
ANSI C (Release 3)
for the RISC OS operating system

Release Note

The ANSI C package

The following items are included in the ANSI C package:

• the ANSI C Guide

• three discs:

Disc 1: Work disc

Disc 2: Library support disc

Disc 3: Reference disc

• four reference cards:

Card 1: side 1: C compiler directory structure

side 2: Contents of release disc 1

Card 2:

Card3:

Card4:

side 1: C compiler options

side 2: Contents of release disc 2

side 1: ASD commands

side 2: Contents of release disc 3

side 1: RISC OS library structure

(side 2 is blank)

• Release Note (this leaflet), which includes the supplement entitled Release 3 of C
for RISC OS: additional notes.

• a registration form and pre-paid envelope.

If any of these items is missing or damaged, notify your supplier immediately.

Configuration details

The C compiler system will run on any Acorn computer which supports the RISC OS
operating system.

Network installation

You should obtain a site licence from Acorn Computers to use this software on an
Econet network. It is a good idea to install the software at a time when your network is
not being subjected to heavy use.

Notes

Errors and infelicities in the compiler and libraries that were known about at the time
of release are given in the second part of this Release Note. The following observations
should also be noted:

ANSI C Release 3

• The ! Cstart program on Disc 1 is to serve as an example and to get started on
Disc 1. It is not designed for general use and you would need to edit it for that
purpose.

• It is not possible to nest invocations to the Acorn Symbolic Debugger (ASD);
recursively calling ASD may result in a software crash. However, this is not
something that you would normally find useful.

• The ASD command where has a problem addressing contexts further down the
stack than the current context, so that contexts specified using the \-1 or \ 2
notation produce error messages. As a temporary solution, use

context \-1;
where;
context \+1

rather than

where \-1.

• The compiler works by function rather than source line, and moves code around. For
this reason, you may encounter a mismatch between reported line numbers from
ASD and the actual line number in the source. However, this will not be
encountered frequently, and when it does occur the actual source line will usually
be adjacent or close to the reported line number.

• The -gv compiler option (for debugging with information on local variables) will
fail when used on desktop applications, giving a Fatal internal error report.
This is accompanied by an error message in a box of asterisks which you can ignore
in this case. For example, cc balls64 -gv -I$.RISC_OSlib will generate the
error.

• It is not possible to use ptrace selectively, though use of macros and conditionally
executed breakpoint commands aften allow the effect of selective ptrace to be
simulated.

• The compiler is not as efficient in code generation when working in pee mode (using
the -pee option) as it is in normal ANSI mode (the default).

• If you are using a multiscan monitor and compiling a desktop application, set the
monitor rype to 0 to allow enough memory for the compilation. Use the *Configure
Monitor Type command. After compiling, change the monitor type back to 1.

Customer Support

The Acorn Customer Support Service operates through our international network of
authorised dealers and distributors. If you encounter problems with your Acorn
software package, you should therefore contact your supplier. To help your supplier to
provide an efficient support service, please have available:

• the complete package

• all discs involved

• details of the hardware and software used. For example: Archimedes 410/1 with
RISC OS 2.00 and ANSI C version 3.00.

• if possible, some written evidence of the problem.

2 ANSI C Release 3

Release 3.00 of C for RISC OS: additional notes

Contents

Introduction

The product

Integration with the RISC OS desktop

Major new features

New Procedure Call Standard

Obsolete and obsolescent features
Acorn Object Format (AOF)
Dbug and AOF images
cc -arthur/cc -super/ArthurLib

Additions, changes and upgrades
Low-level debugging and the Acorn Symbolic Debugger (ASD)
Self-relocating AIF images
Support for overlays
New image format for overlay segments and ROM-ing
Improved system() function
Improved command line redirection for programs written inC
Special characters in quoted command line arguments
ANSI conformance
C language changes since Release 2

External linkage and tentative definitions
Mixing old-style (K&R/pcc) and ANSI function prototypes

pee-mode compatibility
Interactive input to cc
Support for maintaining makefiles
Using ObjASM via cc
Location of standard libraries
Return codes and error behaviour
Common Subexpression Elimination (CSE)
Cross-jumping
Sharing of literals
Global register variables
Support for writing RISC OS modules in C
C library definition changes since Release 2
Libraries, Procedure Call Standard and tracebacks
Library performance improvements
The Acorn Make Utility (AMU)
The Acorn Symbolic Debugger (ASD)
The C module header generator (cmhg)
Squeeze, an image compactor
Dialect translation utilities

