
..

I I

-~

ACORN
ANSI C RELEASE 4

cc
Source : ldf s : : Hard4 I $ I User I ~ e

Include: I adf s: : Hard4 . $, R:
--

r
Options

<$> CoNPi
T: adfs::Hard4.$.User

/'..P•An•t
Status: Sto

552
553 int Miin<>
554 {
555 It · --- initi«
556 buggy_init l ·
557

RO area liMitR~~....._ ___ _
BreakP..oi_llJJt· AaJ.n, line :;:; -

-- . ' ·1: ~' • @

Acornt

ACORN
ANSI C RELEASE 4

Status: Sto

II Acornl -

'·'"!."'·' ... '·'·'-'·' ... -'.'·~····~~-:-'."'.'.'-'.' ""

ii

Copyright ©Acorn Computers Limited 1991

Published by Acorn Computers Technical Publications Department

Neither the whole nor any part of the information contained in, nor the product
described in, this manual may be adapted or reproduced in any material form
except with the prior written approval of Acorn Computers Limited.

The product described in this manual and products for use with it are subject
to continuous development and improvement All information of a technical
nature and particulars of the product and its use (including the information
and particulars in this manual) are given by Acorn Computers Limited in good
faith. However, Acorn Computers Limited cannot accept any liability for any
loss or damage arising from the use of any information or particulars in this
manual.

If you have any comments on this manual, please complete the form at the back
of the manual, and send it to the address given there.

Acorn supplies its products through an international dealer network. These
outlets are trained in the use and support of Acorn products and are available
to help resolve any queries you may have.

Within this publication, the term 'BBC' is used as an abbreviation for 'British
Broadcasting Corporation '.·

ACORN , ARCHIMEDES and ECONET are trademarks of Acorn Computers
Limited.

UNIX is a trademark of AT&T

Published by Acorn Computers Limited

Release 4
ISBN I 85250 095 6
Part number 0470,529
Product number SKD35
Issue I , May l 99I

Contents

Contents iii

Introduction 1
Installation of Acorn Desktop C
The C compiler 2
This user guide 2
Useful references 5

Part 1 - Using the C tools 7

C tools and the DOE 9
Using C tools through Make 9
Editor throwback I 0
DDT debugging 13
Using FrontEnd on your programs 18
Making your own linkable libraries 19

cc 21
Getting sta rted with CC 21
C libraries 24
File naming and placing conventions 25
Include file sea rching 29
The SetUp dialogue box 33
The Setup menu 35
The Application menu 49
CC output messages 50
Command line interface 51
Worked examples 53

CMHG 59
Starting CMHG 59
The Application menu 60
Example output 61

Command line interface 61

iii

iv

ToANSI 63
ToANSI C translation 63
Starting ToANSI 64
The Application menu 65

Example output 65
Command line interface 66

ToPCC 67
ToPCC C translation 67
Starting ToPCC 68
The Application menu 69
Example output 69
Command line interface 70

Part 2 - Language issues 71

Implementation details 73
Identifiers 73
Data elements 73
Structured data types 76
Pointers 77
Arithmetic operations 77
Expression evaluation 78
Implementation limits 78

Standard implementation definition 81
Translation (A.6.3.1) 81
Environment (A.6 3.2) 8 I
Identifiers (A.6.3 3) 82
Characters (A.6 3.4) 83
Integers (A.6.3.5) 84
Floating point (A.6.3.6) 84
Arrays and pointers (A.6.3 7) 84
Registers (A.6.3.8) 84
Structures, unions, enumerations and bitfields (A.6.3 9) 85
Qualifiers (A.6.3.10) 85
Declarators (A.6.3 11) 85
Statements (A.6.3. I 2) 85
Preprocessing directives (A.6.3 I 3) 86
Library functions (A.6.3 14) 86

Portability 91
General portability considerations 91

ANSI C vs K&R C 94

The ToPCC and ToANSI tools 98

pee compatibility mode 98
Environmental aspects I 02

ANSI library reference section 105
assert.h I 05
ctype.h I 05
errno.h 106
float.h 107
limits .h I 07
locale.h I 07
math.h 108

setjmp.h 109
signalh 110
stdarg h 111

stddef.h 11 3
stdio.h 113
stdlib.h 127
string.h 136
time.h 141

Part 3 - Developing software for RISC OS 147

How to write desktop applications in C 149
Some general principles 149

Developing an application from scratch 151
More RISC_OSLib facilities 159
Using Draw files 167

Common application features 168
Displaying and editing text I 72

Tracing desktop applications 173
Where do you go from here? 174

Contents

v

vi

RISC OS library reference section 175
akbd 175
alarm 176
baricon 178

bbc 180
bbe: text output functions 180
txt: graphics output functions 181
bbc: other calls 184
co lourmenu 185
co lourtran 186
coords 191
dbox 195
dbox: creation and deletion functi ons 195
dbox fields 197
dbox: events from dialogue boxes 199
dbox: pending operations 20 I
drawfdiag 205
draw_: memory allocation functions 207
draw: unknown ob ject handling 209
drawferror 210
drawfobj 212
d rawftypes 216
drawmod 216
event 220
event: masking off events 222
fileicon 222
flex 223
font 225
fontlist 232
fontselect 233
heap 235
help 235
magnify 238
menu 239
msgs 242
OS 244
pointer 245

print 246
res 252
resspr 253

saveas 253
sprite 254

sprite: simple operations 255

sprite: operations on system/user area 255
sprite : operations on system/user area, name/sprite pointer 257

template 261

trace 263
txt 264
txt: interface functions 264
txt: general control operations 265

txt: operations on the array of characters 267
txt: layout-dependent operations 270
txt: operations on markers 271
txt: operations on a selection 272
txt: input from the user 273

txt : direct access to the array of characters 276
txt: system hook 276
txtedit 277
txtopt 282

txtscrap 283
txtwin 283
visdelay 284 ·

werr 285

wimp 286

Function prototypes 304

wimpt 312

wi mpt: control of graphics environment 314
win 316
win: menus 320
win: event processing 320
win: termination 321
xferrecv 323
xfersend 325

xfersend: caller-supplied function types 325
xfersend: library functions 326

Contents

vii

Contents

viii

Assembly language interface 331
Register names 332
Register usage 332

Control arriva l 333
Passing arguments 333
Return link 334
Structure results 334
Storage of variables 335
Function workspace 335
Examples 335

How to write relocatable modules in C 337
Getting started 337
Constraints on modules written in C 338
Overview of modules written in C 338
Functional components of modu les written in C 338

Overlays 351
Paging vs overlays 35 l
When to use overlays 352

Using memory efficiently 355
Guidelines 355
Recovery from lack of memory 355
Avoiding permanent loss of memory 356
Avoiding memory wastage 357
Using heap_alloc and heap_free 365

Machine-specific features 367
How to use the C library kernel 367
Calling other programs from C 374
The shared C library 376
#pragma directives 378
Storage management (malloc, calloc, free) 379
Handling host errors 379

Appendices 381

Appendix A: New features of Desktop C 383
Acorn Desktop C tools 383
New technical features 385
User guides 385

Appendix B: Errors and warnings 387
Interpreting CC errors and warnings 387
Warnings 389

Non-serious errors 397
Serious errors 407
Fatal errors 422
System errors 423

Appendix C: kernel.h 425

Appendix D: The floating point emulator 433
FPE280 433
Usi ng the compiler 434
Floating point requirements of applications 434

Subject Index 437

Function Index 447

Contents

ix

x

1 Introduction

A corn Desktop C is a development environment for producing RISC OS desktop
.l"l. applications and relocatable modules written m ANSI C. It consists of a
number of programming tools which are RISC OS desktop applications These
tools interact in ways designed to help your productivity, forming an extendable
environment integrated by the RISC OS desktop. Acorn Desktop C may be used
with its sister product. Acorn Desktop Assembler, to provide an environment for
mixed C and assembler development.

Acorn Desktop C includes tools to:

• edit program source and other text files

• search and examine text files

• convert C source and header text between ANSI and Unix dialects

• examine some binary files

• compile and link C programs

• construct relocatable modules entirely from C

• compile and construct programs under the control of makefiles, these being
set up from a simple desktop interface

• squeeze finished program images to occupy less disk space

• construct linkable libraries

• debug RISC OS desktop applications interactively

• con struct template files for RISC OS desktop applications.

Most of the tools in Acorn Desktop Care also of genera l use for construct ing
applications in other programming languages, and are, for example, suppli ed with
Acorn Desktop Assembler. These non-language-specific tools are described in the
accompanying Acorn Desktop Development Environment user guide.

Installation of Acorn Desktop C

Insta llati on of Acorn Desktop C is described in the accompanying Acorn Desktop
Development Environment user guide.

1

The C compiler

The C compiler
The Acorn C compiler for the Archimedes (the tool CC supplied as part of Acorn
Desktop C) is a full implementation of C as defined by the 1989 ANSI language
standard. To obtain this standard document, see the section entit led Useful references
on page 5. It is tested with the Plum-Hall C Validation Suite version 2.00 avai lable
at time of publication, and passes all sections, except for failing to produce two
required diagnostic messages, as described in the release note accompanying this
user guide in Acorn Desktop C.

This user guide

2

This guide is a reference manual for the C tools CC, CMHG, ToANSI and ToPCC
working as part of the development environment of Acorn Desktop C. These are the
only tools in the Acorn Desktop C product which are not used for programming in
other languages and described in the accompanying Acorn Desktop Development
Environment user guide. This manual also documents the C library support provided
and other aspects that are particular to this C product:

• special features of this implementation of the C language

• operating the Acorn Desktop C tools specific to the C language

• portability issues, including the portable C compi ler (pee) facility

• developing programs for the RISC OS environment:

• Desktop applications

• Relocatable modules

• Overlays

• Calling other programs and languages from C.

This guide is not intended as an introduction to C and does not teach C
programming, nor is it a reference manual fo r the ANSI C standard. Both these
needs are addressed by publications listed in the section entit led Useful references on
page 5.

This guide is organised into four parts:

Part I: Using the C tools

Part 2: Language issues

Part 3: Developing software for RISC OS

Part 4: Appendices

Introduction

Part 1: Using the C tools

Thi s part of the guide describes the operation of the four C specific programming
tools. It consists of five chapters, the first describing the interaction of the C tools
with the rest of the Desktop Development Environment, the others being each
devoted to individual tools . Examples in the text and on disc are used to illustrate
several points.

The chapters are:

• C tools and the DDE

• cc
e CMHG

e ToANSI

e ToPCC

Part 2: Language issues

This covers issues to do with the C programming language itself, in particular
those parts of the ANSI standard that are necessarily machine- or operating
system-specific It also includes a chapter on portability to help with porting
appl ications in C to and from RISC OS.

The chapters are:.

• Implementa tion details
How Acorn C implements those aspects of the language which ANSI leaves to
the discretion of the implementor.

• Standard implementation definition
How Acorn C behaves in those areas covered by Appendix A6 of the draft
standard (which lists those aspects which the standard requires each
implementation to define).

• Portability
The chapter covers:

• portability considerations in general

• the major differences between ANSI and 'K&R' C

• using the pee compatibili ty mode of the Acorn compi ler

• standard headers and libraries

• environmental aspects of portabi lity.

I ANSI library reference section
This chapter works through the headers of the ANSI standard library,
(assert . h to time . h), outlining the contents of each one:

3

4

• function prototypes

• macro, type and structure definitions

• constant decla rations.

Part 3: Developing software for RISC OS
This part of the Guide tells you how to write software in C for the RISC OS
environment. Examples in the text and on disc are used to illustrate each type of
program development.

The chapters are :

• How to write desktop applications in C
This covers the principles of designing an application to be integrated into the
RISC OS desktop environment.

• RISC OS library reference section
A list of fully commented headers for the RISC OS library. This library provides
the high-level interface to RISC OS, with all the calls needed to program for the
Wimp environment.

• Assembly language interface
How-to handle procedure entry and exit in assembly language, so that you can
write programs which interface correctly with the code produced by the C
compiler.

• How to write relocatable modules in C
Relocatable modu les - the building blocks of the RISC OS operat ing system -
are needed for device drivers and similar low-level software.

• Overlays
This chapter explains how to write an appl ication using overlays, wit h a worked
example as an illustration.

• Using memory efficiently
This chapter gives hints and describes how the C library memory allocation
works, to aid you in writing memory efficient RISC OS appl ications and
relocatable modules.

• Machine-specific features
This chapter contains the fo l lowing sections

• The C library kerne l

• Ca lling other programs from C

• The shared C library

• #pragma di recti ves

• Storage management

Introduction

• Handling host errors.

Part 4: Appendices

Appendix A: New feat ures of Desktop C

This is the fourth re lease of the C compiler product for Acorn computers running
the RISC OS operating system. The appendix high lights all those features that are
new since the previous re lease (re lease 3).

Appendix B: Errors and warnings

Messages produced by the compiler, of varying degrees of severity.

Appendix C: kernel.h

Fu lly-commented headers for the C library kernel. This provides the technical
detai ls needed to support the explanatory section on the kerne l in the chapter
Machine-specific features .

Appendix D: The floating point emulator

This covers what you need to know about the floating point emulator in order to
use the C compiler system and write applications using it.

Conventions used

Throughout this Guide, a fixed-width font is used for text that the user should type,
with an italic version representing classes of item that would be replaced in the
command by actual objects of the appropriate type. For example:

cc options filenames

This means that you type cc exactly as shown, and rep lace options and
f i 1 enames by specific examples.

A bold version of the same font is used for text that the computer responds with.

The abbreviation DOE is used in later chapters to mean Desktop Development
Environment.

Useful references

C programming
• Harbison, SP and Stee le, G L, (1984) AC Reference Manual. (second edition)

Prentice-Hall. Englewood Cliffs. NL USA. ISBN 0-13-109802-0.

This is a very thorough reference guide to C. including a usefu l amount of
information on the ANSI C standard.

5

Useful references

6

Since the Acorn C compiler is an ANSI compiler, this book is particularly
relevant, but you must get the second edition for coverage of the ANSI
standard .

• Kernighan , B Wand Ritchie, D M, (1988) The C Programming Language (second
edition). Prentice-Hall, Englewood Cliffs, NJ. USA. ISBN 0-1 3- 11 0362- 8.

This is the original C 'bible', updated to cover the essentials of ANSI C too .
• Koenig, A. (1989) C Traps and Pitfalls, Addison-Wesley, Reading, Mass. ISBN

0-201-17928-8 .

RISC OS

This book explains how to avoid the most common traps and pitfalls that
ensnare even the most experienced C programmers. It provides informative
reading at all levels .

• The User Guide supplied with your computer, which describes how to use the
RISC OS operating system and the applications Edit. Paint and Draw.

• The RISC OS Programmer's Reference manual.
• The RISC OS Style Guide.

Reference cards

Included with this Guide are three reference cards, summarising:
• the contents of the release discs

• an overview of the insta lled Acorn Desktop C directory structure
• an overview of the structure of the RISC OS library

The ANSI standard

The American National Standard for Information S11stems - Programming Language C is
available with the reference number ANSI X3 . l 59- l 989 for £45 .00 from :

British Standards Insti tution
Foreign Sales Department
Linford Wood
Milton Keynes
MKl4 6LE

Members of the BS! can order copies by telephone; non-members should send a
cheque payable to BS!

However, you should find the coverage of ANSI C in this manual and the books
li sted above adequate for all but the most demanding requirements .

Part 1 - Using the C tools

7

8

2 C tools and the DOE

The C compiler (CC) , C module header generator (CMHG) and the C dialect
conversion programs ToANSl and ToPCC are the only tools included in Acorn

Desktop C which are specific to programming in the C language, and hence
described in this volume. All the other tools , such as the editor and debugger are
described in detail in the accompanying Acorn Desktop Development Environment user
guide

CC, CMHG, ToANSl and ToPCC all fit into the non-interactive class of DOE tools -
once you have started one of these tools with selected options, you cannot interact
with it to modify its behaviour, except to view output and pause or stop it The DDT
debugger is an example of an interactive DOE tool. The non-interactive DOE tools
all have many features in common, and these are described in more detail in the
chapter entitled General features in the accompanying Acorn Desktop Development
Environment user guide.

To load CC, CMHG, ToANSl or ToPCC into the desktop, open a directory display on
the DOE directory of your work disk and double click on !CC, !CMHG, !ToANSI or
!ToPCC. The tool icon then appears on the icon bar Each icon has the standard
screwdriver-and-spanner appearance of all the non-interactive DOE tools:

From these icons you have access to the interface to set opt ions and start tasks
unmanaged by Make. Each of these interfaces has its own chapter later in this
guide

Using C tools through Make

The ODE Make tool is designed to manage efficient const ruct ion of programs and
libraries, usually from several sou rce files It is designed to avoid needless
re-processing of unaltered source files and ensure consistent construction by a
method specified in a Makefile For more details, see the chapter entitled Make in
the accompanying Acorn Desktop Development Environment user guide.

9

Editor throwback

The C tools, like the other non-interactive DOE tools, can be used by Make to
process files. When managed by Make, CC, CMHG, ToANSI and ToPCC are
controlled by command lines issued by Make, and their icons need not be present
on the icon bar -you don't need to double click on !CC, !CMHG, !ToANSI or
!ToPCC before starting a Make job using these tools. The command lines issued by
Make to the C tools are calculated from the contents of the Makefile controlling the
job in progress The command lines understood by each C tool are described in the
chapters on individual tools later in this volume. You do not need to understand
the details of the command lines contained in you r Makefiles. Instead, you can
adjust them using the same desktop interface as that available from each tool 's
icon bar icon. To do this you follow the Make Tool options menu item and click on
the name of the tool concerned.

Editor throwback

10

During development of a program you may well find that you spend a high
proportion of your time repeatedly editing, compiling and testing. Throwback to
the SrcEdit editor is designed to make this development cycle very quick and easy
when removing compilation errors from your sources.

If you enable the CC Throwback option and compile a file which causes an
compiler error, then a Browser window is presented by the editor (assuming
SrcEdit and the DDEUtils module are loaded) . Double clicking Select on an error
line in thi s browser window makes the editor open an edit window displaying the
source file causing the error, with the offending line in view and highlighted, ready
for correction . This facility can be used whether compilation is being managed by
Make or performed using the CC icon bar interfaces.

Example throwback session

First double click on !SrcEdit and !CC in a directory display to load them as
applications with icons on the icon bar. Next open a directory display on the
subdirectory User . CornpErr . c to show the text file CornpErr containing the
source bf the program example of that name.

CornpErr is a trivial C program which when run prints Hell o Wor l d on the
screen . It is written to be compiled with integral link step by CC to form an
executable image file . Its source contains a simple error which will be detected by
CC when you try to compile it

C tools and the DOE

Drag the source file CornpErr to the CC icon to make the CC SetUp dialogue box

appear with the Source writable icon initialised to the absolute file name. Ensure

that the Throwback option is enabled. The correct dialogue box appearance is as

follows:

'11 i3 I cc
Source: ldDisc4.$.User.Co"pErr.c.Co"pErr~

Include: I c: I
... Options
0Co"Pile only . 0Debug

0Preprocess only ~Throwback

I Run I I Cancel I

Click Menu on the setup box and ensure that the Work directory item on the menu

displayed has the default setting of·'"- Click on the Run button on the SetUp box

to start compilation. This has the normal effect of removing the setup box and

putting the CC output display on the screen, but almost immediately afterwards

the compiler produces an error and requests SrcEdit to display a Throwback error

browser:

Double click Select on the compi ler error message in the browser:

expected ')' or ' '
' - inserted ') ' before '.'

'

11

12

SrcEdit displays the source file with the offending line that caused the error clearly
highlighted:

Examining this line closely shows that a closing bracket is missing before the
ending semicolon. Insert this bracket in SrcEdit and save the file Click Select on
the CC icon bar icon and click the Run button to repeat the last compilation If you
have changed the CornpErr source correctly, the compilation should now
complete with no errors, hence without bringing back the SrcEdit browser.

When the CC save dialogue box appears, click on the OK button to save the
executable file produced in the directory User. CornpErr. Now double click Select
on the newly created executable image file in a directory display The image file
shou ld run, printing the Hello World message in a RISC OS run window:

' ······ Run adfs: :HardDisc4.$.User.Cofril>Eff.CofllPErr
Hello World

Press SPRCE or click ~ouse to continue

DDT debugging

C tools and the DOE

The DDT debugger is designed to debug RISC OS desktop applications or

command line programs written in C (but not relocatable modules). You can debug

your C program at machine level (ie displaying current execution position on a
disassembly of memory) or more conveniently, at source level (ie di splaying

current execution position as a line of C indicated in your source file) .

To debug your program at source level you must construct it with the Debug
option of the tools CC and Link enabled. Executing a binary linked in this way or

dragging it from a directory display to the DDT icon bar icon starts a debugging

session on it. See the chapter entitled Desktop debugging tool in the accompanying

Acorn Desktop Development Environment user guide for more details of DDT

Example DDT session

This session demonstrates source level debugging of a RISC OS desktop

application written in C.

First double click on ! Boot. then ! DDT and !CC in the DOE directory display to load

them as applications with icons on the icon bar. Next open a directory display on

the subdirectory User . ! Buggy . c to show the text file Buggy containing the

source of the program example of that name.

Buggy is a complete RISC OS desktop application with its !Runlmage executable

image file constructed from the one C file mentioned above. The C makes use of
calls to the RISC_OSLib library, and implements an application which when

working behaves almost identically to Balls64 -clicking Select on its icon bar

icon displays a RISC OS window full of coloured balls . A bug has been deliberately

added to Buggy for this session. resulting in the window not appearing when you

click on its icon.

Drag the text source file of Buggy to the CC icon on the icon bar to bring up the CC
setup dialogue. box. Ensure that the Compile only option is disabled then click on

the Run button to start compilation. Save the executable image file as
User . ! Buggy . ! Run Image, then double click Select on ! Buggy The Buggy icon
shou ld appear on the icon bar, with an appearance similar to that of Bal ls64 , but

with a black cross over it:

Try clicking Select on thi s icon . (Nothing happens, but the balls window is

supposed to appear. ..)

13

14

Click Select on the CC icon, and repeat the previous compilation, this time
ensuring that the Debug option is enabled. Save ! Run Image as before. You may
notice that the icon of the ! Run Image file now has a bug crawling on it

Quit the previously loaded Buggy application from the icon bar. then double click
on !Buggy again to start a DDT session of its !Runlmage program The two main
DDT windows appear, with the application in its initialisation code before reaching
your source:

DDT: adfs::HardDisc4.S.User.!Bu . !Run!Ma e

Status: Initialisation

If you had inspected or written the source code of Buggy, you would have known
that the procedure buggy _leftclickproc is registered during initialisation as
the handler for clicking Select on the Buggy icon. A sensible first step is therefore
to set a breakpoint on entry to this procedure to see if it is ever called.

Clicking Menu on either DDT window displays the DDT menu , from which you gain
access to its many features. For a detailed description of these see the chapter
entit led Desktop debugging tool in the accompanying Acorn Desktop Development
Environment user gu ide.

C tools and the DOE

Select on the Breakpoint item to bring up the dialogue box for setting
breakpoints Type the name buggy_leftclickproc in the writable icon, then
click on the at Procedure action button to set the desired breakpoint:

Now run your application by clicking Select on the DDT menu Continue item. If the
Stop at entry DDT option is enabled, execution stops on entry to the C code in
main. This is of no interest now, so merely click on Continue again to proceed.
DDT displays disappear for the minute , and Buggy executes, putting its icon on the
icon bar as before Next click Select on the Buggy icon. The DDT windows reappear,
indicating that the breakpoint has been reached

15

16

We know that buggy _le ftclickproc is being reached, but it isn't working
properly, so a sensible thing to do is to single step through its code. To do this,
click on the Single step item on the DDT menu to bring up the single step dialogue
box:

Use this to single step by one source line at a time by clicking Select on the OK
button, and watch where execution is going. Looking in the DDT Context window,
you can see that the main body of this procedure is being stepped straight past
without being executed. Enlarging and scrolling this window lets you examine the
source of this procedure and see that the condition not being met is that the
variable displaying is not set to FALSE. Use the Display dialogue box of DDT to
examine its contents:

Dis la

Rather than having a value of 0 or I as you would expect of a flag variable, it
contains a strange large number Perhaps it is being corrupted.

To see if the variable is being corrupted, we use the Watchpoint facility of DDT to
see where displaying is being changed First you must restart Buggy, as the
variable already has its strange value at this stage. Select Quit on the DDT menu to

C tools and the DOE

leave the session, then double click on ! Buggy to restart it. The DDT windows

appear with Buggy in its initialisation state again Use the Watchpoint dialogue

box of DDT to set a watchpoint on the variable displaying:

List I Re111011e a 11 I

Now use Continue to set Buggy running again. The DDT windows reappear,

showing that displaying has changed to its si lly va lue. Now use the Display
dialogue box to show a stack backtrace. This shows that the line of your source

executing when displaying changed was line 542 of the C source. You now have all

the clues you need from DDT.

Quit DDT and load the C source of Buggy into SrcEdit. Inspect ing the offending line

(using SrcEdit GOTO) shows that it is nothing to do with displaying, the only

variable used being called trans. Look at the definition of trans (the first

occurrence of the string trans in the sou rce file) . It is a static array, followed by

the static variable displaying. If you look at other arrays of the same type as

trans, you will see that they all have 256 elements rather than 252. So, the

solution is to change the number of elements of trans from 252 to 256 and save

the source file .

17

Using FrontEnd on your programs

Reconstruct Buggy with CC. this time with Debug disabled, and double click on
! Buggy. The icon appears as before, so click Select on it and the Display window
now appears:

The problem should now be cured. For the best effect, set the screen mode to a 256
colour mode such as 15.

Using FrontEnd on your programs

18

FrontEnd is a relocatable module supplied as part of the Acorn Desktop C product
which provides RISC OS desktop interfaces for non-interactive command line
programs The DOE non-interactive tools (such as CC and CMHG) are each
command line programs supported in RISC OS by FrontEnd which gives you the
effect that each is a fully multitasking windowed RISC OS application . See the
chapter entitled General features in the accompanying Acorn Desktop Development
Environment user guide for more details of non-interactive ODE tools.

You can use the power of FrontEnd to produce your own RISC OS applications. To
do this you need to construct:

• A suitable command line program

• A Templates file (constructed with FormEd)

• A Sprites file (constructed with Paint)

• A !Run file

• A ! Help text file containing a short description of your program

• A Messages text file

• A Desc front end description file.

C tools and the DOE

To be suitable, your command line program has to be non-interactive. This means
it should start with a command line, then run to error or completion without any
further user interaction, outputting reports as screen text. A compiler such as CC
fits this description, but an editor such as SrcEdit does not.

The Desc front end description file contains a specification of the appearance and
function of the desktop interface to be provided for your program by FrontEnd. It is
written in a special description language understood by FrontEnd. For more details
of how to produce this file see the chapter entitled Extending the DOE in the
accompanying Acorn Desktop Development Environment user guide. You may find it
easier to make this file by altering a description belonging to one of the
non-interactive tools rather than writing your own from scratch.

The tool ToANSI is a simple example of the non-interactive DOE tools. You may
find it instructive to open a viewer on the directory DDE.!ToANSI and examine the
file Desc and others.

Making your own linkable libraries
Linkable libraries, which are usually filed in o subdirectories like object files, are
collections of many object files stored in one file When presented to Link as an
input file, the referenced object files within a library are linked into the output file,
but those not needed are left out. A linkable library is therefore the recommended
way of storing a selection of useful procedures for re-use in a number of programs.
You may well find that this facility can save you a lot of time.

Use the LibFile tool to construct and modify linkable libraries. Use the DecCF tool
to decode information about an existing library.

The library RISC_OSLib.o RISC_OSLib supplied with Acorn Desktop C is a linkable
library constructed with LibFile. Try taking a copy of it and using DecCF and Lib File
to examine it and extract and replace object files from it.

19

20

3 cc : fr~···r~: : ,\ .~ : : : -~ ' ,, : -~ :
/ ' - ... :< '

c

CC is the C compiler of Acorn Desktop C. It is a full implementation of ANSI C as
described in the chapter entitled Introduction on page I. It processes text files

containing the source and headers of programs into linkable object files. It can
also drive Link directly (without double clicking on ! Link to put its icon on the icon
bar) to produce executable image files.

Like other non-interactive DOE tools, CC can be managed by Make, with its
compiling options specified by the makefile passed to Make. For such managed
use, CC is started automatically by Make -you don't have to load CC onto the icon

bar.

The characteristics of CC as a language implementation are defined in parts 2 and
3 of this volume. Most of the rest of this chapter covers the CC options. and gives
some programming examples.

If you are new to RISC OS and the Acorn C compiler, read the whole of this chapter
before starting to use the C compiler system. If you are an experienced C
programmer. you will find this chapter essential for reference, and may choose to
tackle the section entitled Worked examples on page 53 first.

Getting started with CC
Like other non-interactive DOE tools, CC can be managed by Make, with its
compiling options specified by the makefile passed to Make. For such managed
use. CC is started automatically by Make -you don't have to load CC onto the icon
bar.

To use CC directly, unmanaged by Make, first open a directory display on the DOE
directory, then double click Select on !CC. There is no file type to double click on to
start CC - CC owns no file type unlike, for example, Draw. The CC main icon
appears on the icon bar:

21

Getting started with CC

22

Clicking Select on this icon, or dragging a C source file from a directory display to
this icon, brings up the CC SetUp dialogue box. To see this work, try opening a
directory display on the directory User. Hel low . c and drag the source text file
Hell ow to the CC icon. The CC SetUp dialogue box appears:

~1(:31 cc
Source: lardDisc4, $,User, Hel loW. c, Hello~

Include: I C: I
"" Options
<) Cofllpile only 0Debug

<)Preprocess only IB1] Throwback

I Run I I Cancel I

As you have dragged a source file to bring up this dialogue box, its name appears
in the writable Source icon, otherwise this icon would have appeared containing
the name of the last filename entered there. It would be empty if there were no
previous filename.

Clicking Menu on the SetUp dialogue box brings up the CC SetUp menu

Co111flland line ¢
Module code
Profile
Listing
UNIX pee
Keep co111111ent s
Feature ¢
Default path ¢
Debug options ¢
Libraries ¢
Rsse111bler
Predefine ¢
Undef ine ¢
Suppress ¢

.J Work di rectory ¢

Other ¢

cc

The SetUp dialogue box and menu specify the next compilation to be done. You
start the next job by clicking Select on the Run action button on the dialogue box
(or Command line menu dialogue box) Clicking Select on the Cancel action
button removes the SetUp dialogue box and clears any changes you have just
made to the options settings back to the state before you brought up the SetUp
box. The options last until you adjust them again or !CC is reloaded, or you can
save them for future use with an item from the main icon menu.

Ensure that the option settings are the defaults, as in the above pictures Click on
the Run button to compile the Hell ow example with an integral link step. Save
the executable image file produced as User . Hell ow . HelloW, then double click
Select on its name in the directory display to run it. The program runs, putting a
Hello World message in the standard RISC OS command line window:

Run adfs::HardDisc4.$.User.HelloW.HelloW
Hello World

Press SPACE or click ~ouse to continue

In processing HelloW in thi s example, the source file was first compiled, then
linked. CC operates in a work directory. This is controlled by the Work directory
option on the CC SetUp menu. In the example, the source was in the directory
User . HelloW . c, and the option had its default setting, so the work directory was
User. Hell ow . c. ", ie User . Hell ow. The source file was first compiled to form
an object file in the o subdirectory of the work directory- the file
User. Hel low . o. Hel low. Since the CC Set Up dialogue box option Compile
only was not enabled, thi s object file was then linked with the object file
CLib . o. Stubs which gives access to the shared C library ANSI functions such as
printf, to produce the executable image file you saved.

If you request assembly language or list ing output from a compilation by enabling
the CC SetUp menu options Assembler or Listing, these are placed in s or 1

subdirectories of the work directory respectively Like an object file produced by

23

C libraries

C libraries

CC, these have the same filename as the source. The h subdirectory of the work

directory is the place to put your program headers when you refer to them with a C

source line such as :

#include "myheader .h"

For more details of file names and directories used, see the section entitled File

naming and placing conventions on page 25 .

There are two types of library provided to support the C compiler:

• The standard ANSI library (also referred to as the C library)

This provides all the standard facilities of the language, as defined by the ANSI

standard document. Code using calls to the ANSI library will be portable to

other environments if an ANSI compiler and library are available for that

environment.

The ANSI library used with the Acorn C compiler system is called the shared C

library. It is a relocatable module, $.!System.modules Clib, and must be

loaded in the relocatable module area before executing C programs using it. C

programs are linked with a small piece of code and data , called Stubs, which

interfaces with the shared C library. Stubs is found in the directory CLib . o.

The idea behind the shared C library is that a number of applications which are

resident in memory at the same time can use it, thus economising on RAM

space. It also saves space on disc, benefiting users with single floppy disc

drives.

• The operating system library

This provides you with routines to harness the special facilities of the

operating system, in particular the Wimp environment. Code using calls to this

library will not port to other environments.

The operating system library used with the Acorn C compiler system is the

RISC OS library, RISC_OSLib It provides all the calls you need to program the

Wimp environment and write desktop applications. The linkable library file

RISC_ OS Lib is in the directory RISC_ OSLib . o, and its headers are in

RISC_OSLib . h ..

Shared C library

24

The shared C library provided with Acorn Desktop C is a new version, replacing

those provided with previous products such as ANSI C Release 3. It is backwards

compatible so that existing software will run with it. However, software compiled

with Acorn Desktop C will not work with the old shared C libraries .

cc

C programs are linked not with the C library but with a small piece of code and data

called stubs. The stubs contain your program's copy of the library's data and an

entry vector which allows your program to locate library routines in the C library

module.

Use of the shared C l ibrary

• saves space on disc

• makes programs load faster

• costs practically nothing at run time (for example, the Dhrystone benchmark

runs just as quickly using the shared C library as when linked stand-alone

with ANSILib)

• typically costs less than 30KB of memory (the shared C library plus stubs

occupy about 65Kb, whereas most C programs include about 40KB of
ANSI Lib)

Without the shared C library, it would not be possible to pack so much into Acorn

Desktop C.

Updating shared C libraries in your machine or those of people using the programs

you have constructed has to be performed with care to avoid crashing and possible

loss of data.

When an application such as Edit or SrcEdit is run which uses the shared C library,

the application needs to know where the library module is in memory, so that it

can locate the library routines when required. If an application such as Edit is

installed when you replace the shared C library in memory with another version

(with *RM Load from the command line or by double clicking on the CLib module

in a directory display) the application will crash the machine. This is because it is

left pointing at the old addresses of routines which have moved.

The solution to this problem is simple-ensure that at boot up your machine loads

CLib from ! System .modules and that the latest CLib is in this directory, then

reboot your mach ine. The installation of the DDE product on your machine

ensures that this takes place if you have a hard disc, or when the DOE is booted if

you have only floppy discs. You have to ensure that this takes place on the

machines of anybody using the software you have produced with Acom Desktop C.

File naming and placing conventions

This section explains the concept of a work di rectory, and describes the naming

conventions used to identify the different classes of file you will come across when

using Acorn Desktop C.

25

File naming and placing conventions

26

Work directory

CC operates in a work directory The work directory is where CC places all output
files produced by it which are not explicitly placed by you by dragging from a Save
dialogue box to a directory display. This includes object files to be linked by an
integral link step, assembly language output and listing output. The work directory
is also a place where some input source and header files are looked for - see the
next sections for more details.

For previous Acorn C compilers, such as that provided in ANSI C Release 3, the
compiler work directory was the currently-selected directory of the
currently-selected filing system. Since several CC tasks and other DOE tasks
depending on work directories can be multitasking, alt operating at the same time,
the single RISC OS current directory can no longer be used as the work directory by
CC.

When managed by Make, the CC work directory is simply the directory containing
the makefile controlling the job

When not managed by Make, the CC work directory is formed from the directory
containing the source file, modified by the relative path name specified by the
Work directory SetUp menu option The default Work directory SetUp menu
value is/\ Thus when, for example, compiling User . Hell oW . c . Hell ow with
default settings, the work directory is User . He l l ow . c . ", ie User . He l l ow.

A typical directory arrangement is:

!MyAPP

Makefile !Runlmage
I
~

The resource files (such as ! Run, Templates) normally found in an application
directory are not shown above. With directories arranged as above and default
option settings, the managed and unmanaged work directories are the same -
User . ! My Ap p .

cc

Filename conventions

The Acorn C system, in common with many other C systems, uses naming

conventions to identify the classes of file involved in the compilation and linking

process. Many systems use conventional suffixes for this. For example, the suffix

. c denotes C source files on UNIX and MS-DOS systems. This convention clashes

with Acorn's use of the full-stop character in pathnames. It is more natural under

Acorn filing systems to use a prefix convention, eg c . foo, where c is the directory

containing C source files , and foo is the filename.

However, portability is an increasingly important issue in the C world . To this end,

CC recognises the standard file naming conventions and performs the appropriate

transformations to construct valid RISC OS pathnames The following sections

summarise the conventions for referring to source, include, object and program

files.

Rooted filenames

A filename is rooted if it is

• a RISC OS filename beginning with a$ or an &. For example:

$.RISC_OSlib.h.baricon & .h. myheader

• a UNIX filename beginning with a/. For example:

/RISC_OSlib/baricon .h

• an MS-DOS filename beginning with a\. For example:

\library\baricon.h

Rooted filenames are used by CC as absolute specifications of filenames.

independent of work directories. sea rch paths, etc. Rooted UNIX or MS-DOS

filenames are converted into the Acorn syntax and prefix forms.

Source files

Source files to be compiled are specified on the CC command line produced from

your settings of the CC SetUp dialogue box and menu for use unmanaged by Make,

or produced by Make for managed development . The action of dragging a source

file to the CC SetUp dialogue box speci fies the file as an absolute rooted filename.

Make normally specifies source files relative to the work directory.

C source files will be looked for relative to the work directory in the subdirectory c.

To aid portability, a file specified as foo . c in a makefile will be looked for in

@. c . foo, where@ means the work directory.

27

File naming and placing conventions

28

Include files

The way in which the compiler searches for included files is dealt with in detail in

the section entitled Include file searcning on page 29. Here we describe the issues of

naming header files and how to name them in #include lines in you r C program

source.

Include files are often headers for libraries. and are incorporated by issuing the

#inc 1 u de directive - dealt with by tt)e preprocessor - at the start of a source file .

For instance. in the HelloW example:

#inc lude <s tdio.h>

By convention, header files are placed in subdirectory h. This convention is

followed here. You can use subdirectory h of the work directory for your own

header files, which can be incorporated with a source line like:

#inc lude "my fil e .h"

Note that both the example filenames s tdio .hand myfile. hare in suffix form

rather than Acorn prefix form. This is because you can make use of the filename

processing of CC to interpret these, leaving program lines which do not need

altering to port them to machines expecting suffixes.

To facilitate the porting of code from UNIX and MS-DOS to RISC OS, UNIX-style

and MS-DOS-style filenames are translated to equivalent RISC OS-style filenames

For example:

.. / inc lude / de f s .h
.. \c l s\hash.h

i n c ludes.h

but

sys t em.def s

is translated to
is translated to
is translated to

is translated to

"' . include .h.defs
"' . cls . h . hash
h. includes

system.de f s

In the same way, the lists of directory names given as arguments to the compiler's

Include and Default path SetUp options (see below) are translated to RISC OS

format before being used, in the rare event that this is necessary.

Object flies

If you are making unmanaged use of CC. and compile one file with the SetUp

dialogue box option Compile only enabled, you contro l the place the output

object file is saved to using a standard Save dialogue box. With Compile only

disabled the object files created by the compiler are stored in the directory o

within the work directory Thus the result of compiling c . sieve will be found in

o. s i eve.

cc

Program files

If the CC Set Up dialogue box option Compile only is not enabled, after compiling

sources to object files , CC links them with the ANSI library stubs to produce an

executable program file. You may find it convenient to save this program file in the

work directory itself - there is no conventional suffix for these.

Compilation list files

If the CC Set Up menu option Listing is enabled, a file containing a compilation

listing for each compiled source file is created in the 1 subdirectory of the work

directory. Thus compiling c . sieve with Listing enabled will by default result in

the list file 1 . sieve being created.

Assembly list files

If the CC SetUp menu option Assembler is enabled, no object code is generated.

Instead, an assembly listing of the code is created. If only one assembly listing file

is produced, you save it from a standard save dialogue box. If more than one is

produced these are placed in the subdirectory s of the work directory. Thus

compiling c. sieve with Assembler enabled can result in the assembly language

files. sieve being created.

Filename validity

The compiler does not check whether the filenames you give are acceptable -

whether they contain only valid characters and are of acceptable length - this is

done by the filing system.

Include file searching

The process of converting text C source to linkable object files of binary code can

be seen as a pipeline of several processes The first stage is preprocessing the

source. It is at this stage that the text of header files is brought in at the position of

#inc 1 ude directives in the C source text.

The CC preprocessor handles #include directives of two forms:

#include <f ilename>

or

#include "filename"

You will normally include three types of header file :

• headers for the ANSI C library

• headers for the RISC OS library

29

Include file searching

30

• your own include files .

A special feature of the Acorn C system is that the standard ANSI headers are built
into the C compile r, and are used by default. By writing the filename in the angle
bracket form, you indicate that the include file is a system file, and thus ensure that
the compiler looks first in its built-in filing system Writing the filename in the
double quote form indicates that t\le include file is a user file. Of the three
common types of header above, only the ANSI headers should be referred to as
system files in angle brackets.

The headers for the non-ANSI parts of the main C library - k ern e l, pra gmas ,
SWis and v arargs - are not built in to the compiler. By default, they will be
found by the compiler in Clib. h .

Headers for the RISC OS library are located in RI SC_ OS 1 ib. h You can make use
of these by dragging the name of the directory RISC_OSLib from a directory display
to the Include icon on the CC SetUp dialogue box. For example, in the !Balls64
example in Use r . ! Ball s6 4 :

in the source # inc l ude "wimp . h" etc

on compilation drag the directory name RISC_OSLib to the Include SetUp icon .

This is illustrated in the section entitled Worked examples on page 53. Placing the
filename in double quotes in the #include directive indicates a user file .

As mentioned before, you can use the subdirectory h of the work directory for the
third common type of header file -your own header files, which you refer to as user
files with directives such as :

#i n c lude "my f i le . h "

This is all you need to know fo r basic use of CC with largely default options The
rest of this section provides a level of detail useful for reference or studying if you
wish to use CC in a non-standard way.

The way in which the compiler looks for included files depends on three factors :

• whether the filename is rooted

• whether the filename in the #include directive is between angle brackets<> or
double quotes " "

• use of the CC Include and Default path SetUp opt ions (including the special
filename : mem) .

If a filename is not rooted (as defined earlier) CC looks for it in a sequence of
directories called the search path .

cc

Search path

The order of directories in the search path is as follows:

I the compiler's own in-memory filing system (only for <f ilename>)

2 the 'current place' (see the section entitled Nested includes on page 31) (only for
" f i 1 ename ")

3 arguments to the Include option, if used

4 the system search path:

• the path given as an argument to the Default path CC SetUp menu option
(see below), or

• the value of the system variable C$Libroot, if this is set and the Default
path CC SetUp menu option is not enabled; otherwise

e $.Clib.

Unless the CC SetUp menu option Default path is enabled:

• for <filename> the search path (in order) is I, 3, 4.

• for" filename " the search path is 2, 3, 4.

If Default path is used, place I (the in-memory filing system) is omitted for
#include <filename>. It can be reinstated by giving the pseudo-filename
: mem to the Include or Default path Set Up options.

Nested includes

The current place is the directory containing the source file (C source or #included
header) currently being processed by the compiler. Often, this will be the work
directory

When a file is found relative to an element of the search path, the name of the
directory containing that file becomes the new current place. When the compiler
has finished processing that file it restores the old current place. So at any given
instant, there is a stack of current places corresponding to the stack of nested
#includes.

For example, suppose the current place is $. include and the compiler is seeking
the #included file " sys . defs. h " (or" sys. h. defs ", " sys/defs . h", etc).
Now suppose this is found as:

$. include.sys . h . defs

Then the new current place becomes$. include . sys, and files #included by
h. defs , whose names are not rooted, will be sought relative to
$.include.sys

31

32

This is the search rule used by BSD UNIX systems If you wish, you can disable the
stacking of current places using the CC SetUp menu option Feature with the
argument K, to get the search rule described originally by Kernighan and Ritchie in
The C Programming Language. Then all non-rooted user includes are sought
relative to the directory containing the source file being compiled

In all this, the penultimate . c and . h components of the path are omitted. These
are logically part of the filename - a filename extension - not logically part of the
directory structure. However, directory names other than c, h, o and s are not so
recognised (as filename extensions) and are used 'as is'. For example, the name
sys. new. def s is exactly that: it is not translated to sys . def s . new and, if it is
found, the new part of the name does become part of the new current path.

Use of :mem

You can use the CC Setup menu option Default path to provide your own system
search path, as mentioned in item 4 of Search path, above. The compiler will then
use the argument you give to the Default path option as the system search path.
You will only require this feature if you use implementations of the C library other
than those provided with the Acorn C system.

Use of the Default path option also removes the in-memory filing system from the
front of the path searched for in #include <filename>. It can be reinstated by
using the pseudo-filename : mem as an argument to the Default path or Include
options. If :mem is included in the search path in this way, its position in the path
is as specified - not necessarily first- so you can take complete control over where
the compiler looks for #included files.

Use of C$Libroot

C$Libroot is an environment variable that you can use to provide your own
system search path, as shown in the Search path section above. It is not needed for
normal use of the compiler.

The compiler will use the value of C$Libroot, if set, as the system search path
By default, C$Libroot is not set.

To set the value of C$Libroot to, for example, " $. myl ib", at the* prompt type

*set C$Libroot $.mylib

This variable is also used by the C compiler system as the library search path, if set.
With the example given, the compiler will now look for include files in
$.myJ_ib. h, and for libraries in $.mylib . o.

The ! Boot application in the ODE directory sets C$Libroot.

cc

The SetUp dialogue box

Clicking Select on the CC icon bar icon or dragging a C source file from a directory
display to thi s icon brings up the CC SetUp dialogue box

~I(:) I cc
Source: I l

Include: I C:
"' Opt ions
(>Cofllpile only 0Debug

(>Preprocess only lili] Throwback

I Run I I Cancel I

Source

This writable icon in the Set Up dialogue box contains the names of the source files
to be compi led

When the SetUp box is obtained by clicking on the main CC icon, it comes up with
this icon contai ning its previous setting This helps you repeat a previous
compi lat ion, as clicking on the Run button repeats the last job if there was one.

If the Setup box appears as a result of dragging a sou rce file containing C text to
the main icon, the writable Source icon appears containing the source file name.

When the Set Up box appears the Source icon has input focus. and can be ed ited in
the normal RISC OS fashion If you select a further source fil e in a directory display
and drag it to this writab le icon, its name is added to a li st of those already there.

If you drag pre-compiled or pre-assembled ob ject files to the Source icon, they are
included in the set of object files linked together in an integral link step after the C
source files have been compi led.

Include

Thi s SetUp dialogue box icon adds specified directories to the list of places which
are sea rched for #include files (after the in-memory or source file directory,
according to the type of include file) The directories are searched in the order in
which they are given in the Include icon. The path should end with the name of a
directory, with no . h, which is added automatically

For example, to make use of RISC_OSLib headers from program lines such as:

#include "wimp.h "

33

34

drag the name of the directory RISC_OSLib to this icon, so that the file
RISC_ OSLib . h . wimp is found correctly.

The default setting of Include is to C: . This allows the C compiler to search for
headers in the directories listed in the RISC OS environment variable C$Path, set
by !Boot.

For more details of how to use #include lines and places searched for headers,
see the section entit led File naming and placing conventions on page 25 .

Compile only

This option switches off or on the linking of ob ject files by CC. When enabled, the
CC link step is not performed, and CC outputs object files. If only one C source file
is being compiled unmanaged by Make, you drag the object file produced from a
save dialogue box. Otherwise, multiple files are saved in the o subdirectory of the
work directory.

If not enabled, CC performs an integral link step, linking any object files produced
by compilation to any additiona l ones dragged to the Source icon, and library files,
producing an executable program file . You contro l the saving of this from a save
dialogue box.

Compile only is not enabled by default.

Preprocess only

Debug

If this option is enabled, only the preprocessor phase of the compiler is executed.
The output from the preprocessor is sent to the standard output window. The
standard non-interactive tool output window save facility is useful here to save this
output to a file or SrcEdit window. By default. comments are st ripped from the
output. but see the SetUp menu option Keep comments.

Preprocess only is not enabled by default.

This option switches on or off production of debugging tables. When enabled ,
extra information is included in object files produced which enables source level
debugging of the linked image (as long as the Link Debug option is also enabled)
by the DDT debugger If t'his option is disabled, any image file finally produced can
only be debugged at machine level.

If the linking is done as an integra l link step by CC, if the CC Debug option is
enabled, so is that of the link step.

Debug is not enabled by default.

cc

Throwback

This option switches editor throwback on or off. When enabled, if the DDEUtils
module and SrcEdit are loaded, any compilation errors cause the editor to display
an error browser. Double clicking Select on an error line in this browser makes the
editor display the source file containing the error, with the offending line
highlighted. See the chapter entitled SrcEdit in the accompanying Acorn Desktop
Development Environment user guide for more details.

Throwback is on by default.

The Setup menu
Clicking Menu on the SetUp dialogue box brings up the CC SetUp menu:

Connand line ¢
Module code
Profile
Listing
UNIX pee
Keep connents
Feature ¢
Default path ¢
Debug options ¢
Libraries ¢
Assenbler
Predefine ¢
Undef ine ¢
Suppress ¢

4 Work directory ¢
Other ¢

The options on this menu are described in the following subsections.

35

36

Command line

The CC RISC OS desktop interface works by driving a CC tool underneath with a
command line constructed from your SetUp options. The Command line item at
the top of the Set Up menu leads to a small dialogue box in which the command
line equivalent of the current Set Up options is displayed:

c.c Cofllflland Line:
1111 ""'· 1m•llTiT· ¢ ~r.HelioW.c.HelloW -tErowback -Desktop ft ~
Module code

I I Profile Run
Listing
UNIX pee
Keep cofllfllents
Feature ¢

Def a ult path ¢

Debug options ¢

Libraries ¢

Assefllble1·
Predefine ¢

Undef ine ¢

Suppress ¢

.J Work dire ct ory ¢
Other ¢

Clicking on the Run act ion button in this dialogue box starts compi lation in the
same way as that in the main SetUp box. Pressing Return in the writable icon in
this box has the same effect. Before starting compi lation from the command line
box, you can ed it the command line textually, although this is not normally useful.

