
the \Vorkspace option 144 

resource files in SrcEdit 169 
!Run fi le. for new WIMP applicalion 157 

s 
SrlVing single output object 163 
!SetUp fi le. for new WIMP application 157 

source-level debugging 22 

Index 

277 



Index 

Squeeze 
Application menu I '52 
command line interface I '52 
menu opt1ons 

Command line 1'51 
Output window I '52 
SetUp 

dialogue box I'> I 
menu 1'51 

SetUp options 
Input I '51 
Try harder 151 
Verbose I '51 

Srcl::dit 169 
Application menu options 

Create 9'3 
Options 93 
Save All 92 
Save Options 92 

Backspace 73 
block operations 711 
bracket-matching 87 
carriage return 83 
case sensitivity in Find 79 
colours 84 
CoiTab 86 
copy a selection 74 
copying Ctri-C shortcut 75 
copying block 7'5 
counting occurrences 79 
Ctri-U 73 
Delete 73 
deleting block 75 
entering text 71 
file formats 197 
find a specific line 83 
finding text 77-82 
fonts 84 
Format width 84 
formatting text 84 
Go to 

278 

line 83 
option 83 

indenting 75 
inserting/deleting text 72 
keyboard shortcuts 78 
keystroke equiva lents 96 
line spacing 84 
lmefeed 83 
Magic characters 79 
margin 84 
moving block 75 
moving -Ctri-V shortcut 75 
printing a file 85 
reading text from another file 8 7 
redoing changes 83 
replacing text 78 
resource files 169 
searching for text 77 
select a block 74 
selected block- saving a 74 
signall ing errors via throwback 88 
starting 71 
tabs 84. 86 
task windows 94 
Text found dialogue box 77 
text wrap 85 
throw back 169 
undoing changes 75. 78. 83 
wildcarded expressions 80 
w1ndow 71 

string 

SWI 
definition 199 

DDEUtils_GetCLSizc 192 
DDCUtils_rrefix 191 
DDEUtils_SetCL 192 
DDF.Utils SetCLSize 192 
DDEUtils_ThrowbackEnd 195 
DDEUti Is_ Th rowbackRegister 193 
DDCUtils_ ThrowbackStart 193 
DDF:Utils. ThrowbackLJ n Register 193 
Throwback. ReasonErrorln 194 
Throwback. ReasonProcessing 194 
Th rowback_Send 194 
Wimplnitialisc 156 



SWIDDEUt ils_GctCL 193 
symbol references 

to l ibranes 139 
symbols 

predefined li nker symbols 145 

T 
rargets 

specifyi ng Lo AMU 108 

Templates fi le 
Cmdline 160 
Output 160 
proglnfo 159 
query 160 
save 161 
SetUp 159 
Summary 16 1 
Window name 159 
xfer_send 161 

TexlFile 73 
Throwback 

example session 88-90. 9 1 

SWis 193 
th rowback 14 

protocol 193 
SrcEdit 88 

th rowback see also DDEUti ls modu le 
tool output, specifying default 163 

TOOLDETAILS 16 1 
tools 

defaults when invoking from Make 165 

tools. interact ive 14. 101 
DDT 19 
entering filenames 14 
Make 57 
SrcEdil 71 

tools. non-interactive 14, 101 
AMU 107 
Appl ica tion menu 102 
DecAOF Il l 
Diff 115 

u 

entering fi lenames 14 
file output I 06 
Find 119 
l.ibFile 127 

Link 135 
ObjSize 149 

Output windows 105 
Summary 106 
Text 105 
toggling between I 06 

SetUp dialogue box I 03 

SetUp menu I 04 
Squeeze 151 
sta rting 101 

uti lity programs 144 

v 
varrable names 

setting watchpoints in DDT 28 

version ID 204 
via fi le 

w 

use in LibFile 128 
use in Link 137 

watch points 
setting 28 

WIMP 
description file 156 
frontend. adding to tools 156 

mvoking frontend for a tool 156 

Index 

producing complete WIMP application 157 
setti ng MAKE options 156 

wimpslot 
defaul t 162 
size 157 

279 



Index 

word 
defln1llon 199 

work directory 15 
writing an application dE'scription 161 

280 



Reader's Comment Form 
D1'sf?top Tools Issue I 

0484.230 

We would greatly appreciate your comments about this Manual. which will be taken into account for the 

next issue 

Did you find the information you wanted? 

Do you like the way the information is presented? 

General comments: 

If there is not enough room for your comments. please continue overleaf 

How would you classify your experience with computers) 

Used computers before Experienced User Programmer Experienced Programmer 

Cut out (or pfwtocopy) and post to 

Dept J~C. Technical Publications 

Acorn Computer~ Ltmlted 
Acorn House. Vision Park 
Histon Cambridge Cl-34 4AE 
england 

f Your name and address: 

1 
Th1s 1nformat1on wilt only be used to get 1n touch w1th you 1n case we w1sh to explore your I 
comments further 



Notes 



Notes 



Notes 



Notes 



Notes 



Notes 



Notes 



Notes 



Notes 



Notes 



Notes 



Notes 



Notes 



Notes 



Notes 

' 