ANSI C Release 3

4

4

4

4

5

5
5
5
6

6
6
6
6
6
7
7
7
8
8
8
8
9
9
9
9
9
9

10
10
10
10
11
11
11
11
11
11
12
12
12

3

Known faults in Release 3 of the C compiler and library
Faults in cc's preprocessor

Faults which may cause valid programs to be rejected
Faults which may cause invalid programs to be accepted

Other cc faults
Faults which may cause valid programs to be rejected
Faults which may cause invalid programs to be accepted
Miscellaneous compiler faults

Known faults in the C library

Known infelicities in Release 3 of cc

Introduction

12
12
12
13
13
13
14
14
15

16

You will find these notes useful for reference if you are upgrading from a previous
release of the Acorn C compiler, since they give details of changes in the C compiler
system from Release 2 to Release 3. An overview of this subject is given in the Guide,
in Appendix A: New features of Release 3, but this document goes into greater detail, is
primarily concerned with software functionality, and tackles issues at a more
technical level.

Known faults in the compiler and libraries are covered towards the end of these Notes.

The product

Release 3 of C contains all the basic tools you require to develop programs in C for
RISC OS (except for a text editor, which is supplied with RISC OS). With Release 2,
a text editor and the Software Developer's Toolbox had to be purchased separately.

Integration with the RISC OS desktop

Release 3 of C contains high-level interfaces to the RISC OS windowing system to
make it easier to write window-based applications for RISC OS which have the same
look and feel as Acorn's Edit, Paint and Draw applications distributed with RISC OS.
However, the individual tools in Release 3 are still firmly command-line oriented.

Major new features

The key additional features of Release 3 are:

• conformance with the latest ANSI draft (December 1988); see the section below
entitled ANSI Conformance

• RISC OS library extensions

• support for developing the following types of program for RISC OS:

• desktop applications

• relocatable modules

• overlaid programs

4 ANSI C Release 3

• improved portability to and from RISC OS

• new software tools and enhanced tools that were previously part of the Software
Developer's Toolbox (in particular, the Acorn Symbolic Debugger, which now
supports low-level debugging as well as high-level symbolic debugging).

New Procedure Call Standard

The Procedure Call Standard (PCS) obeyed by code compiled by the C compiler has
been changed. The change was made to introduce support for writing modules which
can run in SVC mode.

Object code compiled by Release 3 compilers is incompatible with earlier object code and
libraries, whether compiled or assembled. It is not possible to warn of this at link time
without causing annoyance to at least as many users as might be helped by a warning.

Old binaries which use the shared C library can still run using the new shared C
library; new binaries cannot run using the old shared C library. Old binaries suffer a
performance degradation, but this is imperceptible interactively.

The compiler has a command line option (-zkA) to compile code which u'>es the old
procedure call standard. This is provided to allow those with a large investment in
assembly language to make a gradual transition to the new PCS.

Obsolete and obsolescent features

Acorn Object Format (AOF)

The following features have been removed from the definition of AOF and are no longer
supported by the Acorn linker:

• Absolute ar~as (there was never any linker support for them)

• the Position Ipdependent Code (PIC) attribute (rarely used)

• the PC-relative relocation of 11-bit LOR offsets (never supported by the Acorn
linker)

• the three AOF image formats

• alignment of AOF AREAs to other than 4-byte boundaries.

Dbug and AOF images

Dbug (a low-level debugger supplied with the Software Developer's Toolbox) is declared
obsolete. Its functionality is subsumed by the Acorn Symbolic Debugger (ASD)
supplied with Release 3 of C.

AOF Type-1 images are declared obsolescent. Type-1 Images can only be run under
Dbug and Dbug is the only RISC OS application to use this format. For a transition
period, the linker can still generate AOF Type-1 images (using link -dbug). This
facility may be withdrawn in a future release of C.

ANSI C Release 3 5

cc -arthur/cc -super/Arthurlib

Cc -arthur and cc -super are now synonyms and both ArthurLib and SuperLib ·
are declared obsolescent (ArthurLib is now supplied only with RISC OS; SuperLib only
with SpringBoard Brazil). The functionality of SuperLib (the Brazil kernel interface
library for SpringBoard) and the low-level functionality of ArthurLib (the Arthur 1.2
interface library) is subsumed by the kernel of the C library. The high-level functions
of ArthurLib are now better provided via the RISC OS library on which the RISC OS
applications Edit, Paint and Draw are based.