Module code

Profile

This SetUp menu option must be enabled when compiling code for l inking into a
RISC OS relocatable module , otherwise it shou ld not be enabled. When enabled ,
code is produced which allows the module's static data to be separated from its
code, hence be multiply instantiated.

Module code is not enabled by default.

Enabling this Set Up menu opt ion causes the compi ler to generate code to count
the number of times each function is executed. This is ca lled profil ing

Listing

cc

The counts can be printed by calling_mapstore () to print them to stderr or by
calling _ fmaps tore ("filename") to print them to a named file of your choice.
You shou ld do this just before the final statement of your program

Profiling is not supported by the shared C library, so you must link programs to be
profiled with ANSI Lib (from CLib. o). If you wish, you can link with both Stubs and
ANSI Lib, in which case only the code for _map s tore () and _ fmapstore () will
be included from ANS!Lib; your program will continue to use the shared C library,
and will be much smaller than if linked with ANSI Lib alone.

The printed counts are lists of lineno : count pairs. The l ineno value is the
number of a line in your source code and the count value is the number of times it
was executed. Note that lineno is ambiguous: it may refer to a line in a
#include file. However, this is rare and usually causes no confusion.

Provided you didn't compile your program with the Feature option with fas an
argument, blocks of counts will be interspersed with function names. In the simple
cases, the output reduces to a list of line-pairs like:

function

lineno : count where count is the number of times function was executed .

If you use the Set Up menu option Other to add the text -px to the command line,
profiling of basic blocks within functions is performed in addition to profiling the
functions . If you do this , the 1 ineno values within each function relate to the start
of each basic block. Sometimes, a statement (such as a For statement) may
generate more than one basic block, so there can be two different counts for the
same line.

Profiled programs run slowly For example, when compiled with Profile enabled,
Dhrystone I . I runs at about 5/8 speed; when compiled -px it runs at only about
3/8 speed

There is no way, in this release of C, to relate execution counts to the proportion of
time spent in each section of code. Nor is there any tool for annotating a source
listing with profile counts. Future releases of C may address these issues.

Profile is not enabled by default

Enabling this SetUp menu option causes a listing file to be created. Thi s consists
of lines of source interleaved with error and warning messages. You can get finer
control over the contents of this file using the Feature option (see below)

Listing is not enabled by default

37

38

UNIX pee

Enabling this SetUp menu option switches to compiling 'portable C compiler' C
rather than ANSI C. This is based on the original Kernighan and Ritchie (K&R)
definition of C, and is the dialect used on UNIX systems such as Acorn's RISC iX
product. This option changes the syntax that is acceptable to the compiler, but the
default header and library files are still used. See the section on this option in the

I

chapter entitled Portability on page 91 for more details.

UNIX pee is not enabled by default.

Keep comments

When enabled in conjunction with Preprocess only, this option retains comments
in preprocessor output.

Keep comments is not enabled by default.

Feature

The Feature option on the SetUp menu leads to a sma ll writable icon in which you
can spedfy additional compiler features with single modifier letters:

Co111111and line ¢
Module code
Profile
List in9
UNIX pee
Keep co111111ents
Feature
Default path
Debug options
Libraries
Rsse111bler
Predefine ¢
Undef ine ¢
Suppress ¢

.J Work di rectory ¢
Other ¢

This entry controls a variety of compiler features, including certain checks on your
code more rigorous than usual. At least one of the following modifier letters must
be entered if Feature is enabled:

cc

a Check for certain types of data flow anomalies. The compiler performs
data flow analysis as part of code generation. The checks enabled by this
option can sometimes indicate when an automatic variable has been used
before it has been assigned a value.

c Enable the Limited pee option. This allows characters after #else and
#endi f preprocessor directives (treated as comments), and explicit casts
of integers to function as pointers (forbidden by ANSI) These features are
often required in order to use pee-style include files in ANSI mode.

e Check that external names used within the file are still unique when
reduced to six case-insensitive characters. Some linkers only provide six
significant characters in their symbol tables. This can cause problems with
clashes if a system uses two names such as getExprl and getExpr2,
which are only unique in the eighth character. The check can only be made
within one compilation unit (source file) so cannot catch all such
problems. Acorn Callows external names of up to 256 characters , so this is
a portability aid.

f Do not embed function names in the code area . The compiler does this to
make the output produced by the stack backtrace function (which is the
default signal handler) and _maps t ore () more readable. Removing the
names from the compiler makes the code slightly smaller (typically 5%) at
the expense of less meaningful backtraces and _maps tore ()outputs .

h Check that all external objects are declared in some included header file ,
and that all static objects are used within the compilation unit in which
they are defined. These checks support good modular programming
practices.

i In the listing file (see the Listing option) include the lines from any files
included with directives of the form

#include " file "

j As above, but for files included by lines of the form :

#i nclude <file>

k Use K&R search rules for nested #include directives (the 'current place' is
defined by the original source file and is not stacked; see the section
entitled File naming and placing conventions on page 25 for details)

m Give a warning for preprocessor symbols that are defined but not used
during the compilation

p Report on explicit casts of integers into pointers, eg:

char * cp = (char *) aninteger ;

39

40

Implicit casts are reported anyway, unless suppressed by the Suppress
option.

u By default, the source text as 'seen' by the compi ler after preprocessing

(expansion) is listed. If this feature is specified then the unexpanded
source text , as written by the user, is listed. Conside the line

p =NULL;

By default, this will be listed asp= (O) ; With Feature u specified, it will

be listed as p=NULL ; .

v Report on all unused declarations, including those from standard headers.

w Allow string literals to be writable, as expected by some UNIX code, by

allocating them in the program's data area rather than the notionally
read-only code area.

x Turn on additional warnings about:

• use of short integers. Shorts are slower than longs on the ARM and cause

more code to be generated. They should only be used to save space in

large arrays of data.

• use of enums. ANSI defines en um values to be integers so the use of
enums is not strictly type-checked. In some dialects of C, enums are more

strictly type-checked than this.

When writing high-quality production software, you are encouraged to use at least

the fah Feature options in the later stages of program development (the extra

diagnostics produced can be annoying in the earlier stages).

Feature is not enabled by default.

cc

Default path

The Default path entry on the SetUp menu leads to a writable icon in which you
. specify a comma-separated list of directories to be searched for included files:

Co~~and line ¢
Module code
Profile
Listing
UNIX pee
Keep co~~ents
Feature
Def au It path
Debug options
Libraries
Asse~bler
Predefine ¢
Undef ine ¢
Suppress ¢

4 Work directory ¢
Other ¢

This overrides the system include path with the list of directories. You can specify
the memory file system in the list by using the name : mem (in any case). An
example is:

myhdrs, :mem,$.proj.public.hdrs

For more details of the system include path and searching for include files in
general, see the section entitled File naming and placing conventions on page 25.

Default path is not enabled by default.

41

The SetUp menu

Debug options

42

The Debug options option on the SetUp menu leads to a writable item in which
you enter a set of modifier letters:

CoMMand line ¢
Module code
Profile
Listing
UNIX pee
Keep coMMents
Feature
Default path
Debug options
Libraries
RsseMbler
Predefine ¢
Undef ine ¢
Suppress ¢

J Work directory ¢
Other ¢

The modifier letters limit the debugging tables generated in response to enabling
the Debug option on the SetUp dialogue box. The letters recognised are:

f generate information on functions and top-level variables (outside
functions) only

1 generate information only describing each line in the file

v Generate information on ly describing all variab les

You can use these letters in any combination.

Debug options is not enabled by default.

cc

Libraries

The Libraries option on the SetUp menu leads to a writable icon in which you
specify a comma-separated list of filenames of libraries to be used in an integral
CC link step:

.J

Co~~and line ¢
Module code
Profile
Listing
UNIX pee
Keep co~~ents
Feature
Default path
Debug options
Libraries
Asse~bler
Predefine ¢
Undef ine ¢
Suppress ¢

.J Work directory ¢
Other ¢

The libraries specified with this option are used instead of the standard one
(CLib. o. Stubs) not in addition to it.

This option ca fl be very useful if you wish to compile and link many applications
making use of RISC_OSLib usi ng CC without the Link application. Setting
Libraries to a list of Stubs and RISC_OSLib, and Include to the RISC_ OS Lib
directory allows you to drag application sources in and save completed ! Run Image
files.

Libraries is not enabled by default.

Assembler

If this SetUp menu option is enabled, no object code is generated and, naturally,
no attempt is make to link it. If only one assembly listing file is produced, you save
it from a standard save dialogue box. If more than one is produced these are
placed in the subdirectory s of the work directory.

Assembler is not enabled by default.

43

44

Predefine

The Predefine option on the SetUp menu leads to a writable icon in which you can
predefine preprocessor macros:

Co~~and line ¢
I

Module code
Profile
Listing
UNIX pee
Keep co~~ents

Feature
Def a ult path
Debug options
Libraries
Asse~bler

Predefine
Undef ine
Suppress

.J Work directory ¢
Other ¢

You can enter two forms of macro predefinition :

sym=value

sym

These both define sym as a preprocessor macro for the compi lation. The two forms
are equivalent to the lines:

#define sym value

and

#define sym 1

at the head of the source file .

Multiple symbols can be entered as a space-separated list.

Predefine is not enabled by default.

cc

Undefine

The Undefine option on the SetUp menu leads to a writable icon in which you can
undefine preprocessor macros:

CoMMand line ?
Module code
Profile
Listing
UNIX pee
Keep coMMents
Feature ?
Default path ?
Debug options ?
Libraries ?
AsseMbler
Predefine
Undef ine ?
Suppress ?

.J Wot'k d it'ect ory ?
Other ?

\-----"---'

You enter the name of the macro concerned, eg:

sym

Use of this option is then equivalent to the line:

#unde f sym

at the head of the source file

Multiple symbols can be entered as a space-separated list.

Undefine is not enabled by default.

45

The SetUp menu

Suppress

46

The Suppress option on the SetUp menu leads to a wri table icon in which you can
enter a set of modifier letters:

Keep cofllfllents
Feature
Default path
Debug options
Libraries
Rssefllbler
Predefine
Undef ine
Suppress

¢
¢
¢
¢

¢
¢
¢

.J Work directory ¢
Other ¢

Disable:
a

The modifier letters specify various kinds of warning message to be suppressed by
CC. Usually the compiler is very free with its warn ings, as this tends to indicate
potential portability or other problems. However, too many such messages can be
a nuisance in the early stages of porting a program from old-style C, so you ca n
disable them

The modifier letters are:

a Give no Use of =in a cond ition context warn ing.
This is given when the compiler encounters statements such as
if (a=b) { ...
where it is quite possible that == was intended.

d Give no Deprecated declaration foo () - give arg types warning
Use of o ld-style function declarations is deprecated in ANSI C, and in a
futu re version of the standard this feature may be removed. However, it is
useful sometimes to suppress this warning when port ing old code .

f Give no Inventing " extern int foo () " message. This may be
useful when compiling old-style C as if it were ANSI C.

cc

n Give no Implic it narrowing cast warning. This warning is issued
when the compiler detects an assignment of an expression to an object of
narrower width (eg long to int, float to int) . This can cause problems with
loss of precision for certain values .

v Give no Impl icit re turn in non-void cont ex t warning. This is
most often caused by a return from a function which was assumed to
return int (because no other type was specified) but is in fact being used
as a void functi on.

If you enter a space in the writable icon, then Select or Return , all warning
messages are suppressed.

Work directory

The Work directory entry on the SetUp menu leads to a writable icon in which you
specify the work directory:

Cofllflland I ine ¢

Module code
Profile
Listing
UNIX pee
Keep COfllfllents
Feature ¢

Default path ¢

Debug options ¢

Libraries ¢

Assefllbler
Predefine
Undef ine
Suppress

.J Wo rk directory
Other

The effect of this option is described in the section entitled File naming and placing
conventions on page 25 .

The default Work directory setting is " .

47

The SetUp menu

Other

The Other option on the Setup menu leads to a writab le icon in which you can add
an arbitrary extra section of text to the command line to be passed to CC:

Co111111and line ¢

Module code
Profile
Listing
UNIX pee
Keep co111111ents
Feature ¢

Def au It path ¢

Debug options ¢

Libraries ¢

Asse111bler
Predefine
Undef ine

This facility is useful if you wish to use any feature which is not supported by any of
the other entries on the SetUp dia logue box and menu . This may be because the
feature is used very little, or because it may not be supported in the future .

Use of -px in the Other facil ity is described in the Profile description above.

#pragma directives can be emulated through Other by adding text with the syntax
- zp<mod >. <mod> is the same sequence of characters that wou ld fol low the
#pragma directive in program text. For more details of #pragma directives, see
the section entitled #pragma directives on page 378.

Preprocessor options

48

The first stage in processing C source is preprocessing. CC options are described
above in the order they appear on the CC SetUp dialogue box and menu. The
options above which contro l the preprocessor are:

• Include

• Default path

• Preprocess only

cc

• Keep comments

• Predefine

• Undefine

Link step options

As described before, CC can be set up so that after generating ob ject files, these
are linked to form an executable program file CC options are described above in
the order that they appear on the SetUp dialogue box and menu. The CC options
for driving the link step are

• Compile only

• Source

• Libraries

The Application menu
Clicking Menu on the CC application icon on the icon bar gives access to the
following menu box:

Su111111ary

Save options saves all the current CC options. including both those set from the
Set Up dialogue box and from the Options item on this menu. When CC is restarted
it is initialised with these options rather than the defaults. If you often want to
construct RISC OS applications using RISC_OSLib and the CC integral link step,
you may find it useful to:

• set up the Include slot on the SetUp dialogue box to find RISC_OSLib headers

• set up Libraries on the SetUp menu to link with Stubs and RISC_OSLib

• save these options as the new default using Save options.

The Options item on the main menu allows you to enable Auto run , Auto save or
start the loutput display as either a text window (default) or summary box. When
Auto run is enabled, dragging a source file to the CC main icon starts a
compilation immediately with the current options rather than displaying the Set Up

49

CC output messages

box first. When Auto save is enabled , output object files are saved to suitable
places automatically without producing a save dialogue box for you to drag the file
from. Both Auto run and Auto save are off by default.

For a description of each option in the application menu see the chapter entitled
General features in the accompanying Acorn Desktop Development Environment user guide.

CC output messages

50

CC outputs text messages as it proceeds . These include preprocessed source (see
Preprocess only) warning and error messages. By default any such text is directed
into a scrollable output window:

This window is read-only; you can scroll up and down to view progress, but you
cannot edit the text without first saving it. Clicking Select on the scrollable part of
this window has no effect. to indicate this.

The contents of the window illustrated above are typical of those you see from a
successful compilation - the title line of the compiler with versio·n number, •
followed by no error messages.

Clicking Adjust on the close icon of the output window switches to the output
summary dialogue box. This presents a reminder of the tool running (CC), the
status of the task (Running, Paused, Completed or Aborted). the time when the
task was started and the number of lines of output that have been generated (ie
those that are displayed· by the output window):

fl I &J I cc <c·ofllPleted>
: (~ii: ' :< ~ ~ ~ :
:;< '(rtr'· Run at: 17: 88: 05

cc 1 Lines of output
~

fibod C@t im10 . ·- J

Clicking Adjust on the close icon of the summary box returns to the output
window.

cc

Both the above CC output displays follow the standard pattern of those of all the
non-interactive ODE tools. The common features of the non-interactive DOE tools

are covered in more detail in the chapter entitled General features in the
accompanying Acorn Desktop Development Environment user guide. Both CC output
displays and the menus brought up by clicking Menu on them offer the standard
features allowing you to abort. pause or continue execution (if the execution hasn 't
completed) and to save output text to a file or repeat execution.

CC error messages appear in the output viewer. with copies in the editor error
browser when throwback is working. Appendix B: Errors and warnings contains more
details for interpreting error messages.

Preprocessed source appearing in the output window is often very large for
compilation of complex source files . The scrolling of the output window is useful to
view it. and to investigate it with the full facilities of the source editor. you can save
the output text straight into the editor by dragging the output file icon to the
SrcEdit main icon on the icon bar (providing Wimp$Scrap is properly set on your
machine) .

Command line interface
For normal use. either managed by Make or not. you do not need to understand the
syntax of the CC command line. as it is generated automatically for you from the
SetUp dialogue box and menu settings before it is used.

The syntax of the CC command line is:

*cc [options] filenames

where f i 1 enames is the list of source and object files you set up in the Source
icon of the SetlJp dialogue box.

The options in options are either keywords or flags. Keyword options have the
syntax:

-keyword

where keyword is a word of more than one alphabetic character.

Flag options have the syntax:

-letter[arg]

51

52

where let ter is a single alphabetic character, and arg is only present for some

flag letters . When present. arg is a sequence of characters not including spaces -

lists as arguments must be comma-separated . CC accepts white space between

letter and arg, but compilers on other systems do not. so it is not

recommended to use this syntax in makefiles.

Since CC options are described earlier in detail in relation to Setup dialogue box

and menu options , here the command line options are li sted with their equivalent

SetUp options rather than full explanations Note that unlike in RISC OS

filenames, case of letters is important in CC command line options .

Keyword options:

- p ee

-fussy

-list

UNIX pee

No direct equivalent on Setup windows - insert in Other if

necessary. Enables extra strictness about enforcing

conformance to the ANSI standard or to pee conventions.

For example, - fussy turns off the pre-definition of ARM

and a rm by the preprocessor in ANSI mode.

Listing

Preprocessor flag options :

-I Include

- J Default path

- E Preprocess only

-c Keep comments

-zp <mod> No direct SetUp window equivalent - insert in Other if
necessary to emu late #pragma di rectives .

- D<sym>=<val ue> Predefine

- D<sym> Predefine

-U<sym> Undefine

Code generation flag options:

- g Debug

-g<mod> Debug options

-p Profile

-s Assembler

-zM Module code

Warning feature flag options:

-w<mod>

-f<mod>

Linker flag options:

-c

-l<libs>

Suppress

Feature

Compile only

Libraries

cc

Worked examples

Several examples of C program on the discs of Acorn Desktop Care worked through

in other chapters of this volume such as the chapter entitled C tools and the DOE on

page 9. A collection of examples are listed here illustrating various points and

styles of working

The following example programs are to be found in the directory User, each in a

subdirectory with the name of the example For each program, we give a 'recipe' for

how to compile, link and run the program . Filenames are given relative to the

subdirectory containing each example unless otherwise stated. If you have a

machine with a single floppy disc drive, and I Mb of RAM, you will need to clean up

after running each example. It is assumed that you have read the preceding parts of

this chapter For n:iore details of the tool Make, see the chapter entitled Make in the

accompanying Acorn Desktop Development Environment user guide. When you enter any

command lines given below, you must first ensure that the cu rrently-selected

directory is the subdirectory containing the example being tried .

HelloW

Purpose:

Source:

Compile using:

Run by:

Clean up by

Sieve

Purpose:

Source:

Compile using

The standard most trivial C program. Try it as an exercise.

c .HelloW

default CC Setup options

double clicking on HelloW

deleting Hell ow and o . Hell ow

The Sieve of Eratosthenes is often presented as a standard

benchmark. though it is not very meaningful in this context.

c . sieve

default CC Setup options

53

Run by:

Clean up by:

Dhrystone 2.1

Purpose:

Sources:

Makefile:

Build by:

Run by:

Rebuild by:

Clean up by:

SWl_list

Purpose:

Source:

Compile using:

Run from:

Test using:

Clean up by:

54

double clicking on sieve

deleting sieve and o. sieve

Dhrystone 2.1 is the standard integer benchmark. Its results
require careful interpretation (it often overstates the real
performance of machines) . Try as a first exercise in using the
Make utility (!Make) .

h .dhry
c.dhry_ l
c .dhry2

Makef ile

double clicking on Makefile, with default Make options

double clicking on Dhrystone

Reply with any number in the range 20000 to 250000 to the
prompt for number of iterations. Try a big number such as
200000 and time. the execution with a stopwatch or sweep
second hand to confirm the claimed performance. Note how

performance depends on screen mode.

double clicking on Makefil e again (try altering some of the

options in Makefi le with Make between rebuilds: eg
compile in UNIX pee mode or link with ANSILib instead of
Stubs).

deleting Dhrys tone, o . dhry _1 and o . dhry2.

To illustrate use of the SW! facilities in <kernel . h >. You
can also try it as an exercise in getting going; later, you can
use it to check that CLib . h . swis contains a complete list
of the SW! names and numbers relevant to your machine.

c . SWI li st

default CC Setup options

the command line, using SWI_ list > h.myswis

see instructions embedded in the comment at the head of
c . SWI l ist

deleting SWI_li st , o . SWI_list and h .myswis

HowToCall

Purpose:

Source:

Compile using:

Run from :

Clean up by:

CModule

Purpose:

Sources:

Build using:

or by:

Run from:

Test from :

cc

To illustrate how to call other programs from C. Read the

source, then experiment with the binary. You can also use it

as another exercise in getting going. Try making your own

makefile for it as an exercise in using Make.

c.HowToCal l

default CC options

the command line using:

HowToCall 3
HowToCall HowToCall 2
HowToCall 3 *
HowToCall 3 *etc

deleting HowToCal 1 and o. HowToCal 1

To illustrate how to implement a module in C. You can also

use it as another exerci se in using Make. For more details on
constructing relocatable modules in C see the later chapter
How to write relocatable modules in C.

c . CModule CModuleHdr

CC of c. CModule with options Compile only and Module
code enabled, saving output object file as o. CModule.
CMHG of CModuleHdr too. CModu leHdr. Link of
o . CModule, o . CModuleHdr and $. CLib . o . Stubs with

Module enabled to the output file CModule.

double clicking on Makefile, with default Make options .

the command line using CModule

the command line using:

help tml
help tm2
tml hello
tm2 1 2 3 4 5
tml 1 2 3
tm2 hel lo

(try other combinations too)

55

56

Clean up by:

*BASIC
> SYS &88000 : REM should give an error
> SYS &88001 : REM should give divide by 0 error
> SYS &88002 : REM no error, just a message
> SYS &88003 : REM no error, just a message
> SYS &88004 : REM same as &88000 ...

(now repeat some of these after issuing some invalid
• commands ...)

>*foo
> SYS &88002

etc.

>QUIT

from the command line typing RMKill TestCModule
deleting cmodule, o . CModule and o. CModuleHdr or
running Make on Makefile with target clean selected.

Desktop application examples

Some examples follow which illustrate how to write applications to run under the
desktop. The following instructions assume that you have installed the DDE onto a
hard disc, hence have all the tools, libraries, headers, etc in the directory tree of
one disc. If you are working on a system that does not have a hard disc, your DDE
is split between several floppy discs. This results in you having to change discs
both to open directory displays and drag names from them to tool SetUp boxes,
and also when requested by the execution of the tools when the· files are read in.

Each example, like the others, is in a subdirectory of User with the name of the
example Since example applications have names beginning with!, hold Shift
whi le double clicking on the directory names to open directory displays on the
subdirectories.

When you have explored these examples, refer to the chapter entitled How to write
desktop applications in con page 149 if you want to go further.

Each example is built in the same way. First click on !Boot and !CC in the DDE
directory. The name of the C source file is dragged to the CC icon bar icon to bring
up the CC Setup box. On this dialogue box, ensure that Compile only is not
enabled and that the Include icon is set to C:. The program is compiled, and the
executable file produced saved as !Runlmage in the example subdirectory. You can
then use the Squeeze tool to compact the !Runlmage file.

WExample

Purpose:

Source:

Build using:

Run using:

Clean up by

Life

Purpose:

Source:

Build using:

Run using:

Clean up by:

Draw Ex

Purpose:

Source:

Build using

Run using:

Clean up by:

Balls64

Purpose:

Source:

Build using:

cc

To illustrate installing an icon on the icon bar, and creating/

displaying a simple window.

c . WExarnple

standard procedure above

double click on ! WExample in the User directory display.

Click Select on the EG icon to get a window

deleting ! Runimage and o. WExample

To illustrate use of multiple windows in an application, using

the alarm facilities o f RISC_OSLib and creating icons in a

window.

c . life

standard procedure above.

double click on ! Life in the User directory di splay

deleting ! Runimage and o. life

To illustrate loading files by icon dragging, and rendering

draw files in a window.

c . DrawEx

standard procedure above.

double click on ! DrawEx in the User directory display

deleting ! Runimage and o . DrawEx

To illustrate use of a sprite as a virtual display, saving files by

icon dragging, and responding to help requests .

Thi s application requires at least 320Kb of RAM to run , so you

may need to quit some appl ications to make room fo r it .

c. Balls64

standard procedure above.

57

58

Run using:

Clean up by:

double click on ! Balls64 in the User directory display,
click on the Balls64 icon bar icon

deleting ! Run Image and o . Balls 6 4

Recompiling ToANSI and ToPCC

In the directories containing the tools ToANSI and ToPCC. DDE. ! ToANSI and
DDE . ! ToPCC, you will find c subdirectories containing the source file of each
tool. If you wish to recompile these as a further exercise in using the Acorn C
Compiler, you can drag each source file to the CC icon in turn and compile and link
it with default options.

4

Starting CMHG

CMHG

The C Module Header Generator (CMHG) is a tool to allow you to write a
RISC OS relocatable module entirely in C without having to purchase a product

such as Acorn Desktop Assembler containing an ARM assembler or understand
assembly language

Every relocatable module has at its start (ie the part that loads into memory at its
lowest address) a header table pointing to various items of data and program.
Most of the items pointed to are optiona l, the pointers being zero if not needed.
When writing a relocatable module in assembly language you lay this table out
yourself, but when writing in C, you use CMHG to generate this for you. In addition
to generating a module header, CMHG also inserts small standard routines to. for
example, initialise the C language library support and make service call handling
efficient.

To construct a relocatable module you write a number of routines in C with
standard prototypes, some of these routines to be called with the processor in
supervisor (SVC) mode. These are accompanied by a text description file written in
a special syntax which CMHG understands. For details of this language and the
specifications of the C routines, see the chapter entitled How to write relocatable
modules in Con page 337. For more details of relocatable module headers, see the
chapter entitled Modules in the RISC OS Programmer's Reference manual. For some
hints about memory usage from relocatable module code, see the chapter entitled
Using memor!J efficientl!! on page 353.

The rest of this chapter explains the (simple) contro ls of the CMHG tool. CMHG is
one of the non-interactive DDE tools, its desktop user interface being provided by
the FrontEnd module. It shares many common features with the other
non-interactive tools. These common features are described in the chapter entitled
General features in the accompanying Acorn Desktop Development Environment user guide.

CMHG can be used as a tool 'managed' by Make, or contro lled directly by you from
its desktop interface for 'unmanaged' development. To sta rt unmanaged use, first
double click on !CMHG in a directory display to put its icon on the icon bar.

59

Clicking Select on this icon or dragging the name of a CMHG description fil e from

a directory display to the icon brings up the CMHG SetUp dialogue box, from which

you control the running of CMHG:

~I (3 1 CMHG
Source: I l

I Run I I Cancel I

CMHG has hardly any options for its use, so this interface is simpler than those of

most of the non-interactive tools . The Source wri table icon is for the name of the

description file to be processed . If the SetUp dia logue box was brought up by

clicking on the icon bar icon, you will want to fill this icon in by dragging the name

of your descript ion file from a directory display to this icon before runni ng CMHG.

Clicking Menu on the SetUp dialogue box brings up the CMHG Set Up menu, which

owing to the simplicity of CMHG has no options:

Giii&
Cof11111and 1 i ne ¢

The Application menu

60

Clicking Menu on the CMHG application icon on the icon bar gives access to the

following options:

Clll6
Info ¢
Save options t--"l:'!(rm<.r.lo.,,..·n-s__,
~¢Auto Run
Help
Ouit

For a description of each option in the appl ication menu see the chapter entitled

General features in the accompanying Acorn Desktop Development Environment user guide.

CMHG

Example output

The following is an example CMHG description file, similar to that used within

Acorn to construct the FrontEnd module, which is itself a relocatable module

written in C:

; Purpose : module header for the generalised front end module ;

module - is - runnable :

ini tial i sation-code :

service-cal l-handler :

title-string :

help-string :

command-keyword-table :

swi-chunk-base-number:

; module start code

FrontEnd_ init

FrontEnd_ services Oxll service-memory

Front End

FrontEnd 1 . 00

Front End_ commands
FrontEnd_ Start(min-args : 4 , max-args : 5 ,

help-t ext : "Help text \n ") ,

FrontEnd_ Setup(min-args : 8 , max - args : 8 ,

help-text : "Help text\n ")

Ox081400

Running CMHG displays any error messages in the standard text output window

for non-interactive tools . If all goes well, as it should do if you try CMHG with the

above description file , this window is empty:

CMHG <Co~ leted)

The output file produced is an object file You link this with the object files

compiled from your C code to produce your relocatable module.

Command line interface

For normal use, either managed by Make or not. you do not need to understand the

syntax of the CMHG command line, as it is generated automatically for you from

the SetUp dialogue box setting before it is used.

The syntax of the CMHG command line is simple:

cmhg descfile [objfile]

desc file

obj file

Filename of the CMHG description file

Filename of the output object file to link with your objects to form

a relocatable module

61

Command line interface

62

5 ToANSI

ToANSI is a tool that helps convert program source written in the PCC style of C
to program source in the ANSI style of C. PCC is the Unix Portable C Compiler,

and closely follows K&R C, as defined by B Kernighan and D Ritchie in their book
Tlie C Programming Language.

The aim of ToANSI is to enable you to write (with care) programs that can be
automatically converted between the PCC and ANSI dialects of C, hence assisting
you in constructing easily portable programs. The associated tool ToPCC makes
approximately the reverse translations to ToANSI. For more details of portability
issues, see the chapter entitled Portability on page 9 I. The changes that ToANSI
makes to C source are listed in the section entitled ToANSI C translation below.

ToANSI is one of the non-interactive DDE tools, its desktop user interface being
provided by the FrontEnd module. It shares many common features with the other
non-interactive tools. These common features are described in the chapter entitled
General features in the accompanying Acorn Desktop Development Environment user guide.

ToANSI C translation

ToANSI makes the following transformations to C source code or header text:

• Function declarations with embedded comments are rewritten without the
comment tokens. This reverses the action of ToPCC with regard to function
declarations, rewriting:

type foo(/* args * /) ;

as:

type foo(args);

This transformation is one which requires care in the use of ToANSI, as it can
result in invalid C being uncommented.

• Function definitions of the form

type foo(al, a2)
type al;
type a2 ;
{ ... }

are rewritten as

63

type foo(type al , type a2)

• A va_alist in the function definition is translated to

• type foo () is rewritten as type foo (void).

• VoidStar (what ToPCC replaces void * with) is left untouched, as if it is
correctly typedef'd to something suitable, thereafter its use is correct in both
PCC and ANSI C.

• ToPCC rewrites unsigned and unsigned long constants using the typecasts
(unsigned) and (unsigned long) ToANSI does not reverse this change, as this
is not required for correct ANSI C.

Note that ToANSI performs only simple textual translations and is not able to
reliably diagnose C syntax errors, which may produce surprising results , so it is
best to use ToANSI only on code you already know compiles

Starting ToANSI

64

ToANSI can only be used control led directly by you from its desktop interface for
·unmanaged' development. Since porting programs is usually a one-off process
involving some experimentation, only use of ToANSI unmanaged by Make is
sensible . To start unmanaged use, first double click on !ToANSI in a directory
display to put its icon on the icon bar.

Clicking Select on this icon or dragging the name of a C source or header file (text)
from a directory display to the icon brings up the ToANSI Set Up dialogue box, from
which you control the running of ToANSI

~ I (:) I ToRHSI
Input: I I

I Run I I Cancel I

ToANSI has only one option for its use, so this interface is simpler than those of
most of the non-interactive tools. The Input writable icon is for the name of the
source or header file to be processed If the SetUp dialogue box was brought up by
clicking on the icon bar icon, you will want to fill this icon in by dragging the name
o f your source or header file from a directory display to this icon before running
ToANSI.

ToANSI

Clicking Menu on the SetUp dialogue box brings up the ToANSI SetUp menu ,
which owing to the simplicity of ToANSI has no opt ions

The Application menu

Example output

Clicking Menu on the ToANSI application icon on the icon bar gives access to the
following options

For a descript ion of each option in the appl ication menu see the chapter entit led
General features in the accompanying Acorn Desktop Development Environment user guide

Running ToANSI displays any error messages in the standard text output window
for non-interactive too ls. If all goes well this window is empty

As an example of using the tool ToANSI, open an empty SrcEdit text wi ndow and
type the fol lowing example C source lines in it:

int foo (a , b)

fl oat a ;
d oubl e b;
{ }

65

Check that your Wimp$Scrap environment variable is set to a sensible file name,
then save your new text file straight onto the ToANSI icon bar icon . Run ToANSI ,
then save the output text file straight onto the SrcEdit icon bar icon. The translated
file looks like:

int f oo(float a , d ouble b)
{ }

Command line interface

66

For normal use you do not need to understand the syntax of the ToANSI command
line, as it is generated automatically for you from the SetUp dialogue box setting
before it is used.

The syntax of the ToANSI command line is:

toan s i infi le [ou tfile]

infi le

out f ile

Filename of the input C source or header text file.

Filename of the output C source or header text file .

6 ToPCC

ToPCC is a tool that helps convert program source written in the ANSI style of C
to program source in the PCC style of C. PCC is the Unix Portable C Compiler,

and closely follows K&R C, as defined by B Kernighan and D Ritchie in their book
Tfie C Programming Language.

The aim of ToPCC is to enable you to write (with care) programs that can be
automatically converted between the ANSI and PCC dialects of C, hence assist you
in constructing easily portable programs. The associated tool ToANSI makes
approximately the reverse translations to ToPCC. For more details of portability
issues. see the chapter entitled Portability on page 9 I . The changes that ToPCC
makes to C source are listed in the section entitled ToPCC C translation below.

ToPCC is one of the non-interactive DOE tools, its desktop user interface being
provided by the FrontEnd module. It shares many common features with the other
non-interactive tools. These common features are described in the chapter entitled
General features in the accompanying Acorn Desktop Development Environment user guide.

ToPCC C translation

ToPCC makes the following transformations to C source code or header text:

• Function declarations of the form

typ e f oo(args) ;

are rewritten as

type f oo(/ * args * /) ;

Any comment tokens I * or * I in args are removed .

• Function definitions of the form

type f oo(type al , t ype a 2) { ... }

are rewritten as

type foo(al , a2)
type a l;
type a2 ;

• A .. . in the functi on definition is interpreted as i nt va a li st .
Full translation of var i adic functions is not performed .

67

Starting ToPCC

Starting ToPCC

68

• type foo(void)

is rewritten as

type foo ()

• Type void * is converted to VoidStar which can be typedef'd to
something suitable (eg char *)

• Unsigned and unsigned long constan ts are rewritten using the typecasts

(unsigned) and (unsigned long)

For example, 300ul becomes (unsigned long) 300L.

Note that ToPCC performs on ly simple textual translations and is not able to

reliably diagnose C syntax errors , which may produce surprising results, so it is

best to use ToPCC only on code you already know compi les.

ToPCC can on ly be used controlled directly by you from its desktop interface for

'unmanaged' development. Since porting programs is usually a one-off process

involving some experimentation, only use of ToPCC unmanaged by Make is

sensible. To start unmanaged use, first double click on !ToPCC in a directory

display to put its icon on the icon bar

Clicking Select on this icon or dragging the name of a C source or header file (text)

from a directory display to the icon brings up the ToPCC SetUp dialogue box, from

which you contro l the running of ToPCC:

~1[:31 ToPcc

Inpu~: I I

I Run I I Cancel I

ToPCC has only one option for its use, so this interface is simpler than those of

most of the non-interactive tools. The Input writable icon is for the name of the

source or header file to be processed . If the Set Up dialogue box was brought up by

clicking on the icon bar icon , you will want to fill this icon in by dragging the name

of your source or header file from a directory display to this icon before running

ToPCC:

ToPCC

Clicking Menu on the Set Up dialogue box brings up the ToPCC Set Up menu, wh ich
owing to the simplicity of ToPCC has no options

The Application menu

Example output

Clicking Menu on the ToPCC application icon on the icon bar gives access to the
fo llowing options::

Sufl!fl!ary

For a descri ption of each option in the application menu see the chapter entitled
General features in the accompanying Acorn Desktop Development Environment user guide.

Running ToPCC displays any error messages in the standard text output window
for non-interactive tools. If all goes well this window is empty

To try ToPCC, open an empty SrcEdit text window and type the fo llowing example C
source line in it:

int foo(float a);

Check that your Wimp$Scrap environment variable is set to a sen sible file name,
then save your new text file straight onto the ToPCC icon bar icon. Run ToPCC, then
save the output text file straight onto the SrcEdit icon bar icon. The translated file
looks like:

int foo (/ * float a * /) ;

69

Command line interface

Command line interface

70

For normal use you do not need to understand the syntax of the ToPCC command
line, as it is generated automatically for you from the Set Up dialogue box setting
before it is used.

The syntax of the ToPCC command line is

topcc infile [outfile]

infile

outfile

Filename of the input C source or header text file.

Filename of the output C source or header text file .

Part 2 - Language issues

71

72

7

Identifiers

Data elements

Implementation details

This chapter gives details of those aspects of the compi ler which the ANSI

standard identifies as implementation-defined, and some other points of

interest to programmers They are grouped here by sub ject; the section entit led

Implementation limits on page 78 lists the points required to be documented as set

out in appendix A.6 of the standard.

Identifiers can be of any length They are truncated by the compiler to 256

characters, all of which are significant (the standard requires a minimum of 31).

The source character set expected by the compiler is 7-bit ASCII , except that within

comments, string literals, and character constants, the full ISO 8859-1 8-bit

character set is recognised . At run time, the C library processes the full ISO 8859-1

8-bit character set, except that the default locale is the C locale (see the chapter

entitled Standard implementation definition on page 81). The ctype functions therefore

all return 0 when applied to codes in the range 160-255. By ca lling

set locale (LC_ CTYPE , " IS08859-1") you can cause the ctype functions

such as isupper () and is lower () to behave as expected over the full 8-bit

Latin alphabet, rather than just over the 7-bit ASCII subset

Upper and lower case characters are distinct in all identifiers, both internal and

external.

The sizes of data elements are as follows:

Type
char
short
int
long
float
double

long double

Size in bits
8
16
32
32
32
64

64 (subject to future change)
all pointers 32

Integers are represented in two's complement form .

73

74

Data items of type char are unsigned by default, though they may be explicitly
declared as signed char or unsigned char (in -pee mode chars are signed
by default) Single-character constants are thus always positive.

Floating point quantities are stored in the IEEE format In double and long double
quantities, the word containing the sign, the exponent and the most significant
part of the mantissa is stored at the lower machine address.

Limits: limits.h and float.h

The standard defines two headers, limits.hand float. h, which contain
constant declarations describing the ranges of values which can be represented by
the arithmetic types. The standard also defines minimum values for many of these
constants.

The following table sets out the values in these two headers on the ARM, and a
brief description of their significance. See the standard for a full definition of their
meanings.

Number of bits in smallest object that is not a bit field (ie a byte) :

CHAR_BIT8

Maximum number of bytes in a multi byte character, for any supported locale:

MB_LEN_MAX I

Numeric ranges of integer types: The column on the left gives the numerical values.
The column on the right gives the bit patterns (in hexadecimal) that would be
interpreted as these values in C When entering constants you must be careful
about the size and signed-ness of the quantity. Furthermore, constants are
interpreted differently in decimal and hexadecimal/octal. See the ANSI standard or
Harbison and Steele for more details.

Implementation details

CHAR_ MAX 255 Ox ff
CHAR_ MIN 0 OxOO

SCHAR_ MAX 127 Ox7f
SCHAR_MIN -128 Ox80
UCHAR_MAX 255 Ox ff

SHRT_ MAX 32767 Ox7fff
SHRT_MIN - 32768 Ox8000
USHRT_ MAX 65535 Oxffff

INT_ MAX 2147483647 Ox7fffffff
INT_MIN - 2147483648 Ox80000000
UINT_ MAX 4294967295 Oxffffffff

LONG_ MAX 2147483647 Ox7fffffff
LONG_ MIN - 2147483648 Ox80000000
ULONG_ MAX 4294967295 Oxffffffff

Characteristics of floating point:

FLT_ RADIX
FLT_ROUNDS

Ranges of floating types:

FLT_ MAX
DBL_ MAX
LDBL_ MAX
FLT_ MIN
DBL_MIN
LDBL_MIN

2
1

3 .4 0282347e+38F
1.79769313486231571e+308
1 . 79769313486231571e+308
1 . 17549435e-38F
2.22507385850720138e-308
2 . 22507385850720138e-308

Ranges of base two exponents:

FLT_ MAX_ EXP
DBL_MAX_EXP
LDBL_ MAX_EXP
FLT_MIN_ EXP
DBL_ MIN_EXP
LDBL_MIN_EXP

128
1024
1024

(-125)
(-1021)
(-1021)

75

Structured data types

Ranges of base ten exponents:

FLT_ MAX_ lO_ EXP
DBL_ MAX_ lO_ EXP
LDBL_ MAX_ lO EXP
FLT_MIN_ lO_ EXP
DBL_MIN_ lO EX
LDBL_MIN_ lO_ EXP

Decimal digits of precision:

FLT DIG
DBL DIG
LDBL_DIG

6
15
15

Digits (base two) in mantissa

FLT_MANT DIG 24
DBL_MANT_ DIG 53
LDBL_MANT_ DIG 53

38
308
308

(-37)
(-307)
(-307)

Smallest positive va lues such that (I 0 + x != I 0)

FLT EPSILON
DBL_ EPSILON
LDBL EPSILON

l.19209290e - 7F
2.2204460492503131e-16
2.2204460492503131e-16L

Structured data types

76

The standard leaves details of the layout of the components of structured data
types up to each implementation . The following points apply to the Acorn C
compiler:

• Structures are aligned on word boundaries.

• Structures are arranged with the first-named component at the lowest address.

• char components are placed in adjacent bytes .

• short components are aligned at even-addressed bytes .

e All other arithmetic type components are word-aligned, as are pointers and
ints containing bitfields.

• The only valid type for bitfields is int, either signed or unsigned

• A bitfield of type int is treated as unsigned by default (signed by default in
-pee mode)

• Bitfields must be contained within the 32 bits of an int.

• Bitfields are allocated within in ts so that the first field specified occupies the
least significant bits of the word .

Pointers

Implementation details

The following remarks apply to pointer types:

• Adjacent bytes have addresses which differ by one.

• The macro NULL expands to the va lue 0.

• Casting between integers and pointers results in no change of representation.

• The compiler faults casts between pointers to functions and pointers to data
(but not in -pee mode)

Pointer subtraction

When two pointers are subtracted, the difference is obtained as if by the
expression:

((int)a - (int)b) I (int)sizeof(type pointed to)

If the pointers point to objects whose size is no greater than four bytes, word
alignment of data ensures that the division will be exact in all cases. For longer
types, such as doubles and structures, the division may not be exact unless both
pointers are to elements of the same array. Moreover the quotient may be rounded
up or down at different times, leading to potential inconsistencies.

Arithmetic operations

The compiler performs all of the 'usual arithmetic conversions' set out in the
standard.

The following points apply to operations on the integral types

• All signed integer arithmetic uses a two's complement representation

• Bitwise operations on signed integral types follow the rules which arise
naturally from two's complement representation.

• Right shifts on signed quantities are arithmetic.

• Any quantity which specifies the amount of a shift is treated as an unsigned
8-bit value.

• Any value to be shifted is treated as a 32-bit va lue.

• Left shifts of more than 31 give a result of zero.

• Right shifts of more than 31 give a result of zero from an unsigned or positive
signed va lue, - I from a negative signed value.

• The remainder on integer division has the same sign as the divisor.

77

Expression evaluation

• If a value of integral type is truncated to a shorter signed integral type, the
result is obtained by masking the original value to the length of the
destination and then sign extending .

• Conversions between integral types never cause exceptions to be raised.

• Integer overflow does not cause an exception to be raised.

• Integer division by zero causes an exception to be raised.

The following points apply to operations on floating types

• The ARM's floating point registers are wider than stored floating point
numbers, so that some values may be computed to a slight ly higher precision
than the stated limits imply

• When a doub le or l ong double is converted to a floa t , rounding is to the
nearest representable value.

• Conversions from floating to integral types cause exceptions to be raised only
if the value cannot be represented in a l ong int (or un signed lon g int
in the case of conversion to an unsigned int).

• Floating point underflow is not detected; any operation which underflows
returns zero.

• Floating point overflow causes an exception to be raised.

• Floating point divide by zero causes an exception to be raised.

Expression evaluation

The compiler performs the 'usual arithmetic conversions' (promotions) set out in
the standard before evaluating any expression.

• The compiler may re-order expressions involving only associative and
commutative operators, even in the presence of parentheses

• Between sequence points, the compi ler may evaluate expressions in any order,
regardless of parentheses. Thus the side effects of expressions between
sequence points may occur in any order.

• Similarly, the compiler may evaluate function arguments in any order;
moreover, this order may change from release to release.

Implementation limits

78

The standard sets out certain minimum translation limits which a conform ing
compiler must cope with; you shou ld be aware of these if you are porting
applications to other compilers A summary is given here. The 'mem' limit
indicates that no limit is imposed other than that of available memory

Implementation details

Description Requirement Acorn C

Nesting levels of compound statements and
iteration/selection control structures 15 mem

Nesting levels of conditional compilation 6 mem
Declarators modifying a basic type 12 mem
Expressions nested by parentheses 127 mem
Significant characters

in internal identifiers and macro names 31 256
in external identifiers 6 256

External identifiers in one source file 511 mem
Identifiers with block scope in one block 127 mem
Macro identifiers in one source file 1024 mem
Parameters in one function definition/call 31 mem
Parameters in one macro definition/invocation 31 mem
Characters in one logical source line 509 no limit
Characters in a string literal 509 mem
Bytes in a single object 32767 mem
Nesting levels for #included files 8 mem
Case labels in a switch statement 255 mem
atexi t-registered functions 32 33

79

80

8 Standard implementation
definition

This chapter discusses aspects of the compiler which are not defined by the
ANSI standard, but are implementation-defined and must be documented.

Appendix A6 of the standard X3. I 59- I 989 collects together information about
portability issues; section A6.3 lists those points which are implementation
defined, and directs that each implementation shall document its behaviour in
each of the areas listed. This chapter corresponds to appendix A6 3, answering the
points listed in the appendix, under the same headings and in the same order.

Translation (A.6.3.1)
• Diagnostic messages produced by the compiler are of the form

"source-file ", line #:severity: explanation

where severity is one of

• warning: not a diagnostic in the ANSI sense, but an attempt by the
compiler to be helpful to you.

• error: a violation of the ANSI specification from which the compiler was
able to recover by guessing your intentions.

• serious error: a violation of the ANSI specificati6n from which no recovery
was possible because the compiler could not reliably guess what you
intended.

• too man!} errors/fatal error: (for example, 'not enough memory') these are not
really diagnostics but indicates that the compiler limits have been
exceeded.

Environment (A.6.3.2)
• The arguments given to main () are the words of the Command Line (not

including 1/0 redirections, covered in the next point). delimited by white
spaces, except where the white space characters are contained in double

81

Identifiers (A.6.3.3)

quotes. A white space cha racter is any one of: space, form-feed, newline,

carriage return, tab or vertical _tab (note that the RISC OS Command Line

interpreter filters out some of these).

A double quote or backslash character(\) inside double quotes must be

preceded by a backslash character. An 110 redirection wi ll not be recogn ised

inside double quotes.

• The term interactive device denotes either the keyboard or the screen (: tt). No

buffering is done on any stream connected to : t t unless 1/0 redirection has

taken place If 1/0 redirection other than to : t t has taken place, full buffering

is used except where both stdout and stderr have been redirected to the

same file , in which case line buffering is used.

• The standard input. output and error streams, s tdin, s tdou t , and s tderr

can be redirected at runtime in the following way. For example, if copy is a

compiled and linked program which simply copies the standard input to the

standard output. the following line

*copy <infile >outfile 2>errfile

runs the program , redirecting stdin to the file infile, stdout to the file

outfile and stderr to the file errfile.

The following table shows all al lowed redirections

O<filename

<filename

l>filename

>filename

2>filename

>&filename

1>&2
2>&1

read stdin from filename

read stdin from filename

write stdout to filename

write stdout to filename

write stderr to filename

write both stdout and stderr to filename

write stdout to wherever stderr is current ly going

write stderr to wherever stdout is currently going

Identifiers (A.6.3.3)

82

• 256 characters are sign ifica nt in identifiers without external linkage (Allowed

characters are letters, digits, and underscores.)

• 256 characters are significant in identifiers with external linkage. (Allowed

characters are letters, digits, and underscores.)

• Case distinctions are significant in identifiers with externa l linkage

Standard implementation definition

Characters (A.6.3.4)
• The characters in the source character set are ISO 8859-1 (Latin Alphabet), a

superset of the ASCII character set. The printable characters are those in the
range 32 to 126 and 160 to 255. Al l printable characters may appear in string or
character constants, and in comments.

• There are no locales implemented for which a multi byte character shift state
exists.

• The execution character set is identical to the source character set.

• There are four chars in an int. The bytes are ordered from least significant at
the lowest address to most significant at the highest address.

• There are eight bits in a character in the execution character set.

• All integer character constants that contain a character or escape sequence are
represented in the source and execution character set.

• Characters of the source character set in string literals and character constants
map identically into characters in the execution character set.

• No locale is used to convert multibyte characters into the corresponding wide
characters (codes) for a wide character constant.

• A character constant containing more than one character has the type int. Up
to four characters of the constant are represented in the integer value. The first
character contained in the constant occupies the lowest-addressed byte of the
integer value; up to three following characters are placed at ascending
addresses. Unused bytes are filled with the NULL (or IO) character. This is not
portable .

• A plain char is treated as unsigned (signed in -pee mode)

• Escape codes are:

Escape sequence Char value Description
\a 7 Attention (bell)
\b 8 Backspace
\f I2 Form feed
\n IO Newline
\r I 3 Carriage return
\t 9 Tab
\v I I Vertica l tab
\xnn nn ASCII code in hexadecimal
\nnn nnn ASCII code in octal

83

Integers (A.6.3.5)

The representations and sets of values of the integral types are set out in the

section entit led Data elements on page 73. Note also that:

• The result of converting an integer to a shorter signed integer, if the value

cannot be represented , is as if the bits in the original value which cannot be

represented in the final value were masked out. and the resulting integer

sign-extended. The same applies when you convert an unsigned integer to a

signed integer of equal length.

• Bitwise operations on signed integers yield the expected result given two's

complement representation . No sign extension takes place .

• The sign of the remainder on integer division is the same as defined for the

function div () .

• Right shift operations on signed integral types are arithmetic.

Floating point (A.6.3.6)
The representations and ranges of values of the floating point types have been

given in the section entitled Data elements on page 73 . Note also that:

• When a floating point number is converted to a shorter floating point one, it is

rounded to the nearest representable number.

• The properties of floating point arithmetic accord with IEEE 754.

Arrays and pointers (A.6.3.7)

The ANSI standard specifies three areas in which the behaviour of arrays and

pointers must be documented . The points to note are:

• The type size_t is defined as unsigned int.

• Casting pointers to integers and vice versa involves no change of
representation . Thus any integer obtained by casting from a pointer will be

positive

• The type ptrdiff_ t is defined as (signed) int.

Registers (A.6.3.8)

84

In the Acorn C compi ler, you can declare up to six objects as having the storage

class register. There are six ava ilable registers , so declaring more than six

objects with regi ster storage class will result in at least one of them not being held

in a register. It is advisable to declare no more than four. The valid types are:

• any integer type

Standard implementation definitiQn

• any pointer type

• any structure type which contains only bitfields and which is no more than one
word long.

Note that other variables. not declared as register. may be held in registers for
extended periods, and that register variables may be held in memory for some
periods.

Structures, unions, enumerations and bitfields (A.6.3.9)
The Acorn C compiler handles structures in the following way:

• When a member of a union is accessed using a member of a different type, the
resulting value can be predicted from the representation of the original type.
No error is given.

• Structures are aligned on word boundaries. Characters are aligned in bytes,
shorts on even numbered byte boundaries and all other types. except bitfields,
are aligned on word boundaries . Bitfields are parts of ints. themselves
aligned on word boundaries .

• A 'plain' bitfield (declared as int) is treated as unsigned int (signed
int in -pee mode) .

• A bitfield which does not fit into the space remaining in an int is placed in
the next int.

• The order of allocation of bitfields within in ts is such that the first field
specified occupies the least significant bits of the word.

• Bitfields do not straddle storage unit (int) boundaries .

• The integer type chosen to represent the va lues of an enumeration type is int
(signed int).

Qualifiers (A.6.3.10)
A read or write constitutes an access to an object that has volatile-qualified type.

Declarators (A.6.3.11)
The number of declarators that may modify an arithmetic, structure or union type
is limited only by available memory

Statements (A.6.3.12)
The number of case values in a switch statement is limited only by memory.

85

Preprocessing directives (A.6.3.13)

Preprocessing directives (A.6.3.13)
• A single-character constant in a preprocessor directive cannot have a negative

value.

• The standard header files are contained within the compiler itself The
mechanism for translating the standard suffix notation to an Acorn filename is
described in the chapter CC.

• Quoted names for includable source files are supported . The rules for directory
searching are given in the chapter CC.

• The recognized #p ragma directives and their meaning are described in the
section entitled #pragma directives on page 378.

• The date and time of translation are always available , so _DATE_ and
TIME always give respectively the date and time .

Library functions (A.6.3.14)

86

When using library functions in the Acorn C compiler, note the fo llowing points :

• The macro NULL expands to the integer constant 0.

• If a program redefines a reserved external identifier, then an error may occur
when the program is linked with the standard libraries. If it is not linked with
standard libraries, no error will be detected.

• The assert () function prints the following message:

*** assertion failed : expressi on, file fil ename , line ,
line -number

and then calls the function a bort () .

Standard implementation definition

• The functions :

isalnum ()
isalpha ()

iscntrl ()
is lower ()
isprint ()

isupper ()
ispunct ()

usually test only for characters whose values are in the range 0 to 127
(inclusive). Characters with values greater than 127 return a resu lt of 0 for all of
these functions , except iscntrl () which returns non-zero for 0 to 31, and
128 to 255 .

After the call setlocale(LC_ CTYPE , "IS08859-1") the following
statements also apply for characters:

0 to 31 are control characters
128 to 159 are control characters
l 92 to 223 except 215 are upper case
224 to 255 except 247 are lower case
160 to l 91, and 215 and 24 7 are punctuation

The resu lts returned by the functions reflect this.

• The mathematical functions return the fo llowing values on domain errors:

Function Condition Returned value

log(x) x < = 0 -HUGE_ VAL
loglO(x) x <= 0 -HUGE_ VAL
sqrt(x) x < 0 -HUGE_ VAL
atan2(x,y) x = y = 0 -HUGE_ VAL
asin(x) abs(x) > 1 -HUGE_ VAL
acos(x) abs(x) > 1 -HUGE_ VAL

Where - HUGE_ VAL is written above, a number is returned which is defined in
the header h . math. Consult the errno variable for the error number.

• The mathematical functions set errno to ERANGE on underflow range errors.

• A domain error occurs if the second argument of fmod is zero, and
-HUGE_ VAL returned .

• The set of signals for the signal () function is as fo llows:
SI GAB RT Abort
SIGFPE Arithmetic except ion
SlGILL Illega l instruction
SIGINT Attention request from user

87

Library functions (A.6.3.14)

88

SIGSEGV
SIGTERM
SIGSTAK

Bad memory access
Termination request
Stack overfl ow

• The default handling of all the signals recognised is the printing of a suitable

message followed by a stack backtrace. This default behaviour applies at

program start-up.

• When a signal occu rs. if func points to a functi on, the equivalent of

signal (sig , SIG_DFL) ; is first executed.

• If the SIG ILL signal is received by a handler specified to the signal function ,

the default handling is reset.

• The last line of a text stream does not require a terminating newline character.

• Space characters written out to a text stream immediately before a newline

character do appear when read in.

• No null characters are appended to a binary output stream.

• The file position indicator of an append mode stream is initially placed at the

end of the file .

• A write to a text stream does not cause the associated file to be truncated

beyond that point.

• The characteristics of file buffering are as intended in the standard (section

4.9.3)

• A zero-length file (on which no characters have been written by an output

stream) does exist.

• The va lidity of filenames is defined by the host computer's filing system

• The same file can be opened many times for reading, and once for writing o r

updating. A file cannot however be open for reading on one stream and for

writing or updating on another.

• Local time zones and Daylight Saving Time are not implemented. The values

returned will always indicate that the information is not available .

• Note also the fo llowing points about library functions:

remove ()

rename ()

Cannot remove an open file .

The effect of calling the rename () function when the new
name already exists is dependent on the host filing system .
Not all renames are valid: examples of invalid renames

fprintf ()

fscanf ()

fscanf ()

ftell () and
fgetpos ()

perror ()

Error:

0
EDOM
ERAN GE
ESIGNUM
others

calloc () ,
malloc () and
realloc ()

abort ()

exit ()

getenv ()

system()

Standard implementation definition

include
("net: filel ", "net:$. file2 ") and
("net : filel ", "adfs : file2")

Prints %p arguments in hexadecimal format (lower case) as if

a precision of 8 had been specified. If the variant form (%#p)

is selected, the number is preceded by the character @.

Treats %p arguments identically to %x arguments.

Always treats the character - in a % [argument as a literal
cha racter.

Set errno to the va lue of EDOM on fa ilure.

Generates the fo llowing messages:

Message:

No error (errno = 0)
EDOM - function argument out of range
ERAN GE - functi on result not representable
ESIGNUM - illegal signal number to signa l() or rai se()
Error code number has no associated message

If size of area requested is zero, NULL is returned .

Closes all open files, and deletes all temporary files

The status returned by exit is the same va lue that was
passed to it. For a definition of 1EXIT_SUCCESS and
EXIT_FAILURE refer to the header file stdlib . h.

Returns the value of the named RISC OS Envi ronmenta l
variable, or NULL if the va riable had no value.

eg root = getenv ("C$libroot ");

if (root ==NULL) root = " $. arm . clib ";

Used either to CHAIN to another application or bui lt-in
command or to CALL one as a sub-program . When a program

is chained, all trace of the original program is removed from
memory and the chained program invoked. If a program is
called (which is the defau lt if no CHAIN : or CALL : precedes

the program name - a change from Release 2) , the ca lling
program and data are moved in memory to somewhere safe
and the callee loaded and started up The return va lue from

89

Library functions (A.6.3.14)

90

the system () call is - 2 (indicating a failure to invoke the
program) or the value of Sys$ReturnCode set by the called
program (0 indicates success)

s trerror () The error messages given by this function are identical to
those given by the perror () function .

clock () Returns the time taken by the program since its invocation , as
indicated by the host's operating system

9 Portability

The C programming language has gained a reputation for being portable across
machines, while still providing capabilities at a machine-specific level. The fact

that a program is written in C by no means indicates the effort required to port
software from one machine to another, or indeed from one compiler to another.
Obviously the most time-consuming task is porting between two entirely different
hardware environments, running different operating systems with different
compilers . Since many users of the Acorn C compiler will find themselves in this
situation, this chapter deals with a number of issues you should be aware of when
porting software to or from our environment. The chapter covers the following:

• general portability considerations

• major differences between ANSI C and the well-known 'K&R' C as defined in
the book The C Programming Language, (first edition) by Kernighan and Ritchie

• using the Acorn C compiler in 'pee' compatibility mode

• environmental aspects of portability.

General portability considerations
If you intend your code to be used on a variety of different systems, there are
certain aspects which you should bear in mind in order to make porting an easy
and relatively error-free process. It is essential to single out items which may make
software system-specific, and to employ techniques to avoid non-portable use of
such items. In this section, we describe general portability issues for C programs.

Fundamental data types

The size of fundamental data types such as char, int, long int, short int
and float will depend mainly on the underlying architecture of the machine on
which the C program is to run. Compiler writers usually implement these types in a
manner which best fits the architectures of machines for which their compilers are
targetted For example, Release 5 of the Microsoft C Compiler has int, short
int and long int occupying 2, 2 and 4 bytes respectively, where the Acorn C
Compiler uses 4, 2 and 4 bytes. Certain relations are guaranteed by the ANSI C
Standard (such as the fact that the size of long int is at least that of short
int). but code which makes any assumptions regarding implementation-defined
issues such as whether int and long int are the same size will not be
maximally portable

91

92

A common non-portable assumption is embedded in the use of hexadecimal

constant values . For example:

int i ;
i = i & Oxfffffff8 ; / * set bottom 3 b i ts to zero , assuming 32-bit i nt * /

Such non-portability can be avoided by using

int i ;
i = i & -O x07 ; / * set bottom 3 bits to zero , whatever sizeof (int) * /

If you find that some size assumptions are inevitable, then at least use a series of

a ssert calls when the program starts up, to indicate any conditions under which

successful operation is not guaranteed. Alternatively, write macros for

frequently-used operations so that size assumptions are loca lised and ca n be

altered locally.

Byte ordering

A highly non-portable feature of many C programs is the implicit or explicit

exploitation of byte ordering within a word of store. Such assumptions tend to

arise when copying objects word by word (rather than byte by byte). when inputting

and outputting binary values, and when extracting bytes from or inserting bytes

into words using a mix of shift-and-mask and byte addressing. A contrived example

is the following code which copies individual bytes from an int variable w into an

int variab le pointed to by p, until a null byte is encountered. The code assumes

that w does contain a null byte.

int a ;
cha r *p = (char *)&a;
int w = AN_ ARBITRARY_ VALUE ;

for (;;)

if ((*p++
w >> = 8 ;

w) 0) break ;

This code will only work on a machine with even (or little-endian) byte-sex, and so

is not portable. The best solution to such problems is either to write code which

does not rely on byte-sex, or to have different code to deal appropriately with
different byte-sex and to compile the correct variant conditionally, depending on

your target machine architecture.

Portability

Store alignment

The only guarantee given in the ANSI C Standard regarding alignment of members
of a struct, is that a 'hole' (caused by padding) cannot exist at the beginning of
the struct . The values of 'holes' created by alignment restrictions are undefined,
and you should not make assumptions about these values. In particular, two
structures with identical members, each having identical values, will on ly be
considered equal if field-by-field comparison is used; a byte-by-byte, or
word-by-word comparison may not indicate equality.

This may al so have implications on the size requirements of large arrays of
structs. Given the following declarations:

#define ARRSIZE 10000
typedef struct

int i ;
short s ;

} ELEM;
ELEM arr[ARRSIZE];

thi s may require significantly different amounts of store under, say, a compiler
which aligns in ts on even boundaries, as opposed to one which aligns them on
word boundaries.

Pointers and pointer ~rithmetic

A deficiency of the original definition of C, and of its subsequent use, has been the
relatively unrestrained interchanging between pointers to different data types and
integers or longs. Much existing code makes the assumption that a pointer can
safely be held in either a long int or int variab le. While such an assumption
may indeed be true in many implementations on many machines, it is a highly
non-portable feature on which to rely.

This problem is further compounded when taking the difference of two pointers by
performing a subtraction. When the difference is large, this approach is full of
possible errors. For this purpose , ANSI C defines a type ptrdiff_ t , which is
capable of reliably storing the result of subtracting two pointer values of the same
type; a typical use of this mechanism wou ld be to apply it to pointers into the same
array.

Function argument evaluation

Whilst the evaluation of operands to such operators as && and II is defined to be
strictly left-to-right (including all side-effects), the same does not apply to function
argument eva luation. For example, in the function call f (i , i++) ;, the issue of

93

ANSI C vs K&R C

whether the post-increment of i is performed after the first use of i is
implementation-dependent. In any case. this is an unwise form of statement, since
it may be decided later to implement fas a macro, instead of a function .

System-specific code

The direct use of operating system calls is, as you would expect. non-portable. If
you use code which is obviously targetted for a particular environment, then it
should be clearly documented as such, and should preferably be isolated into a
system-specific module, which needs to be modified when porting to a new
machine or operating system. Pathnames of system files should be #defined and
not hard-coded into the program, and, as far as possible, all processing of
filenames should be made easy to modify Many file operations can be written in
terms of the ANSI input/output library functions, which will make an application
more portable. Obviously, binary data files are inherently non-portable, and the
only solution to this problem may be the use of some portable external
representation.

ANSI C vs K&R C

94

The ANSI C Standard has succeeded in tightening up many of the vague areas of
K&R C. This results in a much clearer definition of a correct C program . However, if
programs have been written to exploit particular vague features of K&R C, then
their authors may find surprises when porting to an ANSI C environment. In the
following sections, we present a list of what we consider to be the major
differences between ANSI and K&R C. These differences are at the language level,
and we defer discussion of library differences until a later section. The order in
which this list is presented follows approximately relevant parts of the ANSI C
Standard Document.

Lexical elements

The ordering of phases of translation is well-defined. Of special note is the
preprocessor which is conceptually token-based (which does not yield the same
results as might naively be expected from pure text manipulation) .

A number of new keywords have been introduced with the following meanings:

• The type qualifier volatile which means that the object may be modified in
ways unknown to the implementation , or have other unknown side effects
Examples of objects correctly described as volatile include device
registers, semaphores and flags shared with asynchronous signal handlers. In
general, expressions involving volatile objects cannot be optimised by the
compiler.

Portability

• The type qualifier const which indicates that a variable's value should not be
changed.

• The type specifier void to indicate a non-existent value for an expression.

• The type specifier void *.which is a generic pointer to or from which pointer
variables can be assigned, without loss of information .

• The signed type qualifier. to sign any integral types explicitly

• structs and unions have their own distinct name spaces.

• There is a new floating-point type long double.

• The K&R C practice of using long float to denote double is now outlawed
in ANSI C.

• Suffixes U and L (or u and I). can be used to explicitly denote unsigned and
long constants (eg. 32L. 64U. 1024UL etc).

• The use of 'octal ' constants 8 and 9 (previously defined to be octal I 0 and 11
respectively) is no longer supported .

• Literal strings are to be considered as read-only, and identical strings may be
stored as one shared version (as indeed they are. in the Acorn C Compiler). For
example. given:

char *pl= "hello ";
char *p2 = "hello ";

pl and p2 will point at the same store location, where the string hello is
held. Programs should not therefore modify literal strings.

• Variadic functions (ie those which take a variable number of arguments) are
declared explicitly using an ellipsis(...) For example, int printf (const
char * fmt, ...) ;

• Empty comments/**/ are replaced by a single space (use the preprocessor
directive## to do token-pasting if you previously used/**/ to do this) .

Conversions

ANSI C uses value-preserving rules for arithmetic conversions (whereas K&R C
implementations tend to use unsigned-preserving rules). Thus. for example:

int f(int x , unsigned chary)
{

return (x+y)/2;

does signed division. where unsigned-preserving implementations would do
unsigned division.

95

ANSI C vs K&R C

96

Aside from va lue-preserving rules, arithmetic conversions follow those of K&R C,

with additional rules for long double and unsigned long int. It is now also

possible to perform float arithmetic without widening to double.

Floating-point values truncate towards zero when they are converted to integral

types

It is illegal to attempt to assign function pointers to data pointers and vice versa

(even using explicit casts). The only exception to this is the value 0, as in :

int (*pfi) () ;
pfi = O;

Assignment compatibility between structs and unions is now stricter. For

example, consider the following:

struct {char a ; int b ; } vl ;
struct {char a ; int b ; } v2 ;
vl = v2 ; / * illegal because vl and v2

strictly have different types*/

Expressions
• structs and unions may be passed by value as arguments to functions .

• Given a pointer to function declared as, say, int (*pf i) () ; , then the

function to which it points can be called either by pfi (); or (*pfi) ();.

• Due to the use of distinct name spaces for struct and union members

absolute machine addresses must be explicitly cast before being used as

struct and union pointers. For example:

((struct io_space *) OxOOff)->io_buf;

Declarations

Perhaps the greatest impact on C of the ANSI Standard has been the adopt ion of

function prototypes. A function prototype declares the return type and argument

types of a function . For example, int f (int , float); declares a function

returning int with one int and one float argument. This means that a
function 's argument types are part of the type of that function, thus giving the

advantage of stricter argument type-checking, especially across source files. A

function definition (which is also a prototype) is simi lar except that identifiers
must be given for the arguments. For example, int f (int i, float f) ; . It is

sti ll possible to use 'o ld style' function declarations and definitions, but you are

advised to convert to the 'new style'. It is also possible to mix old and new styles of

function declaration . If the function declaration which is in scope is an old style

Portability

one, normal integral promotions are performed for integral arguments, and

floats are converted to double. If the function declaration which is in scope is a

new style one, arguments are converted as in normal assignment statements.

Empty declarations are now illegal.

Arrays cannot be defined to have zero or negative size .

Statements
• ANSI has defined the minimum attributes of control statements (eg the

minimum number of case limbs which must be supported by a compiler).

These values are almost invariably greater than those supported by PCCs, and

so should not present a problem.

• A value returned from main () is guaranteed to be used as the program's exit

code.

• Values used in the controlling statement and labels of a switch can be of any

integral type.

Preprocessor
• Preprocessor directives cannot be redefined.

• There is a new## directive for token-pasting.

• There is a directive# which produces a string literal from its following

characters. This is useful for cases where you want replacement of macro

arguments in strings.

• The order of phases of translation is well defined and is as follows for the
preprocessing phases :

Map source file characters to the source cha racter set (this includes
replacing trigraphs)

2 Delete all newline characters which are immediately preceded by \.

3 Divide the source file into preprocessing tokens and sequences of white

space characters (comments are replaced by a single space) .

4 Execute preprocessing directives and expand macros.

Any #inc l ude files are passed through steps 1-4 recursively.

The macro _STDC_ is #defined to I in ANSI-conforming compilers .

97

The ToPcc and ToANs r tools
The DDE tools ToPCC and ToANSI help you to t ranslate C programs and headers
between the ANSI and PCC dialects of C For more details of their use and
capabili ti es see the earlier chapters ToANSI and ToPCC.

pee compatibility mode

98

This section discusses the differences apparent when the compiler is used in 'PCC'
mode. When the UNIX pee setup option is enabled. the C compi ler will accept
(Berkeley) UNIX-compatible C, as defined by the implementation of the Portable C
Compiler and subject to the restrictions which are noted below.

In essence. PCC-style C is K&R C, as defined by B Kernighan and D Ritchie in their
book The C Programming Language, with a small number of extensions and
clarificat ions of language features that the book leaves undefined.

Language and preprocessor compatibility
In Uni x pee mode, the Acorn C compiler accepts K&R C, but it does not accept
many of the old-style compatibility features , the use of which has been deprecated
and warned against for many years . Differences are listed briefly below:

• Compound assignment operators where the= sign comes first are accepted
(with a warning) by some PCCs. An example is=+ instead of += Acorn C does
not all ow this ordering of the characters in the token .

• The= sign before a static initiali ser was not required by some very old C
compi lers. Acorn C does not support this syntax.

• The following very peculiar usage is found in some UNIX tools pre-dating UNIX
Version 7:

struct {int a , b ; } ;
doubl e d ;

d . a = O;
d.b = Ox ;

This is accepted by some UNIX PCCs and may cause problems when porting
old (and badly written) code.

• enums are less strongly typed than is usual under PCCs. e num is a non-K&R
extension to C which has been standardised by ANSI somewhat different ly
from the usual PCC implementation .

• cha rs are signed by default in Uni x pee mode.

• In Unix pee mode. the compiler permits the use of the ANSI ' ... ' notation
which sign ifies that a variable number of formal arguments follow.

Portability

• In order to cater for PCC-style use of variadic functions , a version of the PCC
header file varargs . his supplied with the release .

• With the exception of enums, the compiler's type checking is generally stricter
than PCC's - much more akin to lint's, in fact In writing the Acorn C compiler,
we have attempted to strike a balance between generating too many warn ings
when compiling known, working code, and warning of poor or non-portable
programming practices . Many PCCs silently compile code which has no chance
of executing in just a slightly different environment. We have tried to be
helpful to those who need to port C among machines in which the following
varies:

• the order of bytes within a word (eg little-endian ARM, VAX, Intel versus
big-endian Motorola, IBM370)

• the default size of int (four bytes versus two bytes in many PC
implementations)

• the default size of pointers (not always the same as int)

• whether values of type char default to signed or unsigned char

• the default handling of undefined and implementation-defined aspects of
the C language.

If the verbosity of CC in Unix pee mode is found undesirable, all warnings
can be turned off using the Suppress setup option.

• The compiler's preprocessor is believed to be equivalent to UNIX's cpp, except
for the points listed below. Unfortunately, cpp is only defined by its
implementation, and although equivalence has been tested over a large body
of UNIX sou rce code, completely identical behaviour cannot be guaranteed.
Some of the points listed below onh apply when the Preprocess only option
is used with the CC tool.

• There is a different treatment of whitespace sequences (benign)

• nl is processed by cc with Preprocess only enabled, but passed by cpp
(making lines longer than expected)

• Cpp breaks long lines at a token boundary; CC with Preprocess only
enabled doesn't (this may break line-size constraints when the source is
later consumed by another program).

• The handling of unrecognised # directives is different (this is mostly
benign).

Standard headers and libraries

Use of the compiler in UNIX pee mode precludes neither the use of the standard
ANSI headers built in to the compiler nor the use of the run-time library supplied
with the C compiler. Of course, the ANSI library does not contain the whole of the

99

pee compatibility mode

100

UNIX C library, but it does contain almost all the commonly used functions.
However, look out for functions with different names, or a slightly different
definition, or those in different 'standard' places. Unless the user directs otherwise
using Default path, the C compiler will attempt to satisfy references to, say,
<stdio . h> from its in-store filing system.

Listed below are a number of differences between the ANSI C Library, and the BSD
UNIX library. They are placed under headings corresponding to the ANSI header
files:

ctype.h

There are no isascii () and toascii () functions, since ANSI C is not
character-set specific.

errno.h

math.h

On BSD systems there are sys_nerr and sys_errlist () defined to give error
messages corresponding to error numbers. ANSI C does not have these, but
provides similar functionality via perror (canst char *s), which displays the
string pointed to bys followed by a system error message corresponding to the
cu rrent value of errno.

There is also char *strerror (int errnum) which, when given a purported
value of errno, returns its textual equivalent.

The #defined value HUGE, found in BSD libraries , is called HUGE_ VAL in ANSI C
ANSI C does not have asinh (), acosh (), atanh ().

signal.h

In ANSI C the signal () function's prototype is

extern void (*signal(int , void(*func) (int))) (int) ;

signal () therefore expects its second argument to be a pointer to a function
returning void with one int argument. In BSD-style programs it is common to
use a function returning int as a signal handler The PCC-style function
definitions shown below will therefore produce a compiler warning about an
implicit cast between different function pointers (since f () defaults to int f ())
This is just a warning, and correct code will be generated anyway.

stdio.h

f(signo)
int signo;

main()
{

extern f();
signal(SIGINT , f);
}

Portability

sprintf () now returns the number of characters 'printed' (fo ll owing UNIX

System V), whereas the BSD sprint f () returns a pointer to the start of the

character buffer.

The BSD functions ecvt (), fcvt () and gcvt () are not included in ANSI C,

since their functionality is provided by sprintf ().

string.h

On BSD systems, string manipulation functions are found in s trings. h, whereas

ANSI C places th~m in <string . h>. The Acorn C Compiler also has strings . h

for PCC-compatibility

The BSD functions index () and rindex () are replaced by the ANSI function s

strchr () and strrchr () respectively.

Functions which refer to string lengths (and other sizes) now use the ANSI type

size_ t, which in our implementation is unsigned int.

stdlib.h

mal loc () returns void *, rather than the char * of the BSD mal lac () .

float.h

A new header added by ANSI giving details of floating point preci sion etc.

limits.h

A new header added by ANSI to give maximum and minimum limit values for data

types

101

locale.h

A new header added by ANSI to provide local environment-specific features .

Environmental aspects

102

When porting an application, the most extensive changes will probably need to be
made at the operating system interface level. The following is a brief description of
aspects of RISC OS and Acorn C which differ from systems such as UNIX and
MS-DOS.

The most apparent interface between a C program and its environment is via the
arguments to main (). The ANSI Standard declares that main () is a function
defined as the program entry point with either no arguments or two arguments
(one giving a count of command line arguments, commonly called int argc, the
other an array of pointers to the text of the arguments themselves, after removal of
input/output redirection, commonly called char * argv [l) As discussed in the
section entitled Environment (A.6.3 2) on page 8 I , Acorn C supports the style of
input/output redirection used by UNIX BSD4 3, but does not support filename
wildcarding. Further parameters to main () are not supported

Under UNIX and MS-DOS, it is common to use a third parameter, normally called
char *environ [] under UNIX and char *envp [l under Microsoft C for
MS-DOS, to give access to environment variables. The same effect can be achieved
in our system by using getenv () to request system variable values explicitly; the
names of these variables are as they appear from a RISC OS *Show command. The
string pointed at by argv [0 l is the program name (similar to UNIX and MS-DOS,
except the name is exactly that typed on invocation, so if a full pathname is used to
invoke the program, this is what appears in argv [OJ).

File naming is one of the least portable aspects in any programming envi ronment.
RISC OS uses a full stop(.) as a separator in pathnames and does not support
filename extensions (nor does UNIX, but existing UNIX tools make assumptions
about file naming convent ions). The best way to simu late extensions is to create a
directory whose name corresponds to the required extension (in a manner similar
to the use of c and h directories fo r C source and header files). RISC OS filename
components are limited to IO characters.

The Acorn C compiler has support for making Software Interrupt (SWI) calls to
RISC OS routines, wh ich can be used to replace any system calls which you make
under UNIX or MS-DOS. The include file kernel . h has function prototypes and
appropriate typedefs for issuing SWls. Briefly, the type _kernel_swi_regs
allows values to be placed in registers RO-R9, and _kernel_ swi () can then be
used to issue the SW!; a list of SWI numbers can be found in the incl ude file
swis. h. File information, for example, can be obtained in a way sim ilar to
stat () under UNIX, by making an OS_GBPB SWI with RO set to the reason code

Portability

11 (full file information). Most of the UNIX/MS-DOS low-level 1/0 can be simulated
in this way, but the ANSI C run-time library provides sufficient support for most
applications to be written in a portable style If the application is running under
the desktop, then limited piping facilities can be achieved by using the calls
wimp_transferblock and wimp_ sendmessage to synchronise the data
transfer.

RISC OS does not support different memory models as in MS-DOS, so programs
which have been written to exploit this will need modification; this should only
require the removal of Microsoft C keywords such as near, far and huge, if the
program has otherwise been written with portability in mind.

103

104

10

assert.h

ctype.h

ANSI library reference section

The assert macro puts diagnostics .into programs. When it is executed, if its
argument expression is fa lse, it writes information about the call that failed
(including the text of the argument. the name of the source file, and the source line
number, the last two of these being, respectively, the va lues of the preprocessing
macros _ FILE_ and _ LINE_) on the standard error stream. It then cal ls the
abort function. If its argument expression is true, the assert macro returns no
val ue.

If NDEBUG is #defined prior to inclusion of assert. h, cal ls to assert expand to
null statements. This provides a simple way to turn off the generation of
diagnostics selectively.

Note that assert. h may be included more than once in a program with different
settings of NDEBUG.

ctype . h declares severa l functions useful for testing and mapping cha racters. In
all cases the argument is an int. the va lue of which is representable as an unsigned
char or equal to the va lue of the macro EOF If the argument has any other va lue,
the behaviour is undefined.

int isalnum (int c)

int isalph(int c)

int iscntrl(int c)

int isdigit(int c)

int isgraph(int c)

int islower(int c)

int isprint(int c)

Returns true if c is alphabetic or numeric

Returns true if c is alphabetic

Returns true if c is a control character (in the ASCII
locale)

Returns true if c is a decimal digit

Returns true if c is any printable character other
than space

Returns true if c is a lower-case letter

Returns true if c is a printable character (in the
ASCII locale this means Ox20 (space) ~ Ox7E (tilde)
inclusive)

105

errno.h

errno.h

106

EDOM

int ispunct (int c) Returns true if c is a printable character other than
a space or alphanumeric cha racter

int is space (int c) Returns true if c is a white space character viz:
space, newline, return, linefeed, tab or vertica l tab

int isupper (int c) Returns true if c is an upper-case letter

int isxdigit (int c) Returns true if c is a hexadecimal digit , ie in 0 .. 9,
a . f,orA ... F

int to lower (int c) Forces c to lower case if it is an upper-case letter,
otherwise returns the original value

int toupper (int c) Forces c to upper case if it is a lower-case letter,
otherwise returns the original va lue

This file contains the definition of the macro errno, which is of type volatile
int. It contains three macro constants defining the error conditions listed below.

If a domain error occurs (an input argument is outside the domain over which the
mathematical function is defined) the integer expression errno acquires the
value of the macro EDOM and HUGE_ VAL is returned . EDOM may be used by
non-mathematical functions .

ERANGE

A range error occurs if the result of a function cannot be represented as a double
value. If the resu lt overflows (the magnitude of the result is so large that it cannot
be represented in an object of the specified type) . the function returns the value of
the macro HUGE_ VAL, with the same sign as the correct value of the function; the
integer expression errno acqui res the val ue of the macro ERANGE. If the result
underflows (the magnitude of the result is so sma ll that it cannot be represented in
an object of the specified type). the function returns zero; the integer expression
errno acquires the valLJe of the macro ERANGE. ERANGE may be used by
non-mathematical functions .

ESIGNUM

If an unrecognised signal is caught by the default signal handler, errno is set to
ESIGNUM.

float.h

limits.h

locale.h

ANSI library reference section

This file contains a set of macro constants which define the limits of computation
on floating point numbers. These are discussed in the chapter entitled
Implementation details on page 73.

This set of macro constants determines the upper and lower value limits for
integral objects of various types, as follows:

Object type Minimum value Maximum value
Byte (number of bits) 0 8
Signed char -128 127
Unsigned char 0 255
Char 0 255
Multibyte character (number 0 1

of bytes)
Short int -0x8000 Ox7fff
Unsigned short int 0 65535
Int (-Ox7fffffff) Ox7fffffff
Unsigned int 0 Oxffffffff
Long int (-Ox7fffffff) Ox7fffffff
Unsigned long int 0 Oxffffffff

See also the chapter entitled Implementation details on page 73.

This file handles national characteristics, such as the different orderings
month-day-year (USA) and day-month-year (UK).

char *setlocale(int category, canst char *locale)

Selects the appropriate part of the program's locale as specified by the category
and locale arguments. The set locale function may be used to change or
query the program's entire current locale or portions thereof. Locale information is
divided into the following types

LC_ COLLATE
LC_ CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME
LC_ ALL

string collation
character type
monetary formatting
numeric string formatting
time formatting
entire locale

107

math.h

math.h

108

The locale string specifies which locale set of information is to be used. For
example,

setlocale

lconv

setlocale(LC_MONETARY , "uk")

would insert monetary information into the lconv structure. To query the current
loca le information , set the locale string to null and read the string returned .

struct lconv *localeconv(void)

Sets the components of an object with type struct lconv with values appropriate
for the formatting of numeric quantities (monetary and otherwise) according to the
rules of the current locale. The members of the structure with type char * are
strings, any of which (except decirnal_point) can point to "" , to indicate that
the value is not available in the current locale or is of zero length . The members
with type char are non-negative numbers, any of which can be CHAR_ MAX to
indicate that the value is not available in the current locale. The members included
are described above.

localeconv returns a pointer to the filled in object The structure pointed to by
the return value will not be modified by the program, but may be overwritten by a
subsequent call to the localeconv function . In addition, calls to the
set locale function with categories LC_ALL, LC_ MONETARY, or LC_NUMERIC
may overwrite the contents of the structure.

This file contains the prototypes for 22 mathematical functions. All return the type
double.

Function

double acos(double x)

double asin(double x)

double atan(double x)
double atan2(double x,

double cos(double x)

double sin(double x)

double tan (double x)

double co sh (double x)

Returns

arc cosine of x A domain error occurs
for arguments not in the range -I to I

arc sine of x A domain error occurs for
arguments not in the range -I to I

arc tangent of x

double y) arc tangent of y / x

cos ine of x (measured in radians)

sine of x (measured in radians)
tangent of x (measured in radians)

hyperbolic cos ine of x

setjmp.h

setjmp

double sinh(double x)

double tanh(double x)

double exp (double x)

double frexp(double x,

double ldexp(double x,

double log(double x)

double loglO(double x)

int

ANSI library reference section

hyperbolic s ine of x

hyperbolic tangent of x

exponential function of x

*exp) the va lue x , such that x is a
double with magnitude in the interval
0.5 to 1.0 or ze ro, and value equals x
times 2 raised to the power *exp

int exp) x times 2 raised to the power of exp
natural logarithm of x

log to the base I 0 of x

double modf (double x, double * iptr) signed fractional part of x
Stores integer part of x in ob ject
pointed to by iptr

double pow(double x , double y)

double sqrt(double x)

double ceil(double x)

double fabs(double x)
double floor(double x)

x raised to the power of y

positive square root of x

smallest integer not less than x (ie
rounding up)

absolute value of x

largest integer not greater than x (ie
rou nding down)

double fmod (double x, double y) floating-point remainder of x / y

This file declares two functions, and one type, for bypassing the normal functi on
call and return discipline (useful for dealing with unusual conditions encountered
in a low-leve l function of a program) . It also defines the jmp_buf structure type
required by these routines.

int setjmp(jmp_buf env)

The calling environment is saved in env, for later use by the longjmp fun ction. If
the return is from a direct invocation , the setjmp function returns the va lue zero.
If the return is from a call to the longjmp function , the setjmp function returns a
non-zero value.

longjmp

void longjmp(jmp_buf env, int val)

109

signal.h

signal.h

110

The environment saved in env by the most recent call to setjmp is restored. If
there has been no such call, or if the function containing the call to setjmp has
terminated execution (eg with a return statement) in the interim, the behaviour is
undefined . All accessible objects have values as at the time longjmp was called,
except that the values of objects of automatic storage duration that do not have
volatile type and that have been changed between the set jmp and longjmp calls
are indeterminate.

As it bypasses the usual function call and return mechanism, the longjmp
function executes correctly in contexts of interrupts, signals and any of their
associated functions. However, if the longjmp function is invoked from a nested
signal handler (that is, from a function invoked as a result of a signal raised during
the handling of another signal). the behaviour is undefined

After longjmp is completed, program execution continues as ifthe corresponding
call to setjmp had just returned the va lue specified by val. The longjmp
function cannot cause setjmp to return the value 0; if val is 0, setjmp returns
the value I .

Signal declares a type (sig_atomic_ t) and two functions.

It also defines several macros for handling various signa ls (conditions that may be
reported during program execution) . These are SIG_DFL (default routine) ,
SIG_ IGN (ignore signal routine) and SIG_ ERR (dummy routine used to flag error
return from signal).

void (*signal (int sig , void (*func) (int))) (int)

Think of this as

typedef void Handler(int);
Handler *signal(int, Handler*);

Chooses one of three ways in which receipt of the signa l number sig is to be
subsequently handled. If the val ue of func is SIG_DFL, default handling for that
signal will occur. If the va lue of func is SIG_IGN, the signa l wi ll be ignored
Otherwise func points to a function to be called when that signal occurs.

When a signal occurs, if func points to a function , first the equivalent of
s ignal(sig , SIG_DFL) is executed . (If the value of sig is SIG ILL, whether
the reset to SIG_ DFL occurs is implementation-defined (under RISC OS the reset
does occur)) . Next. the equivalent of (* func) (s ig) : is executed. The function
may terminate by calling the abort, exit or longjmp function. If func executes
a return statement and the value of sig was SIGFPE or any other

raise

stdarg.h

va_list

ANSI library reference section

implementation-defined value corresponding to a computational exception, the
behaviour is undefined. Otherwise, the program will resume execution at the point
it was interrupted.

If the signal occurs other than as a result of calling the abort or raise function,
the behaviour is undefined if the signal handler calls any function in the standard
library other than the signal function itself or refers to any object with static
storage duration other than by assigning a value to a volatile static variable of type
sig_atomic_t. At program start-up, the equivalent of signal (sig ,
SIG_IGN) may be executed for some signals selected in an
implementation-defined manner (under RISC OS this does not occur); the
equivalent of signal (sig, SIG_DFL) is executed for all other signals defined
by the implementation

If the request can be honoured, the signal function returns the value of func for
most recent call to signal for the specified signal sig. Otherwise, a value of
SIG_ERR is returned and the integer expression errno is set to indicate the error.

int raise(int / *sig* /)

Sends the signal sig to the executing program . Returns zero if successful, non-zero
if unsuccessful.

This file declares a type and defines three macros. for advancing through a list of
arguments whose number and types are not known to the called function when it is
translated . A function may be called with a variable number of arguments of
differing types . Its parameter list contains one or more parameters, the rightmost
of which plays a special role in the access mechanism, and will be called parmN in
this description

stdio .his required to declare vfpr int f () without defining va_l is t Clearly
the type _va_list there must keep in step.

char * va_ list[l)

An array type suitable for holding information needed by the macro va_arg and
the function va_ end. The called function declares a variable (referred to asap)
having type va_li st. The variable ap may be passed as an argument to another

111

112

function. va_l is t is an array type so that when an object of that type is passed as

an argument it gets passed by reference. but this is not required by the ANSI

specification and cannot be relied on.

va_start

va_arg

The va_start macro will be executed before any access to the unnamed

arguments. The parameter appoints to an object that has type va_list. The

va_ start macro initialises ap for subsequent use by va_arg and va_end. The

parameter parmN is the identifier of the rightmost parameter in the variable

parameter list in the function definition (the one just before the , ...). If the

parameter parmN is declared with the register storage class the behaviour is

undefined.

Returns: no value.

The va_arg macro expands to an expression that has the type and value of the

next argument in the call. The parameter ap is the same as the va_list ap

initialised by va_s tart. Each invocation of va_arg modifies ap so that

successive arguments are returned in turn. The parameter type is a type name

such that the type of a pointer to an object that has the specified type can be

obtained simply by postfixing a * to type. If type disagrees with the type of the

actual next argument (as promoted according to the default argument

promotions). the behaviour is undefined.

Returns: The first invocation of the va_arg macro after that of the va_start

macro returns the value of the argument after that specified by parmN. Successive

invocations return the values of the remaining arguments in succession. Care is

taken in va_arg so that illegal things like va_arg (ap, char) -which may seem

natural but are in fact illegal - are caught. va_arg (ap, float·) is wrong but

cannot be patched up at the C macro level.

va_end
#define va_end(ap) ((void)(* (ap) = (char *) -256))

The va_ end macro facilitates a normal return from the function whose variable

argument list was referenced by the expansion of va_ start that initialised the

va_l i st ap. If the va_ end macro is not invoked before the return. the behaviour

is undefined .

stddef.h

stdio.h

ANSI library reference section

This file contains a macro for calculating the offset of fields within a structure. It
also defines the pointer constant NULL and three types.

ptrdi f f_t (here int) the signed integral type of the result of
subtracting two pointers

s i ze_t (here unsigned int) the unsigned integral type of the result of
the sizeof operator

wchar_ t (here int) also in stdlib . h. An integral type whose
range of values can represent distinct codes
for all members of the largest extended
character set specified among the supported
locales; the null character has the code
value zero and each member of the basic
character set has a code value when used as
the lone character in an integer character
constant.

size t offsetof (type, member) Expands to an integral constant
expression that has type size_t, the value
of which is the offset in bytes from the
beginning of a structure designated by
type, of the member designated by
member (if the specified member is a
bit-field , the behaviour is undefined) .

stdio declares two types, several macros, and many functions for performing
input and output. For a discussion on Streams and Files refer to sections 4.9. 2 and
4.9.3 in the ANSI standard or to one of the other references given in the Introduction
to this Guide.

fpos_t

FILE

fpos_t is an ob ject capable of recording all information needed
to specify uniquely every position within a file

is an object capable of recording all information needed to
control a stream, such as its file position indicator, a pointer to its
associated buffer, an error indicator that records whether a
read/write error has occurred and an end-of-fi le indicator that
records whether the end-of-file has been reached . The objects
contained in the #ifdef _system_ io clause are for system
use only, and cannot be relied on between releases of C.

113

114

remove

int remove(const char * filename)

Causes the file whose name is the string pointed to by f i 1 ename to be removed.
Subsequent attempts to open the file will fail. unless it is created anew. Ifthe file is
open, the behaviour of the remove function is implementation-defined (under
RISC OS the operation fails)

Returns: zero if the operation succeeds, non-zero if it fails.

rename

int rename(const char * old , const char * new)

Causes the file whose name is the string pointed to by old to be henceforth known
by the name given by the string pointed to by new. The file named old is
effectively removed . If a file named by the string pointed to by new exists prior to
the call of the rename function, the behaviour is implementation-defined (under
RISC OS, the operation fails).

Returns: zero if the operation succeeds, non-zero if it fails, in which case if the file
existed previously it is still known by its original name.

tmpfile

FILE *tmpfile(void)

Creates a temporary binary file that will be automatically removed when it is closed
or at program termination. The file is opened for update.

Returns: a pointer to the stream of the file that it created. If the file cannot be
created, a null pointer is returned.

tmpnam

char *tmpnam(char * s)

Generates a string that is not the same as the name of an existing file . The tmpnam
function generates a different string each time it is called, up to TMP _MAX times. If
it is called more than TMP _ MAX times , the behaviour is implementation-defined
(under RISC OS the algorithm for the name generation works just as well after
tmpnam has been called more than TMP _ MAX times as before; a name clash is
impossible in any single half year period)

Returns: If the argument is a null pointer, the tmpnam function leaves its result in
an internal static object and returns a pointer to that object Subsequent calls to
the tmpnam function may modify the same object If the argument is not a null

fclose

fflush

fopen

ANSI library reference section

pointer, it is assumed to point to an array of at least L_tmpnam characters; the

tmpnam function writes its result in that array and returns the argument as its

value.

int fclose(FILE * stream)

Causes the stream pointed to by stream to be flushed and the associated file to

be closed. Any unwritten buffered data for the stream are delivered to the host

environment to be written to the file ; any unread buffered data are discarded. The

stream is disassociated from the file. If the associated buffer was automatically

allocated, it is deallocated.

Returns: zero if the stream was successfully closed, or EOF if any errors were

detected or if the stream was already closed.

int fflush(FILE * stream)

If the stream points to
1

an output or update stream in which the most recent

operation was output, lthe ff 1 ush function causes any unwritten data for that
stream to be delivered to the host environment to be written to the file . If the

stream points to an in , ut or update stream, the ff lush function undoes the

effect of any preceding ungetc operation on the stream.

Returns : EOF if a write error occurs.

FILE *fopen(consf char * filename, canst char * mode)

Opens the file whose name is the string pointed to by filename, and associates

a stream with it. The atgument mode points to a string beginning with one of the

following sequences:

r open text file for reading
w c~eate text file for writing, or truncate to zero length
a append; open text file or create for writing at eof

rb open binary file for reading
wb deate binary file for writing, or truncate to zero length

ab a~pend; open binary file or create for writing at eof
r+ o en text file for update (reading and writing)

w+ c eate text file for update, or truncate to zero length

a+ append; open text file or create for update, writing at eof

r+b or rb+ open binary file for update (reading and writing)

115

stdio.h

116

w+b orwb+
a+b or ab+

create binary file for update, or truncate to zero length
append; open binary file or create for update, writing at
eof

• Opening a file with read mode (r as the first character in the mode argument)
fails if the file does not exist or cannot be read.

• Opening a file with append mode (a as the first character in the mode
argument) causes all subsequent writes to be forced to the current end of file ,
regardless of intervening calls to the fseek function.

• In some implementations, opening a binary file with append mode (bas the
second or third character in the mode argument) may initially position the file
position indicator beyond the last data written, because of null padding (but
not under RISC OS).

• When a file is opened with update mode (+as the second or third character in
the mode argument), both input and output may be performed on the
associated stream. However, output may not be directly followed by input
without an intervening call to the ff lush function or to a file positioning
function (fseek, fsetpos, or rewind). nor may input be directly followed
by output without an intervening qill to the fflush function or to a file
positioning function, unless the input operation encounters end-of-file.

• Opening a file with update mode may open or create a binary stream in some
implementations (but not under RISC OS) When opened, a stream is fully
buffered if and only if it does not refer to an interactive device. The error and
end-of-file indicators for the stream are cleared.

Returns: a pointer to the object controlling the stream. If the open operation fails,
fopen returns a null pointer.

freopen

setbuf

FILE *freopen(const char * filename, canst char * mode ,

FILE * stream)

Opens the file whose name is the string pointed to by fi 1 ename and associates
the stream pointed to by stream with it. The mode argument is used just as in the
fopen function. The freopen function first attempts to close any file that is
associated with the specified stream. Failure to close the file successfully is
ignored. The error and end-of-file indicators for the stream are cleared.

Returns: a null pointer if the operation fails. Otherwise , freopen returns the value
of the stream.

void setbuf(FILE * stream , char * buf)

ANSI library reference section

Except that it returns no value, the setbuf function is equivalent to the setvbuf
function invoked with the values _IOFBF for mode and BUFSIZ for size, or if buf
is a null pointer, with the value _ION BF for mode.

Returns: no value.

setvbuf

fprintf

int setvbuf(FILE * stream, char * buf, int mode , size t
size)

This may be used after the stream pointed to by stream has been associated with
an open file but before it is read or written. The argument mode determines how
stream will be buffered, as follows :

• _IOFBF causes input/output to be fully buffered.

• _IOLBF causes output to be line buffered (the buffer will be flushed when a
newline character is written, when the buffer is full , or when interactive input is
requested) .

• _ION BF causes input/output to be completely unbuffered.

If buf is not the null pointer, the array it points to may be used instead of an
automatically allocated buffer (the buffer must have a lifetime at least as great as
the open stream, so the stream should be closed before a buffer that has
automatic storage duration is deallocated upon block exit). The argument size
specifies the size of the array. The contents of the array at any time are
indeterminate.

Returns: zero on success, or non-zero if an invalid value is given for mode or size,
or if the request cannot be honoured .

int fprintf (FILE * stream, canst char * format , ...)

writes output to the stream pointed to by s tream, under control of the string
pointed to by format that specifies how subsequent arguments are converted for
output. If there are insufficient arguments for the format , the behaviour is
undefined. If the format is exhausted while arguments remain, the excess
arguments are evaluated but otherwise ignored. The fprintf function returns
when the end of the format string is reached . The format must be a multi byte
character sequence, beginning and ending in its initial shift state (in all locales
supported under RISC OS this is the same as a plain character string) . The format
is composed of zero or more directives: ordinary multi byte characters (not 'Yo),
which are copied unchanged to the output stream; and conversion specifiers, each
of which results in fetching zero or more subsequent arguments . Each conversion
specification is introduced by the character 'Yo. For a complete description of the

117

stdio.h

printf

118

available conversion specifiers refer to section 4.9.6. l in the ANS! standard or to
one of the other references in the Introduction to this Guide. The minimum value for
the maximum number of characters that can be produced by any single conversion
is at least 509.

A brief and incomplete description of conversion specifications is:

[flags] [fiel d width] [.precision]specifier-char

flags is most commonly - , indicating left justification of the output item within
the field . If omitted, the item will be right just ified.

field width is the minimum width of field to use. If the formatted item is
longer, a bigger field will be used; otherwise, the item will be right (left) justified in
the field.

precision is the minimum number of digits to print for ad, i, o, u, x or X
conversion, the number of digits to appear after the decimal digit fore, E and f
conversions, the maximum number of significant digits for g and G conversions, or
the maximum number of characters to be written from strings in ans conversion .

Either of both of field width and precision may be*, indicating that the
value is an argument to printf.

The specifier chars are:

d, i
O , u,

f
e , E

g, G

c
s
p
%

x , x
int printed as signed decimal
unsigned int value printed as unsigned octal, decimal or
hexadecimal
double value printed in the style [- J ddd . ddd
double value printed in the style [- J d . ddd ... e dd
double printed inf ore format, whichever is more
appropriate
int value printed as unsigned char
char * value printed as a string of characters
void * argument printed as a hexadecimal address
write a literal %

Returns: the number of characters transmitted, or a negative value if an output
error occurred.

int printf(const char* format, ...)

Equivalent to fprintf with the argument stdout interposed before the
arguments to printf.

sprintf

fscanf

ANSI library reference section

Returns: the number of characters transmitted, or a negative value if an output
error occurred .

int sprintf (ch ar * s , cons t char * f or mat , .. .)