Further use of ArthurLib is deprecated; it will be withdrawn from the next release of C.

Additions, changes and upgrades

Low-level debugging and the Acorn Symbolic Debugger (ASD)

An (AIF) image containing low-level debugging data can now be run directly and runs
at the same address whether it is being debugged or not (previously such an image
could only be run under Dbug and was linked at a different base address when being
debugged). Programs can now be debugged at the machine code level using ASD,
supplied with this release of C.

Squeezed images can now be debugged using the Acorn Symbolic Debugger (ASD).

Self-relocating AIF images

A self-relocating AIF image can now be generated which, when entered, relocates itself
at the top end of applications workspace, leaving a specified amount of working memory
above itself (for its own heap, stack, etc). ASD, supplied with Release 3 of C, is just
such an image.

Support for overlays

The linker now supports a static overlay scheme much like those common under MS
DOS. Overlays need no special support from the compiler, but can benefit from
compiling each function into its own AOF AREA. This feature, enabled by -zO,
causes AREAs called C$ $<fn name> to be generated, rather than a single area called
C$ $code. This allows a finer-assignment of functions to overlay segments than would
otherwise be possible (except by restructuring the source code). Code compiled -zO will
suffer an increase in size because of the reduced sharing of literal pools.

New image format for overlay segments and ROM-ing

The linker now supports a plain, unadorned binary image type (in support of overlay
segments and of putting code into ROM).

6 ANSI C Release 3

Improved system() function

The C library system () function has been improved so that an application can
transparently call another application as a subprogram using system ("program").
The Release 2 variants system("CALL:prog") and system("CHAIN:prog") are
still available, but the default is now "CALL:" (CHAIN: causes a transfer of control
with no return to the calling application).

System ("CALL: ... ") is implemented by copying the caller to the top of application
workspace then running the callee in the remaining space. This may not work if there
is insufficient memory of if the wimp slot is too small. In these cases, system()
returns _kernel_ ERROR. If the call succeeds, the called application indicates success
or failure by setting Sys$ReturnCode 0 or non-0, respectively (exit (0), or return 0
from main, sets it to 0 for you). System () returns the value set by the called
application. All programs linked with the C library now set Sys$ReturnCode to the
value passed to exit () or returned from main (). If the called sub-program is a built
in command which fails, system () now returns_ kernel_ ERROR.

If system () returns_ kernel_ ERROR, for any reason, kernel last oserror ()
returns a pointer to a RISC OS error block describing the fault.

Improved command line redirection for programs written in C

The UNIX and MS-DOS 'standards' for the redirection of stdin, stdout and
stderr are now supported by the C library. Redirections of the form foo { > out }
still specify RISC OS's standard redirection (all terminal output sent to out, lines
termined by CR LF) whereas a redirection of the form foo > out redirects only
stdout to the file out (no additional CRs inserted). The complete set of simple
redirections of stdin, stdout and stderr as recognised by UNIX's C shell (csh) and
Bourne shell (sh) and MS-DOS, are recognised by the C library. For example:

foo >& 'out'
foo > out 2>&1
foo 2> out

(stdout and stderr to 'out', csh notation)
(the same, sh notation)
(stderr only sent to 'out', sh notation).

stdout and stderr are now separately redirectable, overcoming a major deficiency of
Release 2 of C.

Use of file descriptors other than 1 and 2 is not supported in sh-like stream
redirections.

As all the tools in the C release, including the C compiler itself, use the C library,
these rules apply to them with equal force.

Special characters in quoted command line arguments

An argument enclosed in double quotes is treated as a single argument word. Such
arguments may contain spaces, '<'s, '>'s, etc. Within a quoted word, "" is represented
by \"and'\' by \\.This allows an argument to main to contain spaces and apparent
redirections. For example: prog "> out" arg2 arg3.

ANSI C Release 3 7

ANSI conformance

Release 3 of C seeks to conform to the December 1988 draft ANSI specification for the
programming language C. Previous releases sought to conform to the October 1986
draft. No attempt has been made to conform to intermediate drafts and, in fact, the
December 1988 draft is, in most visible respects, closer to the previous release of C than
any of the intermediate specifications.