Equivalent to fpriht f, except that the argument s specifies an array into which
the generated output is to be written , rather than to a stream. A null character is
written at the end of the characters written ; it is not counted as part of the returned
sum .

Returns: the number of characters written to the array, not counting the
terminating null character.

i n t fscanf (F I LE * stream , can s t ch ar * format , ...)

Reads input from the stream pointed to by stream, under control of the string
pointed to by format that specifies the admissible input sequences and how they
are to be converted for assignment. using subsequent arguments as pointers to the
objects to receive the converted input. If there are insufficient arguments for the
format. the behaviour is undefined. If the format is exhausted while arguments
remain, the excess arguments are evaluated but otherwise ignored. The format is
composed of zero or more directives, one or more white-space characters, an
ordinary character (not %). or a conversion specification. Each conversion
specification is introduced by the character %. For a description of the available
conversion specifiers refer to section 4.9.6.2 in the ANSI standard, or to any of the
references listed in the chapter entitled Introduction on page I . A brief list is given
above, under the entry for f p r int f .

If end-of-file is encountered during input. conversion is terminated. If end-of-file
occurs before any characters matching the current directive have been read (other
than leading white space, where permitted), execution of the current directive
terminates with an input failure; otherwise, unless execution of the current
directive is terminated with a matching failure, execution of the following directive
(if any) is terminated with an input failure.

If conversions terminate on a conflicting input character, the offending input
character is left unread in the input stream. Trailing white space (including newline
characters) is left unread unless matched by a directive. The success of literal
matches and suppressed assignments is not directly determinable other than via
the %n directive.

119

stdio.h

120

scant

sscanf

vprintf

Returns: the value of the macro EOF if an input failure occurs before any

conversion. Otherwise, the f scanf function returns the number of input items

assigned, which can be fewer than provided for, or even zero, in the event of an

early conflict between an input character and the format.

int scanf (canst char * format , . . .)

Equivalent to fscanf with the argument stdin interposed before the arguments

to scanf.

Returns: the value of the macro EOF if an input failure occurs before any

conversion. Otherwise, the scanf function returns the number of input items

assigned, which can be fewer than provided for, or even zero, in the event of an

early matching failure .

int sscanf(const char* s , canst char * format , ...)

Equivalent to f scanf except that the argument s specifies a string from which the

input is to be obtained, rather than from a stream. Reaching the end of the string is

equivalent to encountering end-of-file for the f scanf function .

Returns: the value of the macro EOF if an input failure occurs before any

conversion. Otherwise , the scanf function returns the number of input items

assigned, which ca n be fewer than provided for, or even zero, in the event of an

early matching failure .

int vprintf(const char * format , va_ l i s t arg)

Equivalent to print f, with the variable argument list replaced by arg, which has

been initialised by the va_ start macro (and possibly subsequent va_ arg calls)

The vprintf function does not invoke the va_ end function .

Returns: the number of characters transmitted, or a negative va lue if an output

error occurred.

vfprintf

int vfprintf(FILE * stream , const char * format , va_ list

arg)

Equivalent to fprintf, with the variable argument list replaced by arg, which

has been initialised by the va_ start macro (and possibly subsequent va_arg

calls) . The vfprint f function does not invoke the va_ end function.

ANSI library reference section

Returns: the number of characters transmitted, or a negative value if an output

error occurred.

vsprintf

fgetc

fgets

fputc

int vsprintf(char * s , const char * format , va_ list arg)

Equ iva lent to sprintf, with the variab le argument list replaced by arg, which

has been initialised by the va_ start macro (and possibly subsequent va_ arg

ca lls). The vsprintf function does not invoke the va_ end function .

Returns: the number of cha racters written in the array, not count ing the

terminating null character.

int fgetc(FILE * stream)

Obtains the next character (if present) as an unsigned char converted to an int.

from the input stream pointed to by s tream, and advances the associated file

position indicator (if defined).

Returns: the next character from the input stream pointed to by stream. If the

stream is at end-of-file, the end-of-fi le indicator is set and fgetc returns EOF If a

read error occurs. the error indicator is set and fgetc returns EOF

char *fgets(char * s , int n, FILE* stream)

Reads at most one less t han the number of characters specified by n from the

stream pointed to by stream into the array pointed to by s. No add iti onal

characters are read after a newline character (which is retained) or after end-of-file.

A null character is wri tten immediately after the last character read into t he array.

Returns : s i f successful. If end-of-file is encountered and no characters have been

read into the array, the contents of the array remain unchanged and a null pointer

is returned. If a read error occurs during the operation, the array contents are

indeterminate and a null pointer is returned .

int fputc(int c , FILE * stream)

Writes the character specified by c (converted to an unsigned char) to the output

stream pointed to by stream, at the position indicated by the associated file

position indicator (if defined). and advances the indicator appropriately If the fil e

cannot support positioning requests, or if the stream was opened with append

mode, the character is appended to the output stream.

121

stdio.h

122

fputs

getc

Returns: the character written. If a write error occurs, the error indicator is set and
fputc returns EOF.

int fputs(const char * s , FILE * stream)

Writes the string pointed to bys to the stream pointed to by s tream. The
terminating null character is not written.

Returns: EOF if a write error occurs; otherwise it returns a non-negative value.

int getc(FILE * stream)

Equivalent to fgetc except that it may be (and is under RISC OS) implemented as
a macro. stream may be evaluated more than once, so the argument should never
be an expression with side effects.

Returns: the next character from the input stream pointed to by stream. If the
stream is at end-of-file, the end-of-file indicator is set and getc returns EOF If a
read error occurs, the error indicator is set and getc returns EOF.

getchar

gets

int getchar(void)

Equivalent to getc with the arguments tdin.

Returns : the next character from the input stream pointed to by st din. If the
stream is at end-of-file, the end-of-file indicator is set and get char returns EOF.
If a read error occurs, the error indicator is set and get char returns EOF.

char *gets(char * s)

Reads characters from the input stream pointed to bys tdin into the array
pointed to bys, until end-of-file is encountered or a newline character is read. Any
newline character is discarded, and a null character is written immediately after the
last character read into.the array.

Returns: s if successful. If end-of-file is encountered and no characters have been
read into the array, the contents of the array remain unchanged and a null pointer
is returned. If a read error occurs during the operation, the array contents are
indeterminate and a null pointer is returned .

putc

ANSI library reference section

int putc(int c , FILE * stream)

Equivalent to fputc except that it may be (and is under RISC OS) implemented as

a macro. stream may be evaluated more than once. so t he argument shou ld never
be an expression with side effects .

Returns: the character written. If a write error occurs, the error indicator is set and
putc returns EOF.

putchar

puts

ungetc

int putchar(int c)

Equivalent to putc with the second argument stdout.

Returns: the character written. If a write error occurs, the error indicator is set and
putc returns EOF.

int puts(const char * s)

Writes the string pointed to by s to the stream pointed to by stdout, and
appends a newline character to the output. The terminating null character is not
written.

Returns: EOF if a write error occurs; otherwise it returns a non-negative value.

int ungetc(int c , FILE * stream)

Pushes the character specified by c (converted to an unsigned char) back onto the
input stream pointed to by stream. The character will be returned by the next
read on that stream. An intervening call to the ff lush function or to a file
positioning function (fseek, fsetpos, rewind) discards any pushed-back
characters. The external storage corresponding to the stream is unchanged. One
character push back is guaranteed. If the unget function is called too many times
on the same stream without an intervening read or file positioning operation on
that stream, the operation may fail. If the value of c equals that of the macro EOF,

the operation fails and the input stream is unchanged.

A successful call to the ungetc functi on clears the end-of-file indicator. The value
of the file position indicator after reading or discarding all pushed-back characters

will be the same as it was before the characters were pushed back. For a text
stream , the value of the file position indicator after a successful call to the ungetc
function is unspecified until all pushed-back characters are read or discarded. For

123

stdio.h

124

fread

fwrite

a binary stream, the file position indicator is decremented by each successful call
to the ungetc function ; if its value was zero before a call, it is indeterminate after
the call.

Returns: the character pushed back after conversion, or EOF if the operation fails.

size_t fread(void * ptr , size_ t size,
size_ t nmemb , FILE * stream)

Reads into the array pointed to by ptr, up to nmemb members whose size is
speci fied by size, from the stream pointed to by stream. The file position
indicator (if defined) is advanced by the number of characters successfully read . If
an error occurs, the resulting value of the file position indicator is indeterminate. If
a partial member is read , its value is indeterminate. The ferror or feof function
shall be used to distinguish between a read error and end-of-fi le.

Returns: the number of members successfully read , which may be less than nmemb
if a read error or end-of-file is encountered. If size or nmemb is zero, fread
returns zero and the contents of the array and the state of the stream remain
unchanged .

size_t fwrite(const void * ptr ,
size_ t size , size_ t nmemb, FILE * stream)

Writes, from the array pointed to by ptr up to nmemb members whose size is
specified by size, to the stream pointed to by stream. The file position indicator
(if defined) is advanced by the number of characters successfully written. If an error
occurs, the resulting va lue of the file position indicator is indeterminate.

Returns: the number of members successfully written, which wi ll be less than
nmemb only if a write error is encountered.

fgetpos

int fgetpos(FILE * stream, fpos_ t * pos)

Stores the current value of the file position indicator for the stream pointed to by
stream in the object pointed to by pos. The value stored contains unspecified
information usable by the fsetpos function for repositioning the stream to its
position at the time of the call to the fgetpos function .

Returns: zero, if successful. Otherwise non-zero is returned and the integer
expression errno is set to an implementation-defined non-zero value (under
RISC OS fgetpos cannot fail)

fseek

ANSI library reference section

int fseek(FILE * stream , long int offset , int whence)

Sets the file position indicator for the stream pointed to bys tream. For a binary
stream, the new position is at the signed number of characters specified by
offset away from the point specified by whence. The specified point is the
beginning of the file for SEEK_ SET, the current position in the file for SEEK_ CUR.
or end-of-file for SEEK_ END. A binary stream need not meaningfully support
fseek calls with a whence value of SEEK_ END, though the Acorn
implementation does. For a text stream, offset is either zero or a va lue returned
by an earlier call to the ftell function on the same stream; whence is then
SEEK_ SET. The Acorn implementation also allows a text stream to be positioned
in exactly the same manner as a binary stream , but this is not portable. The f seek
function clears the end-of-file indicator and undoes any effects of the ungetc
function on the same stream. After an fseek call. the next operation on an update
stream may be either input or output.

Returns: non-zero only for a request that cannot be satisfied.

fsetpos

ftell

int fsetpos(FILE * stream , const fpos_t * pos)

Sets the file position indicator for the stream pointed to by stream according to
the value of the object pointed to by pos , which is a value returned by an earlier
ca ll to the fgetpos function on the same stream. The fsetpos function clears
the end-of-file indicator and undoes any effects of the ungetc function on the
same stream . After an f setpos ca ll. the next operation on an update stream may
be either input or output

Returns: zero, if successful. Otherwise non-zero is returned and the integer
expression errno is set to an implementation-defined non-zero va lue (under
RISC OS the value is that of EDOM in math . h).

long int ftell(FILE * stream)

Obtains the current value of the file position indicator for the stream pointed to by
stream. For a binary stream , the value is the number of characters from the
beginning of the file. For a text stream, the file position indicator contains
unspecified information, usable by the fseek function for returning the fil e
position indicator to its position at the time of the ft ell call; the difference
between two such return va lues is not necessa rily a meaningful measure of the

125

126

rewind

number of characters written or read. However, for the Acorn implementation, the
value returned is merely the byte offset into the file , whether the stream is text or
binary.

Returns: if successful. the current value of the file position indicator. On failure . the
f tel 1 function returns -IL and sets the integer expression errno to an
implementation-defined non-zero value (under RISC OS ft ell cannot fail)

void rewi nd(FILE * stream)

Sets the file position indicator for the stream pointed to by stream to the
beginning of the file . It is equivalent to (vo i d) f seek (stream , OL ,
SEEK_ SET) except that the error indicator for the stream is also cleared .

Returns: no value.

clearerr

feof

terror

perror

void c ~ earerr(FILE * stream)

Clears the end-of-file and error indicators for the stream pointed to by stream.
These indicators are cleared only when the file is opened or by an explicit call to
the c l earerr function or to the rewi nd function.

Returns: no value.

int feo f(F ILE * stream)

Tests the end-of-file indicator for the stream pointed to by s tream.

Returns : non-zero if the end-of-file indicator is set for stream.

int ferror(F I LE * stream)

Tests the error indicator for the stream pointed to by stream.

Returns : non-zero if the error indicator is set for stream.

vo i d p error (c on st char * s)

stdlib.h

at of

atoi

atol

strtod

ANSI library reference section

Maps the error number in the integer expression errno to an error message. It
writes a sequence of characters to the standard error stream thus: first (ifs is not a
null pointer and the character pointed to by s is not the null character). the string
pointed to by s followed by a colon and a space; then an appropriate error
message string followed by a newline character. The contents of the error message
strings are the same as those returned by the strerror function with argument
errno, which are implementation-defined.

Returns: no value.

stdlib. h declares four types, several general purpose functions, and defines
several macros.

double atof(const char * nptr)

Converts the initial part of the string pointed to by nptr to double *
representation.

Returns: the converted value.

int atoi(const char* nptr)

Converts the initial part of the string pointed to by nptr to int representation .

Returns: the converted value.

long int atol(const char* nptr)

Converts the initial part of the string pointed to by nptr to long int
representation .

Returns: the converted value .

double s trtod(const char * nptr , char ** endptr)

Converts the initial part of the string pointed to by nptrto double representation
First it decomposes the input string into three parts: an initial, possibly empty,
sequence of white-space characters (as specified by the is space function). a
subject sequence resembling a floating point constant, and a final string of one or

127

stdlib.h

strtol

strtoul

128

more unrecognised characters, including the terminating null character of the

input string. It then attempts to convert the subject sequence to a floating point

number. and returns the result A pointer to the final string is stored in the object

pointed to by endptr, provided that endptr is not a nu ll pointer

Returns: the converted value if any. If no conversion could be performed, zero is

returned . If the correct value is outside the range of representable values, plus or

minus HUGE_ VAL is returned (according to the sign of the value), and the value of

the macro ERANGE is stored in errno. If the correct value would cause underflow,

zero is returned and the value of the macro ERANGE is stored in errno.

long int strtol(const char* nptr, char **endptr, int
base)

Converts the initial part of the string pointed to by nptr to long int

representation . First it decomposes the input string into three parts: an initial.

possibly empty, sequence of white-space characters (as specified by the is space

function), a subject sequence resembling an integer represented in some radix

determined by the value of base, and a final string of one or more unrecognised

characters, including the terminating null character of the input string

It then attempts to convert the subject sequence to an integer, and returns the

result If the va lue of base is 0, the expected form of the subject sequence is that of

an integer constant (described precisely in the ANSI standard, section 3. I .3.2),

optionally preceded by a+ or - sign, but not including an integer suffix. If the value

of base is between 2 and 36, the expected form of the subject sequence is a

sequence of letters and digits representing an integer with the radix specified by

base, optionally preceded by a plus or minus sign, but not including an integer

suffix The letters from a (or A) through z (or Z) are ascribed the values IO to 35;

only letters whose ascribed values are less than that of the base are permitted If

the value of base is 16, the characters Ox or OX may optionally precede the

sequence of letters and digits following the sign if present A pointer to the final

string is stored in the ob ject pointed to by endptr, provided that endptr is not a

null pointer

Returns : the converted value if any. If no conversion could be performed, zero is

returned . If the correct value is outside the range of representable values,

LONG_MAX or LONG_MIN is returned (according to the sign of the value), and the

value of the macro ERANGE is stored in errno.

unsigned long int strtoul(const char * nptr , char **
endptr , int base)

rand

srand

ANSI library reference section

Converts the initial part of the string pointed to by nptr to unsigned long int
representation . First it decomposes the input string into three parts : an initial , possibly empty, sequence of white space characters (as determined by the
is space function). a subject sequence resembling an unsigned integer
represented in some radi x determined by the value of base, and a final string of one or more unrecognised characters , including the terminating null character of the input string

It then attempts to convert the subject sequence to an unsigned integer, and returns the result. If the value of base is zero, the expected form of the subject sequence is that of an integer constant (described precisely in the ANSI Draft. section 3. 1 3 2). optionally preceded by a+ or - sign , but not including an integer suffix. If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence of letters and digits representing an integer with the radix specified by base, optionally preceded by a + or - sign , but not including an integer suffix. The letters from a (or A) through z (or Z) stand for the values I 0 to 35; only letters whose ascribed values are less than that of the base are permitted If the va lue of base is 16, the characters Ox or OX may optionally precede the sequence of letters and digits following the sign, if present. A pointer to the final string is stored in the ob ject pointed to by endptr, provided that endptr is not a null pointer.

Return s: the converted va lue if any. If no conversion could be performed , zero is returned . If the correct value is outside the range of representable values,
ULONG_ MAX is returned , and the va lue of the • macro ERANGE is stored in errno.

int rand(void)

Computes a sequence of pseudo-random integers in the range 0 to RAND_MAX, where RAND_ MAX = Ox7fffffff.

Returns: a pseudo-random integer.

void srand(unsigned int seed)

Uses its argument as a seed for a new sequence of pseudo-random numbers to be returned by subsequent calls to rand. If srand is then ca lled with the same seed value, the sequence of pseudo-random numbers will be repeated . If rand is ca ll ed before any calls to srand have been made, the same sequence is generated as when srand is first called with a seed value of I .

129

stdlib.h

calloc

free

malloc

realloc

abort

130

void * cal l oc(size_ t nmemb , size_ t size)

Allocates space for an array of nmemb objects, each of whose size is size. The

space is initialised to all bits zero.

Returns: either a null pointer or a pointer to the allocated space.

void free(void * ptr)

Causes the space pointed to by ptr to be deallocated (made avai lable for further

allocation). If ptr is a null pointer, no action occu rs. Otherwise, if ptr does not

match a pointer earlier returned by calloc, rnalloc or realloc or if the space

has been deallocated by a call to free or realloc, the behaviour is undefined.

void *rnalloc(size_ t size)

Allocates space for an object whose size is specified by size and whose value is

indeterminate.

Returns : either a null pointer or a pointer to the allocated space.

void *realloc(void * ptr , size_ t size)

Changes the size of the object pointed to by ptr to the size specified by size. The

contents of the object is unchanged up to the lesser of the new and old sizes. If the

new size is larger. the value of the newly allocated portion of the object is

indeterminate. If ptr is a null pointer, the realloc function behaves like a call to

rnal loc for the specified size. Otherwise, if ptr does not match a pointer earlier

returned by calloc , rnalloc or realloc, or if the space has been deallocated by

a call to free or realloc, the behaviour is undefined. If the space cannot be

allocated , the object pointed to by ptr is unchanged . If size is zero and ptr is not

a null pointer, the object it points to is freed .

Returns: either a null pbinter or a pointer to the possibly moved allocated space.

void abort(void)

atexit

exit

getenv

ANSI library reference section

Causes abnormal program termination to occur, unless the signal SIGABRT is
being caught and the signal handler does not return . Whether open output streams
are flushed or open streams are closed or temporary files removed is
implementation-defined (under RISC OS all these occur). An
implementation-defined form of the status 'unsuccessful termination' (I under
RISC OS) is returned to the host environment by means of a call to
raise (SIGABRT).

int atexit(void (* func) (void))

Registers the function pointed to by func, to be called without its arguments at
normal program termination. It is possible to register at least 32 functions .

Returns: zero if the registration succeeds, non-zero if it fails .

void exit(int status)

Causes normal program termination to occur. If more than one call to the exit
function is executed by a program (for example, by a function registered with
atexi t). the behaviour is undefined. First, all functions registered by the atexi t
function are called, in the reverse order of their registration . Next, all open output
streams are flushed, all open streams are closed , and all files created by the
tmpf i le function are removed . Finally, control is returned to the host
environment. If the value of status is zero or EXIT_SUCCESS , an
implementation-defined form of the status 'successful termination ' (0 under
RISC OS) is returned. If the value of status is EXIT_FAILURE, an
implementation-defined form of the status 'unsuccessful termination' (I under
RISC OS) is returned . Otherwise the statu s returned is implementation-defined
(the value of status is returned under RISC OS) .

char *getenv(const char * name)

Searches the environment list, provided by the host environment. for a string that
matches the string pointed to by name. The set of environment names and the
method for altering the environment list are implementation-defined.

Returns: a pointer to a string associated with the matched list member. The array
pointed to is not modified by the program, but may be overwritten by a subsequent
call to the getenv function . If the specified name cannot be found, a null pointer
is returned .

131

132

system

int system(const char * string)

Passes the string pointed to by string to the host environment to be executed by
a command processor in an implementation-defined manner. A null pointer may
be used for string, to inquire whether a command processor exists. Under
RISC OS, care must be taken , when executing a command, that the command does
not overwrite the calling program. To control this , the string chain : or cal 1:
may immediately precede the actual command. The effect of call : is the same as
if cal 1 : were not present. When a command is called, the caller is first moved to
a safe place in application workspace. When the callee terminates , the caller is
restored. This requires enough memory to hold caller and callee simultaneously.
When a command is chained, the caller may be overwritten. If the caller is not
overwritten, the caller exits when the caller terminates. Thus a transfer of control is
effected and memory requirements are minimised.

Returns: If the argument is a null pointer, the system function returns non-zero
on ly if a command processor is available. If the argument is not a null pointer, it
returns an implementation-defined value (under RISC OS O is returned for success
and -2 for failure to invoke the command; any other value is the return code from
the executed command).

bsearch

qsort

void *bsearch(const void *key, canst void * base,
size_ t nmemb, size_t size , int (* compar)
(canst void*, canst void*))

Searches an array of nmemb objects, the initial member of which is pointed to by
base, for a member that matches the object pointed to by key. The size of each
member of the array is specified by size. The contents of the array must be in
ascending sorted order according to a comparison function pointed to by compar,
which is called with two arguments that point to the key object and to an array
member, in that order. The function returns an integer less than, equal to, or
greater than zero if the key object is considered, respectively, to be less than, to
match, or to. be greater than the array member.

Returns: a pointer to a matching member of the array, or a null pointer if no match
is found. If two members compare as equal, which member is matched is
unspecified.

void qsort(void * base , size_ t nmemb, size_ t size ,
int (* compar) (canst void *, const void *))

abs

div

labs

ldiv

ANSI library reference section

Sorts an array of nmemb objects, the initial member of which is pointed to by
base. The size of each object is specified by size. The contents of the array are
sorted in ascending order accord ing to a comparison function pointed to by
compar, which is ca lled with two arguments that point to the objects being
compared. The function returns an integer less than, equal to, or greater than zero
if the first argument is cons idered to be respectively less than , equal to, or greater
than the second. If two members compa re as equal. their order in the sorted array
is unspecified

int abs(int j)

Computes the absolute va lue of an integer j. If the result cannot be represented,
the behaviour is undefined.

Returns : the absolute va lue.

div_t div(int numer, int denom)

Computes the quotient and remainder of the division of the numerator numer by
the denominator denom. If the division is inexact. the resulting quotient is the
integer of lesser magnitude that is the nearest to the algebraic quotient. If the
result cannot be represented , the behaviour is undefined; otherwise , quot *
denom + rem equals numer.

Returns: a structure of type div _t, comprising both the quot ient and the
remainder. The structure contains the foll owing members: int quot; int rem.
You may not rely on their order.

long int labs(long int j)

Computes the absolute value of an long integer j. If the result cannot be
represented, the behaviour is undefined.

Returns: the absolute value.

ldiv_ t ldiv(long int numer , long i nt denom)

Computes the quotient and remainder of the division of the numerator numer by
the denominator denom. If the division is inexact. the sign of the resulting
quotient is that of the algebraic quotient , and the magnitude of the resulting

133

134

mblen

quotient is the largest integer less than the magnitude of the algebraic quotient. If
the result cannot be represented , the behaviour is undefined; otherwise, quot *
denom + rem equals numer.

Returns: a structure of type ldi v _t , comprising both the quotient and the
remainder. The structure contains the following members: long int quot;
long int rem. You may not rely on their order.

Multibyte character functions

The behaviour of the multi byte character functions is affected by the LC_CTYPE
category of the current locale. For a state-dependent encoding, each function is
placed into its initial state by a call for which its character pointer argument. s, is a
null pointer. Subsequent calls withs as other than a null pointer cause the internal
state of the function to be altered as necessary. A call with s as a null pointer
causes these functions to return a non-zero value if encodings have state
dependency, and a zero otherwise. After the LC_CTYPE category is changed, the
shift state of these functi ons is indeterminate.

int mblen(const char * s , size_t n)

If s is not a null pointer, the mblen function determines the number of bytes
comprising the multi byte character pointed to bys. Except that the shift state of
the mbtowc function is not affected, it is equivalent to mbtowc ((wchar_ t *) 0 ,
s, n).

Returns: If s is a null pointer, the mblen function returns a non-zero or zero value,
if multibyte character encodings, respectively do or do not have state-dependent
encodings. If s is not a null pointer, the mblen function either returns a 0 (if s
points to a null character), or returns the number of bytes that comprise the
multi byte character (if the next n of fewer bytes form a valid multi byte character).
or returns -I (if they do not form a valid multibyte character).

mbtowc

int mbtowc(wchar_t * pwc , const char * s , size_ t n)

If s is not a null pointer, the mbtowc function determines the number of bytes that
comprise the multibyte character pointed to by s. It then determines the code for
value of type wchar_ t that corresponds to that multibyte character. (The value of
the code corresponding to the null character is zero). If the multibyte character is

l
valid and pwc is not a null pointer, the mbtowc function stores the code in the
object pointed to by pwc. At most n bytes of the array pointed to bys will be
examined.

ANSI library reference section

Returns: ifs is a null pointer, the mbtawc function returns a non-zero or zero
value, if multibyte character encodings, respectively do or do not have
state-dependent encodings If s is not a null pointer, the mbtawc function either
returns a 0 (ifs points to a null character), or returns the number of bytes that
compri se the converted multibyte character (if the next n of fewer bytes form a
valid multibyte character). or returns -I (if they do not form a valid multibyte
character)

wctomb

int wctamb(char * s , wchar_ t wchar)

Determines the number of bytes need to represent the multibyte character
corresponding to the code whose value is wchar (including any change in shift
state). It stores the multibyte character representation in the array object pointed
to by s (ifs is not a null pointer) . At most MB_CUR_MAX characters are stored. If
the value of wchar is zero, the wctamb function is left in the initial shift state).
Returns: If s is a null pointer, the wctamb function returns a non-zero or zero
value. if multibyte character encodings, respectively do or do not have
state-dependent encodings. If s is not a null pointer, the wctamb function returns
a -I if the value of wchar does not correspond to a valid multi byte character, or
returns the number of bytes that comprise the multi byte character corresponding
to the value of wchar.

Multibyte string functions

The behaviour of the multi byte string functions is affected by the LC_CTYPE
category of the current locale.

mbstowcs

size_t mbstawcs(wchar_t * pwcs, canst char * s , size_t n)
Converts a sequence of multibyte characters that begins in the initial shift state
from the array pointed to by s into a sequence of corresponding codes and stores
not more than n codes into the array pointed to by pwcs. No multi byte character
that follow a null character (which is converted into a code with value zero) will be
examined or converted. Each multi byte character is converted as if by a call to the
mbtawc function . If an invalid multibyte character is found, mbstawcs returns
(s i ze_ t) -1. Otherwise, the mbs tawcs function returns the number of array
elements modified, not including a terminating zero code, if any.

wcstombs

size t wcstambs(char * s , canst wchar t * pwcs , size t n)

string.h

string.h

136

Converts a sequence of codes that correspond to multi byte characters from the
array pointed to by pwcs into a sequence of multibyte characters that begins in the
initial shift state and stores these multibyte characters into the array pointed to by
s, stopping if a multi byte character would exceed the limit of n total bytes or if a
null character is stored. Each code is converted as if by a call to the wctomb
function, except that the shift state of the wctomb function is not affected. If a
code is encountered which does not correspond to any valid multibyte character,
the wcstombs function returns (size_t) - 1. Otherwise, the wcstombs function
returns the number of bytes modified, not including a terminating null character, if
any.

string . h declares one type and several functions, and defines one macro useful
for manipulating character arrays and other objects treated as character arrays.
Various methods are used fo r determining the lengths of the arrays , but in all cases
a char * or void * argument points to the initial (lowest addresses) character
of the array. If an array is written beyond the end of an object, the behaviour is
undefined .

memcpy

void *memcpy(void * sl , const void * s2 , size_ t n)

Copies n characters from the ob ject pointed to by s2 into the ob ject pointed to by
sl. If copy ing takes place between ob jects that overlap, the behaviour is
undefined.

Returns: the value of s l .

memmove

strcpy

void *memmove(void * sl , const void * s2 , size_ t n)

Copies n characters from the ob ject pointed to by s2 into the ob ject pointed to by
sl. Copying takes place as if the n characters from the ob ject pointed to by s2 are
first copied into a temporary arra y of n characters that does not overlap the objects
pointed to by sl and s2, and then the n characters from the temporary array are
copied into the object·pointed to by sl.

Returns: the va lue of s l .

char *strcpy(char * sl, const char * s2)

ANSI library reference section

Copies the string pointed to by s2 (including the terminating null character) into
the array pointed to by sl. If copying takes place between objects that overlap, the
behaviour is undefined.

Returns: the value of sl.

strncpy

strcat

char *st rncpy(char * s l, canst char * s2 , s i ze_t n)
Copies not more than n characters (characters that follow a null character are not
copied) from the array pointed to by s2 into the array pointed to by sl. If copying
takes place between objects that overlap, the behaviour is undefined . If
terminating nul has not been copied in chars, no term nul is placed in s2.

Returns: the value of s l .

cha r *s t rca t (cha r * s l , c onst char * s2)

Appends a copy of the string pointed to by s2 (including the terminating null
character) to the end of the string pointed to by sl . The initial character of s 2
overwrites the null character at the end of sl.

Returns : the value of s l .

strncat

c h a r *st rncat(cha r * sl , const char* s2 , s i ze_ t n)
Appends not more than n characters (a null character and characters that follow it
are not appended) from the array pointed to by s2 to the end of the string pointed
to by s l . The initial character of s2 overwrites the null character at the end of sl.
A terminating null character is always appended to the result

Returns : the value of s l.

The sign of a non-zero value returned by the comparison functions is determined
by the sign of the difference between the values of the first pair of characters (both
interpreted as unsigned char) that differ in the objects being compared

memcmp

int memcmp (const void * sl , con st vo i d * s2 , s i ze_t n)

Compares the first n characters of the object pointed to by s l to the first n
characters of the object pointed to by s2.

137

string.h

138

string.h

Returns: an integer greater than, equal to, or less than zero, depending on whether
the object pointed to by sl is greater than , equal to. or less than the object
pointed to by s2.

strcmp

int strcrnp(const char * sl , const char * s2)

Compares the string pointed to by sl to the string pointed to by s2.

Returns: an integer greater than , equal to, or less than zero, depending on whether
the string pointed to by sl is greater than, equal to, or less than the string pointed
to by s2.

strncmp

strcoll

int strncrnp(const char * sl , const char * s2, size_ t n)

Compares not more than n characters (characters that follow a null character are
not compared) from the array pointed to by sl to the array pointed to by s2.

Returns: an integer greater than, equal to, or less than zero, depending on whether
the string pointed to by sl is greater than, equal to, or less than the string pointed
to by s2.

int strcoll(const char * sl , const char * s2)

Compares the string pointed to by sl to the string pointed to by s2, both
interpreted as appropriate to the LC_ COLLATE category of the current loca le.

Returns: an integer greater than , equal to, or less than zero, depending on whether
the string pointed to by sl is greater than, equal to, or less than the string pointed
to by s2 when both are interpreted as appropriate to the current locale.

strxfrm

size_ t strxfrrn(char * sl , const char * s2 , size_ t n)

Transforms the string pointed to by s2 and places the resulting string into the
array pointed to by sl. The transformation function is such that if the s trcrnp
function is applied to two transformed strings, it returns a va lue greater than ,
equal to or less than zero, corresponding to the result of the s trcoll function
applied to the same two original strings. No more than n characters are placed into
the resulting array pointed to by sl, including the terminating null character. If n is
zero, sl is permitted to be a null pointer. If copying takes place between objects
that overlap, the behaviour is undefined.

Converts a sequence of codes that correspond to multibyte characters from the
array pointed to by pwcs into a sequence of multibyte characters that begins in the
initial shift state and stores these multi byte characters into the array pointed to by
s, stopping if a multi byte character would exceed the limit of n total bytes or if a
null cha racter is stored. Each code is converted as if by a ca ll to the wctornb
function, except that the shift state of the wctornb function is not affected. If a
code is encountered which does not correspond to any valid multibyte character,
the wcstornbs function returns (s i ze_ t) -1. Otherwise, the wcstornbs function
returns the number of bytes modified, not including a terminating null character, if
any.

ANSI library reference section

Returns : The length of the transformed string is returned (not including the
terminating null character). If the va lue returned is nor more, the contents of the
array pointed to by sl are indeterminate.

memchr

strchr

void *memchr(const void * s , int c , size_ t n)
Locates the first occurrence of c (converted to an unsigned char) in the initial n
characters (each interpreted as unsigned char) of the object pointed to bys.
Returns: a pointer to the located character, or a null pointer if the character does
not occur in the ob ject

char *strchr(const char * s , int c)

Locates the first occurrence of c (converted to a char) in the string pointed to bys
(including the terminating null character) The BSD UNIX name for this function is
index ().

Returns: a pointer to the located character, or a null pointer if the character does
not occur in the string.

strcspn

size_ t strcspn(const char * sl , const char * s2)
Computes the length of the initial segment of the string pointed to by sl which
consists entirely of characters not from the string pointed to by s2. The
terminating null character is not considered part of s2.

Returns: the length of the segment

strpbrk

strrchr

char *strpbrk(const char * sl , const char * s2)
Locates the first occurrence in the string pointed to by sl of any character from the
string pointed to by s2.

Returns: returns a pointer to the character, or a null pointer if no character form s2
occurs in sl.

char *strrchr(const char * s , int c)

139

strspn

strstr

strtok

140

Locates the last occurrence of c (converted to a char) in the string pointed to by s.

The terminating null character is considered part of the string The BSD UNIX name

for this function is rindex ().

Returns: returns a pointer to the character, or a null pointer if c does not occur in

the string.

size_t strspn(const char * sl , const char * s2)

Computes the length of the initial segment of the string pointed to by sl which

cons ists entirely o f characters from the string pointed to by s2.

Returns: the length of the segment.

char *strstr(const char * sl , const char * s2)

Locates the first occurrence in the string pointed to by sl of the sequence of

characters (excluding the terminating null character) in the string pointed to by s2.

Returns: a pointer to the located string, or a null pointer if the string is not found .

char *strtok(char * sl , const char * s2)

A sequence of calls to the strtok function breaks the string pointed to by sl into

a sequence of tokens, each of which is delimited by a character from the string

pointed to by s2. The first call in the sequence has sl as its first argument, and is

followed by calls with a null pointer as their first argument. The separator string

pointed to by s2 may be different from call to call. The first call in the sequence

sea rches for the first character that is not contained in the current separator string

s2. If no such character is found, then there are no tokens in sl and the s trtok
function return s a null pointer. If such a character is found, it is the start of the first

token. The s·trtok function then searches from there for a character that is

contained in the current separator string. If no such character is found, the current

token extends to the end of the string pointed to by sl, and subsequent searches

for a token will fail. If such a character is found, it is overwritten by a null character,

which terminates the current token. The strtok function saves a pointer to the
following character, from which the next search for a token will start. Each

subsequent call, with a null pointer as the va lue for the first argument, starts

searching from the saved pointer and behaves as described above.

Returns: pointer to the first character of a token , or a null pointer if there is no

token .

time.h

ANSI library reference section

memset

void *rnernset(void * s , int c, size_ t n)

Copies the value of c (converted to an unsigned char) into each of the first n

characters of the ob ject pointed to bys.

Returns: the value of s.

strerror

strlen

char * strerror(int errnum)

Maps the error number in errnum to an error message stri ng.

Returns: a pointer to the string, the contents of which are implementation-defined.
Under RISC OS and Arthur the strings for the given errnums are as follows:

• 0 No error (errno = 0)

• EDOM EDOM - function argument out of range

• ERANGE ERANGE - function result not representable

• ESIGNUM ESIGNUM - illegal signal number to signal () or
raise ()

• others Error code (errno) has no associated message).

The array pointed to may not be modified by the program, but may be overwritten
by a subsequent ca ll to the s trerror functi on.

size_ t strlen(const char * s)

Computes the length of the string pointed to by s.

Returns: the number of characters that precede the terminating null character.

t irne . h declares two macros, four types and several functions for manipulating
time . Many fu nctions deal with a calendar time that represents the current date
(according to the Gregorian ca lendar) and time . Some functions deal with local
time, which is the ca lendar time expressed for some specific time zone, and with
Daylight Saving Time, which is a temporary change in the algorithm for
determining local time.

141

time.h

142

struct tm

clock

struct tm holds the components of a calendar time called the broken-down
time. The value of tm_isdst is positive if Daylight Saving Time is in effect, zero if
Daylight Saving Time is not in effect. anp negative if the information is not
available (as is the case under RISC OS).

struct tm {

int tm_sec; /* seconds after the minute, 0 to 60
(0-60 allows for the occasional leap
second) */

int tm_min /* minutes after the hour, 0
int tm_hour /* hours since midnight , 0 to
int tm_mday /* day of the month, 0 to 31
int tm_mon /* months since January , 0 to
int tm.._year /* years since 1900 */
int tm_wday /* days since Sunday , 0 to 6
int tm_yday /* days since January l , 0 to
int tm - isdst /* Daylight Saving Time flag

} ;

clock_ t clock(void)

Determines the processor time used.

to 59 */
23 */

*/
11 */

*/
365 */

*/

Returns: the implementation's best approximation to the processor time used by
the program since program invocation. The time in seconds is the value returned ,
divided by the value of the macro CLOCKS_ PER_ SEC. The value (clock_t) -1
is returned if the processor time used is not available. In the desktop, clock ()
returns all processor time, not just that of the program

difftime

double difftime(time_t timel, time_ t timeO)

Computes the difference between two calendar times: timel - timeO. Returns:
the difference expressed in seconds as a double.

mktime

time_t mktime(struct tm * timeptr)

Converts the broken-down time, expressed as local time, in the structure pointed
to by timeptr into a calendar time value with the same encoding as that of the
values returned by the time function . The origina l values of the tm_wday and
tm_yday components of th l structure are ignored, and the original values of the

time

ANSI library reference section

other components are not restricted to the ranges indicated above. On successful
completion, the values of the tm_wday and tm_yday structure components are
set appropriately, and the other components are set to represent the specified
calendar time, but with their values forced to the ranges indicated above; the final
value of tm_mday is not set until tm_mon and tm_year are determined.

Returns: the specified calendar time encoded as a value of type time_t. If the
calendar time cannot be represented, the function returns the value (time_t) -1.

time_t time(time_t * timer)

Determines the current calendar time. The encoding of the value is unspecified.

Returns: the implementation's best approximation to the current calendar time.
The value (t ime_t) -1 is returned if the calendar time is not available. If timer
is not a null pointer, the return value is also assigned to the object it points to.

asctime

ctime

char *asctime(const struct tm * timeptr)

Converts the broken-down time in the structure pointed to by timeptr into a
stringinthestyleSun Sep 16 01:03:52 1973\n\0.

Returns: a pointer to the string containing the date and time.

char *ctime(const time_t * timer)

Converts the calendar time pointed to by timer to local time in the form of a
string. It is equivalent to asctime (local time (timer)).

Returns: the pointer returned by the asctime function with that broken-down
time as argument.

gmtime

struct tm *gmtime(const time_t * timer)

Converts the calendar time pointed to by timer into a broken-down time,
expressed as Greenwich Mean Time (GMT).

Returns: a pointer to that objector a null pointer if GMT is not available (it is not

available under RISC OS)

143

144

localtime

struct tm *lacaltime(canst time_ t * timer)

Converts the calendar time pointed to by timer into a broken-down time ,
expressed a loca l time

Returns: a pointer to that object.

strftime

size_ t strftime(char * s , size t maxsize , cans t char *
format , canst struct tm * timeptr)

Places characters into the array pointed to by s as controlled by the string pointed
to by format. The fo rmat string consists of zero or more directives and ordinary
characters. A directive cons ists of a % character followed by a character that
determines the directive's behaviour. All ordinary cha racters (including the
terminating null character) are copied unchanged into the array. No more than
maxsize characters are placed into the array. Each directive is replaced by
appropriate characters as described in the following list. The appropriate
characters are determined by the LC_ TIME category of the current locale and by
the values contained in the structure pointed to by timeptr.

Directive

%a
%A
%b
%B
%c
%d
%H
%I
%j
%m
%M
%p

%S
%U

%w
%W

%x
%X

Replaced by

the locale's abbreviated weekday name
the locale's full weekday name
the locale's abbreviated month name
the locale's full month name
the loca le's appropriate date and time representation
the day of the month as a decimal number (01-31)
the hour (24-hour clock) as a decimal number (00- 23)
the hour (12-hour clock) as a decimal number (01- 12)
the day o f the yea r as a decimal number (00 1-366)
the month as a decimal number (01-12)
the minute as a decimal number (00- 61)
the locale's equ ivalent of either AM or PM designation

associated with a 12-hour clock
the secqnd as a decimal number (00- 61)
the week number of the yea r (Sunday as the first day of

week 1) as a decimal number (00-53)
the weekday as a decimal number (O(Sunday) -6)
the week number of the yea r (Monday as the first day of

week 1) as a decimal number (00-53)
the loca le's appropriate date representation
the locale's appropriate time representation

%y
%Y
%Z

%%

ANSI library reference section

the year without century as a decimal number (00-99)
the year with century as a decimal number
the time zone name or abbreviation, or by no character

if no time zone is determinable
!lo
0 .

If a directive is not one of the above, the behaviour is undefined.

Returns : If the total number of resulting characters including the terminating null
character is not more than maxsi ze, the s tr ft irne function return s the number
of characters placed into the array pointed to by s not including the terminating
null character. Otherwise , zero is returned and the contents of the array are
indeterminate.

145

time.h

146

Part 3 - Developing software
for RISC OS

147

148

11 How to write desktop applications
in C

In this chapter, you will learn how to construct desktop applications in C, using
the facilities provided by the RISC OS library (RISC_OSLib) You will probably

find it useful to scan through the contents of the library before reading the chapter
Some familiarity with the Window Manager part of the RISC OS Programmer's Reference
manual is also assumed. The description of RISC_OSLib here is not exhaustive : it is
intended to introduce some common programming techniques used in desktop
applications .

You are also advised to read the RISC OS Style Guide. This describes certain
standards to which all desktop applications must conform in order to have an
appearance which is consistent with the applications supplied by Acorn. Following
these guidelines will make your own applications look and feel like part of the
same environment. which makes them easier to learn and use.

The diagram over the page shows approximately how the various parts of the
RISC OS library fit together. The diagram is reproduced on one of the reference
cards; you may find it useful to refer to it as you work through this chapter

Some general principles

Event handling

If you have read the Window Manager chapter in the RISC OS Programmer's Reference
manual. you may be familiar with the idea of Wimp polling, as the means whereby
an application finds out what the window manager requires it to do. In this
method, an application uses a single polling loop, which must work out which of
its ~indows each request from the Wimp is associated with, and take the
appropriate act ion. RISC_OSLib makes available an alternative means of
communicating with the Wimp, using functions called event handlers An appli cation
may register event handlers (in the form of C functions) for windows, menus, icon
bar icons, etc. It then cal ls a function in RISC_OSLib which processes events (ie
polls the Wimp). and directs each event in turn to the relevant event handler. Event
handlers may be added and removed whilst the application is running. This
approach simpl ifies keeping track of which window, menu, or whatever, is
associated with a window manager event.

149

Some general principles

150

Main WIMP functions
wimp
wimpt
event
win

I
I I

Dialogue boxes Standard menus and dialogue boxes
dbox colourmenu

dboxfile
dboxquery
dboxtool
file icon

Application resources
res

resspr
template

Loading and saving
xferrecv
xfersend
save as

Low level OS functions
OS
swi

Draw Files
drawfdiag
drawferror

drawfobj
drawftypes

Text editing
txt

txtedit
txtwin
txtopt

txtscrap

fontselect
magnify

Additional WIMP functions
baricon
menu
werr
help

coords
pointer
fontlist

Memory management
heap
flex

OS functions
sprite
font
akbd
bbc

colourtran
drawmod

typdat
print

Miscellaneous
trace
alarm

visdelay
msgs

When a ca ll to register an event handler is made. an extra piece of data may be
registered with it Th is va lue (or handle) is then passed as an argument to the
event handler when it is ca lled by RISC_OSLib It is sometimes convenient to use
this as a way of allowing an event handler to retain private data . For example , you
could use the same event handler fo r several windows, the handle being a pointer

How to write desktop applications in C

to the data structure associated with the window. The event handler would then be
able to locate the data structure for the window immediately, rather than having to
work it out from the window handle passed into the event handler.

Windows and templates

In order to define the windows and dialogue boxes used by your program, you can
either set up data structures which correspond to those used by the window
manager SWis, or you can use templates created by the template editor, Form Ed.
The template editor is an application which allows you to define windows on the
screen , and save the definitions in a fi le ready for load ing by you r application This
is the approach used in Acorn's own applications, and you wi ll find it makes the
process of creating windows for your applications much easier. Form Ed is
described in the chapter entitled Form Ed in the accompanying Acorn Desktop
Development Environment user guide.

Application resources

Most desktop applications make use of a number of resource files . These should be
considered as an integral part_ of your application You can find a full list of the
resource files typically used by an application in the sect ion entitled Application
Notes in the RISC OS Programmer's Reference manual; the following are usually present:

• ! Boot *Run when the application directory is first displayed

• !Run *Run to start the application

• ! Runimage the executable code fo r the application

• ! Sprites used for application and file icon sprites

• Sprites containing other sprites used by the application

• Templates containing window and dialogue box templates.

Developing an application from scratch
This. section conta ins an example of how to develop an application from scratch .
You can use the description and the code given as a starting point fo r writing your
own applications. The example application is called ! WExamp l e. It can be found
as User . ! WExample (the source code is there too).

The application is very simple. When started, it places an icon on the icon bar. The
icon has a menu consist ing of Info, which leads to a dialogue box containing
information about the program , and Quit which closes the program down. Clicking
Select on the icon opens a window, which may be resized, moved, closed, and so

151

152

on, in the normal way. If the window is already open, an error is reported . In itself,
this is not a very useful program , but it illustrates the basic principles of writi ng a
program which uses the RISC OS library.

The source code of the program is to be found as
User . ! WExample . c . WExample. Fragments of the code are given in this
chapter to il lustrate the points being described. You may also find it useful to have
a listing of the whole program avai lable to see how it all fits together.

The program illustrates the following:

• the general form of a desktop application

• how to initialise a desktop application

• how to create windows, icons and menus

• how to open a window, and respond to Wimp requests for it

• how to respond to user choices from a menu

• how to report errors to the user.

General form of a desktop application

A Wimp appl ication normally consists of init ia lisation of both the RISC OS library
and the application itself, followed by an event processing loop. main () in
c . WExample is an example. You will see from this that the final step of the main
function is to enter an infinite loop of calls to event_proces s () . The
application will be closed down as a resu lt of a call to the ANSI library function
exit () elsewhere in the program If you don't like this approach, an alternative is
to define a global flag and test it in the event processing loop, for example:

/ * --- global closedown flag --- * !
BOOL all_done = FALSE ;

/ * --- the main event loop --- * /
while (!all_done) event_process();

Note also that event_process () can automatically close down the application .
To do this , it keeps an active count. The act ive count is initially zero; if it is zero again
when event_process () is ca lled, the application is closed down . You can
change the active count.by calling the functions win_act i veinc () to increment
it and win_ act i vedec () to decrement it. Typically, you would call the first of
these on opening a window, and the second on closing it. When you call
baricon () to place an icon on the icon bar, win_ act iveinc () is called for
you. If your applicat ion does not p lace an icon on the icon bar, you must make sure
you call win_act i ve inc () yourself before entering the event processing loop.
See the description of the win functions in the section entitled win on page 316 for
more details.

How to write desktop applications in C

Initialising a desktop application

The initia lisation of WExample occurs in example_ ini ti al ise (). The first few

lines initia lise various parts of the RISC OS library:

/ * RISC_OSlib initialisation * /

wimpt_ init ("RISC_OSlib example"); / * Main Wimp initialisation * I

res_ ini t ("WExample") ; I * Resources * I

resspr_ init(); / *Application sprites * /

template_ init() : / *Templates* /

dbox_init(); / *Dialogue boxes */

Most applications will start with something similar, although there may be more or
fewer par.ts of the library which need initialising. One point to note is the use of the
arguments to wimpt_ini t () and res_ini t ().

wimpt_ini t () uses its argument in any circumstances where the application is
to be referred to by name, for example in the task display, or in error boxes.

res_ ini t () uses its argument to locate the application resources; in this case
they will be expected to be in a directory whose name can be found from the
system variable WExample$Dir. This variable must therefore be set up in the
! Run file for the application , for example by:

*set WExample$Dir <0bey$Dir>

Creating windows, icons and menus

The remainder of example_ ini tiali se () creates the window which will be
used in the program, sets up a menu to go with the icon , and places the icon on the
icon bar. We will consider these one by one.

Creating the window is very straightforward A pointer to a window definition read
from the templates file is passed to wimp_ c reate_wind (). An event handler is
then registered for the window. Here is the code to do it. from
example_ initialise()

/ * Create the main window, and declare its event handler * /

if (! example_ create_window ("MainWindow ", &example_win_handle))
return FALSE; / * Window creation failed * /

win_register_event_ handler(example_win_ handle,example_ event_handler, 0) ;

The code for creating the window is in a separate function , so that we cou ld use it
for creating other windows in a more complex program . It is as foll ows:

153

Developing an application from scratch

154

static BOOL example_ create_ window(char *name , wimp_w *handle)

wimp_wind *window; / * Pointer to window definition * /

/ * Find template for the window * /
window= template_ syshandle(name);
if (window == 0) return FALSE ;

/ * Create the window , dealing with errors * /
return (wimpt_ complain(wimp_create_ wind(window , handle)) == 0) ;

examp le_create_window () illustrates the value of using templates: all the
work needed to set up the window definition in the program is avoided. The event
handler will not be called unless the window is open; we will come back to this
later.

The next step is to create the menu. If possible, you should create all menus during
the initialisation. That way, when the user activates a menu, you can be sure that it
exists and can be displayed. This may not be possible in some applications,
because the menus have to change with circumstances, but you will nearly always
be able to create at least part of the menu tree. In addition, clicking with Adjust
when menus are created dynamically may fail, for subtle reasons connected with
when the window manager calls the menu maker code.

The code to create the menu in the example is:

/ * Create the menu tree * /
if (example_menu = menu_ new("Example ", ">Info , Quit ") , example_menu) == NULL)

return FALSE; / * Menu create failed * /

Example is the name which appears in the title bar of the menu. menu. h explains
the syntax of the second argument to menu_new () in detail. In .this case, >Info
means that the menu entry for Info is to be marked as leading to a submenu
consisting of a dialogue box.

If you want to check the menu before it is displayed, perhaps because you want to
tick or shade items in it, then instead of calling event_at tachmenu (),you can
call event_ at tachmenumaker () with the name of a function to be called just
before the menu is displayed. See the description of the file event. h in the
chapter entitled RISC OS library reference section on page 175 for details.

Finally, the icon is placed on the icon bar, and event handlers registered for it.
There are two event handlers here: example_iconclick (),which is called
when Select is clicked on the icon, and example_menuproc () which is called
when a choice is made from the mef)u . The work of displaying the menu is handled
by RISC_OSLib. Here is the code

How to write desktop applications in C

/ * Set up the icon on the icon bar, and register its event handlers * /

bar icon (" ! WExample ", (int) resspr_area () , example_ iconclick) ;
if (!event_attachrnenu(win_ICONBAR, example_ menu , example_menuproc, 0))

return FALSE; / * Unable to attach menu * /

There are two points to note here. First. the sprite used for the icon will be loaded
from the 'Sprites' file in the application directory The function resspr_area ()
returns a pointer to the sprite area into which this file is loaded. Second,
event_attachmenu () is used to associate a menu with a window by specifying
the window handle. The value win_ ICONBAR is a special window handle which is
used to represent the icon bar.

Opening and maintaining a window

The window is to be opened when the user clicks Select on the icon. As we saw
above, clicking Select calls the function example_iconclick (),which is as
follows :

static void example_iconclick(wimp_i icon)

icon = icon; / * We don ' t need the handle: this stops compiler warning */

/ * Open the window - only one allowed * /

if (example_window_ open)
werr(FALSE , "Only one window may be opened ") ;

else

wimp_wstate state;

/* Get the state of the window */

if (wimpt_complain(wimp_get_wind_state(example_win_handle, &state)) == 0)

state . a.behind = -1 ; / * Make sure window is opened in front * /

wimpt_noerr(wimp_open_window(&state . o));
example_window_open = TRUE;

}

You can ignore the lines of this up to the 'e lse' part for now: they just report an
error if the window is already open. When we open the window, we want to make
sure it is in front of any others on the screen. To do this , we read the current state
of the window with wimp_get_wind_ state (),and then ensure that our
window is behind the window with handle -1. ie in front of all others. The
window is actually opened with wimp_ open_wind () .

Once the window is open, the event handler which we registered earlier will be
called by event_process () when the window manager generates events for the
window. The code for the event handler is:

155

Developing an application from scratch

156

static void example_ event_handler(wimp_ eventstr *e , void *handle)
{

handle = handle ; / * We don't need the handle : this stops compiler warning * /

/ * Deal with event * /

switch (e ->e)

case wimp_EREDRAW:
example_ redraw_window(e->data . o . w) ;
break ;

case wimp_EOPEN:
example_ open_window(&e->data . o) ;
break ;

case wimp_ ECLOSE : / * Pass on close request * /
wimpt_ noerr(wimp_ close_ wind(e->data . o . w)) ;
example_window_open = FALSE ;
break ;

default:
break;

/ * Ignore any other event * /

In this case, the event handler is very simple . Redraw and open requests are
handled as described in the chapter entitled Window Manager in the RISC OS
Programmer's Reference manual: see c. wexample for the full details of the function s.
On a close request (generated by the user clicking the close icon of the window),
we simply call wimp_ close_wind (). After thi s, the event handler will not be
called again , unless the window is re-opened . In an editor, some checks would
normall y be made before passing on the close request to the window manager: for
example, ensuring that the contents of the window had been saved , and either
warning the user or rejecting the close window request if they had not.

All events other than redraw, open and close requests are simply ignored . A way of
improving the efficiency of the program would be to ca ll event_setmask () . This
indicates to the window manager that some events are never to be returned to the
program . It must be used with care, since it masks the events to all windows . Thus,
although the main window of the program has no menu, we could not mask out
menu events, since they are used by the icon bar event handler. However, we could
safely mask out 'pointer entering window' and 'pointer leaving window' events .
Some suitable code for doing this would be:

event_ setmask(wimp_ EPTRENTER I wimp_ EPTRLEAVE) ;

How to write desktop applications in C

Responding to user choices from a menu

The menu is displayed when the user presses Menu over the icon : no special action
is needed by the application for this . When the user makes a choice from the menu,
the menu event handler we registered earl ier is ca lled:

/ * Menu items * /
#define Example_ menu_ info
#define Examp le_ menu_ quit 2

static void example_menuproc(void *handle , char *hit)

handle = handle ; / * We don ' t need the handle : this stops compiler warning * /

/ * Find which menu item was hit and take action as appropriate * /
switch (hit[O])

case Example_menu_ info :
e x ample_ info_ abou t__program();
break ;

case Example_ menu_ quit :
/ * Ex it from the program . The Wimp gets rid of the window and icon * /
exit(O) ;

handle is the fourth argument which was given to event_at tac hmenu ():we
make no use of it in this example. hit is a string in which each entry corresponds
to a selection from the menu tree : the first character is the number of the selecti on
from the top level menu , the second from the first submenu chosen, and so on. In
this example, only a single , top-level menu was set up, so we are only interested in
hit [OJ .

Handling Quit is easy: the program just exits. A hit on Info occurs when either the
user chooses it by clicking, or when he follows the submenu arrow leading from it
In this case, we call the following function to display a dialogue box containing
information about the application :

157

Developing an application from scratch

158

static void example_info_about_program(void)

dbox d; / * Dialogue box handle * /

/ * Create the dialogue box * /

if (d = dbox_new("Proginfo ") , d ! =NULL)

}

/ * Fill in the version number * /
dbox_ setfield(d, Example_ info_ field, example_Version_String) ;

/ * Show the dialogue box * /
dbox_show(d);

/ * Keep it on the screen as long as needed * /
dbox_ fillin (d);

/ * Dispose of the dialogue box * /
dbox_dispose(&d) ;

First. the dialogue box is created from the template named Proginfo; (this name
is case-sensitive). Most of the fields are also taken from the template , but we want
to fill in one field with the current version of the program, from the string
example_ Version_St r ing. When this has been done, using
dbox_ setf i eld () ,the dialogue box is displayed with dbox_ s h ow ().

The call to dbox_ fi llin () needs some explanation It will not return until the
window manager detects that the dialogue box has been finished with. For
example, in this case a click elsewhere on the screen (and which therefore removes
the menu tree) would cause dbox _ f il l in () to return . However, in the
intervening time , other event handlers for the program may still be called . When
the dialogue box is finished with, dbox_f ill i n () removes it from the screen
and returns . The event handler then calls dbox_ d i spos e () which deletes any
internal data that was set up by the call to dbox_ new () .

Reporting errors

The example application shows three different ways of dealing with errors . In each
case, the error is reported in a standard error box, and the application waits until
OK has been clicked . You will probably have seen this format from the desktop and
the applications suite.

First. there are errors generated by the application itself. These are reported with ,
for example:

werr (FALSE, "Only one window may be open e d ");

How to write desktop applications in C

(in the function example_ iconclick ()). The first parameter indicates whether
this error is fatal: in this case it is not A fatal error causes the application to exit
You can specify a number of parameters to werr, using the second one as a format
string in the same way as for the ANSI library function print f.

When an error is returned by a RISC_ OS Lib function , we can report it in one of two
further ways The first is illustrated by the following line from
example_redraw_window():

wimpt_noerr(wimp_ redraw_wind(&r, &more)) ;

Thi s reports the error in a dialogue box and halts the application

An alternative is wimpt_ complain (). This is similar to wimpt_ noerr (),
except that it also returns a pointer to the error, allowing the application to detect
the error and take further action, as well as reporting it A returned value of 0
indicates no error For example (this is from example_iconclick ()):

if (wimpt_ complain(wi mp_ get_wind_ state(example_win_handle , &state)) == 0)
{

.. . actions if t here is no error .. .

With one exception, it is strongly recommended that you report errors using
wimpt_ noerr () or wimpt_complain () on all calls to RISC_OSLib functions
that return an error This will help you find errors as soon as they occur If an error
does occur and you discard it , the effects of the errors may cause confusion at later
stages in the program.

The one exception is reporting errors during redraw, using wimpt_ complain ().
Here you must take some care. If the error box lies over your window, when it is
removed a new redraw will be issued, which can lead to the same error again. A
possible solution is to keep a flag to avoid this happening, resetting the flag when
the contents of the window have been mended .

More RISC_OSLib facilities

In this section, we will examine some more of the facilities provided by the
RISC OS library. There is no complete example program to illustrate all of them,
but fragments of code are given as illustrations.

The topics covered are:

• memory management

• responding to idle and unknown events

• loading and saving.

All of these require some practice to get right

159

More RISC_OSLib facilities

160

Memory management

RISC_ OS Lib includes two sets of functions for memory management: see f l ex. h
and h eap. h. The functions are an alternative to the ANSI C library functions such
as mal l a c () and free (). For more details of how and when to use flex and keep
routines, see the chapter entitled Using memory efficiently on page 355.

The flex functions can be useful for overcoming two of the problems of the
standard ANSI functions, although they have different limitations themselves .
Memory blocks allocated by the standard functions have fixed addresses , so when
allocated cannot be shuffled to collect together free areas. This results in
fragmentation of free space, wasting memory Memory blocks allocated by flex
functions are relocatable, so do not cause fragmentation . The standard ANSI
functions allocate memory within the application's wimp slot The size of this slot
is determined initially by the use of *WimpSl o t at application start-up, then
grows if required to meet malloc demands. Releasing memory with free does not
reduce the size of the application's wimp slot, so does not make it avai lable for use
by other applications . The flex routines allocate blocks outside the wimp slot. from
memory available to all applications, and return it to this state when deallocated.
The standard ANSI functions are tuned to provide good performance for a variety of
applications, and operate quicker than the flex functions , especially for small
memory blocks.

The basic difference between flex storage allocation and malloc allocation is that
blocks allocated with f lex may be moved in order to make the best use of the
available memory, without the application being informed directly. This would
cause problems if the application simply kept pointers to blocks of allocated
memory when RISC_OSLib moves blocks around, the pointers would cease to
point to the right place The approach that is used instead is to tell flex the
address of the pointer to the block, which it will note in its own internal tables. If
the block is moved, flex can then change the pointer. Thus, instead of writing
code such as:

char *pointer ;
pointer= malloc(size) ;

you would write:

char *pointer ;
/ * Allocate memory , passing in the a ddress of ' pointer ' * /
flex_alloc((flex_ptr) &pointer , size);

The value &po i nter is called the anchor of the flex block.

This may sound a little awkward if you are used to using mal lac and free , but
you will soon find that it becomes easy to use.

•

How to write desktop applications in C

There is a restriction which you must be aware of if you use flex. The anchor of
each flex block allocated must not itself move. This means that you cannot have
flex pointers within blocks of memory allocated by flex. The following program
fragments shows why thi s will not work. (You can skip thi s explanation if you like -
the important point to remember is not to place flex pointers in areas of memory
allocated by flex)

#define MemSize 100
struct s_control_block

char *data;
. . . other fields
int size ;
*pointer;

/* Allocate a control block */
flex_alloc((flex_ptr) &pointer , sizeof(struct s_control_block));

/* Allocate the data block itself * /
/* The next line is wrong!!! * /

flex_alloc((flex_ptr) &(pointer->data) , MemSize);

Suppose that flex moves the control block we allocated at pointer, and then
tries to move the data block referenced by pointer->data. When the memory
was allocated, flex made a note of the anchors &pointer and
& (pointer->data). Now suppose it moves the control block, and changes the
value of the variable pointer. It then moves the data block and attempts to
change its anchor. But the anchor it noted was an address within the control block
at its original location , and the control block is no longer there. Consequently,
pointer->data, with pointer having its new va lue, is not changed, rendering
the pointer to the data block no longer valid. Not on ly that , but flex will have
changed the location which original ly contained pointer->data and which may
by now be part of some other block.

A second restriction is that you must not make a copy of the pointer to a block
allocated by flex. The reason here is simply that flex only knows of one anchor
for each block. If the location of the block changes, the origina l pointer will be
changed, but not any copies of it A place where this can easi ly cause problems is
in passing a pointer to a flex block as an argument to a function. Thus, the
following example would not work:

161

More RISC_OSLib facilities

162

void some_ function(char *data)
{

printf (" %s\n ", data) ;

char *pointer ;
flex_alloc((flex_ptr) &pointer , 256) ;

/ * The next call can go wrong !!! * /
some_function(pointer) ;

A safe alternative is to introduce an extra level of indirection:

void some_function(char ** data)
{

printf ("%s\n ", *data) ;

char *pointer ;
flex_ alloc((flex_ptr) '&pointer , 256) ;

/* Pass pointer to reference - this is OK * /
some_ function(&pointer) ;

You must call flex_init () before attempting to use flex. There are functions
for allocating and freeing memory, and for changing the size of an allocated block
of memory both by adding or removing memory from the end of the block, and
adding or removing memory from part way through the block.

A flex block can move as the result of other calls to flex. The version of RISC_OSLib
supplied with Desktop C by default inhibits expansion of the malloc area once flex
has been initialised. For details of how to override this see the later chapter
entitled Using memory efficiently The default behaviour means that the first block
allocated by flex does not move, and so pointers to data within this block can be
used in the normal way. The heap functions provide facilities to manage a heap of
fixed blocks within the first flex block.

Heap allocation is similar to malloc () in that a pointer to the block allocated is
returned to the caller: the routine to do this is called heap_alloc ().Memory
may be released with heap_ free (). Before you use heap, you must call
heap_ini t ().This must be done after flex has been initialised with
f lex_ini t (),and before any calls to flex functions.

How to write desktop applications in C

Responding to idle and unknown events

There are two special types of event. which are only passed to your application if
you specifically claim them.

Idle events

Idle events are generated by the window manager when nothing else is happening:
they correspond to the Null_Reason_Code generated by the SWI Wimp_ Poll
Applications should only claim idle events if they want to do some activity which
continually needs processor time; an example is dragging the selection box in
Draw. When you claim idle events, they are directed to the event handler for the
window you specify, as an event of type wimp_ ENULL Idle events should be
released as soon as they are no longer needed by the application. To claim and
release idle events, use the function win_ claim_idl e_events ().See win . h
for more details. Note that, by default. idle events are masked out. so to claim
them you must also enable them with event_ setmask (O).

Unknown events

Unknown events are events which are not associated with a specific window. The
following events are considered to be unknown:

• user drag events: wimp_EUSERDRAG

• menu events: wimp_EMENU

e losing and gaining the caret: wimp_ ELOSECARET and wimp_EGAINCARET

• user message send events, wimp_ESEND and wimp_ESENDWANTACK, for any
except the following message types : wimp_MCLOSEDOWN,
wimp_MDATASAVE,wimp_MDATALOAD,wimp_MHELPREQUEST

• user message acknowledge events: wimp_ EACK

To claim unknown events, register one or more unknown event processors , and
optionally an unknown event handler. When an unknown event occurs, it is offered
to each of the unknown event processors in turn, until either one deals with the
event. or they have all been tried . If none of them deals with the unknown event. it
is then passed on to the unknown event handler, if any, or discarded if there isn't
one.

To register an unknown event processor, call win_ add_unknown_
event_processor (),giving it the name of the unknown event handler, and a
handle for any extra data you wish to be passed to the processor (as for window
event handlers). The processors are called in the reverse of the order in which you
register them, ie the most recently registered one is called first See the type
win_unknown_ event_processor () in win . h for the type used for unknown

163

More RISC_OSLib facilities

164

event processors. Each unknown event processor must return a value indicating
whether it has handled the event or not. Unknown event processors may be
cancelled by calling win_remove_unknown_event_processor ().

To register an unknown event handler, call win_ claim_unknown_events (),
specifying a window handle. Unknown events are then directed to the normal event
handler for that window. You can cancel the unknown event handler by calling the
same function with an argument of-I.

Loading and saving

There are functions in the RISC OS library for loading and saving data , using the
same style as Acorn's own applications. The functions implement the data transfer
protocol, as described under Wimp_ SendMessage in the chapter entitled Window
Manager in the RISC OS Programmer's Reference manual. They may be used for loading
from and saving to files , and for transfers from and to other applications via RAM .

Loading

To load data, use the functions in xferrecv. Loading a file is initiated when the
user drags a file to either a window opened by the appl icati on or its icon bar entry.
A message is then sent to the corresponding event handler. In the event handler,
you should have something like

. . . other event cases ...
case wimp_ ESEND :
case wimp_ESENDWANTACK:

switch (e->data.msg . hdr.action)
{

case wimp_MDATASAVE :
load_ ram () ;
break ;

case wimp_ MDATALOAD :
case wimp_MDATAOPEN :

load_ file();
break;

/ * import data * /

/ * insert data * /

... other message cases ...

For a load via RAM , the code is as follows (in outline)

How to write desktop applications in C

static char *data ;
void load_ ram(void)
{

int estsize ; / * Estimate size of file * /

/ * Get the type of the file being loaded , and an e s timate of its size * /
int file t ype = xferrecv_ checkimport(&estsize)

if (filetype ! = -1)
{

int final _ size ;

any n ecessary pre-load che cks , e . g . valid filetype
allocate a block ' estsize ' long , at ' data ' . . .

/ * Initiate the load * /
if (final_ size = xferrecv_ do_import(data , estsize , buffer_ processor) ,

final_ size >= 0)

load was o k

else

error during loading ...

else / * Filetype of -1 indicates we should try to load via a file * /

load_ file() ;

Here we check that the load really is via RAM transfer, and if not try to load from a
file instead. If we decide to go ahead with the load, a call is made to
xferrecv_ do_ import (). If the data being loaded fill s up the buffer, then
buffer_processor () is called . This function is not defined here: what it must
do is either to empty the buffer, or to extend it For a more preci se specification,
see the definition of xferrecv_bu f fer_processor () in xferrecv . h.

The code for loading from a file is

void load_ file(void)
{

char * filename ;

/ * Fetch the type and name of the file * /
int f iletype = xferrecv_ checkinsert (&filename) ;

any necessary pre-load check s , e . g . valid filetype
l oad fil e .. .

/ * Indicat e load is comp let e d * /
x f errecv_ insertfil e ok() ;

165

More RISC_OSLib facilities

166

The work of loading the file here can be done using the standard methods for
reading files, such as os_ file (),or the ANSI C file functions. The file size is
usually read first, so that the entire buffer can be allocated before loading starts.

In this function, a pointer to the name of the file being loaded is placed in
filename by xferrecv_checkinsert (). This pointer does not remain va lid
permanently, and if you want to preserve it (for example, to use in a window title).
you should copy it to a buffer of you r own. The call
xferrecv_ file_ is_ safe () may be used to check the validity of the name.

In both cases, it is good practice to turn the hourglass on during the load . Suitable
calls for turning it on and off are:

/ * Turn hourglass on * /
visdelay_ beg in() ;

/ * Turn hourg lass off * /
vi s delay_ end ();

Saving

There are two levels to the functions for saving. The bulk of the work is handled by
the functi ons in xfersend, which are used for transferring data from the
application to the destination of the save operation. The functions in saveas are
used to display a save dialogue box and respond to dragging the icon from it. It is
better to use saveas, since this makes the user interface for saving consistent
with Acorn's applications. However, even if you are using saveas, you will still call
some of the functions in xfersend, as described in this section.

A save operation is typically initiated by the user choosing something like Save as
from a menu. In thi s case, you would start the operation with code such as:

int filetyp e ... , / * Type of file * /
char *name ... , / * File name to be placed in dialog ue box * /
int est size ... , / * Est imated size of file * /
cha r *data •••I / * Dat a to be s a ved * /
s ave a s (file type , name, estsiz e, saver_proc , sende r_proc , print_proc,

(voi d *) data) ;

The three functions are used for:

• saving the file directly (xfersend_ saveproc)

• transferring it via RAM a buffer-full at a time (xfersend_ sendproc)

• printing the file (xfersend_printproc)

The last parameter to saveas () is an arbitrary handle which is passed to these
functions . It is a convenient way of indicating the source of the data to be saved.
The functions are ca lled when the user has dragged the file icon to its destination ,
or specified the name of the file to be saved.

How to write desktop applications in C

saveas () requires the presence of a template called x f er_send in the
application's resources: it contains the save dialogue box.

Outlines of functions for saver_proc () and sender_proc () are:

I * saver_proc : type is the same as xfersend_ saveproc * /
BOOL saver_proc(char *filename , void *handle)
{

any checks, eg valid file name
save file , using any conventional method

/ * sender_proc : type is the same as xfersend_ sendproc */
BOOL sender_proc(void *handle , int *maxbuf)
{

char *data
handle * /

/ * Location of the data being sent , initially from

int length / * Size of the block being sent * /

here there would be some sort of loop , getting chunks of data up to
*maxbuf in length , and sending them with code something like : * /

while (. . .)

/ * The data save itself * /
if (!xfersend_ sendbuf(data , length)) return FALSE ;
else

/ * Advance to next block * /
data += length ; / * For example * /

As with loading, you may want to turn on the hourglass during the save operation.

Note that you can specify the send and print functions as being NULL.

Using Draw files

You can use the RISC OS library to display files in the format used by Draw in your
own applications. The format of Draw files is described in the RISC OS Programmer's
Reference manual; Acorn intends that this should be treated as a standard for
graphical data in RISC OS. There are two interfaces to the code for displaying Draw
files. You can either draw entire files: the header for this is drawfdiag. h.
Alternatively, you can draw files object by object; see drawfobj . h. The
object-level interface also includes functions for adding and deleting ob jects In
both cases, it is possible to define your own object types, by specifying a function
to handle unknown object types thus allowing you to extend the Draw file format.

167

Common application features

Draw files use their own coordinate system. When rendering a Draw file, the origin
of the file (ie coordinate (0,0)) is mapped to work area coordi nate (0,0) The
function draw_ shi ft_diag () may be used to shift all the coordinates in a Draw
fi)e . In addition, the coordinates used in Draw objects are not the same as those
used for work area and screen coordinates. There are macros and functions which
convert between the two systems. These just multiply the coordi nates by the
relevant factor: they take no account of where the Draw fil e origin is. Note also that
the Draw file headers refer to the work area and screen coordinates co llectively as
screen units . This refers purely to their size: you are responsible for applying any
further origin shifts to convert them to the coord inate system of the work area or
the screen as a whole.

An application which illustrates many of the points described in the preceding
secti ons ca n be found in User . ! DrawEx. It does not set itself up on the icon bar
when it is started; instead, it simply opens a window. Draw files dragged to the
window are displayed in it. There is a window menu, with the usual Info and Quit
entries, plus an entry to save the contents of the window: this entry is shaded when
there is no file loaded . The appl ication is closed down either by choosing Quit, or
by closing the window.

The source code is not described here: it is left as an exercise for the reader to see
how it works. You may also like to look at the ! Run file, which shows how to make
sure the necessary modules are loaded. Overlooking this is a common source of
apparently serious errors in desktop applications

The programming techniques illustrated by the application include

• loading and saving files

• using flex

• using the active window count to handle closedown

• rendering Draw files .

One thing you may find it useful to look at in detail is the method used to extend
flex blocks during a load via RAM . The code to do this is quite simple, but it is easy
to get wrong See the functions drawex_ load_ ram () and
drawex_ ram_ loader()

Common application features

168

There are a number of functions in the RISC OS library which are intended to help
you produce applications with a similar appearance to those written by Acorn.
Some of these have already been examined. This section briefly describes some of
the others. As usual. for full details, look at the relevant parts of the chapter
entit led RISC OS library reference section on page 175.

How to write desktop applications in C

Coordinate conversion

You will often need to convert between the work area coordinates and screen. This
is not difficult: the chapter entitled Window Manager in the RISC OS Programmer's
Reference manual describes how to do it. However, you may find it convenient to use
the functions in coord . h to do the conversion . Using these functions may make it
clearer exactly what is happening in the source of your program There are
functions for converting x and y coordinates, points and boxes to either work area
or screen coordinates, together with some extra functions used to move boxes , and
determine if boxes overlap, and if a line in tersects with a box. The conversion
functions take a pointer to a coords_ cvts tr object as a parameter. This consists
of a box and two scroll va lues. You can obtain a suitable va lue for this parameter
from the data structures returned by a number of Wimp functions . For example, the
'box'. 'x' and 'y' fields of a wimp_openstr, or the 'box'. 'sex' and 'scy' fields of a
wimp_redrawstr are both suitable . Thus a typical fragment which might appear
in a redraw loop is :

wimp_redrawstr r ;
int screen_x, workarea_ x ;

screen_x = coords_x_toscreen(workarea_x, (coords_cvtstr *)&r . box) ;

You can always obtain the box and scroll values for the current window by finding
the window state with wimp_get_wind_state () .

Colour translation

Some of the RISC OS graphi cs primitives such as the draw module and sprite
plotting allow colours to be specified as full RGB (red/green/blue) values . RGB
co lours are usually referred to as 'true· colours. At any instant the desktop will on ly
be able to display approximations to the true colours, specifi ed usi ng 'Gcol' values .
The functions in colourtran. hare used to convert between these two ways of
referring to colours. You can find further details in the chapter entit led ColourTrans
Module in the RISC OS Programmer's Reference manual. One point to note about using
these functions is that they require the ColourTrans module to be loaded. If you
use them , the application's !Ru n file should include (something like) the following

if "<System$Path> " = "" then Error 0 System resources cannot be found
I
RMEnsure ColourTrans 0 . 51 RMLoad System : Modules . Colours
RMEnsure ColourTrans 0 . 51 Error You need ColourTrans 0 . 51 or later

There are separate sets of functions for setting co lours to be used in ordina ry
graphics operations, and for use with anti-aliased fonts .

169

Common application features

170

Colour menus

The function colourmenu_make () constructs a menu of the cu rrent desktop
colours. You can see an example of this kind of menu in Edit, where it is used for

the Foreground and Background entries of the Display submen u. Menus of this
form are used when you want to select one of the standard desktop co lours, rather
than a true colour.

If you do want the user to be able to select a true colour, you can call the functi on
dboxtcol, which allows the red , green and blue levels of a colour to be set using
sliders, or by specifying numerical values.

Dialogue boxes

There are a number of functi ons for handling dialogue boxes . Some of these have
already been introduced; here we look at some more of them . You may also find it
instructive to look at some dialogue boxes in the templates files of standard
applications, using the template editor this will give you some idea of how they
are constructed and what button types you use for the various sorts of field . You
ca n use dialogue boxes both as part of the menu trees, as already described, or on
their own. The on ly difference between these is how you di splay the dialogue box:
for a menu tree, use dbox_ show () and for a 'standalone' one, use
dbox_ showstatic()

As described in the RISC OS Programmer's Reference manual. the fields of a dialogue
box consist of icons. You can change the contents of the fields using the routine
dbox_ setfield () . dbox_ setnumeric () can be used to place a number in a
field . Values from the fi elds may be read back with dbox_getfield () and
dbox_getnumeric ().Fields may be faded , as fo r menu items, with
dbox_fadefield () and dbox_unfadefield (), to cancel .the effect.

To recognise when an action has occurred in a dialogue box, you can either call
dbox_f illin (),which enters a Wimp polling loop until a field has been
activated, or register your own event handler fo r the dialogue box with
dbox_ eventhandler (). The first of these is simpler and usually provides all the
flexibility you need . When dbox_fillin () returns, you should ca ll
dbox_persist ().This will tell you whether the dialogue box is to be removed
from the screen or not.'A typical use of these functions is :

How to write desktop applications in C

dbox
BOOL

dialogue ;
filling = TRUE ; / * TRUE until the dbox is to be removed * /

/ * Create dialogue box */
if ((dialogue= dbox_ new(<name of the dbox>)) 0)

.. . error

... fill in initial values for fields with dbox_ setfield, etc

/ * Display the dbox. This is for a dbox in a menu tree */
dbox_show(dialogue) ;

/ * Fill in the dialogue box * /
while (filling)
{

switch (dbox_ fillin(dialogue))
{

/ * Clauses for each field that has an effect * /
case <field number>:

... get field contents with dbox_getfield , etc .

! *
Use the following line on (for example) OK and Cancel buttons

*/

filling
break;

dbox_persist();

.. . more similar clauses

/ * Use the next clause if the dbox has a close icon * /
case dbox_CLOSE :

filling = FALSE ;
break;

/ * Clauses for uninteresting fields * /
default : / * Do nothing * /

break ;

/ * Get rid of the dialogue box * /

dbox_ dispose (&dialogue) ;

Some special properties o f dialogue boxes are worth noting. If there are writab le
fields in the dia logue box, the dbox code interprets t he up and down arrows to
move the caret between them, in field order. Pressing Return advances the caret to
the next writab le field . Field 0 may be used in a specia l way here. If you press
Return on t he last writable field, field 0 wi ll be activated , and dbox_f i 11 in ()
will hence return 0 to the caller. If your dialogue box contai ns an OK button, it
should normall y be field 0, so that repeatedly pressing Return wi ll eventually
activate it

171

Displaying and editing text

Besides the functions in dbox. h, there are also three subsidiary dialogue box

functions dboxtcol has already been described . dboxfile is a function for

handling file dialogue boxes, similar to those used by xfersend. dboxquery. h

is used to handle dialogue boxes that consist simply of a message to the user with

YES and NO buttons, as used by Edit and Draw to ask whether unsaved data is to

be discarded or not when a window is closed . See the header files for more details

of these functions.

Finally, don' t forget to call template_init () and dbox_init () during the

initiali sa tion of your application, in order to load the templates from the
applicati on's resources .

Magnifier

The magnifier is used for operations such as Zoom in Draw. The function

magnify_select () can be used to read a magnification factor from a zoom

dialogue box . To use this function , you must have a template called magnifier in

your application's template file .

Displaying and editing text

172

There are a large number of functions for displaying and editing text in a window,

in a similar way to Edit See t.xt. h, txtedit . hand txtwin . h for full detail s.

The conceptual model used is as follows.

Text is kept as a linear array of characters, known as a 'txt'. All character codes are

allowed. There is a pointer into this called the 'dot', which marks the current

editing position, and some other pointers known as markers, which are used (for

example) for selecting blocks of text

The characters are displayed in a window, with a newline for each '\n' character in

the buffer Screen updates happen for each J:ext operation, but the result is only

sure to be good when redraws can happen too. When a txt is displayed, the dot is

constrained to be visib le and the text will be scrolled in order to achieve thi s.

You can insert and delete characters at the dot, during which the markers will

continue to point at the character that they pointed at before . There are functions

for moving the dot and querying its position

You can indicate a part of the buffer as being selected. Characters in the selection

are displayed highlighted No other special meaning is given to the select ion. The

selection and the dot need not coincide. There are functions to create, delete.

move and query markers.

A txt is implemented using a single buffer containing the text , with a gap at the dot

Moving the dot involves a block move of the intervening text, but insertions and

deletions are fast. The text buffer is expanded if necessary (it is held in a flex block)

How. to write desktop applications in C

The basic text editing functions are defined in txt . h. There are also higher level
functions , which are intended for building complete text editors, in txtedi t . h.
txtwin. h adds further functions for displaying the same text in multiple
windows.

The functions are based on the code in Edit. and you may find it useful to compa re
them with the way you can see Edit working

Alarm functions

If your application needs to do some activity after a fixed length of time (for
example, periodically updating a window). there are two ways in which it can do
this. The first is to claim idle events and repeatedly examine the time. The second,
and preferable, way is to use the functions defined in alarm. h. These allow you to
set one or more alarms, specifying the time when they wil l occur. When the alarm
is triggered an event handler is called. You may have more than one alarm set
simultaneously. See alarm . h for details of the functions .

Tracing desktop applications

During the development of your program, you will probably want to trace what is
happening The DDT debugger provides several facilities to perform this for you,
and this is the recommended tool Some primitive facilities are also provided for
tracing by RISC_OSLib. These were added before DDT was constructed, and are
now retained largely for backwards compatibility

One way of using RISC_OSLib for t racing is to use werr, but this is often
inconvenient. since it requires acknowledgement by clicking in the OK box, and
because it obscures part of the screen, which will cause problems if it is used in a
redraw loop.

An alternative is to use the functions defined in trace. h. They display their
results directly onto the screen using print f This is rather messy, since the trace
output does not appear in a window and may thus be overwritten by the output
from other application, though it wil l never interfere with the application One trick
that is sometimes useful is to spool the output to a file, using *Spoo l so that the
trace output can be examined later. In this case, all the other graphics output wi ll
also be sent to the file, and you may find it useful to include some sort of
distinctive text in your trace output which you can search for using a text editor; for
example:

tracefO(" >>> This is some trace\n ");

In order to use tracing, you will have to define TRACE, either using a line in your
program such as

#define TRACE

173

Where do you go from here?

or using the -D command line parameter to the C compiler. When trace is not set,
the trace functions are treated as macros which convert into empty statements .
Thus, the call to the trace function may be left in your program even when you no
longer need the trace. This is often useful for generating debugging and production
versions of the program from the same source Tracing may also be turned on and
off dynamically, with trace_on () and trace_off (),when trace has been
compiled in.

There is a general trace function which takes an arbitrary number of parameters
(like printf), and five functions which take a fixed number of parameters. The
general trace function cannot be omitted by leaving TRACE undefined, because of
the properties of C macro expansion. The functi ons with a fixed number of
parameters are therefore generally preferable.

Where do you go from here?

174

The next step is to try writing a desktop application of your own. You might like to
take one of the example programs and extend it. For example, you could add
multiple windows to DrawEx, or allow it to display text and sprite files as well as
Draw files, or to display an animated sequence of pictures. Don 't try to use all of
RISC_OSLib in one go! It is better to become familiar with it gradually, using the
functions as you need them. You may also find it useful to glance at the
RISC_ OS Lib header files which have not been mentioned here. They all correspond
more or less exactly to sections in the RISC OS Programmer's Reference manual.

Writing desktop applications takes a little getting used to. In particular, the flow of
control through the program is driven primarily by events from the window
manager. This makes the programming a little harder, but it leads to applications
which respond better to user actions. Using RISC_OSLib, you should find that
programming in this style soon comes naturally.

Example programs

The following example desktop applications are supplied in the directory User:

• !Wexample and ! Draw Ex, as described above.

• ! Balls64, which displays co loured balls in a window.

• ! Life, which runs Conway's game of life in several windows simultaneously.
This is coded as a demonstration of RISC_OSLib, not for speed or as a
high-quality animation of Life.

• !Automata, which displays one dimensional cellular automata patterns in one
or more windows. Among other points, this demonstrates C and assembler
interworking, use of flex, and user file types

12

akbd

RISC OS library reference
section

This chapter presents brief summaries of all the functions in the RISC OS library,
grouped alphabetically by header. You should also refer to the RISC OS

Programmer's Reference manual for related information.

Additional functions are exported by RISC_OSLib but not documented here or in
the library headers. These are experimental, and you should not use them.

These functions provide access to the keyboard under the Wimp

akbd_pollsh
Checks if Shift is depressed.

Syntax: int akbd_pollsh(void)

Returns: I if Shift is depressed, O otherwise.

akbd_pollctl
Checks if Control is depressed.

Syntax: int akbd_pollctl(void)

Returns: I if Control is depressed, 0 otherwise.

akbd_pollkey
Checks if user has typed ahead.

Syntax:
Parameters:
Returns:

Other Information:

int akbd_pollkey(int *keycode)

int *keycode -value of key pressed
I if user has typed ahead. Also passes value of key
back through keycode.

Function keys appear as values > 256 (produced by
Wimp)

175

alarm

176

These functions provide alarm facilities for Wimp programs, using non-busy
waiting.

alarm_init

Initialises the alarm system .

Syntax:
Parameters:
Returns:

Other Information:

alarm_timenow

void alarm_init(void)

void.
void.

If this call is made more than once, any pending alarms
are cancelled.

Reports the current monotonic time.

Syntax:
Parameters:
Returns:

Other Information :

alarm_timedifference

int alarm_timenow(voidl

void.
the current monotonic time.

This timer cannot be set by programs, and can therefore
be relied on to increment every centisecond. It wraps
every few months.

Returns the difference between two times.

Syntax:
Parameters:

Returns:

Other Information :

alarm_ set

int alarm_timedifference(int tl , int t2)

int tl - the earlier time
int t2 - the later time.
difference between t I and t2 .

Times are as in SWI OS_ReadMonotonicTime. Deals
with wrap-round of timer.

Sets an alarm at the given time.

Syntax:
Parameters:

void alarm_set(int at , alarm_handler proc , void *handle)

int at - time at which alarm should occur
alarm_handler proc - function to be called at
alarm time

Returns:

Other Information:

alarm_remove

RISC OS library reference section

void *handle - caller-supplied handle to be
passed to function.
void.

The supplied function is called before passing the event
on to any idle event claimer windows. at is in terms of
the monotonic centisecond timer. The supplied function
is passed the time at which it was called. If you have
enabled idle events, these are still returned to you;
otherwise, RISC_OSLib uses idle events internally to
implement alarm calls (using non-busy waiting via
wimp_pollidle ()).

Removes an alarm which was set for a given time with a given handle.

Syntax:
Parameters:

Returns:

Other Information :

alarm_removeall

void alarm_remove(int at , void *handle)

int at - the time at which the alarm was to be
made
void *handle - the given handle.
void.

If no such alarm exists, this call has no effect

Removes all alarms which have a given handle.

Syntax:
Parameters:
Returns:

alarm_anypending

void alarm_removeall(void *handle)

void *handle - the handle to search for.
void.

Informs the caller whether an alarm with a given handle is pending.

Syntax:
Parameters:
Returns:

alarm_next

BOOL alarm_anypending(void *handle)

void *ha ndl e - the handle.
True if there are any pending alarms for this handle.

Informs the caller whether an alarm is pending and, if so, for when it is .

Syntax:
Parameters:
Returns :

BOOL alarm_next(int *result)

int *result - time for which alarm is pending
True if an alarm is pending

177

baricon

baricon

178

Other Information:

alarm_ call next

w:,==it:m.=-

This should be used by polling loops (if you use the
standard while (TRUE) event_process (); loop,
this is done for you). If a polling loop finds that an alarm
is set it should use wimp_pollidle (with earliest time
set to *result of a l arm_next ()) rather than
wimp_poll to do its polling. If you handle idle events
yourself, your handler should use call_next to call the
next alarm function upon receiving an idle event (ie
wimp_ ENULL).

Calls the next alarm handler function.

Syntax:
Parameters :
Returns:

Other Information:

void alarm_callnext(voidl

void.
void.

This is done for you if you use event_process () to do
your polling (or even if you reach down as far as using
wimpt for polling) .

Installs the named sprite as an icon on the icon bar and registers a function to be
ca lled when Select is clicked.

Syntax:

Parameters:

Returns:

Other Information :

baricon_left

wimp_i baricon(char *spritename , int spritearea ,

baricon_clickpioc p)

char *spritename - name of sprite to be used
int spritearea - area where sprite is
baricon_ clickproc p - pointer to function to be
called on click of Select

the icon number of the installed icon (of type wirilp_i).
This will be passed to function p on click of Select.

For details of installing a menu handler for this icon see
event_attachmenu().

Installs the named sprite as an icon on the left of the icon bar and registers a
function to be called when Select is clicked.

Syntax:

Parameters:

Returns:

Other information:

RISC OS library reference section

wimp_ i baricon_ left(char *spritename , int spritearea ,

baricon_clickproc p) ;

As for baricon above.

As for baricon above.

As for baricon above.

baricon_newsprite

Changes the sprite used on the icon bar.

Syntax:

Parameters:

Returns:

Other information :

wimp_ i baricon_newsprite(char *newsprite)

char *newspri te - name of new sprite to be used

the icon number of the installed icon sprite.

newspri te must be held in the same area as the sprite
used in bar i c on ().

baricon_textandsprite

•

Installs the named sprite as an icon on the right of the icon bar with some given
text below it, and registers a function to be called when Select is clicked.

Syntax:

Parameters :

Returns:

Other information:

wimp_ i bar icon_ textandsprite(char *spritename , char *text ,

int bufflen , int spritearea , bar i con_clickproc p) ;

c h a r * spr it ename - name of sprite to be used

c har *text - text to appear under sprite

int bufflen - length of text buffer

int s pri tearea - area in which sprite is held

bari c on_ cli c kproc p - pointer to function to be
called on left mouse click

the icon number of t he installed icon (of type wimp_i)
This will be passed to function p on left mouse click.

For detai ls of installing a menu handler for this icon see
event_attachmen u () . The width of the icon is taken as the
greater of bufflen system font characters and the width of
the sprite us.ed

179

DOC

bbc

baricon_textandsprite_left

Installs the named sprite as an icon on the right of the icon bar with some given
text below it, and registers a function to be cal led when Select is clicked.

Syntax:

Parameters:

Returns:

Other information:

wimp_i baricon_textandsprite_left(char *spritename , char

*text , int bufflen , int spritearea , baricon_clickproc p) ;

char * spri tename - name of sprite to be used
char *text -text to appear under sprite
int buf fl en - length of text buffer
int spri tearea - area in which sprite is held
b aricon_clickproc p - pointer to function to be
called on left mouse click.

the icon number of the installed icon (of type wimp_i)
This will be passed to function p on left mouse click.

For details of installing a menu handler for this icon see
event_attachmenu() The width of the icon is taken as the
greater of bufflen system font characters and the width of
the sprite used .

These functions provide BBC-style graphics and mouse/keyboard control.

bbc: text output functions

180

The following functions provide BBC-style text output functions. They are retained
to allow 'old-style' operations: you are recommended to use SWI calls via
k ernel. h in the C library

bbc_vdu

Outputs a single character.
Syntax: os_error *bbc_vdu(int)

bbc_vduw

Outputs a double character.
Syntax: os_error *bbc_vduw(int)

RISC OS library reference section

bbc_vduq

Outputs multiple characters. Ctl is a contro l character. The number of further
parameters is appropriate to Ctl (vduq knows how many to expect. and assumes
the correct parameters have been passed).
Syntax: os_error *bbc_vduq(int ctl , ...)

bbc_stringprint

Displays a null-terminated string
Syntax: os_ error *bbc_stringprint(char * I

bbc_cls

Clears text window.
Syntax: os_error *bbc_clslvoidl

bbc_colour

Sets text colour.
Syntax: os_error *bbc_colour(int)

bbc_pos

Returns X coordinate of text cursor.
Syntax: · os_error *bbc_pos (void)

bbc_vpos

Returns Y coordinate of text cursor.
Syntax: os_error *bbc_vpos(voidl

bbc_tab

Positions text cursor at given coordinates.
Syntax: os_error *bbc_tab I int , int I

txt: graphics output functions

bbc_plot

Carries out a given plot operation.
Syntax: os_error *bbc_plot(int plotnumber, int x , int y)

181

txt: graphics output functions

182

bbc_mode

Sets the screen mode.
Syntax: os_error *bbc_mode(int)

bbc_move

Moves the grap ics cursor to the absolute coordinates given.
Syntax: *bbc_move(int , int)

bbc_moveby

Moves the grap ics cursor to a position relative to its current text cursor position.
Syntax: *bbc_moveby(int, int)

bbc_draw

Draws a line to e given absolute coordinates.
Syntax: os_error *bbc_draw(int , int)

bbc_drawby

Draws a line to position relative to the current graphics cursor.
Syntax: os_ error *bbc_drawby(int, int)

bbc_rectangle

Plots a rectangl , given LeftX, BottomY, Width, and Height.
Syntax: os_error *bbc_ rectangle(int , int , int,int)

bbc_rectanglefill

Plots a solid rec angle, given LeftX, BottomY, Width, and Height.
Syntax: os_error *bbc_rectanglefill(int,int,int,int)

bbc_circle

Draws a circle, g ven Xcoord, Ycoord, and Radius.
Syntax: os_error *bbc_circle(i nt , int , int)

bbc_circlefill

Draws a solid ci de, given Xcoord, Ycoord, and Radius.
Syntax: os_error *bbc_circlefill(int , int, int)

RISC OS library reference section

bbc_origin

Moves the graphics origin to the given absolute coordinates .
Syntax: os_error *bbc_origin(int , int)

bbc_gwindow

Sets up a graphics window, given BottomLeftX, BottomLeftY, TopRightX, and
TopRightY.
Syntax: os_error *bbc_gwindow(int, int , int, int)

bbc_clg

Clears the graphics window.
Syntax: os_error *bbc_clg(void)

bbc_fill

Flood-fills area X,Y, filling from X,Y until either a non-background colour or the
edge of the screen is reached .
Syntax: os_error *bbc_filllint , int)

bbc_gcol

Sets a graphics colour to the given value.
Syntax: os_error *bbc_gcol I int , int l

bbc_tint

Sets the grey level of a co lour: use tint 0-3, as it gets shifted for you
Syntax: os_error *bbc_tint(int , int)

bbc_palette

Physical to logical colour definition : Logica l co lour, Physical co lour, Red level.
Green level. Blue level.
Syntax: os_error *bbc_palette(int , int , int , int , int)

bbc_point

Finds the logical colour of a pixel at the indicated coordinates x, y.
Syntax: int bbc_point(int , int)

bbc_vduvar
Reads a single VDU or mode variab le value, for the current screen mode.
Syntax: int bbc_vduvar(int varno)

183

bbc: other calls

bbc_vduvars

Reads several VDU or mode variab le va lues. var s points to a sequence of ints,
terminated by -l . Each is a VDU or mode va riable number, and the corresponding
va lues will be rep laced by the va lue of that variab le.
Syntax: os_error *bbc_vduvars(int *vars / * in * / , int *values / *out * /)

bbc_modevar

Reads a single mode variable, for the given screen mode.
Syntax: int bbc_modevar(int mode, int varno)

bbc: other calls

184

bbc_get

Returns a character from the input stream . Oxlxx is returned if an escape cond ition
exists.
Syntax: int bbc_get (void)

bbc_cursor

Alters cursor appearance. Argument takes va lues 0 to 3.
Syntax: os_error *bbc_cursor(int)

bbc_adval

Reads data from ana logue ports or gives buffer data.
Syntax: int bbc_adval(int)

bbc_getbeat

Returns current beat value .
Syntax: int bbc_getbeat(void)

bbc_getbeats

Reads beat counter cycle length.
Syntax: int bbc_getbeatslvoid)

bbc_gettempo

Reads rate at which beat counter counts.
Syntax: int bbc_gettempo(void)

RISC OS library reference section

bbc_inkey

Retu rns character code from an input stream or the keyboa rd .
Syntax: int bbc_inkey (int I

bbc_setbeats

Sets beat counter cycle length
Syntax: os_error *bbc_setbeats(intl

bbc_settempo

Sets rate at which beat counter counts.
Syntax: os_error *bbc_settempo (int I

bbc_sound

Makes or schedu les a sound. Parameters: Channel. Amplitude, Pitch , Duration,
and Future Time.
Syntax: os_error *bbc_ sound(int, int, int, int, inti

bbc_soundoff

Deactivates the sound system.
Syntax: os_error *bbc_soundoff(voidl

bbc_soundon

Activates the sound system.
Syntax: os_error *bbc_ soundon(voidl

bbc_stereo

Sets the stereo position for the specified channel.
Syntax: os_error *bbc_stereo(int , inti

bbc_voices

Sets the number of sound channels.
Syntax: os_error *bbc_voices(intl

colourmenu

Creates a Wimp co lour setti ng menu .

185

colourtran

colourmenu_make

Creates a menu containing the sixteen Wimp colou rs, with an optional None entry.
Text in co lour is written in black or wh ite, depending on the background.

Syntax:

Parameters:

Return s:

Other Information:

menu colourmenu_ ma ke(char *title, BOOL includeNone)

char *title - null-terminated string for menu title
BOOL includeNone -whether to include 'None' entry

On successful completion, pointer to created menu
structure, otherwise null .

Hits on this menu sta rt from I as for other menus (see
menu module for details).

colourtran

186

C interface to the ColourTrans SW!s.

colourtran_select_table

Sets up a trans lation table in a buffer, given a source mode and palette, and a
destination mode and palette.

Syntax:

Parameters:

Returns:

os_ error • colourtran_ select_ tabl e (int source_ mode ,

wimp_paletteword • source_palette, int dest_mode ,

wi mp_paletteword *dest_palette , vo id *buffer)

int source_mode - source mode
wimp_palet teword * s ource_palet t e - source
palette
int dest_mode - destination mode
wimp_palet teword *des t_palet te - destination
pa lette
void *buffer - pointer to store fo r the table.

possible error cond ition.

colourtran_select_ GCOLtable

Sets up a list of GCOLs in a buffer, given a source mode and palette, and a
destination mode and palette.

Syntax: os_error *colourtran_select_GCOLtable {int source_ mode ,

wimp_paletteword • source_palette , int d est_mod e ,

wimp_paletteword *dest_palette , void *buffer)

Parameters:

Returns:

colourtran returnGCOL

RISC OS library reference section

int source_mode - source mode
wimp_palet teword * source_palet te - source
palette
int dest_mode -destination mode
wimp_palet teword *de st_palette - destination
palette
void *buffer - pointer to store for the li st of GCOLs.

possible error condition.

Informs the caller of the closest GCOL in the current mode to a given palette entry.

Syntax:

Parameters:

Returns:

colourtran_setGCOL

os_ error *colourtran_returnGCOL (wimp_paletteword entry ,

int *gcol)

wimp_palet teword entry - the pa lette entry
int *gcol - returned GCOL va lue.
possible e rror condition.

Informs the caller of the closest GCOL in the current mode to a given palette entry,
and also sets the GCOL.

Syntax:

Parameters :

Returns:

os_error *colourtran_ setGCOL (wimp_paletteword entry , int

fore_ back , int gcol_ in , int *gcol_ out)

wimp_palet teword ent r y - the palette entry
int fo r e_back - set to 0 for foreground, set to I 28 for
background
int gcol_ in - GCOL action
int *gcol_out - returned closest GCOL.

possible error condition.

colourtran return_colournumber

Informs the caller of the closest colour number to a given palette entry, in the
current mode and palette.