As yet there is no formal standard for C and therefore no formal way to measure
compliance with it. Acorn has been using the first draft C Validation Suite (CVS) as
distributed by BSI. Because of the status of the draft standard at the time of going to
press, it is not possible to claim full draft ANSI conformance or seek validation for this
release.

A list of known violations of the current draft standard is geven in the section entitled
Known faults in Release 3 of the C compiler and library.

C language changes since Release 2

In most respects, changes since Release 2 have been minor and will go unnoticed by
most users. The following areas are most worthy of note:

• external linkage and tentative definitions

• mixing old-style (K&R/pcc) and ANSI function prototypes.

External linkage and tentative definitions

In ANSI mode, the compiler now conforms strictly to the ANSI specification. Release 2
contained bugs in this area and earlier releases did not permit such ANSI-isms as:
static int x; static int x = 2; extern int x;. These changes are
unlikely to cause problems to users as the new specification is, in general, more
permissive than either the previous release or old style C. Furthermore, while the
compiler is fussy about diagnosing errors in this area, it can recover and generate
sensible code (ie what a user should expect) in most error situations. When it cannot,
it refuses to generate an object module.

Mixing old-style (K&R/pcc) and ANSI function prototypes

In previous releases, an in-scope, old-style function definition was treated (erroneously)
as if it were an ANSI prototype, causing actual arguments to calls to the function to
be coerced appropriately. Now, such arguments are warned of, but not coerced.

In fact, this change causes little trouble: the greatest potential for trouble exists in an
implementation in which sizeof (int) < sizeof (long) or sizeof (int) <
sizeof (void *), or which did not widen char, short and float arguments. Earlier
releases were free of these traps and, in ANSI mode, strict about the conformance of
function declarations and function definitions, so there are no new problems. Indeed, an
old pee-mode trap disappears (in which calls compiled before the compilation of an old
style definition could be compiled differently to calls made after the definition).

8 ANSI C Release 3

Pee-mode compatibility

Pee-mode compatibility has been improved in a number of minor ways: for example,
chars are now signed by default (despite the code-space penalty thereby incurred on the
ARM); sizeof () returns an int (not an unsigned, as in ANSI mode); calls to old
style functions no longer have their actual arguments coerced to the formal argument
types, as used to be (erroneously) done when an old-style function definition was in
scope; several minor preprocessor incompatibilities have been removed.

External linkage in pee mode has been disentangled from ANSI mode external linkage
and made compatible with that defined by the 4.3 BSD VAX C compiler (cc) and
system loader (!d). Linkage errors are now signalled exactly when pee (or as) would
signal an error. However, the compiler is, in general, more tolerant than the VAX pee
and will repair most errors in a sensible manner.

Interactive input to cc

cc -E, -M and -S accept input from stdin (eg interactively) if'-' is specified as the
input file.

Support for maintaining makefiles

cc -M generates, on stdout, a list of all the files included by the source file being
compiled. In conjunction with 1/0 redirection, this is useful for generating makefiles.

Using ObjAsm via cc

The compiler can now invoke the assembler ObjAsm to assemble an assembler source
provided (i) ObjAsm can be found on the Run$Path and (ii) there is sufficient main
memory to support the co-residence of cc and ObjAsm (this probably requires an A440).
Thus the following style of usage now works:

cc -o command command.c net.s util.o

(compile c. command to o. command, assemble s. net to o. net, then link
o. command, o. net, o. util and the C library to make a program).

Location of standard libraries

The assumed location of the C library (if C$libroot is unset) is now $. clib (it was
previously $.arm.clib). The default C library is now $.clib.o.stubs, the
interface to the shared C library module.

Return codes and error behaviour

The compiler now sets a non-zero return code if there are any errors during
compilation, where previously it only did this for serious errors. Similarly, it does not
perform a (requested) link step if there are errors, where previously linking was
omitted for serious errors only. However, an object file is still produced in the presence
of errors so the following is acceptable:

ANSI C Release 3 9

cc foo.c fails with errors
.... , user checks that recovery is what was expected ...
cc foo.o; and does the omitted link step.

This is more like BSD UNIX behaviour and integrates better with the new Acorn
Make Utility (AMU).

Common Subexpression Elimination (CSE)

A new optimisation, CSE, has been implemented and is enabled by default.
Occasionally this may cause problems when compiling big procedures on small
machines, as more memory is required, both for CSE itself and for the subsequent
register allocation phase. CSE can be disabled from the command line by -zpzO (or,
equivalently, by #pragma no_optimise_cse). In general, the problems now
associated with CSE are less than those associated with register allocation in Release
2.

Usually, CSE makes compiled code run faster; often it turns out smaller as well.
Although in theory it can become bigger, this has rarely been encountered. In rare
cases, code may run more slowly when CSE is enabled, as CSE sometimes seriously
perturbs register allocation. Bear this in mind if you are particularly concerned about
performance in a critical routine. Usually CSE yields improved code, so it is enabled by
default.

Cross-jumping

Cross-jumping is a space-saving optimisation which shares common code sequences at
the cost of additional branches. In general, its run-time cost is negligible and it is
therefore enabled by default. If performance is your priority, note that in rare
pathological cases cross-jumping can slow code by an arbitrary amount (eg a cascade of
N common tails within an inner loop can insert N additional branches into the critical
path). Cross-jumping can be disabled from the command line (-zpjO) or by #pragma
no_optimise_crossjump.

Sharing of literals

The sharing of literals - especially character string literals - has been improved since
Release 2. Identical instances of a literal are now shared if they occur within an
addressing span (1020 words or so; the use of cc -zO to compile one AOF AREA per
function perturbs this).

Global register variables

It is now possible to force a global variable into a register. The cost is the loss of a
register allocatable to a local variable. In general you are not recommended to use more
than two global register variables. A small example shows how to do this:

struct frame {struct frame *fp;
#pragma -rl
extern int sp;
#pragma -r2
extern struct frame *fp;
#pragma -rO

10

int sp, pc;}; /*example structure*/
/* put the next global variable in the*/
/* 1st (integer) global register. */
/* put the next global variable in the*/
/* 2nd (integer) global register. */
/* no more use of global registers. */

ANSI C Release 3

Support for writing RISC OS modules in C

Code implementing a module must be specially compiled -zM, so that its static data
will be relocatable at run time. It must also be specially linked (1 ink -M) together
with the output of the C Module Header Generator (CMHG).

C library definition changes since Release 2

The library has suffered many detailed changes as a result of being brought into line
with the latest ANSI draft standard. For example, some objects previously defined as
macros (eg size_ t) are now no longer so defined, but are defined by typedefs. Some
macros have been renamed (eg OPEN MAX is now FOPEN MAX, CLK TCK is now
CLOCKS_PER_SEC) and some behavio~r has been clarified. In general these changes
should cause minimal difficulties.

Libraries, Procedure Call Standard and tracebacks

The linkable library AnsiLib uses the new Procedure Call Standard. A version (called
AnsiLib_A) is supplied which is compatible with the old APCS-A procedure call
standard.

Linkable libraries are compiled to allow tracebacks through them (functions are
named). The shared C library module does not support function names, so tracebacks
will be meaningless (this saves some space in the shared C library). Old binaries which
use the Release 2 shared C library will still run using the Release 3 shared C library,
but with somewhat degraded performance (generally not perceptible interactively).

Library performance improvements

Divide has been speeded up significantly.

The Acorn Make Utility (AMU)

AMU has been bundled with this release and upgraded to implement most of the
facilities of UNIX's 'make' command, including:

• incremental execution of commands (this was previously done offline, and offline
execution via an EXEC script has been retained as an option)

• stop on error (the default; controllable with command prefixes '@' and '-' and the
AMU command line flags -i and -k)

• VPATH

• rule patterns such as . c. o:; $ (CC) $ (CFLAGS) -o $@ c.$*) and
.SUFFIXES

• acceptance of most UNIX and MS-DOS file-names (which are translated to the
nearest obvious RISC OS equivalents).

The Acorn Symbolic Debugger (ASD)

ASD has been upgraded significantly and is now supplied with Release 3 of C. The
following improvements are incorporated:

ANSI C Release 3 11

• Several dozen reported problems with Release 2 of ASD have been fixed.

• There is better (less rigid) use of the available memory.

• There is support for low-level debugging (subsumes Dbug's functionality).

• There is an expanded command set with better abbreviations and command macros.

• There is support for remote debugging via an RS232/RS423 link from another
computer or computer terminal.

• There is partial support for debugging overlaid images.

The C Module Header Generator (CMHG)

CMHG is new to Release 3 of C. It is a special-purpose assembler for making a
RISC OS module header for a module written in C. It also makes the entry veneers
needed to interface the module header to the module body.