Syntax:

Parameters:

Returns :

os_er ror *colourtran_return_colournumber (wimp_paletteword

entry , int *col)

wimp_paletteword -the palette entry
int *col - returned colour number.

possible error condition.

187

colourtran

188

colourtran return_GCOLformode

Informs the ca ller of the closest GCOL to a given palette entry, destination mode
and destination palette.

Syntax:

Parameters:

Returns:

os_error *colourtran_return_GCOLformode
(wimp_paletteword entry, int dest_mode,
wimp_paletteword *dest_palette, int *gcol)

wimp_palet teword entry - the palette entry
int dest_mode - destination mode
wimp_pa l et teword *dest_palet te - destination
pa lette
int *gcol - returned closest GCOL.

possib le error cond ition.

colourtran_return_colourformode

Informs the ca ller of the closest co lour number to a given palette entry, destination
mode and destination palette

Syntax:

Parameters:

Returns:

os_error *colourtran_return_ colourformode

(wimp_paletteword entry , int dest_mode , wimp_paletteword

*dest_palette , int *col)

wimp_palet teword entry - the pa lette entry
int dest_mode - destination mode
wimp_palet teword *dest_palet te - destination
palette
int *col - returned closest colour number.

poss ible error cond ition.

colourtran_return_ OppGCOL

Informs the cal ler of the furthest GCOL in the current mode from a given palette
entry.

Syntax:

Parameters:

Return s:

os_error *colourtran_return_OppGCOL (wimp_paletteword

entry , i n t *gcol)

wimp_palet teword entry - the palette entry
int *gcol - returned GCOL va lue.

possible error cond iti on.

RISC OS library reference section

colourtran_setOppGCOL

Informs the caller of the furthest GCOL in the current mode from a given palette
entry, and also sets the GCOL.

Syntax:

Parameters :

Returns:

os_error *colourtran_setOppGCOL (wimp__paletteword entry ,
int fore_back , int gcol_in, int •gcol_out)

wimp_palet teword entry - the palette entry
int fore_back- set to 0 for foreground , set to 128 for
background
int gcol_in - GCOL action
int *gcol_out - returned furthest GCOL.

possible error condition.

colourtran_return_Oppcolournumber

Informs the caller of the furthest colour number from a given pa lette entry, in the
current mode and palette.

Syntax:

Parameters :

Returns:

os_error *colourtran_return_Oppcolournumber

(wimp__paletteword entry , int *col)

wimp_palet teword - the palette entry
int *col - returned colour number.

possible error cond ition.

colourtran_return_ OppGCOLformode

Informs the caller of the furthest GCOL from a given palette entry, destination
mode and destination palette

Syntax: os_error *colourtran_return_OppGCOLformode

(wimp__paletteword entry , int dest_mode , wimp__paletteword
*dest__palette , int *gcol

Parameters: wimp_palet teword entry - the palette entry
int des t_mode - destination mode
wimp_pa let teword *dest_palet te - destination
palette
int *gcol - returned furthest GCOL.

Returns: possible error condition.

colourtran_retu rn_ Oppcolou rformode

Informs the caller of the furthest colour number from a given palette entry,
destination mode and destination pa lette.

189

colourtran

190

Syntax:

Parameters:

Returns:

os_error *colourtran_return_Oppcolourformode

(wimp__paletteword entry int dest_mode , wimp__paletteword

*dest_palette , int *col)

wirnp_palet teword entry - the palette entry
int dest_rnode - destination mode
wirnp_palet teword *dest_palette - destination
palette
int *col - returned furthest colour number

possible error condition .

colourtran_GCOL_tocolournumber

Translates a GCOL to a colour number (assuming 256-colour mode).

Syntax:

Parameters:

Returns:

os_error *colourtran_GCOL_tocolournumber (int gcol , int

*col)

int gcol - the GCOL
int *col - returned colour number

possible error cond ition.

colourtran_colournumbertoGCOL

Translates a colour number to a GCOL (assuming 256-colour mode).

Syntax:

Parameters:

Returns:

os_error *colourtran_colournumbertoGCOL (int col , int

*gcol)

int col - the colour number
int *gcol - the returned GCOL.

possible error condition.

colourtran returnfontcolours

Informs the c:a ller of the font colours to match the given colours.

Syntax:

Parameters:

os_error *colourtran_returnfontcolours (font *handle ,

wimp_paletteword *backgnd , wimp__paletteword *foregnd , int

*max_offset)

font *handle - the font's handle
wirnp_paletteword *backgnd - background palette
entry
wirnp__palet teword * foregnd - foreground palette
entry
int *rnax_ offset

coords

Returns:

Other Information:

colourtran_setfontcolours

RISC OS library reference section

possible error condition.

Closest approximations to fore/background co lours will
be set, and as many intermediate co lours as possible (up
to a maximum of *max_offset) . Va lues are returned
through the parameters.

Informs the caller of the font co lours to match the given colours, and calls
font_setfont colour() tos~them.

Syntax:

Parameters:

Returns:

Other Information:

os_error *colourtran_setfontcolours (font

*handle , wimp_paletteword *backgnd , wimp_paletteword

*foregnd, int *max_offset)

font *handle - the font's handle
wimp_palet teword *backgnd- background palette
entry
wimp_palet teword * foregnd - foreground palette
entry
int *max_offset

possible error condition.

Closest approximations to fore/background colours will
be set, and as many intermed iate colours as possible (up
to a maximum of *max_offset). Values are returned
through the parameters . Font_ setfontcolours () is
then called with these as parameters .

colourtran invalidate_cache

To be called when the palette has changed since a call was last made to a function
in this module, or a Draw ob ject was rendered.

Syntax: os_error *colourtran_ invalidate_cache (void)

Parameters: void

Returns: possible error condition

This file contains functions for working in the window coordinate system.
Functions are provided to convert between screen and work area coordinates, and
perform other simple operations on points , lines, or 'boxes' .

191

192

It is conventional to think of the point (0,0) as appearing at the top lefthand corner
of a document.

coords _x_ toscreen/coords _y _ toscreen

Converts x/y work area coordinates into x/y absolute screen coordinates.

Syntax:

Parameters:

Returns:

int coords_x_toscreen(int x , coords_cvtstr *r)

int coords_y_toscreen(int y, coords_cvtstr *r)

int x or int y - x or y coordinate in work area
coordinates
coords_cvtstr *r - conversion box (screen
coordinates and scroll offsets)

x or y screen coordinates.

coords_x_toworkarea/coords_y _toworkarea

Converts x/y screen coordinates into x/y work area coordinates.

Syntax:

Parameters:

Returns:

coords_box_toscreen

int coords_ x_ toworkarea(int x, coords_ cvtstr *r)

int coords_y_toworkarea(int y, coords_cvtstr *r)

int x or int y - x or y coordinate in screen
coordinates
coords_cvtstr *r - conversion box (screen
coordinates and scroll offsets).

x or y work area coordinates.

Converts a 'box' of workarea coordinates into a 'box' of screen coordinates.

Syntax:

Parameters:

Returns:

Other Information:

coords_box_toworkarea

void coords_box_toscreen(wimp_box *b , coords_ cvtstr *r)

wimp_box *b-workarea box to be converted
coords_cvtstr *r - conversion box (screen
coordinates and scroll offsets).

void.

bis converted 'in situ' into screen coordinates (ie its
contents change).

Converts a 'box' of screen coordinates into a 'box' of workarea coordinates.

Syntax:

Parameters:

Returns:

Other Information:

coords_point_toscreen

RISC OS library reference section

void coords_ box_toworkarea(wirnp_ box *b , coords_ cvtstr *rl

wimp_box *b - screen box to be converted
coords_cvt str *r - conversion box (screen
coordinates and scroll offsets)

v oid.

b is converted 'in situ' into workarea coordinates (ie its
contents are changed).

Converts a point (x,y) from workarea coordinates to screen coordinates.

Syntax:

Parameters:

Returns:

Other Information:

coords_point_toworkarea

void c oords_po i n t_toscree n(coords_pointst r *poin t ,

coords_ cvtstr *rl

c oords_po intst r *poin t - the point in workarea
coordinates
c oor d s_ cvt st r *r - conversion box (screen
coordinates and scroll offsets).

void.

po int is converted 'in situ ' into screen coordinates (ie
its contents are changed).

Converts a point (x,y) from screen coordinates to workarea coordinates.

Syntax:

Parameters:

Returns:

Other Information:

coords_withinbox

void coords_point_toworkarea(coord s_point st r *point ,

coords_ cvtstr *r)

c oor d s_point str *po i nt -the point in screen
coordinates
c oords_ cvt str * r - conversion box (screen
coordinates and scro ll offsets).

v oid.

po int is converted 'in situ ' into workarea coord inates (ie
its contents are changed) .

Informs the ca ll er if a point (x,y) lies within a 'box'.

Syntax: BOOL coords_withinbox (coords_pointstr *poin t , wirnp_ box

*box)

193

coords

194

Parameters:

Returns:

coords_offsetbox

coords_pointstr *point -the point
wimp_box *box - the box.

True if point lies within the box.

Offset a 'box' by a given x and y displacement.

Syntax:

Parameters:

Returns:

Other Information:

coords_intersects

void coords_offsetbox(wimp_ box *source , int byx , int byy ,

wimp_ box *result)

wimp_box *source - the box to be moved
int byx - x displacement
int byy - y displacement
wimp_box *result - box when offset.

void.

source and result are permitted to point at the same
box.

Informs the caller whether a line intersects a given 'box'.

Syntax:

Parameters:

Returns:

coords_boxesoverlap

BOOL coords_intersects(wimp_box *line , wimp_ box *rect , int

widen)

wimp_box *line - the line
wimp_box *rect - the box
int widen - width of line (same units as line and rect) .

True if line intersects box.

Informs the caller whether two 'boxes' cover any common area.

Syntax:

Parameters:

Returns :

BOOL coords_boxesoverlap(wimp_ box *boxl , wimp_ box *box2)

wimp_box *boxl - one box
wimp_box *box2 - the other box.

True if boxes overlap.

dbox

RISC OS library reference section

This file contains functions concerned with the creation, deletion and
manipulation of dialogue boxes . It is important to note that the structure of your
dialogue templates is an integral part of your program. Always use symbolic names
for templates and for fields and action buttons within them. Templates for the
dialogue boxes can be loaded using the template module in this library. See the
chapter entitled How to use tlie Template Editor for how to use the RISC OS Template
Editor in conjunction with this interface. A dbox is an abstract dialogue box
handle.

dbox: creation and deletion functions

dbox_new

Builds a dialogue box from a named template . Template ed itor (Form Ed) may have
been used to create this template in the Templates file for the application.

Syntax:

Parameters:

Returns:

Other Information :

dbox_dispose

dbox dbox_new(char *name)

char *name - template name (from templates
previously read in by template_init). from which to
construct dialogue box. name is as given when using
Form Ed to create template.

On successfu l completion, pointer to a dialogue box
structure, otherwise null (eg when not enough space).

This only creates a structure; it doesn't display anything!
However, it does register the dialogue box as an active
window with the window manager.

Disposes of a dialogue box structu re.

Syntax:

Parameters:

Returns:

Other Information :

void dbox_ dispose(dbox *)

dbox* - pointer to pointer to a dialogue box structure

void.

This also has the side-effect of hiding the dialogue box,
so that it no longer appears on the screen. It also
·un-registers' it as an active window with the window
manager and event processor.

195

196

dbox_show

Displays t he given dialogue box on the screen.

Syntax:

Parameters:

Returns:

Other Information:

dbox showstatic

void dbox_show (dbox)

dbox -dialogue box to be displayed (typica lly created by

dbox_new)

void.

Typical ly used when dialogue box is from a submenu so

that it d isappears when the menu is closed. If ca ll ed

when this dialogue box is showing, it has no effect The

show wi ll occu r near the last menu select ion or the last

caret setting (whichever is most recent) .

Displays the given dia logue box on the screen, and leaves it there, until explicitly

closed.

Syntax:

Parameters:

Returns:

Other Information:

dbox_hide

void dbox_showstatic(dbox)

dbox - dialogue box to be displayed (typica lly created by

dbox_new)

void.

This is typically not used from menu selection, as it wi ll

persist longer than the menu (otherwise, it is the same as

dbox_show).

Hides a previously displayed dialogue box.

Syntax:

Parameters:

Returns:

Other Information :

void dbox_hide(dbox)

dbox - dialogue box to be hidden

void.

This does not release any storage; it just hides the

dialogue box. If cal led when the dialogue box is already

hidden , it has no effect

dbox fields

RISC OS library reference section

A dialogue box has a number of fields. labelled from 0. There are the following
distinct field types

• action fields
Mouse clicks here are communicated to the client. The fields are usually
labelled go, quit, etc. Set/GetField apply to the label on the field , although
this is usually set up in the template

• output fields
These display a message to the user. using SetField . Mouse clicks etc. have no
effect.

• input fields
The user can type into these, and simple local editing is provided Set/GetField
can be used on the textual value. or Set/GetNumeric if the user should type in
numeric values.

• on/off fields
The user can click on these to display their on/off status. They are always 'off'
when the dialogue box is first created. The template editor can set up mutually
exclusive sets of these at will. Set/GetField apply to the label on this field ,
Set/GetNumeric set/get I (on) and 0 (off) va lues.

The function keys can be used instead of the mouse to 'click' action and on/off
fields. In addition, if a letter key is pressed , an attempt will be made to match the
first capital letter found in any action field, and 'click' on that field For example, 'y'
will match Yes , and 'd' will match reDo .

dbox_field/dbox_fieldtype

type dbox_field values are field numbers within a dialogue box. They indicate
what sort a field is (ie action, output. input, on/off)

dbox_setfield

Sets the given field , within the given dialogue box, to the given text value.

Syntax:

Parameters:

Returns:

Other Information

void db ox_setfield(dbox, d box_field , c har *)

dbox - the chosen dialogue box
dbox_field - chosen field number
char * - text to be displayed in field .

void.

If the function is applied to a non-text field, it has no
effect. If the field is an indirected text icon , the text length
is limited by the size va lue used when setting up the

197

dbox fields

198

dbox_getfield

template in the template editor. Any longer text will be
truncated to this length. Otherwise, text is truncated to
12 characters (I I text+ I null) If the dialogue box is
currently showing, the change is immediately visible.
This function is really only useful with indirect icons.

Puts the current contents of the chosen text field into a buffer, whose size is given
as the third parameter.

Syntax:

Parameters :

Returns:

Other Information :

dbox_setnumeric

void dbox_getfield(dbox , dbox_field , char *buffer , int

size)

dbox - the chosen dialogue box
dbox_ field -the chosen field number
char *buffer - buffer to be used
int s i ze - size of buffer.

void.

If the function is applied to a non-text field, the null
string is put in the buffer. If the length of the chosen field
(plus null-terminator) is larger than the buffer, the result
will be truncated.

Sets the given field, in the given dialogue box, to the given integer value.

Syntax:

Parameters:

Returns:

Other Information:

dbox_getnumeric

void dbox_setnumeric(dbox, dbox_field, int)

dbox - the chosen dialogue box
dbox_f ield - the chosen field number
int - field's contents will be set to this value.

void.

If the field is of type input/output, the integer value is
converted to a string and displayed in the field . If the
field is of type action or on / off , a non-zero integer
value selects this field; zero deselects it

Gets the integer value held in the chosen field of the chosen dialogue box.

Syntax: int dbox_getnumeric(dbox, dbox_field)

Parameters:

Returns:

Other Information:

dbox_fadefield

RISC OS library reference section

dbox - the chosen dialogue box
dbox_field - the chosen field number.

integer value held in chosen field

If the field is of type on / off then return value of 0
means off, I means on. Otherwise, the return va lue is
the integer equiva lent of the field contents.

Makes a field unselectable (ie faded by Wimp).

Syntax:

Parameters:

Returns:

Other Information:

dbox_unfadefield

void dbox_fadefield(dbox d , dbox_field fl

dbox d - the dialogue box in which field resides
dbox_field f - the field to be faded.

void.

Fading an already faded field has no effect.

Makes a field selectable (ie 'unfades' it) .

Syntax:

Parameters:

Returns:

Other Information :

dbox: events from dialogue boxes

void dbox_unfadefield(dbox d , dbox_ field f)

dbox d - the dialogue box in which field resides
dbox_ field f - the field to be unfaded.

void.

Unfading an already selectable field has no effect.

A dialogue box acts as an input device: a stream of characters comes from it as if it
were a keyboard, and an up-call can be arranged when input is waiting. Dialogue
boxes may have a close button that is separate from their action buttons, usually
in the header of the window. If this is pressed, CLOSE is returned: this should lead
to the dialogue box being invisible . If the dialogue box represents a particular
pending operation, the operation should be cancelled .

dbox_get

Tells caller which action field has been activated in the chosen dialogue box.

Syntax: dbox_field dbox_get(dbox d)

199

aoox: evems rrom a1a1ogue ooxes

200

Parameters:

Returns:

Other In fo rmation

dbox_read

dbox - t he chosen dialogue box.

fi eld number of activated fi eld

Thi s should only be ca lled from an event handler (since
thi s is the only situation where it makes sense)

Te lls ca ller which action fi eld has been acti va ted in the chosen dialogue box. Does
not ca nce l t he event.

Syntax:

Parameters:

Returns:

Other Information:

dbox_eventhandler

dbox_field dbox_read(dbox d) ;

dbox - the chosen dialogue box

fi eld number of acti vated field

Thi s should only be ca lled from an event handler (s ince
t his is the only sit uation where it makes sense)

Registers an event hand ler funct ion for the given dialogue box.

Syntax:

Pa rameters:

Return s:

Other In fo rmation:

dbox raw_eventhandler

void dbox_eventhandler(dbox, dbox_handler_proc , void *

handle)

db ox - the chosen dialogue box
dbox_handler_proc - name of handler function
v oid *handl e - user-defin ed handle.

vo id.

When a fi eld of the given dialogue box has been
acti vated, the user-supplied handler function is ca lled.
The handler should be defined in the fo rm void foo
(dbox d , void *handl e). When ca lled, the function
f oo will be passed the relevant d ia logue box, and its
user-defined handle. A typical action in foo would be to
ca ll dbox_get to determine which fi eld was activated . If
handler==O then no function is installed as a handler
(and any existing handler is 'un-registered')

Registers a 'raw' event handler for the given dialogue box.

Syntax: void dbox_raw_ eventhandler(dbox , dbox_raw_ handler_proc ,

void *handle)

Parameters:

Returns:

Other Informat ion :

dbox: pending operations

RISC OS library reference section

dbox - the given dialogue box
dbox_ raw_handler_proc - handler function fo r
event
void *handl e - user-defined hand le.

void.

This regi sters a function which wi ll be passed 'unvetted'
window events. Under the window manager in RISC OS,
the event will be a wimp_ eventstr * (see Wimp
module) The suppli ed handler function shou ld return
True if it processed the event; if it returns Fa lse, the event
wi ll be passed on to any event handler defined using
dbox_ eventhandler () as above. The form of the
handler's function header is: BOOL func (dbox d ,
void *event , void *handle)

Dialogue boxes are often used to fill in the deta ils of a pending operat ion In this
case a down-ca ll driven interface to the entire interaction is often conven ient. The
following facilities aid this fo rm of use.

dbox_fillin

Process events until a field in the given dia logue box has been activated .

Syntax:

Parameters :

Returns:

Other In formation

dbox_fillin_fixedcaret

dbox_field dbox_fillin(dbox d)

dbox d - the given dialogue box

field number of activated field

Hand ling of harmful events, like dbox_popup (below) .
On each ca ll to dbox_fillin , the ca ret is set to the end of
the lowest numbered writable icon .

Process events until a field in the given dialogue box has been act ivated .

Syntax:

Pa ram eters :

Returns :

Other Information :

dbox_field dbox_fillin_fixedcaretldbox d) ;

dbox d - the given dialogue box

field number of activated field .

Same as dbox_fillin , except ca ret is not set to end of
lowest numbered writable icon

201

dbox: pending operations

202

dbox_popup

Build a dialogue box, from a named template, assign message to field l , do a
db ox_f i 11 in, destroy the dialogue box, and return the number of the activated
field.

Syntax:

Parameters:

Returns:

Other Information:

dbox_persist

dbox_field dbox__popup(char *name , char *message)

char *name - template name for dialogue box
char *message - message to be displayed in field I.

field number of activated field.

'Harmful' events are those which could cause the
dialogue to fail (eg keystrokes, mouse clicks). These
events will cause the dialogue box to receive a CLOS E

event.

When dbox_f i 11 i n has returned an action event, this function returns True if the
user wishes the action to be performed, but the dialogue box to remain.

Syntax:

Parameters:

Returns:

Other Information:

dbox_syshandle

BOOL dbox_ persist(void)

voi d .

BOOL - does the user want the dialogue box to remain on
screen?

The current implementation returns True when the user
has clicked Adjust The caller should continue round the
fill-in loop if the return value is True (ie don't destroy the
dialogue box)

Allows the caller to get a handle on the window associated with the given dialogue
box.

Syntax:

Parameters:

Returns:

Other Information:

int dbox_syshandle(dbox)

dbox - the given dialogue box

window handle of dialogue box (this is a wimp_w under
the RISC OS window manager).

This could be used to hang a menu off a dialogue box, or
to 'customise' the dialogue box in some way.
dbox_disp o se will also dispose of any such attached
menus.

RISC OS library reference section

dbox_init

Prepare for use of dialogue boxes from templates

Syntax:

Parameters :

Returns :

Other Information :

dboxfile

void dbox_init(void)

void

void

This function must be called once before any dialogue
box functions are used . You should ca ll
template_ini t () before this function .

Displays dialogue box with message. input field. and OK field and allows input of
filename.

Syntax:

Parameters:

Returns:

Other Information :

void dboxfile(char • message , unsigned filetype , char • a ,
int bufsize)

char *message- informative message to be displayed
in dialogue box
unsigned filetype - OS-dependent type of file
char *a - default filename (initially) and also used for
user-typed filename
int bufsize - size of a.

void.

The template for the dialogue box must be ca lled
dboxf i le_db. Parameters correspond to the template's
icon numbers as follows:

icon #0
icon #I
icon #2

OK button
message
filename

The template should have the following icons:

icon #0

icon #I

icon #2

a text icon containing text OK with button type menu
icon
an indirected text icon (possibly with a default
message) with button type nev er
an indirected text icon with button type writeable.
See the dboxfile_db template used by Edit for an
example.

203

dbox: pending operations

204

The maximum length of message is 20. The char array pointed to by a wi ll contain
the typed-in file name of maximum length bufsize (if longer, truncated)

dboxquery

Displays a dialogue box, with YES and NO buttons, and a question, and gets reply.

Syntax:

Parameters :

Returns:

Other In formation:

window flags

icon #I

icon #0

icon #2

dboxtcol

dboxquery_REPLY dboxq uery(char *question)

char *question- the question to be asked

reply by user

Question can be up to 120 cha rs long, 3 lines of 40
characters . Return wil I reply yes; Escape or CLOSE event
wi ll reply cancel. A cal l of dboxquery (0) wi ll reserve
space for the dialogue box and return with no display.
This wi ll mean that space is always available for
important things like asking to quit! The template for the
dialogue box shou ld have the following attribu tes

moveable, auto-redraw. It is also advisable to have a title
icon containing the name of your program (or other
suitable text)

the message icon : should have indirected text flag set.
with button type never and va lidat ion stri ng L40.

the YES icon : shou ld be text icon with text st ring set to
YES; button type should be menu icon.

the NO icon : should be text icon with text string set to
NO; button type should be menu icon. See the query
dialogue box in Edit for an example.

Displays a dialogue box to all ow the editing of a true co lour va lue.

Syntax:

Parameters :

BOOL dboxtco l (dbox tcol_colour *colour / *inou t* /., BOOL

allow_ tra nsparent , c har *n a me , dbox tcol_ colourhandler

proc , void *handle)

dboxtcol colour *colour - co lour to be edited
BOOL allow_transparent - enables selection of a
'see-th rough· co lour
char *name - title to put in dialogue box.

drawfdiag

Returns :

Other Information:

RISC OS library reference section

dboxtcol_colourhandler proc - function to act
on the co lour change
void *handle - the handle passed to proc

True if colour edited , user clicks OK.

The dialogue box to be used should be the same as that
used by Paint to edit the palette If the user clicks Select
on OK, the proc is called and the dialogue box is closed .
If the user clicks Adjust on OK. the proc is called and the
dialogue box stays on the screen . This allows the client of
thi s function to use proc to, say, change a sprite's
palette to reflect the edited co lour value and then to
ca use a redraw of the sprite .

This file con tains functions concerned with the processing of Draw format files
(diagram level interface). It defines the interface to the simplest version of the
DrawFile module. It can read in files to diagrams and render them . There is no
checking of whether the end of the diagram has been overrun .

To read in Draw files , it is expected that the caller will do the work of the 1/0 itself.
To dispose of a diagram , the ca ller can just throw it away: the module does not
keep any hidden information about what diagrams it has seen.

Some calls return an offset to the bad data on an error. Thi s is not necessa rily the
start of an object: it may be bad data part way through it. The offset is relative to
the start of the diagram

The module cannot handle rectangle or ell ipse objects you shou ld use a path
instead .

Data types

Diagram: a pointer to the data and a length field. The length must be an exact
number of word s, and is the amount of space used in the diagram, not the size of
the memory allocated to it.

Abstract handle for an object: The ob ject handle is an offset from the start of the
diagram to the object data. You may use it to set a pointer direct ly to an ob ject,
when using the object level interface

Error types: Where a routine can produce an error, the actual va lue returned is a
BOOL, which is True if the routine succeeded. The error itself is returned in a block
passed by the user; if NULL, then the details of the error are not passed back.

205

drawfdiag

206

The error block may contain either an operating system error or an internal error. In
the latter case, it consists of a code and possibly a pointer to the location in the file
where the error occurred (if NULL, the location is not known or not specified) By
convention, this should be reported by the caller in the form message
(location &xx in file).Foralistofcodesandstandarderrors,see
h. DrawfErrors. The location is relative to the start of the data block in the
diagram

draw_verify_diag

Verifies a diagram which has been read in from a file

Syntax:

Parameters:

Returns:

Other In formation:

draw_append_diag

BOOL draw_verify_ diag(draw_ diag *diag , draw_error *error)

draw_diag *diag - the diagram to be verified
draw_ error * error - the first error encountered (if
any).

True if diagram is correct.

Each object in the file is checked and the first error
encountered causes return (with error set appropriately) .

Merges two diagrams into one.

Syntax:

Parameters:

Returns:

Other Information:

BOOL draw_append_di ag(draw_diag *diagl , draw_diag *diag2 ,

draw_error *error)

draw_diag *diagl - diagram to wh ich to append
diag2
draw_diag *diag2 - diagram to be appended to
diagl
draw_ error * error - possible error cond ition.

True if merge was successfu l.

Both diagrams should have been processed by
draw_ verify _diag (). Diagl 's data block must be at
least diagl. lengt h + diag2 . length.
Diagl . length will be updated to its new appropriate
va lue. Diagl's bounding box will be set to the union of
the bounding boxes of the two diagram s. Offsets of
objects in Diagl may change due to a change in font
table size (if Diag2 has fonts) . Errors referring to speci fi c
locations, refer to Diag2

RISC OS library reference section

draw _render _diag

Renders a diagram with a given sca le factor, in a given Wimp redraw rectangle.

Syntax: 1

Parameters:

Returns:

Other Information:

BOOL draw_render_diag(draw_diag *diag , draw_redrawstr *r ,

double scale , draw_error *error)

draw_diag *di ag - the diagram to be rendered
draw_redrawstr *r - the Wimp redraw rectangle
double sca le - scale factor
dr aw_ error *error - possible error condition .

True if render was successful.

The diagram must have been processed by
draw_verify_diag() draw_ redrawstr isthe
same as wimp_redrawstr, which may be cast to it.
Very small and negative sca le factors will result in a
run-time error (safe> 0.00009) . The caller should do
range checking on the sca le factor. Following the normal
convention for coordinate mapping, the part of the
diagram rendered is found by mapping the top left of the
diagram , in draw coord space onto a point: (r ->box. xO
- r- >scx , r- >box.yl - r- >scy) in screen
coordinates.

draw: memory allocation functions

draw_registerMemoryFunctions

Registers three functions to be used to allocate, extend and free memory, when
rendering text objects.

Syntax:

Parameters :

Returns:

void draw_registerMemoryFunctions(draw_allocate alloc ,

draw_extend extend , draw_free free)

draw_allocate alloc - pointer to function to be
used for memory allocation
draw_extend extend -pointer to function to be used
for memory extension
draw_ free free - pointer to function to be used for
memory freeing.

void.

207

draw: memory a/location functions

208

Other Information : These three functions will be used only when rendering
text area objects. Any memory allocated during rendering
will be freed (using the supplied function) after
rendering. If draw_ registerMemoryFunctions ()
is never called , or if memory allocation fails , then an
attempt to render a text area will produce no effect. The
three functions should operate as follows:

• int alloc(void ** an ch or , i n t n) allocate n bytesofstoreandset
*anchor to point to them. Return 0 if store can't be allocated, otherwise
non-zero.

• int extend (void ** anchor, int n): extendtheblockofmemory
which starts at * anchor to a total size of n bytes . n will always be positive,
and the new memory should be appended to the existing block (which may be
moved by the operation) Return 0 if the memory can 't be allocated, otherwise
non-zero.

• void free(void **anch or) : freetheblockofmemorywhichstartsat
* anchor, and set * anchor to 0.

The specification for these three functions is the same as that for flex_alloc ,
flex_ extend and flex_ free (in the flex module). so these can be used as the
three required function s.

draw_shift_diag

Shifts a diagram by a given distance.

Syntax:

Parameters:

Returns:

Other Information:

draw_querybox

void draw_shift_diag(draw_diag *diag, int xMove , int

yMove)

draw_diag * d i ag - the diagram to be shifted i n t
xMove - distance to shift in x direction
int y Move - distance to shift in y direction.

void.

All coordinates in the diagram are moved by the given
distance.

Finds the bounding box of a diagram.

Syntax: void draw_queryBox(draw_ diag *diag , draw_box *box , BOOL

screenunits)

Parameters:

Returns :

Other Information :

draw_convertBox

RISC OS library reference section

draw_diag *diag - the diagram
draw_box *box - the returned bounding box BOOL

screenUni ts - indication whether the box is to be
specified in draw or screen units.

void.

The bounding box of diag is returned in box. If
screenUni ts is true, box is in screen units, otherwise,
it is in draw units.

Converts a box to/ from screen coord inates.

Syntax:

Parameters :

Return s:

Other Information :

draw_rebind_diag

void draw_convertBox(draw_box *from , draw_box *to , BOOL

toScreen)

draw_box *from - box to be converted
draw_box *t o - converted box
BOOL toScreen - should set to True if conversion is to
be from draw coordinates to screen coordinates . False
makes conversion from screen coordinates to draw
coordinates.

void.

from and to may point to the same box.

Force the header of a diagram 's bounding box to be exactly the union of the objects
in it.

Syntax:

Parameters :

Returns :

Other Information :

draw: unknown object handling

void draw_rebind_diag(draw_diag *diag)

draw_diag *diag - the diagram.

void.

The diagram should have been processed by
draw_verify_diag () fi rst .

New types of object can be added by registering an unknown object handler. The
handler is called whenever an attempt is made to render an object whose tag is not
one of the standard ones known to DrawFile . It is passed a pointer to the object to
be rendered (cast to a void *),and a pointer to a block into which to write any

209

drawferror

error status. The object pointer may be cast to one of the standard Draw types

(defined in the ob ject level interface), or to a client-defined type If an error occurs,

the handler must return False and set up the error block; otherwise it must return

True . Unknown objects must conform to the standard convention for object

headers, ie one-word object tag; one-word object size; four-word bounding box.

The unknown object handler is only ca lled if the object is visible, ie if there is an

overlap between its bounding box and the region of the diagram being rendered.

The object size field must be correct, otherwise catastrophes will probably result.

draw_set_unknown_object_handler

Registers a function to be ca lled when an attempt is made to render an object with

an object tag which is not known.

Syntax:

Parameters:

Returns:

Other Information:

drawfdiag_init

draw_ unknown_object_handler

draw_set_unknown_ object_handler

(draw_unknown_object_handler handler , void *handle)

draw_unknown_ object_handl er handler-the
handler functi on
void *handle - arbitrary handle to pass to function.

The previous handler.

The handler can be removed by calling with 0 as a
parameter.

Initialise the diagram level interface

Syntax: BOOL drawfdiag_init(void) ;

Parameters: void

Returns: TRUE if all went OK.

Other In formation: none

drawferror

210

Definition of error codes and standard messages for the Drawfile rendering

functions. For each error, a code and the standard message are listed. See

drawfdiag, above, for how to use the errors.

BadObject I Bad object

BadObjectHandle 2

TooManyFonts 3

Bad object handle

Too many font definitions

BBoxWrong I 0 I

BadCharacter I 02

ObjectTooSmall I 03

ObjectTooLarge I 04

ObjectNotMult4 I 05

ObjectOverrun I 06

ManyFontTables I 07

LateFontTable I 08

BadTextStyle I 09

MoveMissing I I 0

BadPathTag 11 I

NoPathElements 112

PathExtraData 113

BadSpriteSize I 14

BadTextColumnEnd 115

ColumnsMismatch 116

NonZeroReserved 117

NotDrawFile 118

VersionTooHigh 119

BadObjectType 120

CorruptTextArea 121

TextAreaVersion 121

MissingNewline 122

BadAlign 123

BadTerminator 124

ManyDCommands 125

BadFontNumber 126

UnexpectedCharacter 127

BadFontWidth 128

BadFontSize 129

NonDigitV 130

BadEscape 131

FewColumns 133
TextColMemory 134

RISC OS library reference section

Bounding box coordinates are in the wrong order

Bad character in string

Object size is too small

Object size is too large

Object size is not a multiple of 4

Object data is larger than specified size

There is more than one font table

The font table appears after text ob ject(s)

Bad text style word

Path must start with a move

Path contains an invalid tag

Path does not contain any line or curve elements

There is extra data present at the end of a path object

The sprite definition size is incons istent with the

object size

Missing end marker in text columns

Actual number of columns in a text area object does

not match specified number of columns

Non-zero reserved words in a text area ob ject

This is not a Draw file

Version number too high

Unknown object type

Corrupted .text area (must start with '\!")

Text area version number is wrong or missing

Text area must end with a newline character

Text area: bad \A code (must be L, R, C or D)

Text area: bad number or missing terminator

Text area: more than one \D command

Text area : bad font number

Text area: unexpected character in \F command

Text area: bad or missing font width in \F command

Text area: bad or missing font size in \F command

Text area: non-digit in \V command

Text area: bad escape sequence

Text area must have at least one column
Out of memory when building text area (location field

is always 0 for this error).

211

drawfobj

212

This file handles the processing of Draw format files (object level interface). and
supplements the diagram level interface with routines for dealing with individual
objects.

draw_create_diag

Creates an empty diagram (ie just the file header) , with a given bounding box.

Syntax:

Parameters:

Return s:

Other Information

draw_doObjects

void draw_create_ diag(draw_diag *diag , char *creator ,

draw_ b ox bbox)

draw_ d i ag * diag - pointer to store to hold diagram
char * creator - pointer to character string holding
creator's name
draw_box bbox - the bounding box (in Draw units) .

void.

diag must point at sufficient memory to hold the
diagram . The first 12 chars of creator are stored in the
file header. diag . length is set appropriately by this
function .

Renders a specified range of objects from a diagram

Syntax:

Parameters :

Returns:

Other Information :

BOOL draw_doObjects(draw_diag *diag , draw_ object start ,
draw_object end , draw_ redrawstr *r , double scale ,

draw_ error *error)

draw_diag *diag - the diagram
draw_ obj ect start - start of range of objects to be
rendered
draw_ ob j ect end - end of range of objects to be
rendered
d r aw_ redraws t r *r - Wimp-style redraw rectangle
double scale - the scale factor for rendering
draw_ error * error - possible error condition .

True if render was successful.

Parameters (except range) are used as in
draw_ render_d i ag , in diagram level module. The
diagram must be verified before a call to this function If
the range of objects includes text with anti-aliasing fonts,

draw_setFontTable

RISC OS library reference section

you must ca ll draw_setFontTable first. Very sma ll
(<0.00009) or negative scale factors wil l cause run-time
errors.

Scans a diagram for a font table object and records it for a subsequent ca ll of
draw_doObj ects.

Syntax:

Parameters:

Returns:

Other Information :

draw_ verifyObject

void draw_setFontTable(draw_d i ag *diag)

draw_diag *diag - the diagram to be scanned.

void.

This function must be cal led for draw_doObj ect s to
work on a sequence of objects that includes text ob jects
using anti-al iasing fonts, but no font table object. The
font table remains valid until either a different one is
encountered during a cal l to draw_doObj ect s , or until
draw_render_diag is ca ll ed, or until a different
diagram is rendered .

Verifies the data for an existing object in a diagram.

Syntax:

Parameters:

Returns:

Other Information:

draw_ createObject

BOOL draw_verifyObject(draw_diag *diag , draw_object

object , int *size , draw_error *error)

draw_diag *diag - the diagram
draw_obj ect object - the ob ject to be verified int
*si ze ..ibgets set to the amount of memory occupied by
the obje t
draw_ e

1

rror *error - possible error cond ition.

True if ob ject found and verified.

Verifyin~ an object ensures that its bounding box is
consist~rt with the data in it; if not. no error is reported,
but the oox is made consistent. On an error, the location
is relati ~e to the start of the diagram. The ob ject's size is
returned on ly if size is a non-nu ll pointer.

Creates an ob ject after a specified obiect in a given diagram

213

214

Syntax:

Parameters :

Returns:

Other Info rmation:

draw _deleteObjects

BOOL draw_ createObject(draw_diag *diag , draw_ objectType

newObject , draw_ object after , BOOL rebind , draw_ obj ect

*object, draw_error *error)

draw_diag *diag -thediagram draw_obj ectType
newObj ect - the created object
draw_ object after - the object after which the new
object should be created
BOOL rebind - if True , the bounding box of the
diagram is updated to the union of its exi sting value and
that of the new object
draw_obj ec t * obj ec t - new ob ject 's handle
d raw_ error * error - possible error condition .

True if ob ject was created OK.

All data after the inserti on point is moved down .
af t er may be set to
draw_FirstObj ect / draw_LastObject for
inserting at the start/end of the diagram The diagram
must be large enough for the new data; its length field is
updated. On an error, the location is not meaningful. The
handle o f the new object is returned in object . If this
function is used to create a font table, after is ignored ,
and the object merged with the existing one (if such
exists) or inserted at the start of the diagram otherwise.
This can cause the font reference numbers to change; if a
call to this function is foll owed by a
draw_ trans l ateText () ,the font change will be
applied (this is only needed when anti-aliased fonts are
used in text objects) .

Deletes the specified range of objects from a diagram.

Syntax:

Parameters:

BOOL draw_deleteObjects(draw_diag *diag, draw_ object

start , draw_object end , BOOL rebind , draw_error *error)

draw_diag * d i ag - the diagram
draw_obj ect start - start of range of objects to be
deleted
draw_ obj ec t end - end of range of objects to be
deleted
BOOL rebi nd - if set to True, then the diagram's

Returns:

Other Information :

draw_ extractObject

RISC OS library reference section

bounding box will be set to the union of those remaining
objects
draw_error *error - possible error condition.

True if objects deleted successfully.

diagram length is updated appropriately.

Extracts an object from a diagram into a supplied buffer

Syntax:

Parameters:

Returns:

Other Information :

draw_translateText

BOOL draw_extractObject(draw_ diag *diag , draw_ object

object, draw_ objectType result , draw_error *error)

draw_diag *diag - the diagram
draw_obj ect object - the object to be extracted
draw_ obj ectType result - pointer to the buffer
draw_error *error - possible error division

True if the object was extracted successfully.

The buffer for the result must be large enough to hold the
extracted object (an object's size can be ascertained by
calling draw_verifyObject ()).

Updates all font reference numbers fo r text objects fo llowing creation of a font
table.

Syntax:

Parameters:

Returns:

Other Information:

drawfobj_init

void draw_translateText(draw_diag *diag)

draw_diag *diag - the diagram.

void.

If the font table has not been changed, this function does
nothing.

Initialise the object level interface

Syntax: BOOL drawfobj _ init(vo i d) ;

Parameters: void

Returns: TRUE if all went OK.

Other Information : none

215

drawftypes

drawmod

216

This file contains declarations of all the data types needed for manipulating Draw
objects at a low level, enabling you to examine or change their individual
properties . For full details , refer to the header file on Disc 3:
$.RISC_OSlib .h. drawftypes.

This file provides a C interface to the Draw module (not to be confused with the
Draw application) . It defines a number of types used for Postscript-like operations,
with enhancements (for full details, refer to the header file on Disc 3:
$. RISC_OSlib. h. drawrnod). The enhancements consist mainly of choice of fill
style (fill including/excl uding boundary etc). extra winding numbers, differing
leading/trailing line caps and triangular line caps. It calls the Draw SWls.

drawmod_fill

Emulates the Postscript 'fill' operator - ie closes open subpaths, flattens a path ,
transforms it to standard coordinates and fills the result.

Syntax:

Parameters:

Returns:

drawmod_stroke

os_ error *drawrnod_fill(drawrnod__pathelemptr path_seq,

drawrnod_ filltype fill_style , drawrnod_ transmat *matrix , int

flatness)

drawrnod_pathelemptr path_ seq - sequence of
path ele{l'lents
drawrnod_ filltype fill_ style - style of fill
drawrnod_transmat *matrix - transformation
matrix (0 for the identity matrix)
int flatness - flatness in user coordinates (0 means
default) .

possible error condition

Emulates Postscript 'stroke' operator.

Syntax:

Parameters:

os_error *drawrnod_stro ke(drawrnod__pathelemptr path_seq,

drawrnod_filltype f i l l_style , drawrnod_transmat ·• matrix,

drawrnod_line *lirie_style)

drawrnod__pathelemptr path_ seq - sequence of
path elements
drawtnod_filltype fill_ style - style of fill
drawrnod_ transmat *matrix - transformation

Returns :

drawmod_do_strokepath

RISC OS library reference section

m~x (0 means identity matrix)
drawrnod_ line *line_ style -(see typedef in
header file for detail s).

possible error condition .

Puts a path through all stages of drawrnod_ stroke except the final fill The
resu lting path is placed in the buffer.

Syntax:

Parameters:

Returns:

drawmod_ask_strokepath

os_error *drawrnod_do_strokepath(drawrnod__pathelemptr

path_seq, drawrnod_transmat *matrix , drawrnod_line

*line_style , drawrnod_buffer *buffer)

drawrnod_pathe l emptr path_ seq - sequence of
path elements
drawrnod_ transmat *matrix - transformation
matrix
drawrnod_ line *line_ sty l e -seetypedefin header
file
drawrnod_buffer *buffer - buffer to hold stroked
path

possible error condition.

Puts a path through all stages of drawrnod_stroke, except the fill , and returns
the size of buffer needed to hold such a path

Syntax:

Parameters :

Returns :

drawmod_do_flattenpath

os_error *drawrnod_ask_strokepath(drawrnod__pathelemptr

path_seq , drawrnod_transmat *matrix, drawrnod_line

*line_style, int *buflen

drawrnod_pathelemptr path_ seq - sequence of
path elements
drawrnod_ transmat *matrix - transformati on
matrix
drawrnod_ l ine * 1 ine_s tyle - (see typedef in
header for detail s)
i nt *buflen - returned length o f required buffer.

possible error conditi on.

Flattens the given path , and puts it into the supplied buffer.

217

218

Syntax:

Parameters :

Returns:

drawmod_ask_flattenpath

os_error *drawmod_do_ flattenpath(drawmod_pathe l emptr

path_ seq , drawmod_buffer *buffer, int f l atness)

drawmod_path elemptr p a t h_seq - sequence of
path elements
drawmod_bu f fer *buffer - buffer to hold flattened
path
int flatn ess - required flatness.

possible error condition .

Puts the given path through the stages of drawmod_ flat tenpath and returns
the size of buffer needed to hold the resulting path .

Syntax:

Parameters :

Return s:

os_error *drawmod_ask_flattenpath(drawmod_pathelemptr

path_seq , int flatness , int *buflen)

drawmod_pathelemptr path_seq - sequence of path
elements
int flatness - required flatness
int *buflen - returned length of required buffer.

possible error condition.

drawmod_buf _transformpath

Puts a path through a transformation matrix and puts the result in the supplied
buffer.

Syntax:

Parameters:

Returns:

os_error *drawmod_buf_ transformpath(drawmod_pathelemptr

path_seq , drawmod_buffer *buffer , drawmod_ transmat

*matrix)

drawmod_pathelemptr path_seq - sequence of path
elements
drawmod_buffer *buffer - buffer to hold transformed
path
drawmod_transmat •matrix - the transformation matrix.

possible error condition.

drawmod_insitu_transformpath

Puts a path through a transformation matrix by modifying the supplied path itself.

Syntax: os_error *drawmod_ insitu_transformpath(drawmod_pathelemptr

path_seq , drawmod_ transmat *mat r i x)

Parameters :

Returns:

drawmod_processpath

RISC OS library reference section

drawmod_pathelemptr path_seq- sequence of
path elements
drawmod_transmat *matrix - the transformation
matrix.

possible error condition.

Puts a path through a set of processes used when doing Stroke and Fill.

Syntax:

Parameters:

os_error *drawmod_processpath(drawmod_pathelemptr

path_seq, drawmod_filltype fill _style, drawmod_transmat

*matrix, drawmod_line *line_style, drawmod_options

*options , int *buflen)

drawmod_pathelemptr path_seq- sequence of
path elements
drawmod_filltype fill_style - style of fill
drawmod_ transmat *matrix - the transformation
matrix
drawmod_line * line_style - (see typedef in
header for details)
drawmod_options *options -this can have the
values detailed below. Note: pass in address of a
draw_options struct
int *bu fl en - returned length of required buffer (only
used when options->tagtype == tag_fill &&

options->data . opts == option_countsize).

Returns: possible error condition.

Other Information: Possible values for options:

drawmod_ insitu output to the input path (only if path size
wouldn 't change)

drawmod_fillnormal fill path normally

drawmod_f illsubpath fill path, subpath by subpath

OR an address output bounding box of path to the
word-aligned address, and three next words,
with word-order lowX, lowY, highX, highY

OR a buffer to hold the processed path

219

event

220

This file handles system-independent central processing for window system
events.

event_process

Processes one event.

Syntax:

Parameters:

Returns:

Other Information:

event_anywindows

void event_process(void)

vo id.

void.

If the number of current active windows is 0, the program
exits. One event is polled and processed (with the
exception of some complex menu handling, this really
means passing the event on to the win module) . Unless
an application window is claiming idle events, this
function waits when the processor is idle. Typically this
should be ca,lled in a loop in the main function of the
application.

Informs the caller if there are any windows active that can process events.

Syntax: BOOL event_anywindows(void)

Parameters: void.

Returns: True if there are any active windows.

event_ attach menu

Attaches a menu and its associated handler function to the given window.

Syntax:

Parameters:

Returns:

BOOL event_attachmenu(event_w , menu , event_menu_proc , void

*handle)

event_w - the window to which menu should be
attached
menu - the menu structure
event_menu_proc - the handlerfor the menu
void *handle - caller-defined handle.

True if able to attach menu .

Other Information:

event_attachmenumaker

RISC OS library reference section

The menu shou ld have been created by a ca ll to
me nu_new or something similar. When the user invokes
a menu from the given window, this menu wi ll be
activated . The handler function will be ca lled when the
user selects a menu entry The hand ler's parameter hit is
a string containing· a character for each level of nesting in
a hierarchical menu structure , terminated by a 0
character. A call with me nu = = 0 removes the
attachment. To catch menu events on the icon bar, attach
a menu to win_ICONBAR (defined in the wi n module)

Attaches to the given window a function which makes a menu when the user
invokes a menu.

Syntax:

Parameters :

Returns:

Other Information :

BOOL event_ attachmen umaker(even t _ w, event_ me n u_ma ker ,

event_ menu_proc , void *hand l e)

event_ w - the window to which the menu maker should
be attached
event_menu_maker - the menu maker function
event_me nu_proc - handler for the menu
vo i d *ha n d l e - caller-defined handle

True if able to attach menu maker

This works similarly to event_attac hme nu, except
that it allows you to make last minute changes to flags in
the menu (such as ticks or fades), before di splaying it. A
call with event_ menu_ maker == O removes the
attachment.

event_clear _current_menu

Clears the current menu tree.

Syntax:

Parameters:

Returns:

Other Information :

void event_ clear_ curren t _ me nu(void)

vo i d.

vo i d.

To be used to force all menus to be cleared from the
screen .

event_is_menu_being_recreated

Informs the caller if a menu is being recreated.

221

event: masking off events

Syntax:

Parameters:

Returns:

Other Information :

BOOL event_is_menu_being_recreated(void)

void.

void.

Useful for when RISC_OSLib is recreating a menu in
response to a click on Adjust (call it in a menu maker) .

event: masking off events

fileicon

222

event_setmask

Sets the mask used by wimp_poll and wimpt_poll when polling the Wimp.

Syntax:

Parameters :

Returns:

Other Information :

event_getmask

void event_setmask(wimp_emask mask)

wimp_emask mask - the desired mask.

void.

Bits of the mask are set if you want the corresponding
events ignored (as in the wimp_poll SWI) . For example,
event_ setmask(wimp_ENULL I
wimp_EPTRENTER) will ignore nulls and pointer
entering window events. The default mask is to ignore
null events only.

Informs the caller of the current mask being used to poll the Wimp.

Syntax: wimp_emask event_getmask(void)

Parameters: vo id.

Returns: The mask currently used.

Displays an Icon representing a file, in a giveh window.

Syntax:

Parameters:

Returns:

void fileicon(wimp_w, wimp_i , int filetype)

wimp_w- the given window's handle
wimp_i - an existing icon
int filetype - RISC OS file type (eg OxOffe)

void.

flex

Other Information:

RISC OS library reference section

If you want a file icon in a dialogue box then pass that
dial0gue box's window handle through first parameter, eg
fileicon ((wimp_w) dbox_syshandle (d), ...) .
The second parameter is the icon number of the required
icon , within the template set up using Form Ed . For an
example see the fileinfo template for Edit.

These functions provide memory allocation for interactive programs requiring
large chunks of store.

flex_alloc

Allocates n bytes of store, obtained from the Wimp.

Syntax:

Parameters:

Returns:

Other Information:

flex_ free

int flex_alloc(flex_ptr anchor , i n t n)

flex_ ptr anchor - to be used to access allocated
store
int n - number of bytes to be allocated.

0 ==failure, I ==success

You should pass the & of a pointer variab le as the first
parameter. The allocated store must then be accessed
indirectly, through this, ie
(*anchor) [OJ .. (*anchor) [n). This is important
because the allocated store may later be moved. If there
isn't enough store, returns zero leaving anchor
unchanged

Frees the previously al located store.

Syntax: void flex_ free(flex_ptr a nchor)

Parameters: flex_ptr anchor - pointer to allocated store.

Returns: void.

Other Information: •anchor will be set to 0.

flex_ size

Informs the caller of the number of bytes allocated.

Syntax: int f lex_size(flex_ptr)

flex

224

Parameters :

Returns :

flex_ extend

f l ex_ptr - pointer to allocated store

number of allocated bytes

Extend or truncate the store area to have a new size.

Syntax:

Parameters:

Returns:

flex_midextend

int flex_extend(flex__ptr , int newsize)

flex_ptr - pointer to all ocated store
int newsize - new size of store

0 ==failure, I ==success.

Extend or truncate store, at any offset.

Syntax: int flex_midextend I flex__ptr, int at , int by)

Parameters:

Returns:

Other Information:

flex_budge

flex_ptr - pointer to allocated store
int at - offset within the allocated store
int by - extent.

0 ==failure, I ==success .

If by is +ve, store is extended, and locations above a t
are copied up by by. If by is - ve, store is reduced, and
any bytes beyond at are copied down to at+by.

Moves the flex store when the C library needs to extend the heap

Syntax:

Parameters :

Returns:

Other Information :

int flex_budge (int n , void ** a)

int n - number of bytes needed by C library
void **a - address of acquired store.

amount of store acquired.

Do not call this function directly, but register it with the C
library via:

_kernel_register_slotextend(flex_budge)

This will cause flex store to be moved up if the C library
needs to extend the heap. Note t hat in this state, you can
rely on pointers into flex blocks across function ca ll s
which do not extend the stack and do not call malloc.

The default state is flex_dont_budge, so, if required,

this function should be registered after ca lling
flex_init ().

font

RISC OS library reference section

flex_dont_budge

Refuses to move the flex store when the C library needs to extend the heap.
Syntax:

Parameters:

Returns :

Other Information :

flex_init

int flex_dont_budge(int n , void ** a)

int n - number of bytes needed by C library.
void ** a - address of acquired store .

amount of store acquired (always 0) .

Do not call this function directly, but register it with the C
library via:

_kernel_register_slot ext e nd(flex_dont _budge)

If the C library needs to extend the heap, flex will refuse
to move. This means that you can rely on pointers into
flex blocks across function cal ls.

Thi s is the default state after calling flex_init ().

Initialise store allocation module.
/ Syntax:

Parameters :

Returns :

Other Information :

void flex_init(void)

void . .

void.

Must be ca lled before any other functions in this module.

These functions provide access t~ RISC OS font facilities .

font_ cacheadd ress
Informs the ca ller of font cache used and font cache size.

Syntax: ·

Parameters : int

Returns:

Other Information :

os_error * font_cacheaddress{int *version , int *cacheused ,

int *cache.size)

*version -version number
int *cacheused - amount of font cache used (in
bytes)
int *cachesize - total size of font cache (in bytes).
Possible error condition

Version number is *I 00, so v.1.07 would be returned as
107.

225

font

226

font_find

Gives the caller a handle to font, given its name.

Syntax:

Parameters:

Returns:

font_ lose

os_error * font_find(char * name , int xsize , int ysize , int
xres, int yres , font *)

char *name - the font name
int xsize , ysize -x/ypointsize(in 16thsofapoint)
int xres, yr es - x/y resolution in dots per inch
font* - the returned font handle

Possible error condition.

Informs the font manager that a font is no longer needed.

Syntax:

Parameters:

Returns:

font_readdef

os_error * font_lose(font fl

font f - the font.

possible error condition.

Gets details about a font, given its handle.

Syntax: os_error * font_readdef(font , font_def *)

Parameters: font - the font handle

Returns:

font_ def* - pointer to buffer to hold returned details.

possible error Gondition.

Other Information :

name

xsize , ys ize

xres , yres

usage

age

This function fills in details about a font into the supplied
buffer (a variable of type font_def) The fields of thi s
buffer are as follows:

font name

x/y point size• 16

x/y resolution (dots per inch)

number of times Font F indFont has found the font
minus number of times Font_LoseFont has been used
on it

number of font accesses made since this one was last
accessed.

RISC OS library reference section

font_readinfo

Informs the caller of the minimal area covering any character in the font bounding
box.

Syntax:

Parameters:

Returns:

Other Information:

minx
ma xx
miny
maxy

font_ strwidth

os_ error * font _ readinfo(font , font _ info *)

font - the font handle
font _ info* - pointer to buffer to hold returned details.

possible error condition.

Fills in details of the font in the supplied buffer (variable
of type font_info) The fields of this buffer are as
follows:

minx coord in pixels (inclusive)
max x coord in pixels (inclusive)
min y coord in pixels (exclusive)
max y coord in pixels (exclusive).

Determines the width of a string.

Syntax:

Parameters:
s
x

y

split
term

Returns:

Other Information:

font_paint

s
x
y

split

term

os_ error * font _ strwidth(font_ string *fs)

f ont_ string * f s - the string, with fields:
string itself
max x offset before termination
max y offset before termination
string split character
index of char to terminate by

possible error condition.

On exit fs fields hold :

unchanged
x offset after printing string
y offset after printing string
number of split characters found; number of
printable characters if split was -I
index into string at which terminated .

Paints the given string at coordinates x,y

Syntax: os_error * font_paint(char *, int options , int x , int y)

227

font

228

Parameters:

Returns:

font_ caret

char - the string
int opt ions - set using 'paint options' defined in the
header file
int x, y - coordinates (either OS or 1/72000 inch)

possible error condition.

Sets the colour, size and position of the caret.

Syntax:

Parameters:

Returns:

font_ convertoos

os_error *font_caret(int colour , int height , int flags , int
X, int y)

int colour - EORed onto screen
int height - in OS coordinates
int flags - bit 4 set==> OS coordinates. otherwise
1/72000 inch
int x , y - x/y coordi nates .

possible error condition.

Converts coordinates in 1/72000 inch to OS units .

Syntax:

Parameters:

Returns:

font_converttopoints

os_error * font_converttoos{int x_ inch , int y_i nch , int
*x_ os , int *y_os)

int x_inch, y _ inch - x/y coordi nates in 1/72000
inch
int *x_os, *y _os - x/y coord inates in OS units.

possible error cond it ion.

Converts OS units to 1/72000 inch .

Syntax:

Parameters :

Returns:

os_ error * font_converttopoints(int x_os , int y~os , int
*x_inch, int *y_inch)

int x_o s , y _os - x/y coordinates in OS units
int *x_inch, *y _ inch- x/y coord inates in 1/72000
inch.

poss ible error condition.

RISC OS library reference section

font_setfont

Sets up the font used for subsequent painting or size-requests.

Syntax: os_error * fon.t _set font (font)

Parameters: font - the font handle

Returns: possible error condition.

font_ current

Inform s the ca ller of the current font state.

Syntax:

Parameters:

Returns:

Ot her Information:

font f
int back_colour
int f ore_colour
int off set

font_future

os_error *font_current(font_state *f)

font_ state * f - pointer to buffer to hold font state

poss ible error condition.

returned buffer (into va riable o f type font_ state):

handle o f current font
current background co lour
current foreground co lour
foreground co lour o ffset.

Informs the ca ller of font characteri sti cs after a future font_paint.

Syntax:

Pa rameters:

Return s:

Other Information:

f ont f
int back_colour
int f ore_ colour
int o ffs e t

font_findcaret

os_error *font_future(font_state *f)

fon t _ state *f - pointer to buffer to hold font state.

poss ible error condition.

buffer contents:

handle of font which would be selected
future background co lour
future foreground co lour
foreground colour offset.

Informs the cal ler of the nearest point in a string to the ca ret posit ion.
Syntax: os_error *font_ findcaret(font_string *fs)

Parameters: font_ string *f s -thest ring
fields: char *s - the string itself

int x , y - x!y coordinates o f caret

229

font

230

Returns: possible error condition.

Other Information: returned fields offs as in font strwidt h.

font_charbbox

Informs the caller of the bounding box of a character in a given font.

Syntax:

Parameters:

Returns:

Other Information:

font_readscalefactor

os_error * font_charbbox(font , char , int options ,

font_info *)

font - the font handle
char - the ASCII character
i nt options - only relevant option if
font_OSCOORDS
font_info* - pointer to buffer to hold font
information.

possible error condition.

if OS coordinates are used and font has been scaled, box
may be surrounded by area of blank pixels.

Informs the caller of the x and y scale factors used by the font. manager for
converting between OS coordinates and I/72000 inch.

Syntax:

Parameters:

Returns:

font_setscalefactor

os_error *font_readscalefactor(int *x , int *y)

i n t *x, *y - returned scale factors.

possible error condition.

Sets the scale factors used by the font manager.

Syntax

Parameters:

Returns:

Other Information:

font_list

os_error *font_setscalefactor(int x , int y)

i nt x, y - the new scale factors

possible error condition.

scale factors may have been changed by another
application; well-behaved applications save and restore
scale factors.

Gives the name of an available font.

Syntax:
Parameters:

. Returns:

os_error * font_list(char * , int *)

c har * - pointer to buffer to hold font name
i n t * - count of fonts found (0 on first call)

possible error condition .

Other Information:

font_setcolour

RISC OS library reference section

count is-I if no more J}ames. Typically used in loop until
count== -1 .

Sets the current font (optionally), changes foreground and background colours.
and offset for that font

Syntax:

Parameters:

Returns:

font_setpalette

os_ e r ror * fo n t _ setcolour(font , int background , i n t

foreground , int offset)

fon t - the font handle (0 for current font)
int background, f oregr ound - back/foreground
colours
i n t offset - foreground offset colour (-14 to +14)

possible error condition.

Sets the anti-alias palette.

Syntax: os_ error * font_setpalette(int background , int foreground ,

i nt offset , int physical_back, int physical_ fore)

Parameters:

Returns :

Other Information:

font_readthresholds

int backg r ound - logical background co lour
int foreground - logical foreground colour
int offse t - foreground colour offset
int p hys i cal_back- physical background colour
int p hys i c a l _ f o r e - physical foreground colour

possible error condition .

p hys i cal_back and physical_ fore are of the form
OxBBGGRROO.

Reads the list of threshold values that the font manager uses when painting
cha racters .

Syntax: os_ error *font _ readthre sholds (font _ t h reshold * th)

Parameters:

Returns :

font_setthresholds

fon t _ t hresh o ld *th- pointer to result buffer.

possible error condition.

Sets up threshold values for painting colours.

Syntax: os_error *font_sett hreshol ds(font_threshold *th)

Parameters:

Returns

f ont_ thresho l d * t h- pointer to a threshold table.

possible error condition.

231

fontlist

fontlist

232

font_findcaretj

Finds the nearest point where the caret can go (using justification offsets).

Syntax: os_error *font_findcaretj lfont_st ring *fs , int offset_x ,
int offset_y)

Parameters : font_ string *fs -the stri ng (set up as in
f on t _ f indcaret)
int offset_x, offset -y- the justification offsets

Returns: possible error condition .

Other Information : If the offsets are both zero, the function is the same as
font findcaret.

font_stringbbox

Measures the size of a string (without printing it)

Syntax:

Parameters:

Returns:

Other Information:

minx, miny
maxx, maxy

os_error *font_stringbbox(char *s, font_info *fi)

char * s - the string
font_ info * f i - pointer to buffer to hold font
information.

possible error condition.

fields returned in f i are:

bounding box min x/y
bounding box min x/y

These functions count the fonts on the system into a tree structure.

As an example of a font tree structure, consider a system providing
Corpus Medium, Corpus Bold, Selwyn, Trinity.Medium, Trinity Bold,
Trinity Medium.Italic and Widget.Medium.Italic.Outline. This will be stored in the
following way (#'s denote flags which are TRUE) :

Corpus - - - Medium

I~----• Bold

#Selwyn

Trinity ---• Medium ---<•• Italic
~I ___ ., Bold

Widget ---• Medium ---• Italic.Outline

Brothers are connected vertically, sons to their parents right-to-left

RISC OS library reference section

fontlist_list_all_fonts

Read in the font list into a font tree

Syntax:

Parameters:

Returns:

Other Information :

fontlist _ node * fontlist _ list_all_ fonts(BOOL system I;

BOOL system -TRU E if System font should be included
in the list

a pointer to the sta rt of the font tree

None

fontlist_free_font_tree

fontselect

Free a font tree

Syntax:

Parameters:

Returns:

Other Information:

void fontlist_free_font_tree(fontlist_node *font_tree I ;

fontlist_node •font_tree - the font tree to free

None

None

These functions provide an interface to font choosing

fontselect_init

Read in the font list and prepare data for the font se lector window

Syntax: int fontselect_init (void I ;

Parameters:

Returns:

Other Info rmation:

fontselect_closedown

None

TRUE if init iali sation succeeded .

None

Close the font se lector windows aif they are open, and free the font selector data

structures

Syntax:

Parameters:

Returns:

Other Information:

void fontselect_closedown(void I ;

None

None

This call is provided to return the machine to t he state it
was in before a ca ll of fontselect_init()

233

fontse/ect

234

fontselect_closewindows

Close the font selector windows if they are open

Syntax: void fontselect_closewindows(void) ;

Parameters:

Returns:

Other Information:

fontselect_selector

None

None

This call will close the font selector windows and
unattach the handlers, if they are open.

Opens up or reopens the font chooser window.

Syntax:

Parameters:

Returns:

Other Information:

fontselect_attach menu

int fontselect_selector(char *title, int flags , char

*font_name , double width , double height , fontselect_fn
unknown_icon_routine) ;

char * title -The title forthe window (can be NULL if
flags SETTITLE is clear)

int flags -The flags for the ca l l

char * font_name -The font name to set the window
contents to (only if SETFONT is set)

double width -The width in point size of the font
double height fontselect_fn unknown_icon

The window handle of the font selector main window, if
the function call was successful. Otherwise it returns 0.

The flags word allows the call to have different effects. If
fontselect_SETFONT is set then the window contents will
be updated to reflect the font choice passed in. If
fontselect_SETTITLE is set then the title of the window
will be set, otherwise title is ignored. If
fontselect_REOPEN is set then the font selector will only
open the window if it is already open. This lets the
application update the contents of the window only if it is
currently open Note that the fontselect_init() must be
called before this routine.

Attaches a menu to all four font selector windows

Syntax:

Parameters:

Syntax:

Parameters:

Returns:

Other Information:

font_stringbbox

BOOL fontselect_attach_menu(menu mn , event_menu_proc

rnenu_processor , void *handle) ;

menu mn - menu to attach

event_menu_proc menu_processor - menu
processor for the menu events

os_error *font_findcaretj (font_string *fs, int offset_x ,

int offset_y)

font_ string *fs -the string (set up as in
font_ findcaret)
int offset_x, offset-y-the justification offsets.

possible error condition.

If the offsets are both zero, the function is the same as
font findcaret.

Measures the size of a string (without printing it)

Syntax: os_error *font_stringbbox(char *s , font_info *fi)

Parameters: char * s - the string

heap

help

Returns:

Other Information:

RISC OS library reference section

void *handle - handle to pass to the menu processor

TRUE if the menus were attached, FALSE otherwise

None

These functions provide malloc-style heap allocation within a flex block of
memory. They should only be used when flex is set up so that it cannot be moved
by malloc expansion (the default) See the later chapter entitled Using memory
efficiently for more details.

heap_init

Initialises the heap allocation system.

Syntax: void heap_init(BOOL heap_shrink)

Parameters :

Returns:

Other Information :

heap_alloc

BOOL heap_shrink - if True, the flex block will be
shrunk (when possible) after heap_ free ().

void.

You must call flex_ init before calling this routine.

Allocates a block of storage from the heap.

Syntax:

Parameters :

Returns:

Other Information :

heap_free

void *heap_ alloc(unsigned int size)

unsigned int size - size of block to be allocated.

pointer to allocated block (or O if failed)

None

Frees a previously allocated block of heap storage.

Syntax:

Parameters:

Returns :

void heap_free(void *heapptr)

void *heapptr - pointer to block to be freed.

possible error condition.

These functions provide support for interactive help, including on menu entries
when this is supported by versions of the Wimp following 2.00.

235

236

help_process

Returns TRUE if the given event is a menu interactive help message, which has now
been processed.

Syntax: BOOL help_process(wimp_eventstr *e) ;

Parameters:

Returns:

Other Information :

help_register _handler

e - the event to be considered.

TRUE if the event has now been processed.

This should be called by the unknown event handler of
the program. For it to work, you must inform wimpt that
you are aware of Wimps beyond version 2.00. The the rest
of thi s interface for the handling facilities that this call
invokes.

Record the handler to be used when help_process is next called.

Syntax:

Parameters:

Returns:

Other Information:

help_genmessage

void help_regist e r _handler(event_menu_proc , void *handle) ;

event_menu__proc - the handler procedure

handle - a data handle for the handler procedure

void

This should be called by the menu-maker proc of every
menu in the program . When help_process is called, the
most recently installed event_menu_proc handler is
assumed to be the correct one. Call with NULL as a proc
if no help is available on this menu .

From a given menu hit and prefix, generate a message tag which is looked up in
msgs_lookup. If a message is found then return it as the interactive help message,
and return TRUE. If not, return FALSE.

Syntax:

Parameters:

Returns:

Other Information:

BOOL help_genmessage(char *prefix , char *hit) ;

pref ix - the prefix for all message tags used

hit - the hit string handed to the event_menu__proc
registered using help_register_handler

TRUE if this was a menu help message which has now
been handled

Thetag for the msgs_lookup call is generated by:

Example:

help_simplehandler

RISC OS library reference section

Start with the prefix (maximum length - 20 characters)
append '0' .. '9' or 'a' .. 'z' for each character in the hit (eg
character I counts as 'O', character I 0 counts as '9',
character I I counts as 'a', etc. More than 35 seems
unlikely in a menu of fixed size)

Original hit 0, 1,2 gets translated to string
"\x001\x002\x003", which gets turned into tag "FOOOI 2"
for prefix "FOO". A prefix consisting entirely of upper case
letters is conventional. If there's only one menu tree, the
prefix "HELP" is conventional. For the icon bar, "!HELP" is
conventional.

A simple event_menu_proc suitable for giving to a help handler. The
implementation is simply { help_ genmessage ((char*) handle , hit) ; j
Syntax: void he l p_simplehandler(void *handle , char *hit) ;

Parameters:

Returns:

Other Information:

help_dboxrawevents

handle - prefix to pass to help_genmessage

hit - the menu hit string being processed

void

This will suffice for cases where there are no alternatives
or additional cases to consider. For menus where the
message can vary at run time, a more complex handler
will be required which parses the hit string, or which calls
help_genmessage more than once, or perhaps a
combination of the two.

A routine suitable for passing to dbox_raw_eventhandler, for providing help on
dialogue boxes .

Syntax:

Parameters:

Returns:

Other Information:

BOOL help_dbox rawevents(dbox , void *event , void *handle) ;

dbox - the dbox for which help is being provided

event - the wimp event being processed

handle - message tag prefix, really a char*

TRUE if this was a menu help message which has now
been handled

The handle passed to it should be a message prefix A
single character suffix may be added to it in the style of
help_genmessage, containing the icon number. If this is

237

magnify

238

Typical use:

not found (or if no icon is being pointed to), then the
prefix alone will be used as a message tag. There is no
error if the message is not found .

dbox d = dbox_new (" foo ") ;

dbox_ raw_eventhandler(d , help_dboxrawevents , "FOO ") ;
dbox_ show Id) ;

... now fill in the dbox as normal .
The test used in implementing this is:

if

(e- >e wimp_ESEND I I e- >e wimp_ESENDWANTACK)

&&

e- >data.msg .hdr . action wimp_MHELPREQUEST

... construct a reply, and send it using help_reply ... }

The Messages file should contain:

FOO: This message will appear in the dbox background.

FOOO: This message wi ll appear for icon 0 of the dbox etc.

help_reply

Reply to the help message in wimpt_last_event() with the (already translated)
message provided.

Syntax: void help_ reply (char *m) ;

Parameters:

Returns :

Other Information:

m - help message to display in interactive help window
void

This is useful when creating your own versions of
help_dboxrawevents, which must also handle other
events.

This function allows the display and entry of magnification factors

magnify _select

Displays a dialogue box to set magnification factors .

Syntax: void magni fy_select (int *mul , int *div , int maxmul , int
maxdiv , void (*proc) (void *) , void *phandle)

menu

Parameters:

Returns:

Other Information :

RISC OS library reference section

int *mul, *div- multiplication/division factors
int maxmul, maxdi v- maximum mu It/div factors
void (*proc) (void *) - caller-supplied function
void *phandle - handle passed to user function.
void.

Displays a template ca lled 'magnifier' (which must be one
of your loaded templates) . mul and div are the initial
values on the left and right of the : in the ratio shown in
the dialogue box. They are modified according to user
mouse clicks on the arrow icons. proc (if non-null) is
called each time the magnification factor changes

The template should have the fo llowing attributes:

• window flags - moveable, auto-redraw. It is advisable to have a title icon with
the text magnifier or sim ilar.

• icon #0 - the multiplication factor icon . This should have an indirected text
flag set with text something like 999 and a maximum length of 4. It is also
advisable to have a validation string a0-9 (allowing numeric input) . The
button type should be 'writeable '.

• icon #I - the division factor icon (same as icon #0)

• icon #2 - the increase multiplicati on factor icon should have its text flag set
and contain the 1l character (like the arrow used in scroll bars) The button type
should be 'auto-repeat' .

• icon #3 - the decrease multiplication factor icon (same as icon #2 , but using
the .U. char)

• icon #4 - the increase division factor icon (same as icon #2) .

• icon #5 - the decrease divi sion factor icon (same as icon #3) .

• icon #6 - (optional but advisable) a text icon placed between icons #0 and #I
as a separator eg :

These icons can be arranged in the window however you wish, but a recommended
layout is that of the Magnifier dialogue box in Draw or Paint

These functions deal with the creation, deletion and manipulation of menus.

A menu description string defines a sequence of entries, with the fo llowing syntax
(curly brackets mean 0 or more, square brackets mean O or I):

239

menu

240

opt : := ! or - or > or space
sep : : = , or I
11 : := any char but opt or sep
12 : := any char but sep
name : := 11 {12}
entry .. - {opt} name
descr : := entry {sep entry}

Each entry defines a single entry in the menu. I as a separator means that there
should be a gap or line between these menu components.

opt means 'put a tick by it'
opt - means 'make it non-selectable'
opt > means 'has a dialogue box as 'submenu"
space has no effect as an opt.

menu_new

Creates a new menu structure from the given textual description (arranged as
above).

Syntax:

Parameters:

Returns:

Other Information:

menu menu_ new(char *name , char *descr iption)

char *name - name to appear in title of menu
char *description - textual description of menu

pointer to menu structure created

Creates a menu structure. with entries as given in the
textual 'description. Entries are indexed from I. For
example:

m=menu_new ("Edit", " >Info Create Quit ")

Handler needs to be attached using event_at tachmenu.

menu_ dispose

Disposes of a menu structure .

Syntax: void menu_dispose (menu *, i nt recurs i ve)

Parameters:

Returns:

menu_ extend

menu* - the menu to be disposed of
int recursive - non-zero ==recursively dispose of
submenus.

void.

Adds entries to the end of a menu.

Syntax: void menu_ex tend(menu , char *description)

Parameters:

Returns:

Other Information:

RISC OS library reference section

menu - the menu to w_hich extension is being made
char *descr iption -textual description of
extension.

void.

extension has the format:

[sep] entry {sep entry}

A menu which is already a submenu of another menu cannot be extended.

menu_setflags

Sets or changes flags on an already existing menu entry.

Syntax: void menu_ setflags(menu, int entry , int tick , int fade)

Parameters:

Returns:

menu_submenu

menu - the menu
int entry - index into menu entries (from I)
int tick - non-zero== tick this entry
int fade - non-zero== fade this ent ry (ie make it
unselectable)

void.

Attaches a menu as a submenu of another at a given entry in the parent menu.
Syntax: void menu_submenu(menu , int entry , menu submenu)

Parameters :

Returns:

Other Information:

menu_make_writeable

menu - the menu
int entry - entry at which to attach submenu
menu submenu - pointer to the submenu.

void.

This replaces any previous submenu at this entry. Use 0
for submenu to remove an exist ing entry. Only a strict
hierarchy is allowed. When attached as a submenu , a
menu can't be extended or expl icit ly deleted.

Makes a menu entry writeable.

Syntax:

Parameters:

void menu_make_writeable(menu m, int entry, char *bu ffer ,
int buf ferlength , char • validstring)

menu m - the menu
int entry - the entry to make writeable
char *buffer - pointer to buffer to hold text of entry
int bufferlength - size of buffer
char *validstring - pointer to va lidation stri ng

241

ms gs

ms gs

242

Returns:

Other Information :

menu_make_sprite

v o i d .

The lifetimes of buffer and validstring must be
long enough

Makes a menu entry into a sprite.

Syntax: void menu_make_sprite(menu m, int entry , char *spritename)

Parameters:

Returns:

Other Information :

menu_syshandle

menu m - the menu
int entry - entry to be made into sprite
char *spri tename - name of the sprite .

v oid.

Entry which is initially a non-indirected text entry is
changed to an indirected sprite, with sprite area given by
resspr_area (),and name given by spritename.

Gives low-leve l handle to a menu .

Syntax: void *menu_syshandle(menu)

Parameters:

Returns:

Other Information :

menu - the menu

pointer to underlying Wimp menu structure.

Allows the massaging of a menu by means other than
those provided in this module. The returned pointer is in
fact a 1:'JOinter to a wimp_menustr (ie wimp_menuhdr
followed by zero or more wimp_menui terns).

These function s provide support for message resource files. Use them to make your
applications easily convertible to other natural languages. A messages file for
RISC_OSLib error messages is provided ; it is not needed if you just want English
messages. since these are the defaults .

msgs_init

Reads in the messages file, and initialise message system.
Syntax: void msgs_ init (void)

Parameters:

Returns :

void

void.

Other Information :

·RISC OS library reference section

The messages file is a resource of your application and
should be named messages. Each line of this file is a
message with the following format:

<tag><colon><message text ><newline>

The tag is an alphanumeric identifier for the message, which will be used to search
for the message, when using msgs_lookup ().It has a maximum length of 9
characters.

msgs_lookup

Finds the text message associated with a given tag.
Syntax: char *msgs_lookup(char *tag_and_default)

Parameters:

Returns:

Other Information :

char * t ag_and_de fa u 1 t - the tag of the message,
and an optional default message (to be used if tagged
message not found) .

pointer to the message text (if all is well)

If the caller just supplies a tag , he will receive a pointer to
its associated message (if found) A default message can
be given after the tag (separated by a colon) A typical use
would be:

werr(l , msgs_lookup("errorl "))
or
werr (1 , msgs_lookup (" errorl: Not enough memory") .

msgs_readfile

Read in the messages file , and initialise msg system
Syntax: void msgs_readfile(char *name) ;

Parameters:

Returns:

Other Information :

char *name - the name of the messages file to be read .
void.

the messages file is a resource of your application and
should normally be named "Messages". For non-standard
applications this call has been provided to enable the
messages file to be read from elsewhere. Each line of this
file is a message with the following format:
<tag><colon><message tex t><newline>

The tag is an alphanumeric identifier for the message,
which will be used to search for the message, when using
msgs_lookup() .

243

OS

OS

244

This file is provided as an alternative to k e rne l. h. It provides low-level access to
RISC OS. os_ e rror functions return a pointer to an error if one has occurred,
otherwise return NULL (0).

os_swi

Performs the given SW! instruction, with the given registers loaded. An error
results in a RISC OS error being raised .. A NULL r egs et pointer means that no
inout parameters are used.

Syntax: void os_swi(int swicode, os_regset *regs)

os_swix

Performs the given SWI instruction, with the given registers loaded. Calls returning
os_ err or* use the X form of the relevant SW!. If an error is returned then the
os_ err or should be copied before further system calls are made. If no error
occurs then NULL is returned.

Syntax: os_error *os_swix(int swicode , os_regset *regs)

If swicode does not have the X bit set. os_ s wi is called and these functions
return NULL (regardless of whether an error was raised). You should therefore use
X bit set swi cod es to save confusion.

SWis with varying numbers of arguments and results:
NULL result pointers mean that the result from that register is not required . The
swi codes can be of the X form if required, as specified by swi c ode.

OS - error *os_swiO(int swicode) ; / * zero arguments and results * /
OS - error *os_ swil(int swicode , int rO)
OS - error *os_ swi2(int swicode , int rO , int rl)
OS error - *os_ swi3(int swicode , int rO , int rl, int r2)
OS - error *os_ swi4(int swicode , int rO , int rl , int r2 , int r3)
OS - error *os_swi6(int swicode , int rO , int rl , int r2 , int r3 , int r4 , int r5)
OS - error *os_ swilr(int swicode , int rOin , int *rOout)
OS - error *os_swi2r(int swicode , int rOin , int rlin , int *rOout , int *rlout)
OS - error *os_swi3r(int swicode , int , int , int , int */ int * I int *)
OS - error *os_ swi4r(int swicode , int , int , int , int , int *, int *, int *, int *)
os_ error *os_ swi6r(int swicode ,
int rO , int rl , int r2 , int r3 , int r4 , int rS ,
int *rOout , int *rlout , int *r2out , int *r3out , int *r4out , int *r5out)

os_byte

Performs an OS_ Byte SW!x, with x and y passed in register rl and r2 respectively.

Syntax: os_error *os_byte(int a , int *x / * inout * / , i nt * y

/ *inout * /I

pointer

RISC OS library reference section

os_word

Performs an OS_Word SW!x, with operation number given in wordcode and p
pointing at necessary parameters to be passed in rl.

Syntax: os_error *os_word(int wordcode , void *p)

os_gbpb

Performs an OS_GBPB SW!. os_gbpbstr should be used like an os_regset.
Syntax: os_error *os_gbpb(os_gbpbstr*)

os_file

Performs an OS_FILE SW!.

Syntax: os_error *os_file(os_filestr*)

os_args

Performs an OS_Args SW!.

Syntax: os_error *os_args(os_regset*)

os_find

Performs an OS Find SW!.

Syntax: os_error *os_find(os_regset*I

os_cli

Performs an OS CLI SW!.

Syntax: os_error *os_clilchar *cmdl

os_read_ var_ val

Reads a named environment variable into a given buffer (of size buf size). If the
variable doesn't exist. buf points at a null string.

os_read_var_val(~har *name , cha r *buf / *out* / , int
bufsize)

These functions deal with setting the pointer shape.

pointer _set_ shape

Sets pointer shape 2, to sprite. from sprite area.

245

print

print

246

Syntax:

Parameters:

Returns:

Other Information:

pointer _reset_ shape

os_error *point e r _set_ s ha pe(sprite_area *, s prite_ i d *,
int , int)

spri te_area * - area where sprite is to be found
spri te_id * - identity of the sprite
int , int - active point for pointer.
possible error condition.
A typical use is to change pointer shape on entering or
leaving application window (appropriate events are
returned from wimp_poll).

Resets pointer shape to shape I .
Syntax:

Parameters:

Returns:

Other Information:

void pointer_reset_shape(void)

void.

v oid.

Typica lly should be called when leaving an application
window.

These funct ions provide access to printer driver facilities. The descriptions here are
only btief. For more details, see the Printer Drivers chapter in the RISC OS
Programmer's Reference manual.

Several enumerations and structures are defined in the print header. These
correspond cl osely to the data passed to or returned by the printer driver SWls
documented in the above mentioned Programmer's Reference Manual chapter:

print_identity

typedef enum
{

print_PostScript 0 ,
print_FX80compatible 1

} p r int_identity;

print_features

typedef enum

pr i nt_colour OxOOOOOOl , - colour

print_ limited

print_discrete

print_ NOFILL

print_NOTHICKNESS
print_NOOVERWRITE

print_ SCREENDUMP
print_ TRANSFORM

} print_features;

print_infostr

RISC OS library reference section

Ox0000002 , - if print_COLOUR bit set. full colour
rahge not available

OxO O O O O O 4 , - only a discrete colour set supported
OxO 00O1 O O, - cannot handle filled shapes well

Ox00002 0 0 , - cannot handle thick lines well
Ox0000400 , - cannot overwrite colours properly
OxlOOOOOO , - supports PDriver_ScreenDump
Ox2 O O O O O O - supports arbitrary transformations

(else on ly axis-preserving ones).

typedef struct print_infos tr

short int version ; - version number* JOO

short int identity; - driver identity (eg O=Postscript , l=FX8Q)

int xres , yres ; - x, y resolution (pixels/inch)

int features; - see print_features

char *description ; - printers supported, <=20cha rs +null

int xhalf, yhalf; - halftone resolution (repeats/inch)

int number ; - configured printer numbe r

} print_infostr;

print_box

typedef struct

int xO , yO , xl , yl ;

print_box ;

print_pagesizestr

typedef struct print_pages izestr

{ int xsi ze , ysize ; - size of page, including margins· (1/72000 inch)

247

print

248

print_ box bbox ; - bounding box of printable portion (1/72000
inch)

} print_pagesizestr ;

print_ transmatstr

typedef struct print_ transmatstr

int xx, xy , yx, yy ;

print_ transmatstr ;

print_positionstr

typedef struct print_positionstr

int dx, dy;

print_positionstr;

print_info

Read details of current printer driver (version, resolution, features etc).

Syntax:

Parameters:

Returns:

print_setinfo

os_ error * print_ info(p r i nt_ infostr *) ;

Pointer to print_infostr structure to be filled in

Any er~or returned from the system call

Reconfigure current printer driver.

Syntax: os_ error * print_ setinfo(print_ infostr *i) ;

Parameters:

Returns:

print_checkfeatures

Pointer to the print_infostr structure to be used to
update the printer driver configuration. The version,
identity and description fields are not used. Leave bit 0
clear in the features field for monochrome, set bit 0 for
colour.

Any error returned from the system call

Checks the features of a printer, returning an error if the current printer does not
have the specified features.

Syntax: os_ error * print_check feature s(in t mask , i n t value) ;

Parameters:

Returns

print_pagesize

RISC OS library reference section

int mask - set bits correspond to the features of
interest (bits as print_features)

int value - required values of the bits of interest
Error returned from system call if the printer does not
have the specified features.

Find how large paper and print area is.

Syntax:

Parameters:

Returns:

print_setpagesize

os_ error * print_pagesize(print_pagesizestr*) ;

Pointer to the print_pagesizestr structure to be filled in .
Any error returned from the system call.

Set how large paper and print size is.

Syntax: os_error • print_setpagesize(print_pagesizestr *p);
Parameters : Pointer to the print_pagesizestr structure to be used to

update the printer driver.
Returns: Any error returned from the system call.

print_selectjob

Make a given print job the current one.

Syntax: os_error * print_ selectjob(int job , char *title , int
*oldjobp) ;

Parameters:

Returns:

print_currentjob

int job - file handle for selected job, or 0 to leave no
print job selected

char *title-titlestringforjob

int *oldj obp - pointer to integer to fill in with file
handle of previously active job

Any error returned from the system call.

Get the file handle of the current print job
Syntax:

Parameters:

Returns:

os_error * print_currentjob(int *curjobp) ;

I Pointer to integer to be filled in with the file handle of the
current print job.

Any error returned from the system call.

249

print

250

print_endjob

End a print job normally.

Syntax:

Parameters :

Returns:

print_abortjob

os_ error * print_ endjoblint job) ;

File handle of print job to be ended.

Any error returned from the system call.

End a print job without any further output.

Syntax:

Parameters:

Returns:

print_ cancel job

os_error * print abort_job(int job) ;

Fi le handle of print job to be aborted .

Any error returned from the system cal l.

Stops a specified print job from printing

Syntax: os_error * print_canceljob(int job) ;

Parameters:

Returns :

print_reset

Abort al l print jobs.

Syntax:

Parameters :

Returns:

pri nt_selecti 11 ustration

File handle of print job to be cancelled.

Any error returned from the system ca ll.

os_error * print_reset(void) ;

Void

Any error returned from the system call.

Makes the specified print job the current one, and treats it as an illustration . The

difference with print_selectjob is that an error is generated if the job does not

contain one page, and certain printer drivers (such as the Postscript printer driver)

generate different output for illustrations.

Syntax:

Parameters:

Returns:

os_ error * print_ selectillustration(int job , char *title,

int *oldjobp) ;

i n t j o b - hie handle for selected job, or O·to leave no
print job selected

c har *ti t 1 e - title string for job

int *oldj obp - pointer to integer to fill in with ft le

handle of previously active job

Any error returned from the system ca ll.

RISC OS library reference section

pri nt_g iverectang le

Specify a rectangle to be printed I

Syntax: os_error *print_giverectangle(int ident , print_ box *,

print_transma ~ str* , print_positio~str* , int bgcol) ;

Parameters: ident - rectangle identification word

Returns:

print_drawpage

Pointer to structure specifying rectangle to be plotted (OS
coordinates)

Pointer to structure specifying transformation matrix
(fixed point, 16 binary places)

Pointer to structure containing the position of bottom left
of rectangle on page (1/72000 inch)

bgcol - background colour for this rectangle,
&BBGGRRXX

Any error returned from the system call.

This shou ld be ca lled after specifying all rectangles to be plotted on the current
page with print_giverectangle.

Syntax:

Parameters:

Returns:

pri nt_getrectang le

os_error * print_drawpage(int copies , int sequ , char *page ,

print_box *clip, int *more , int *ident) ;

copies - number of copies

sequ - zero or pages sequence number within document

p age - zero or a string containing a textual page number
(no spaces)

Pointer to structure to be filled in with the rectangle to
print*/

more - pointer to integer to be filled in with the number
of copies left to print

ident - pointer to integer to be filled in with the
rectangle identification word

Any error returned from the system call.

Get the next print rectangle.

Syntax:

Parameters:

os_error * print_getrectangle(print_box *clip , int *more ,

int *ident);

Pointer to the structure to be filled in with the clip
rectangle

251

re::;

res

252

Returns :

print_screendump

more - pointer to integer to be filled in with the number

of rectangles left to print

ident - pointer to integer to be filled in with the

rectangle identification word

Any error returne~ from the system call .

Output a screen dump to the printer.

Syntax:

Parameters:

Returns :

os_ error * print_ screendump(int job) ;

File handle of file to recei ve the dump.

Any error returned from the system call .

These functi ons provide access to resources.

res_init

Initiali ses, ready for calling other res functions .

Syntax:

Parameters:

Return s:

Other Information:

res_findname

void res_init(const char *progname)

canst c har *a -your program name.

void.

Call this before using any res or resspr functi ons.

Creates a full pathname for a resname file .

Syntax:

Parameters:

Returns:

Other Information:

res_openfile

int res_findname(const char *resname, char *buf / *out * /)

cons t c har *res name - name of one of your resource
files
c har *buf - buffer to put full pathname in.

True (always)

the full pathname is constructed as :
<ProgramName$Dir> . resname where
ProgramName has been set using res_ ini t .

Opens a named resource file. in a given ANSI-style mode.

Syntax: FILE *res_openfile(const char *resname , canst char *mode)

resspr

saveas

Parameters:

Returns:

Other Information:

RISC OS library reference section

can s t char *resname - name of the resource file
c anst char *mode - usual ANSI open mode (r, w, etc)

ANSI FILE pointer for opened file

resname shou ld be a 'leafname' (a call to
r e s _f i n d name is made for you).

These functions provide access to sprite resources.

resspr_init

Initialises, ready for calls to r esspr functions.

Syntax:

Parameters:

Returns:

Other Information:

resspr _area

void resspr_init(void)

vo id

vo id.

ca ll before using any resspr functions and before using
t emplate_ ini t (),if you r templates have sprites . This
function reads in you r sprites.

Returns a pointer to the sprite area being used.

Syntax:

Parameters :

Returns:

Other Information:

sprite_area *resspr_area(void)

vo id

pointer to sprite area being used.

Useful for passing parameters to functions like bar icon
which expect to be told sprite area to use.

These functions handle the export of data by dragging the icon from the dialogue
box.

saveas

Displays a dialogue box to enable the user to export application data.

Syntax:

Parameters:

BOOL saveas(int filetype , char *name , int estsize ,

xfersend_ saveproc , xfersend_ sendproc , xfersend_printproc ,
void *handle)

int filety p e -type of file to save to
c h a r *name - suggested file name
int est s i ze - estimated size of the file

253

sprite

sprite

254

Returns:

Other Information:

xfersend_saveproc - caller-supplied function for
saving application data to a file
xfersend_sendproc - caller-supplied function for
RAM data transfer (if application is able to do this)
xfersend_printproc - caller-supplied function for
printing application data, if Save icon is dragged onto
printer icon
void *handle - handle to be passed to handler
functions.

True if data exported successfully

This function displays a dialogue box with the following
fields

• a sprite icon appropriate to the given file type

• the suggested filename

• an OK button.

A template called xfer_send must be in the application's templates file to use
this function, set up as in the Edit, Draw and Paint applications) xfer_send
deals with the complexities of message-passing protocols to achieve the data
transfer. Refer to the typedefs in xf er send. h for an explanation of what the three
caller-supplied functions should do. If you pass 0 as the xfersend_sendproc,
no in-core data transfer will be attempted. If you pass 0 as the
xfersend_printproc, the file format for printing is assumed to be the same as
for saving. The estimated file size is not essential, but may improve performance.

saveas_read_leafname_during_send

Gets the 'leaf' of the filename in the file name field of the xf er-send dialogue
box.

Syntax:

Parameters:

Returns:

void saveas_ read_ leafname_during_ send(char *name , int

length)

char *name - buffer to put filename in
int length - size in bytes of supplied buffer.

void.

These functions provide access to RISC OS sprite facilities . Only a brief description
is given for each call. More details can be found in the RISC OS Programmer's
Reference manual. in the chapter entitled Sprites.

RISC OS library reference section

sprite: simple operations

sprite_screensave

Saves the current graphics window as a sprite file , wi th optional palette (equivalent
to *ScreenSave).
Syntax:

sprite_screenload

os_error *sprite_ screensave (const char *fi l ename ,
sprite_palflag)

Load a sprite fil e onto the screen (equivalent to *ScreenLoad).
Syntax: os_ error *sprite_screenload(const char * filename)

sprite: operations on system/user area

sprite_area_initialise

Initialises an area of memory as a sprite area.
Syntax: void sprite_ area_initialise(sprite_area * int size)

sprite_area_readinfo

Reads information from a sprite area contro l block.
Syntax: os_ error *sprite_area_readinfo(sprite_area * sprite_ area

*resultarea)

sprite_area_reinit

Reinitialises a sprite area. If the sprite area is a system area, the funct ion is
equ ivalent to * SNew.
Syntax: os_ error *sprite_ area_ r e init(spri te_ are a *)

sprite_area_load

Loads a sprite fil e into a sprite area. If the fil e is a system area, the functi on is
equivalent to * SLoad.
Syntax: os_error *sprite_area_load(sprite_ area *, const char

J* filename)

sprite_area_merge

Merges a sprite file with a sprite area. If the file is a system area, the function is
equivalent to *SMerge.

255

sprite: operations on system/user area

256

Syntax:

sprite_area_save

os_error *sprite_area_merge(sprite_area * const char

*filename)

Saves a sprite area as a sprite file . If the sprite area is a system area , the function is

equiva lent to *SSave.

Syntax:

sprite_getname

os_ error *sprite_ area_ save(sprite_area *, canst char

*filename)

Returns the name and length of the nth sprite in a sprite area into a buffer.

Syntax:

sprite_get

os_err or *sprite_getname(sprite_area *, void *buffer , int

*length , int index)

Copies a rectangle of screen delimited by the last pair of graphics cu rsor positions

as a named sprite in a sprite area, optiona lly storing the pa lette with the spri te.

Syntax:

sprite _get_rp

os_error *sprite_ get(sprite_area *, char *name ,

sprite__palf lag)

Copies a rectangle of screen delimited by the last pair of graphics cursor positions

as a named sprite in a sprite area, optionally storing the palette with the sprite. The

address of the sprite is returned· in resul taddress.

Syntax: os_error *sprite_get_rp(sprite_area *, char *name ,

sprite__palflag , sprite__ptr *resultaddress)

sprite_get_given

Copies a rectangle of screen delimited by the given pair of graphics coordinates as

a named sprite in a sprite area, optionally storing the palette with the sprite.

Syntax:

sprite_get_given_rp

os_ error *sprite_ get_given(sprite_area *, char *name ,

sprite__palflag , int xO , int yO , int xl , int yl)

Copies a rectangle of screen delimited by the given pair of graphics coordinates as

a named sprite in a sprite area, optiona lly storing the palette with the sprite The

address of the sprite is returned in re s ul taddress.

Syntax: os_error *sprite_get_given_rp(sprite_area *, char *name ,

spri.te__palflag, int xO, int yO , int xl , int yl , sprite__ptr

*resultaddress)

RISC OS library reference section

sprite_ create

Creates a named sprite in a sprite area of specified size and screen mode,
optionally reserving space for palette data with the sprite.

Syntax:

sprite_ create _rp

os_error *sprite_create(sprite_area * , char *name,
sprite_palflag, int width, int height, int mode)

Creates a named sprite in a sprite area of specified size and screen mode,
optionally reserving space for pa lette data with the sprite. The address of the sprite
is returned in resul taddress .

Syntax: os_error *sprite_create_rp(sprite_area *, char *name ,

sprite_palflag , int width, int height , int mode , sprite_ptr
*resultaddress)

sprite: operations on system/user area, name/sprite pointer

sprite_select

Selects the specified sprite for plotting using pl o t (Oxed , x , y).

Syntax: os_error *sprite_select(sprite_area *, sprite_id *)

sprite_ select_rp

Selects the specified sprite for plotting using plot (Oxed , x , y). The address of
the sprite is returned in re s u l taddress .

Syntax: os_error *sprite_select_rp(sprite_area * sprite_id •

sprite_ptr *resultaddress)

sprite_ delete

Deletes the specified sprite

Syntax: os error *sprite_delete{sprite_area * sprite_id *)

sprite_rename

Renames the specified sprite within the same sprite area.

Syntax: os_error *sprite_rename(sprite_area * sprite_id * char

*newname)

sprite_copy

Copies the specified sprite as another named sprite in the same sprite area.

Syntax: os_error *sprite_copy(sprite_area *, sprite_id *, char

*copyname)

257

sprite: operations on system/user area, name/sprite pointer

258

sprite_put

Plots the specified sprite using the given GCOL action.

Syntax: os_error *sprite_put(sprite_area * sprite_ id * int gcoll

sprite_put_given

Plots the specified spri te at (x,y) using the given GCOL action.

Syntax:

sprite_put_scaled

os_error *sprite_put_given(sprite_area * , sprite_id *, int
gcol , int x , int y)

Plots the specified sprite at (x,y) using the given GCOL action, and sca led using the
given sca le factors.

Syntax: os_error *sprite_put_scaled (sprite_area *, sprite_ id *, int

gcol , int x , int y , sprite_ factors * factors ,
sprite_pixtrans pixtrans[])

sprite_put_greyscaled

Plots the specified sprite at (x,y) using the given GCOL action, greyscaled using the
given scale factors.

Syntax: os_error *sprite_put_greyscaled(sprite_area *,

sprite_id *, int x , int y , sprite_ factors * factors ,
sprite_pixtrans pixtrans[])

sprite_put_mask

Plots the specified sprite mask in the background colour.

Syntax: os_ error * sprite_put_mask{sprite_area * sprite_ id *)

sprite_put_mask_given

Plots the specified sprite mask at (x,y) in the background colour.

Syntax:

sprite_put_mask_scaled

os_ error *sprite_put_mask_given(sprite_ area *
sprite_ id *, int x , int y)

Plots the sprite mask at (x,y) scaled, usi ng the background colour/action.

Syntax:

sprite_put_char _scaled

Paints char sca led at (x,y)

os_error *sprite_put_mask_scaled(sprite_area *,

sprite_id *, int x , int y , sprite_ factors *factors)

RISC OS library reference section

Syntax: os_error *sprite_put_char_scaled(char ch , int x, int y ,
sprite_factors *factors)

sprite_ create_ mask

Creates a mask definition for the specified sprite.
Syntax: os_ error *sprite_ create_ mask(sprite_ area * sprite_ id *)

sprite _remove_ mask

Removes the mask definition from the specified sprite
Syntax: os_error *sprite_ remove_mask(sprite_area * sprite_id *)

sprite _insert_ row

Inserts a row into the specified sprite at the given row.
Syntax: os_error *sprite_insert_row (sprite_area *, sprite_id *, int

row)

sprite_ delete _row

Deletes the given row from the specified sprite.
Syntax: os_ error * spri te_delete_row I spri te_area *, spri te_id *, int

row)

sprite_insert_column

Inserts a column into the specified sprite at the given column.
Syntax: os_error *sprite_insert_column(sprite_area *, sprite_id *

int column)

sprite_delete_column

Deletes the given column from the specified sprite
Syntax: os_err6r *sprite_ delete_ column(sprite_ area *, sprite_id *

int column)

sprite_flip_x

Flips the specified sprite about the x axis.
Syntax: os_error *sprite_ flip_x(sprite_ area * sprite_ id *)

sprite_flip_y

Flips the specified sprite about they axis.
Syntax: os_error *sprite_ flip_y(sprite_area * sprite_ id *)

259

Vf-'1 ''"""'" ...,,., , U.._,I IV.._,, I VJV'"""'''" t..lt•-"•.;I UI VUJ I IUlllV/-.;J,..n IU.; fJVll llVf

260

sprite_readsize

Reads the size information for the specified sprite_id.

Syntax:

sprite_readpixel

os_ error *sprite_ readsize(sprite_ area * sprite_id *
sprite_ info *resultinfo)

Reads the colou r of a given pixel in the specified spri te_ id.
Syntax:

sprite_writepixel

os_ error *sprite_ readpixel(sprite_area * sprite_ id *, int
x, int y , sprite_ colour *resultcolour)

Writes the colour of a given pixel in the specified spri te_ id.