Squeeze, an image compactor

Squeeze encodes a binary program image, creating a new, smaller image that can
unsqueeze itself when it is entered. Unsqueezing is extremely fast: faster than loading
the additional bytes from a Winchester disc. In general, Squeeze reduces C programs to
just over half their initial size (it can do better if they contain large arrays of zeros).

Dialect translation utilities

Dialect translation utilities topee and toansi, as used by Acorn, are supplied in
source form. These can be used to help translate code between ANSI and pee-style
dialects of C. Acorn, for example, keeps the C compiler in ANSI C, but in a form that
can be mechanically translated to pee-style C by topee (so that it can be compiled on
UNIX systems that do not support ANSI C). topee, of course, cannot do a complete
job, but it helps. Similarly, toansi can assist with bringing old-style C sources into
Acorn's ANSI C world (this is an alternative to using the compiler's -pee mode).

Known faults in Release 3 of the C compiler and library

Faults in cc's preprocessor

Historically, preprocessing has been the least well specified aspect of compiling a C
program. This has been reflected in the evolution of the draft ANSI standard for C and
is reflected in the relatively large proportion of preprocessor faults in the list of known
faults.

Faults which may cause valid programs to be rejected

The preprocessor predefines ARM and arm, which is forbidden by ANSI. For the
purposes of Release 3, this predefinition is disabled by -fussy. Users should beware
that a future release will predefine arm and ARM instead.

12 ANSI C Release 3

There is some unexpected token 'glueing' by the preprocessor (in effect, its behaviour is
too like that of UNIX's cpp, which will cause no surprise to users of character
processing preprocessors like cpp, but may cause surprises to users of token-oriented
preprocessors in which there can be no accidental glueing caused by token
juxtaposition). For example:

#define f(x) +x
f (+y)

yields ++y rather than + +y as required by the draft standard.

Faults which may cause invalid programs to be accepted

A preprocessor redefinition of the form: #define A 1 #define A () 1 is not
faulted (the d~ft standard forbids redefinition of non-function-like macros as function
like macros, and vice versa). However, warning is always given of redefinition to a non
identical value. For example: #define A 2 elicits a warning.

Similarly, redefining a macro with a different number of arguments, or a different
spelling of the formal arguments, is not faulted (though it is warned of if the new
macro body is not identical to the old one). The preprocessor does not fault supplying
too few arguments to a macro invocation (though it does fault supplying too many).

The preprocessor will erroneously 'stringify' any token, not just macro parameters {eg
#define A 1; #define B (a) #A; B (2) wrongly yields 'A', rather than a
diagnostic relating to #A).

The preprocessor erroneously ignores a # # at the start or end of a replacement list and
this should be faulted. An empty # 1 ine directive is not faulted (eg # 1 in e).

The class of expression allowed in a #if preprocessor directive is not sufficiently
restricted. For example, the compiler allows almost any expression it can evaluate at
compile time whereas it should fault, amongst others, casts and sizeof () (For
example, #if (int) 1==1 is accepted silently, as is #if sizeof (char) ==1, but
both should be faulted). These laxities cause anomalies between cc -c and cc -E.

A preprocessor directive like #~Ldefine is not faulted (only space and tab should be
allowed between# and define).

Other cc faults

Faults which may cause valid programs to be rejected

Multiple local declarations are mishandled and faulted with a 'duplicate definition of
<thing>' message. For example: int f () { inf f1 () ; int f1 () ; ... } .

In -pee mode, a bitfield which is aligned on a non-word boundary will have incorrect
access code compiled for it. For example:

struct bad_bitfields {
short s;
int bfl: 1;
int bf2:1;

ANSI C Release 3

I* bad code compiled for accessing this */

13

/* ... */
} ;

int bfl(struct bad bitfield bbf} {return bbf.bfl;}

This problem cannot occur in ANSI mode.

During type checking, an old-style function definition compared against an ANSI
declaration involving qualified types is erroneously faulted (though correct code is
generated) because, for example, int f (const char *); doesn't match int f (s)
char * s; { ... } . These cases are really marginal, especially since those involving
default argument widening (such as int f(int); int f(ch) char ch; { ... })
are correctly matched.

In char x; int y = sizeof (0, x); sizeof () returns 4 (char promoted to int
in expression context) rather than 1 (as required by the draft ANSI standard). Of
course, sizeof (x) == 1, as you would expect.

A struct, union or enum tag declared within a function prototype is wrongly given file
scope rather than prototype scope (if the prototype is a function declaration) or
function scope (if the prototype is part of a function definition).

The following should work, but doesn't:

typedef void VOID;
VOID fn () { ... }

Faults which may cause invalid programs to be accepted

An empty initialiser list within braces is not faulted (eg int x [10] { } ;). An
empty structure declaration (eg struct foo {};) is erroneously treated as the
corresponding struct tag declaration (eg struct foo;). However, any attempt to use
the empty declaration in a manner not compatible with use of the corresponding struct
tag declaration, is faulted.

The compiler erroneously accepts 'register' as an orthogonal attribute of a variable.
Thus the following are wrongly accepted without demur:

register auto x;
register static y; /* not at top level */

Adding insult to injury, &y then elicits a warning about taking the address of a
variable with the register attribute, even though it is treated as static!

An enum constant larger than INT _MAX is not faulted (it wraps around silently).

A file containing no external definitions is not faulted (as required by ANSI).

In -pee mode, an initialised auto array elicits two spurious warnings rather than
being faulted.

Miscellaneous compiler faults

The following faults cause neither rejection of valid input programs nor silent
acceptance of invalid ones. Rather, they relate to unfriendly or unexpected behaviour
by the compiler.

14 ANSI C Release 3

Invalid local redeclarations are faulted, but with a misleading message about
'redefinition' (rather than 'redeclaration'). For example:

int f () { int f1 (int) ; int f1 (int, int) ; ...

Some seriously damaged sources can crash the compiler. The best (smallest) example
available is:

int C (int c)
switch (c)
case 1: do

/* } while (1); *I
case 2:;

return 0;

Recovery from illegal and undefined casts is sometimes wrong and may crash the
compiler. For example:

int f() {union {inti; char c;} u = 1;}

gives a fatal internal error. However, if '1' is enclosed in braces, as it should be, all is
well.

The (illegal) unary negation of a double causes a fatal internal error. For example:

void f () {double d; int ff () ; ff (-d) ; }

Code compiled by the C compiler does not strictly obey the ARM Procedure Call
Standard, which demands that all one-word aggregate results from functions be
returned in RO (all aggregates are returned via an additional, first address argument
to the function).

In -cc mode, cc generates bad code for extracting subfields from non-word-aligned
bitfields. For example:

struct {char x; int y:4;} z = {0,1};

int zy = z.y; /* bad code *I

This cannot happen in ANSI mode, or if a string of bitfields is word-aligned. For
example:

struct {int x:8; int y:4;} z = {0,1};
int zy = z.y; /* code is OK */

Known faults in the C library

Using the C library, it is not possible to perform an ungetc () immediately after a
call to scanf () which performed an ungetc (). CLK TCK remains defined as a
synonym for CLOCKS _PER_ SEC, in violation of the latest draft ANSI standard.

ANSI C Release 3 15

Known infelicities in Release 3 of cc

Expressions involving signed bytes and both flavours of short integer are not well
optimised (chars are unsigned in ANSI mode; signed in -pee mode).

Sequences of statements accessing bitfields belonging to the same word of a structure
are not well optimised.

Use of '=' in conditional contexts is not uniformly well checked. Simple cases are
caught and a warning is issued. Complicated cases go unnoticed, but this may be what
you want.

The diagnostic generated by typedef int INTFN (int) ; INTFN f {return 0; }
gives ancient form of initialisa.tion, which is less than helpful.

The diagnostic generated by int f (int
duplicate type specification of
than helpful. cc should say something like no
prototype declarato~

i) int i; {ret urn i; } generates
formal parameter i, which is less
declarator list may follow a

Some preprocessor messages refer to #ifdef when the fault occurs in a #ifndef;
similarly with #if I #elif.

Potential side effects (overflow) of FP operations are ignored in dead-code elimination.
Thus code like the following, in which the result of the computation is not used, will
not fault at run-time. For example:

int f() {double x = le38; x *= x; x *= x; x *= x; x *= x; x *= x; x *= x; }

© Copyright Acorn Computers Limited
Published by Acorn Computers Limited
Fulbourn Road, Cambridge CB 1 4JN
August 1989
Part number 04 70,109 Issue 1

16 ANSI C Release 3