Syntax:

sprite_readmask

os_error *sprite_ writepixel(sprite_area * , sprite_id *, int
x , int y , sprite_colour *colour)

Reads the state of a given pixe l in the specified sprite mask.

Syntax: os_error *sprite_readmask(sprite_ area * sprite_id *
int x , int y , sprite_maskstate *resultmaskstate)

sprite_writemask

Writes the state of a given pixel in the specified sprite mask.

Syntax:

sprite_restorestate

os_ error *sprite_ writemask(sprite_ area *, sprite_id * , int
x , int y , sprite_maskstate *maskstate)

Restores the old state after one of the sprite redi rection calls .
Syntax: os_ error *sprite_ restorestate(sprite_ state state)

sprite_outputtosprite

Redirects VDU output to a sprite, saving the old state.

Syntax:

sprite_ outputtomask

os_error *sprite_ outputtosprite(sprite_area *area ,
sprite_id * id , int *save_area , sprite_state *state)

Redirects output to a sprite's transparency mask, saving the old state.

Syntax: os_ error *sprite_ outputtomask(sp rite_ area *area , sprite_id
* id , int *save_ area , sprite_state *state)

template

RISC OS library reference section

sprite_outputtoscreen

Redirects output back to screen, saving the old state.

Syntax: os_ error *sprite_outputtoscreen(int *save_ area ,

sprite_ state *state)

sprite_sizeof _spritecontext

Gets the size of the save area needed to save the sprite context.

Syntax: os_error *sprite_sizeof_spritecontext(sprite_area *area ,

sprite_id *id, int *size)

sprite_sizeof _screencontext

Gets the size of the save area needed to save the screen context.

Syntax: os_error *sprite_sizeof_ screencontext(int *size)

sprite_removewastage

Removes the lefthand wastage from a sprite.

Syntax: os_ error *sprite_removewastage(sprite_area *area,

sprite_id *id)

This file contains functions used for loading and manipulating templates (typically
set up using the template ed itor, FormEd). The templates are assumed to be held
in a file Templates in the application's directory The dialogue box module o f the
RISC OS library uses these templates when creating dialogue boxes.

template_copy

Creates a copy of a template.

Syntax:

Parameters:

Returns:

template *template_copy (template *from)

templat e *from - the original template

a pointer to a copy of from.

Other Information: Copying includes fixing up pointers into workspace for
indirected icons/title, and the allocation of this space

tern plate _readfi le

Reads the template file into a linked list of templates.

Syntax: BOOL template_readfile (char *name)

Parameters: c h ar *name - name of template file

Returns : Non-zero if sprites are used in the template file .

261

template

262

Other Information:

template_find

Note that a call is made to resspr_ area () , in order to
fix up a window's sprite pointers. so you must have
already called resspr_ini t.

Finds a named template in the template list.

Syntax: template * template_find(char *name)

Parameters:

Returns:

template_loaded

c har *name - the name of the template (as given in
Form Ed)

a pointer to the found template .

Sees if there is anything in the template list.

Syntax: BOOL template_loaded(void)

Parameters: void
Returns : Non-zero if there is something in the template list.

template_use_fancyfonts

Provides a font usage array for loading templates which use fonts other than
'system font'

Syntax:

Parameters:

Returns:

Other Information :

template_init

void template_ use_fancyfonts(voidl ;

void
void
Thi s functi on should be ca ll ed once BEFORE
template_init. It allocates a font usage array, which it uses
to 'lose' any fancy fonts used, when your program exits. It
installs a C exit handler to do thi s. Thi s function is useful
if your dialogue boxes use fonts other than system font .

Initialises ready for the use of templates
Syntax:

Parameters :

Returns:

Other Information :

void template_init(void)

void
vo id.
Should be ca lled before any operat ions which use
templates (such as dialogue box creation)

trace

RISC OS library reference section

template_syshandle

tracef

Gets a pointer to the underlying window used to create a template.
Syntax: wimp_wind *template_syshandle(char *name)

Parameters:

Returns:

Other Information:

char *templatename.

Pointer to template's underlying window (0 if template
not found).

Any changes made to the wimp_wind structure will
affect future windows generated using this template

These functions provide centralised control for trace/debug output.

Outputs tracing information.
Syntax: void tracef (char *, ...)

void tracefO(char*)

Parameters:

Returns :

Other Information:

void tracefl(char*, int)
void tracef2(char*, int , int)
void tracef3(char*, int ,int , int)
void tracef4(char*, int , int , int , int)

char* - printf-style format string
... - variable argument list.

void.

called by tracefO, tracefl etc. Fixed-format ones wi ll
compile to nothing if trace is not set at compile time.

trace_is_on

int trace_ i s_on(void) returns True if tracing is turned on

trace_on

void trace_ on(void) turns tracing on

trace_off

void trace_ off(void) turns tracing off

263

txt

txt

A txt is an array of characters, displayed in a window on the screen. It behaves in

many ways similarly to a single bu'ffer from Edit (see the User Guide fo r details of

this application) . It uses the system variable Edit$0ptions to set up colours, fonts

and other features You must call fl ex_ini t before ca lling txt.

txt: interface functions

264

txt_new

Creates a new txt object, containing no characters with a given title (to appear in

its window)

Syntax: txt txt_ new(char *title)

Parameters:

Returns:

Other Information:

txt_show

char *ti t 1 e - the text title to appear in its window.

pointer to the newly created text.

This function does not result in the text being displayed

on the screen; it simply creates a new text object. 0 is

returned if there is not enough space to create the object.

Displays a given text object in a free-standing window of its own.

Syntax: void txt_show (txt t l

Parameters :

Returns:

Other Information:

txt_hide

txt t""" the text to be displayed .

void .

t should have been created using txt_ n e w.

Hides a text which has been displayed

Syntax:

Parameters:

Returns:

txt_settitle

void t x t _hide(t x t t)

txt t - the text to be hidden.

v o i d.

Changes the title of the window used to display a text object.

Syntax: void t x t _ settit l e(txt t , cha r *tit l e)

Parameters: txt t - the text object
char *tit 1 e - new title of window.

Returns: void.

RISC OS library reference section

Other Information: Long titles may be truncated when displayed .

txt_dispose

Destroys a text and the window associated with it.
Syntax:

Parameters:

Returns :

txt: general control operations

void txt_dispose(txt * t)

txt * t - pointer to the text.

void.

A text object's main data content is an array of characters. This resides in a buffer
of known size. The characters of the array are not laid out precisely in the buffer; a
gap is used in order to make insertion and deletion fast. When initially created, a
text has bufsize=O .

txt_bufsize

Tells caller how many characters can be stored in the buffer before more memory
needs to be requested from the operat ing system.
Syntax: *int txt_bufsize (txt)

Parameters:

Returns:

txt_setbufsize

txt t - the text.

size of buffer

Allocates more space for the text buffer
Syntax:

Parameters:

Returns:

Other Information:

BOOL txt_setbuf s ize(txt , int)

txt t - the text
int b - new buffer size.
True if space could be allocated successfu lly
This ca ll increases the buffer size, so that at least b
characters can be stored before requiring more from the
operating system.

The character array is displayed on the screen in a window. The characters travel
horizontally from left to right. If a \n is encountered, this signifies the end of the
current text line , and the start of a new one. All lines have the same height,
although characters may be of differing widths. There is no limit on the number of
characters allowed in a line. There is no restriction on the characters allowed in the
array: any number from 0 to 255 is acceptable.

265

txt: general control operations

266

txt_charoptions

Informs the caller of the currently set charoptions

Syntax: txt_ charoption txt_ charoptions (t x t)

Parameters :

Returns:

txt t - text object.

Currently set charoptions.

Clearing the DISPLAY flag can be used during a long and complex sequence of
edits, to reduce the overall amount of display activity The UPDATED fl ag is set by
the insertion or deletion of any characters in the array.

txt_setcharoptions

Sets the flags which are used to contro l the display of text in a screen window.

Syntax:

Parameters:

Returns :

Other Information:

void t x t_setcharoptions(txt , txt_ charoption affect ,

txt_charoption values)

txt t - text object
txt_charoption affect - flags to affect
txt_ charopt ion values - values to give to affected
flags

void.

Only the flags named in affect are affected -they are
set to the va lue values. This therefore has the meaning:

(previousState & -affect) (affect & values)

txt_lastref

Returns last_ref field (for Message_DataSaved)

Syntax:

Parameters:

Returns:

Other Information:

txt_setlastref

int t x t _ lastref(tx t) ;

txt t - text object.

Current value of last_ ref (for
Message_ DataSaved)

None

Sets val ue of last_ ref (for Message_ DataSaved).

Syntax: void t x t _ setlastref I txt , int newvalue) ;

Parameters:

Returns:

Other Information:

txt t - text ob ject

int newvalue - new value
void.

Sets the last_ ref field in a txt. so that subsequently a
Message_DataSaved ca n mark the data unmodified.

RISC OS library reference section

txt_setdisplayok

Sets the display flag in charoptions for a given text.
Syntax:

Parameters:

Returns:

void txt_setdisplayok(txt)

txt t - text object

v oid.
Other Information : This asserts to the system that the display is up to date,

preventing a redraw. It is useful only in very specialised
circumstances.

txt: operations on the array of characters
d o t is an index into the character array. If there are n characters in the array, with
indices in 0 ... n -1 , then dot is in O ... n . It is thought of as pointing just before the
character with the same index, but it can also point just after the last one. When
the text is displayed, the character after the dot is always visib le. The caret is a
visible indication of the position of the dot within the array. It can be made visib le
using SetCharOp tion s above.

txt_dot

Informs the caller of where the do t (current position) is in the array of characters.
Syntax: txt_index txt_dot(txt t)

Parameters: t xt t - text object.
Returns: An index into the array of characters .

txt_size

Informs the caller as to the maximum va lue d o t ca n take.
Syntax: txt_ index txt_size(txt t)

Parameters: txt t - text object.
Returns: Maximum permissible value of d o t .

txt_setdot

Sets the do t at a given index in the array of cha racters.
Syntax: void txt_setdot (txt t , txt_index i)

Parameters:

Returns:
Other Information:

txt t - text ob ject.
t x t inde x i - index at which to set do t .

v oid.

If i is outside t he bounds of the array it is set to the
beginning or end of the array, as appropriate.

267

txt: operations on the array of characters

268

txt_movedot

Moves the dot by a given distance in the array.

Syntax: void txt_movedot (txt , int by I

Parameters:

Returns:

Other Information:

txt_insertchar

txt t - text object
int by - distance to move by

void

If the resulting dot is outside the bounds of the array it is
set to the beginning or end of the array, as appropriate.

Inserts a character into the text just after the dot.

Syntax:

Parameters:

Returns:

Other Information:

txt_i nsertstri ng

void txt_insertchar(txt t , char cl

txt t - text object
char c - the character to be inserted.

void.

If the DISPLAY option flag is set, the window is
redisplayed after insertion.

Inserts a given character string into a text.

Syntax: void txt_insertstring(txt t, char *sl

Parameters:

Returns:

Other Information:

txt_delete

txt t - text object
char * s - the character string.

void.

Ifthe DISPLAY option flag is set, the window is
redisplayed after insertion .

Deletes n characters from the dot onwards.

Syntax: void txt_delete (txt t , int n)

Parameters:

Returns :

Other Information:

txt t - text object
int n - number of characters to delete.

void.

If dot+n is beyond the end of the array, deletion is to the
end of the array.

RISC OS library reference section

txt_replacechars

Deletes ntodelete characters from dot, and inserts n characters in their place,
where the characters are pointed at by a.

Syntax: void t x t _replacechars(tx t t , int ntodelete , char *a , int n)

Parameters:

Returns:

txt_charatdot

txt t - text object
int ntodelete - number of characters to delete
char *a - pointer to characters to insert
int n - number of characters to insert.
void.

Informs the caller of the character held at dot in the array.
Syntax:

Parameters:

Returns :

Other Information:

txt_charat

char txt_charatdot (txt t)

txt t - text object.

Character at dot.

Returns 0 if dot is at or beyond end of array.

Informs the caller of the character at a given index in the array.
Syntax: char txt_charat(txt t , txt_index i)

Parameters: txt t - text object
txt_index i - the index into the array.

Returns: Character at given index in array.
Other Information : Returns 0 if index is at or beyond end of array

txt_ charsatdot

Copies at most n characters from dot in the array into a supplied buffer.
Syntax: void txt_charsatdot (txt , char I *out * I *buffer , int I * inout * I

Parameters:

Returns:

Other Information :

*n)

txt t - text ob ject
char *buffer - the buffer
int *n - maximum characters to copy.

void.

If you are close to the end of the array, n characters may
not be available. In this case, characters up to the end of
the array are copied , and *n is updated to report how
many were copied .

269

txt: layout-dependent operations

txt_replaceatend

Deletes a specified number of characters from the end of the array and then inserts
specified characters.

Syntax: void t x t _rep l aceatend(tx t , i n t n todelete , c har*, int)

Parameters:

Returns :

txt t - text object
int n tode l e t e - number of characters to delete
char * s - pointer to characters to insert
int n - number of characters to insert.

void.

txt: layout-dependent operations

270

These operations are provided specifically for the support of cursor-key-driven
editing

txt_movevertical

Moves the dot by a specified number of textual lines, with the caret staying in the
same horizontal position on the screen .

Syntax: void txt_movevertical(txt t, int by , int caretstill)

Parameters:

Returns:

txt_movehorizontal

txt t - text object
i nt by - number of lines to move by
i n t carets till-set to non-zero, if you want the text
to move rather than the caret.

void.

Moves the caret (and dot) horizontally

Syntax:

Parameters:

Returns:

Other Information:

txt_ visiblelinecount

void txt_movehorizontal(txt , int by)

t x t t - text object
int by - distance to move by.

voi d.

This behaves like t xt_movedot () , except that if by is
positive and the end of the current text line is
encountered , the caret will continue to move to the right
on the screen .

Gives the number of lines visible or partially visible on the display

Syntax: in t txt_visiblelinecount(txt ti

Parameters :

Returns:

Other Information:

· txt_ visiblecolcount

txt t - text object.

Number of vis ible lines

RISC OS library reference section

Takes into account current window size, font etc.

Gives the number of columns currently visible.

Syntax: int txt_visibleco l count (txt t)

Parameters:

Returns:

Other Information:

txt: operations on markers

txt t - text object.

Visible column count.

If a fixed pitch font is currently in use, this gives the
number of display columns; otherwise, it makes a guess
for average characters.

Markers are indices into the array. Once set, a marker will point to the same
character in the array regardless of insertions or deletions within the array. If the
character pointed at by the marker is deleted, the marker will point to the next
character. Markers never fall off the end of the array, but stay at the top or bottom
of it. if that's where they end up

txt_newmarker

Creates a new marker in the text.

Syntax: void txt_newrnarker(txt , t x t _marker *mark)

Parameters:

Returns:

Other Information :

txt_movemarker

txt t - text object
txt_marker *mark - pointer to your text marker.

void.

The marker itself is kept by the client of this function , but
the text object retains a pointer to it. The client's marker
is updated by the text ob ject whenever necessary. Its
initial va lue is the same as dot. If the cha racter at which
a marker points is deleted, then the marker gets moved to
the value of dot when the deletion occurred. If cha racters
are inserted when the marker is at dot, the marker stays
with dot.

Resets an existing marker.

Syntax: void txt_movemarker(txt t , txt_rnarker *mark , txt_ index to)

271

txt: operations on a selection

Parameters:

Returns:

Other Information:

txt_movedottomarker

txt t - text object
txt_marker *mark - the marker
txt_in.dex to - place to move the marker to.

void.

The marker must already point into this text object.

Moves the dot to a given marker.

Syntax: void txt_movedottomarker(txt t , txt_marker *mark)

Parameters: txt t - text object
txt_marker *mark - pointer to the marker.

Returns: void.

txt_i ndexofmarker

Gives the current index into the array of a given marker.

Syntax: txt_index txt_indexofmarker(txt t , txt_marker *mark)

Parameters:

Returns:

txt_disposemarker

txt t - text object
txt_marker *mark - pointer to the marker.

Index of marker.

Delete a marker from a text obj((Ct.

Syntax: void txt_disposemarker(txt, txt_marker *)

Parameters:

Returns:

Other Information:

txt t - text object
txt_marker *mark - the marker to be deleted.

void.

You should remember to dispose of a marker which
logically ceases to exist, otherwise the text object will
continue to update the location where it was.

txt: operations on a selection

The selection is a contiguous portion of the array which is displayed highlighted

txt_selectset

Informs the caller whether there is a selection made in a text
Syntax: BOOL txt_selectset(txt t)

Parameters: txt t - text object.

272

RISC OS library reference section

Returns : True if there is a selection in this text.

~xt_selectstart

Gives the index into the array of the start of the current selection .

Syntax: txt_index t x t _ se l ectstart(txt t)

Parameters:

Returns:

txt_selectend

txt t - text object.

Index of selection start.

Gives the index into the array of the end of the current selection .

Syntax: txt_index t x t _ selectend I t x t t)

Parameters :

Returns :

txt_setselect

txt t - text object.

Index of selection end.

Sets a selection in a given text, from start to end.

Syntax: void txt_setselect(txt , t x t _ index start , txt_ index end)

Parameters:

Returns :

Other Information :

txt: input from the user

txt t - text object
txt index start - array index of start of selection
txt index end - array index of end of selection.

void.

If s tart >= end then the selection will be unset.

Characters entered into the keyboard, and various mouse events, are buffered up
by the text object for use by the client .

A call to the event handler registered with a text object wil l give an event code to
the event handler, to say what sort of event has occurred . The following event
codes are defined; any that are not understood should be ignored .

• Codes 0 - 255: key codes from the keyboard

• Codes 256 - 5 I l : various function keys, etc; refer to h.akbd for the rules .

• Mouse events:

A mouse event occurs when the mouse is pointing in the text object and a
button is pressed or released, or the mouse moves while any button is
depressed A mouse event will result in Get producing an EventCode with bit
3 I set, bits 24 .. 28 as a mouseevent flags va lue, and the rest of the word
containing an index value.

273

txt: input from the user

txt_get

274

The index shows where in the visible representation of the array the mouse
event happened If all three index bytes are 255 , the event happened outside
the window. The mouseevent fl a gs show what button transitions occurred:

MS ELECT
MEXTEND
MSELOLD
MEXTOLD
MEXACT

Select's new va lue
Adjust's new value
Select's old va lue
Adjust's old va lue
the event is in exact ly the same place as the last one.

The byte gives the values of the select and extend buttons: I for depressed and
0 for not depressed It gives their previous values, allowing transitions to be
detected. It reports whether the position of the mouse is exactly the same as
for the last event, so that multiple clicks may be detected. No assumptions
should be made concerning the relationship of these bits to the last mouse
event sent to the programmer, as polling delays etc. could cause any
combinations to happen .

If txt_EXTRACODE is set, the identity of the event is not defined by this
interface. This is used for any expansion. Clients of this interface which receive
such events that they do not recognise, should ignore them without reporting
an error.

The Menu button on the mouse is not transmitted through thi s interface , but
caught elsewhere. Use event_ at tach_menu to attach a menu hand ler to
the txt_ syshandle of a txt ob ject

• Keyboard events:

txt EXTRACODE + akbd_ Fn + 1: - help request
txt_ EXTRACODE + akbd_ Fn + akbd_ Sh + 2: insert drag i lle
txt EXTRACODE + akbd_Fn + 127: - close icon
txt EXTRACODE + akbd_ Sh + akbd_ Ctl + akbd_ Upk: scroll up

one line
txt EXTRACODE + akbd_ Sh + akbd_ Ctl + akbd_ DownK: scrol l

down one line
txt EXTRACODE + akbd_ Sh + akbd_ UpK: scroll up one page
txt EXTRACODE + akbd_ Sh + akbd_ DownK: scrol l down one page

In the current implementation of txt, txt_ queue never returns more than I ,
so wimpt_last_event () can be accessed to get more information.

Gives the next user event code to the caller.

Syntax: t xt_eventcode t x t_geS(txt t)

PaFameters: txt t - text object

Returns :

Other Information:

txt_queue

RISC OS library reference section

The event code

The returned code can be ASCII , or various other
(system-specific) values for function keys etc. This
function can only be called within an event handler.

Informs the caller of how many event codes are current ly buffered for a given text.
Syntax: int txt_queue (txt t l

Parameters: txt t - text object

Returns : Number of buffered event codes.

Other information: This function can only be called within an event handler.

txt_unget

Puts an event code back on the front of the event queue for a given text.
Syntax: void txt_unget(txt t, txt_eventcode code)

Parameters : txt t - text object
txt event code code - the event code .

Returns : void.

Other informat ion : This function can only be called with in an event handler.

txt_eventhandler

Registers an event handler function for a given text , which will be ca lled
whenever there is a value ready which can be picked up by txt_get ().
Syntax: void txt_eventhandler(txt , txt_event_proc , void *handle)

Parameters :

Returns:

Other Information :

txt_readeventhandler

txt t - text object
txt_ event_proc func - event handler function
void "handl e - caller-defined handle to be passed to
func.

void.

If func==O, no function is registered.

Informs the ca ller of the currently regi stered eventhandler function associated
with a given text, and the handle which is passed to it.
Syntax: void txt_readeventhandler (txt t , txt_ even t_proc * func , void

**handle)

275

txt: direct access to the array of characters

Parameters :

Returns:

txt t - text ob ject
txt_ event_proc * func - returned pointer to handler
func
void **handle - returned pointer to handle.

vo id.

txt: direct access to the array of characters

txt_arrayseg

Gives a direct pointer into the memory used to hold the characters in a text.

Syntax: void txt_arrayseg(txt t , txt_index at, char ** a, int *n)

Parameters:

Returns:

Other Information:

txt t - text object
txt index at - index into the text
char ** a - *a will point at the character whose index in
the text is at
int *n - number of contiguous bytes after at.

void.

It is permissible for the caller of this function to change
the characters pointed at by *a, provided that a
re-display is prompted (using setcharoptions).

txt: system hook

276

txt_syshandle

txt_init

Obtains a wimp_ w value for the window underlying a text.

Syntax: int txt_syshandle (txt t)

Parameters: txt t - text ob ject.

Returns: System-dependent handle for the given text.

Initialise the txt module of the library

Syntax:

Parameters:

Returns:

Other Information:

void txt_init(void);

void

void

None

txtedit

RISC OS library reference section

These functions provide text editing facilities.

txted it_i nstal I

Installs an event handler for the txt t, thus making it an editable text

Syntax: txtedit_state *txtedit_ install (tx t t)

Parameters:

Returns:

txtedit_new

txt t - the text object (created via txt_new)

A pointer to the resulting txt e dit_ state.

Creates a new text ob ject and loads the given file into it The text can then be
edited.

Syntax:

Parameters:

Returns:

Other Information :

txtedit_dispose

t x tedit_state * txtedit_new(char *filename)

char *filename - the file to be loaded.

a pointer to the txtedit_state for this text

If the file cannot be found, then 0 is returned as a result,
and no text is created. If filename is a null pointer, then
an editor window with no given file name will be
constructed. If the file is already being edited, then a
pointer to the existing txtedi t_s tate is returned.

Destroys the given text being edited.

Syntax: void txtedit_ dispose(txtedit_state *sl

Parameters:

Returns:

Other Information :

txtedit_mayquit

txtedit_ state *s -the text to be destroyed.

void.

This will ask no questions of the user before destroying
the text

Check if we may safely quit editing.

Syntax:

Parameters:

Returns:

Other Information :

BOOL txtedit_ mayquit(void)

void.

True if we may sa fely quit, otherwise False.

If a text is being edited, then a dialogue box is displayed
asking the user if he really wants to quit This ca lls
dboxquery (),and therefore requires the template
query as described in dboxquer y . h.

277

txtedit

278

txtedit_prequit

Deals with a PREQUIT message from the Task Manager.

Syntax:

Parameters:

Returns:

Other Information:

txtedit_menu

void txtedit_prequit(void)

void.

void.

Calls txtedi t _mayqui t (),to see if we may quit, if text
is being edited. If user replies that we may quit, then all
texts are disposed of, and this function sends an
acknowledgement to the Task Manager.

Sets up a menu structure for the text being edited, tailored to its current state.

Syntax: menu txtedit_rnenu ltxtedit_state *s)

Parameters:

Returns:

Other Information:

txtedit_menuevent

txtedit_ state *s -the text 's current state.

a pointer to an appropriately formed menu structure.

The menu created will have the same form as that
displayed when Menu is clicked on an Edit window. (For
Edit version 1.00). Entries in the menu are set according
to the supplied txtedit_ state.

Applies a given menu hit to a given text.

Syntax: void txtedit_rnenuevent(txtedit_state * s , char *hit)

Parameters:

Returns:

Other Information:

txtedit_doimport

txtedit state * s -the text to which hit should be
applied
char *hit - a menu hit string.

void.

This can be called from a menu event handler.

Import datq into the specified txtedi t object, from a file of a given type.

Syntax:

Parameters:

Returns:

BOOL txtedit_doirnport(txtedit_state *s , int filetype , int

estsize)

txtedit_ state *s-thetextobject
int file type - type of the file
int estsize - the file's estimated size.
True if the import is completed successfully

RISC OS library reference section

txtedit_doinsertfile

Inserts a named file in a given text object.
Syntax: voi d txtedit_doinsertfile(txtedit_st~te *s, char

*filename , BOOL replaceifwasnull)

Parameters :

Returns:

txtedit_ state *s-thetextobject
char * f i 1 ename - the given file
BOOL replaceifwasnull - if set to True then the
text object will be considered to have come from
filename, ie the window title is updated.

void.

txtedit_register _update_handler

Register a handler to be called when a text window is modified
Syntax: t xtedit_update_hrndler txtedit_ register_update_handler(

txtedit_update_handler h , void *handle) ;

Parameters :

Returns:

txtedi t _handler h - the handler function
void *handle - handle to be passed to the function
previous hand lJr

Other Information : This routine will be called whenever a window's tit le bar is
redrawn , and the text in the window has been modified .
Note: this is not just cal led when the'* ' first appears in a
window's tit le bar, but every time the title bar of a
modified text window is red rawn (eg when the fi lename
changes or wordwrap is turned on/off etc).

The handler function will be passed

i) the filename for the window t itle

ii) the address of th is 'txted it_state'
iii) the handle registered with th is function wi l l be

undone. This is only possible i f the modificat ion is
not greater than -5kb.

Ca l ling with h == 0 removes the hand ler

txtedit_register _save_handler

Register a hand ler to be ca lled when a text window is saved
Syntax:

Parameters:

txtedit_save_handler
txtedit_register_save_handler(txtedit_save_handler h, void
*ha ndle);

txtedi t _handl er h - the hand ler funct ion
void *handle - handle to be passed to the function

279

280

Returns :

Other Information:

previous handler

This routine will be called whenever a text window is
saved to file (NOT via RAM transfer)

The handler function will be passed:

i) the filename for the window title

ii) the address of this 'txtedit_state'

iii) the handle registered with this function

Calling with h == 0 removes the handler.

Returning FALSE from your handler will ab.ort the save

operation.

txtedit_register _close_handler

Register a handler to be called when a modified text window is closed

Syntax:

Parameters :

Returns :

Other Information :

txtedit_ close_ handler txtedit_register_close_ handler(

txtedit_close_handler h , void *handle);

txtedi t _handler h - the handler function

void *handle - handle to be passed to the function

previous handler

This routine will be called whenever a text window is
closed.

The handler function will be passed:

i) th~ filename for the window title

ii) the address of this 'txtedit_state'

iii) the handle registered with this function

Calling with h == 0 removes the handler.

txtedit_register _sh utdown_handler

Register a handler to be called when txtedit_prequit() is called.

Syntax:

Parameters:

Returns:

Other Information :

txtedit_shutdown_handler

txtedit_register_shutdown_handler(

txtedit_shutdown_handler h, void *handle);

txtedi t _ handler h - the handler function

void *handle - handle to be passed to the function

previous handler

This routine will be called whenever txtedit_prequit() is
called, and the user answers "yes" when asked if he really

wants to quit edit. or no files have been modified. The

RISC OS library reference section

handler function will be passed the handle registered
with this function . Ca lling with h == 0 removes the
handler.

txtedit_register _undofail_handler

Register a handler to be called when your update_handler returned FALSE, and the
undo buffer overflowed.

Syntax:

Parameters:

Returns:

Other Information:

txtedit_undofail_handler
txtedit_register_undofail_handler(
txtedit_undofail_handler h , void *handle) ;

t xtedi t_handler h - the handler function

v oid *handle - handle to be passed to the function

previous handler

This will be called when the modification made to a
edited file cannot be undone (only in conjunction with an
update handler)

The handler function will be passed :

i) the filename for the window title

ii) the address of this 'txtedit_state'

iii) the handle registered with this function

Ca lling with h == 0 removes the handler.

txtedit_register _open_handler

Register a handler to be called when a new txtedit_state is created .
Syntax: txtedit_open_handler txtedit_ register_open_handler(

txtedit_open_handler h , void *handle) ;

Parameters: txtedi t_handler h - the handler function

Returns :

v oid *handle - handle to be passed to the function
previous handler

Other Information:

txted it_getstates

The handler function will be passed

i) the filename for the window title

ii) the address of this 'txtedit_state '

iii) the handle registered with this function

Calling with h == 0 removes the handler.

Get a pointer to the list of current txtedit_states
Syntax: txtedit_state *txtedit_getstates(void) ;

Parameters: void.

281

txtopt

txtopt

282

Returns:

Other Information:

txtedit_init

Pointer to the list of txtedit_states

The txtedit part of RISC_OSLib keeps a list of all
txtedit_states created (via txtedi t_new) . Th is function
al lows access to this list.

In itia li se the txtedit module of the library

Syntax:

Parameters:

Returns:

Other Information:

void txtedit_ ini t(void) ;

v oid

v oid

None

These functions set and read the name of the system variab le used for text editing
options.

txtopt_set_name

Set the name used as a system variab le for setti ng text ed iting options

Syntax:

Parameters:

Returns:

Other Information:

txtopt_get_name

void txtopt_ set_ name(char *name) ;

char * name -the name to be prepended to $Options to
fo rm the system variable name.

vo i d.·'

If this function is not ca lled before using any of the txt and
txtedit functions, the system va riable name defaults to
Edit$0ptions, eg

txtopt_set_n ame ("MyEdi t ") sNs the system
variable name to MyEdit$0ptions.

Get a pointer to the name current ly prepended to $Options to form a system
variab le for use in setting text editing options.

Syntax:

Parameters:

Returns:

Other Information :

char * txtopt_ get_name(void) ;

void

pointer to name

If no name has been set, this wi ll point to "Edit" , eg

assumi ng opt ion name is currently MyEdit$0ptions then
txtopt_get_name will return a pointer to the string
"MyEdit " .

txtscrap

txtwin

RISC OS library reference section

These functions manc;ige a single txt selection within an arbitrary number of txt
objects

txtscrap _setselect

Calls txt_setselect(t, from , to) and remembers t. If another txt object currently
holds the selection then this is first cleared .

Syntax:

Parameters:

Returns:

Other Information:

txtscrap _ selectowner

vo id t x tscrap_ setselect(txt t , t x t _ index from , t x t _ index
t o) ;

t xt t - text object

txt_ i nde x f rom - array index of start of se lection
txt_index to - array index of end of se lection (ie first
character not in the selection) .

vo i d

If "from">= "to" then the select ion wi ll be unset. and twill
not be remembered as holding the current selection. A txt
must not be destroyed wh ile still holding the selection,
please clear the selection first.

Returns the current holder of the selection .

Syntax: txt t x tscrap_ s eiectowner(void) ;

Parameters: vo i d

Returns:

Other Information:

The txt that cu rrently holds the selection, or 0 if none.
None

These functions give contro l of multiple windows on text ob jects. When the Text is
updated , all the windows are updated in step. All the windows have the same title
information.

txtwin_new

Creates an extra window on a given text object.
Syntax: void txtwin_ new (t x t t)

Parameters:

Returns:

txt t - the text to have a window added to it.
vo id

283

visdelay

visdelay

284

Other Information:

txtwin_number

The created window will be in the same style as for
txt_ new (),with the same title information . The
window will be made visible .

Informs the caller of the number of windows currently on a given text.

Syntax: int txtwin_number(txt t)

Parameters: txt t - the text.

Returns: The number of windows currently on t.

txtwin_dispose

Removes a window, previously on t .

Syntax: void txtwin_dispose(txt t)

Parameters:

Returns:

Other Information:

txtwin_setcurrentwindow

txt t - the text

void

This call will have no effect if there is only one window on
t.

Ensures that the last window to which the last event was delivered is the current
window on a given text.

Syntax:

Parameters:

Returns:

Other Information:

void txtwin_setcurrentwindow(txt t)

txt t - the text.

void.

Call this when constructing menus, since the same menu
structure is attached to each window on the same text
object.

These functions enable a visual indication of some delay.

visdelay _begin

Changes pointer to show user there will be some delay (currently the RISC OS
hourglass)

Syntax: void visdelay_begin(voidl

Parameters:

Returns:

void.

void.

werr

Other Information:

visdelay _percent

RISC OS library reference section

Under RISC OS, the hourglass wil l only appear if the delay
is longer than 1/3 sec.

Indicates to the user that a delay is p percent complete . .
Syntax:

Parameters :

Returns:

visdelay_end

void visdelay_percent(int p)

int p - percentage complete.

void.

Removes the indication of delay.

Syntax: void visdelay_end (void)

Parameters:

Returns:

visdelay _init

void.

void.

Initialises ready for visdelay functions.
Syntax: void visdelay_init (void)

Parameters :

Returns:

void.

void.

This function provides error reporting in Wimp programs, causing a (possibly fatal)
error message to appear in a pop-up dialogue box.
Syntax:

Parameters:

Returns:

Other Information:

void werr(int fatal, char* format, _)

int fatal - non-zero indicates fatal error
char *format - printf-style format string
... - variable arg list of message to be printed
void.

The program exits if fatal is non-zero. The pointer is
restricted to the displayed dialogue box to stop the user
continuing until he has clicked on the OK button. The
message should be divided into at most three lines, each
of 40 characters or less.

285

wimp

wimp

286

This file provides a C interface to RISC OS Wimp SWls, and the following useful

type definitions.

wimp_flags

typedef enum{

wimp_ WMOVEABLE

wimp_REDRAW_OK

Ox00000002,
\

OxOOOOOOlO ,

wimp_ WPANE = Ox00000020 ,

wimp_WTRESPASS = Ox00000040,

wimp_WSCROLL_Rl= Ox00000100,

wimp_SCROLL_ R2 = Ox00000200,

is moveable

can be redrawn entirely by Wimp ie
no user graphics

window is stuck over tool window

window is allowed to go outside
main area

scroll request returned when scroll
button clicked - auto-repeat

as SCROLL_Rl, debounced , no

auto

wimp_REAL_COLOURS = Ox000000400 , use real window colours.

wimp_ BACK_ WINDOW = Ox000000800 , this window is a background
window.

wimp_ HOT_ KEYS = Ox000001000 , generate events for 'hot keys'

wimp_WOPEN = Ox00010000 , window is open

wimp_ WTOP = Ox00020000 , window is on top (not covered)

wimp_WFULL = Ox00040000, window is full size

wimp_WCLICK_TOGGLE = Ox00080000 , open_window_request was due to

wimp_WFOCUS = Ox00100000 ,

wimp_ WBACK = Ox01000000 ,

wimp_WQUIT = Ox02000000 ,

wimp_WTITii = Ox04000000 ,

wimp_WTOGGLE= Ox08000000,

wimp_WVSCR

wimp_WSIZE

OxlOOOOOOO ,

Ox20000000 ,

click on Toggle size icon

window has input focus

window has Back icon

has a Close icon

has a title bar

has a Toggle _size icon

has vertical scroll bar

has Adjust size icon

wimp_ WHSCR = Ox40000000 ,

wimp_ WNEW = Ox80000000

}wimp_flags ;

Note: Always set the WNEW flag.

wimp_wcolours

RISC OS library reference section

has horizontal scroll bar

use these new flags

If the work area background is 255, it isn 't painted If the title fo reground is 255 , you
get no borders, title etc. at all.

typedef enum{

wimp_WCTITLEFORE,

wimp_ WCTITLEBACK,

wimp_WCWKAREAFORE,

wimp_ WCWKAREABACK,

wimp_WCSCROLLOUTER ,

wimp_WCSCROLLINNER ,

wimp_WCTITLEHI ,

wimp_WCRESERVED

}wimp_wcolours ;

wimp_iconflags

If the icon contains anti-a liased text, the colour fields give the font handle

typedef enum{

wimp_ITEXT = OxOOOOOOOl ,

wimp_ ISPRITE Ox00000002 ,

wimp_I BORDER Ox00000004 ,

wimp_ IHCENTRE Ox00000008 ,

wimp_ IVCENTRE Ox00000010,

wimp_ IFILLED = Ox00000020 ,

wimp_ IFONT = Ox00000040 ,

wimp_ IREDRAW = Ox00000080 ,

wimp_ INDIRECT = Ox00000100,

icon conta ins text

icon is a sprite

icon has a border

text is horizontally centred

text is vertica lly centred

icon has a filled background

text is in an anti-aliased font

redraw needs application's help

icon data is 'indirected'

287

wimp

288

wimp_IRJ UST = Ox00000200 ,

wimp_I ESG_ NOC Ox00000400 ,

text right-justified in box

if selected by Adjust, don't cancel
other icons in same ESG

wi mp_I HALVESPRITE = Ox00000800 , plot sprites half-size

wimp_IBTYPE = Ox00001000 , 4-bit field: button type

wimp_ ISELECTED Ox00200000 ,

wimp _ INOSELECT Ox00400000 ,

wimp_ IDELETED Ox00800000 ,

wi mp_IFORECOL Ox01000000 ,

wimp_ IBACKCOL OxlOOOOOOO

}wimp_i conflags ;

wimp_ibtype

Button types:

typedef enum{

wimp_ BIGNORE ,

wi mp_ BNOTIFY ,

wimp_ BCLICKAUTO ,

wimp_ BCLICKDEBOUNCE ,

wimp_ BSELREL ,

wimp_ BSELDOUBLE,

wimp_ BDEBOUNCEDRAG ,

wimp_ BRELEASEDRAG ,

wimp_ BDOUBLEDRAG ,

wimp_ BSELNOTIFY ,

wimp_ BCLICKDRAGDOUBLE ,

icon selected by user (inverted)

icon cannot be selected (shaded)

icon has been deleted

4-bit field: foreground colour

4-bit field: background colour

ignore all mouse ops

wimp_ BCLICKSEL , useful for on/off and radio buttons

wi mp_ Bwritable 1 5

}wimp_ ibtype ;

wimp_bbits

Button state bits

typedef enum{

wimp_BRIGHT OxOOl ,

wimp_BMID = Ox002 ,

wimp_ BLEFT = Ox004 ,

wimp_BDRAGRIGHT = Ox010 ,

wimp_ BDRAGLEFT = Ox040 ,

wimp_BCLICKRIGHT = OxlOO ,

wimp_ BCLICKLEFT = Ox400

}wimp_bbits ;

wimp_dragtype

typedef enum{

wimp_MOVE_WIND

wimp_ SIZE_ WIND

wimp_ DRAG_ HBAR

wimp_DRAG_VBAR

l ,

2 '

3 '

4 '

wimp_ USER_FIXED = 5 ,

wimp_USER_ RUBBER

wimp_ USER_ HIDDEN

}wimp_dragtype;

wimp_w

typedef int wimp_w ;

Abstract window handle.

wimp_i

typedef int wimp_ i ;

Abstract icon handle.

6 '

7

RISC OS library reference section

change position of window

change size of window

drag horizontal scroll bar

drag verti ca l scroll bar

user drag box - fixed size

user drag box - rubber box

user drag box - invisible box

289

wimp

290

wimp_t

typedef int wimp_ t ;

Abstract task handle.

wimp_icondata

The data field in an icon.

typedef union{

char text[12] ;

char sprite_ name[12] ;

struct

char *name;

void *spritearea;

BOOL nameisname ;

indirectsprite ;

struct

char *buffer;

char *validstring;

int bufflen;

indirect text;

wimp_icondata ;

wimp_box

typedef struct{

int xO , yO , xl , yl

} wimp_ box ;

up to 12 bytes of text

up to 12 bytes of sprite name

0 ~ use the common sprite area

1 ~use the Wimp sprite area

if False, name is in fact a sprite
pointer.

if indirect

pointer to text buffer

pointer to validation string

length of text buffer

RISC OS library reference section

wimp_ wind

If there are any icon definitions, they shou ld follow this st ructure immediately in

memory.

typedef struct{

wimp_ box box ;

int sex , scy ;

wimp_w behind ;

wimp_wflags flags;

char colours[8] ;

wimp_ box ex ;

wimp_iconflags titleflags ;

wimp_ iconflags workflags;

void *spritearea;

int minsize· ;

wimp_i condata title ;

int nicons;

} wimp_wind;

wimp_winfo

screen coordinates of work area

scroll bar positions

handle to open window behind , or -
I if top

word of flag bits defined above

colours: index using
wimp_ wcolours .

maximum extent of work area

icon flags for title bar

just button type relevant

O ~use the common sprite area

1 ~use the Wimp sprite area

two 16-bit OS-unit fields,
(width/height) giving minimum size

of window

O ~use title

title icon data

number of icons in window

Result of get_in fo call. Space for icons must follow.

typedef struct

wimp_w w;

wimp_wind info ;

} wimp_winfo ;

291

Wllll/J

292

wimp_icon

Icon description structure .

typedef struct

wimp_ box box;

wimp_iconflags flags ;

wimp_icondata data;

} wimp_icon;

wimp_icreate

Structure for creating icons.

typedef struct

wimp_w w;

wimp_icon i ;

} wimp_ icreate ;

wimp_openstr

typedef struct

wimp_w w;

wimp_ box box;

int x , y ;

wimp_w behind ;

} wimp_openstr ;

wimp_wstate

Result for winc!§w state enquiry

typedef struct {

wimp_ openstr o;

wimp_wflags flags;

} wimp_wstate;

bounding box - relative to window
origin (work area top left)

word of flag bits defined above

union of bits & bobs as above

window handle

screen position of visible work area

'real ' coordinates of visible work
area

handle of window to go behind
(-1 =top, -2 =bottom)

wimp_etypes

Event types.

typedef enurn

wirnp_ENULL ,

wirnp_ EREDRAW ,

wirnp_ EOPEN ,

wirnp_ECLOSE ,

wirnp_EPTRLEAVE ,

wirnp_EPTRENTER,

wirnp_EBUT,

wirnp_EUSERDRAG ,

wirnp_EKEY ,

wirnp_ EMENU ,

wirnp_ ESCROLL ,

wirnp_ ELOSECARET ,

wirnp_EGAINCARET ,

wirnp_ESEND = 17,

wirnp_ ESENDWANTACK

wirnp_ EACK = 19

} wirnp_etype ;

wimp_emask

Event type masks.

typedef enurn

18 ,

wirnp_EMNULL = 1 << wirnp_ENULL ,

.RISC OS library reference section

null event

redraw event

mouse button change

send message, don't worry if it
doesn 't arrive

send message, return ack if not
acknowledged

acknowledge receipt of message

wirnp_EMREDRAW 1 << wirnp_ EREDRAW ,

wirnp_EMOPEN = 1 << wirnp_EOPEN ,

wirnp_ EMCLOSE = 1 << wirnp_ ECLOSE,

293

wimp

294

wirnp_ EMPTRLEAVE

wirnp_ EMPTRENTER

1 << wirnp_ EPTRLEAVE ,

1 << wirnp_ EPTRENTER ,

wirnp_ EMBUT = 1 << wirnp_EBUT ,

wirnp_EMUS ERDRAG = 1 << wirnp_ EUSERDRAG ,

wirnp_ EMKEY = 1 << wirnp_ EKEY ,

wirnp_ EMMENU = 1 << wirnp_ EMENU ,

wirnp_ EMSCROLL 1 << wirnp_ ESCROLL

wirnp_ EMLOSECARET 1 << wirnp_ ELOSECARET

wirnp_ EMGAINCARET 1 << wirnp_ EGAINCARET

wirnp_ ESEND = 1 << wirnp_ ESEND

wirnp_ EMSENDWANTACK = 1 << wirnp_ ESENDWANTACK

wirnp_EMACK = 1 << wirnp_ EACK

} wirnp_ ernask ;

wimp_redrawstr

typedef struct

wirnp_ w w;

wirnp_box box ;

int sex , scy;

wirnp_box g ;

} wirnp_redrawstr ;

wimp_mousestr

typedef struct

int x , y ;

wirnp_bbits bbits ;

wirnp_w w; <:_,

wirnp_i i ;

} wirnp_rnousestr;

work area coordinates

scroll bar positions

current graphics window

mouse x and y

button state

window handle, or-I if none

icon handle, or -I if none

wimp_caretstr

typedef struct

wimp_w w;

wimp_ i i;

int x , y;

int height ;

int index ;

} wimp_caretstr ;

wimp_msgaction

RISC OS library reference section

offset relati ve to window origin

-I if calc within icon

bit 24 ~ VDU-5 type caret
bit 25 ~caret invi sible
bit 26 ~bits 16 .. . 23 contain colour
bit 27 ~colour is 'real ' colour

position within icon

Message action codes are allocated just like SW! codes.

typedef enum {

wimp_ MCLOSEDOWN 0 '

wimp_ MDATASAVE = l,

wimp_ MDATASAVEOK = 2 '

wimp_ MDATALOAD = 3 '

wimp_ MDATALOADOK = 4 ,

wimp_MDATAOPEN 5 '

wimp_ MRAMFETCH 6 '

wimp_ MRAMTRANSMIT = 7 ,

wimp_MPREQUIT = 8 ,

wimp_ PALETTECHANGE = 9 ,

wimp_ FilerOpenDir = Ox0400 ,

reply if any dialogue with the user is
required, and the closedown
sequence will be aborted.

request to identify directory

reply to message type I

request to load/ insert dragged icon

reply that file has been loaded

warni ng that an object is to be
opened

transfer data to buffer in my
workspace

I have transferred some data to a
buffer in your workspace

295

296

wirnp_Filer CloseDir = Ox0 401,

wirnp _Not i fy = Ox400 4 0

wirnp _MMENUWARN = Ox400c0 ,

wirnp _MMODECHANGE = Ox400cl ,

wirnp_MINITTASK = Ox400c2 ,

wirnp_MCLOSETASK = Ox400c3 ,

wimp_MSLO~LHANGE = Ox400c4 ,
\

wirnp_MSETSLOT = Ox400c5 ,

wirnp_MTASKNAMERQ

wirnp_MTASKNAMEIS

Ox400c6 ,

OX400c7 ,

wirnp_MHELPREQUEST = Ox502 ,

wirnp_MHELPREPLY = Ox503 ,

net filer notify broadcast

menu warning. Sent if
wimp_MSUBLINKMSG set. Data
sent is:

submenu field of relevant
wirnp_rnenuitern.

screen x-coord

screen y-coord

list of menu selection indices
(0 .. n-1 for each menu)

terminating-I word.

Typical response is to call
wirnp_ c r eat e_ subrnenu.

Slot size has altered

Task Manager requests application
to change its slot size

Request task name

Reply to task name request

interactive help request

interactive help message

Messages for dialogue with printer applications

wirnp_MPrintFi l e = Ox80140 ,

wirnp_MWillPrint = Ox80141 ,

wirnp_MPrintTypeOdd = Ox80145 ,

Printer application's first response
to a DATASAVE

Acknowledgement of PrintFile

Broadcast when strange files
dropped on the printer

wimp_MPrintTypeKnown Ox80146 , Acknowledgement to above

wimp_MPrinterChange

} wimp_msgaction ;

wimp_msghdr

Ox80147

RISC OS library reference section

New printer app lication installed

Message block header. size is the s ize of the whole ms gs tr, see below.

typedef struct

int size ;

wimp_ t task;

int my_ ref ;

int your_ ref;

wimp_msgaction action ;

} wimp_msghdr ;

wimp_msgdatasave

typedef struct

wimp_w w;

wimp_ i i;

int x; int y;

int estsize ;

int type;

char leaf [12] ;

} wimp_msgdatasave ;

wimp_msgdatasaveok

20<=size<=256, multiple of 4

task handle of sender (fi ll ed in by
Wimp)

unique ref number (fi ll ed in by
Wimp)

(O==>none) if non-ze ro,
acknowledge

message action code

window in which save occurs.

icon there

position with in that window of
destination e f save

estimated size of data, in bytes

fil e type of data to save

proposed lea f-na me of fil e,
0-terminated

w, i , x , y , type, estsizecopiedunalteredfromDataSavemessage .

typedef struct

wimp_w w;

wimp_i i;

window in wh ich save occurs.

icon there

297

wimp

298

int x ; int y ;

int estsize ;

int type ;

char name[212];

} wimp_msgdatasaveok ;

wimp_msgdataload

position within that window of
dest ination of save

estimated size of data, in bytes

fil e type of data to save

the name of the file to save

For a data load reply, no arguments a re required.

typedef struct

wimp_w w;

wimp_ i i ;

int x ; int y ;

int size ;

int type ;

char name[212] ;

} wimp_msgdataload ;

wimp_msgdataopen

ta rget window

target icon

target coordinates in target window
work a rea

must be 0

type of fil e

the fil ename follows

wimp_msgdataopen de rives its typedef from wimp_msgdataload, since the
data provided when opening a file is exactly the sa me. The window, x and y refe r to
the bottom lefthand corner of the icon that represents the file be ing opened , or
w==-1 if there is no such icon.

wimp_ms_gramfetch

Transfer data in memory.

typedef struct

char *addr ;

int nbytes ;

} wimp_msgramfetch ;

address of data to transfe r

number of bytes to transfer

RISC OS library reference section

wimp_msgramtransmit

'I have transferred some data to a buffer in your workspace'.

typedef struct

char *addr;

int nbyteswritten ;

} wimp_msgramtransmit;

wimp_msghelprequest

typedef struct

wimp_mousestr m;

} wimp_msghelprequest;

wimp_msghelpreply

typedef struct

char text[200] ;

} wimp_msghelpreply ;

wimp_msgprint

Structure used in all print messages.

typedef struct {

int filler[S]

int type ;

char name[256-44]

} wimp_msgprint ;

wimp_msgstr

Message block.

typedef struct

wimp_msghdr hdr;

union {

char chars[236] ;

copy of value sent in RAMfetch

number of bytes written

where the help is required

the helpful string

filetype

filename

299

300

maximum data size int words[59];

wimp_msgdatasave datasave ;

wimp_msgdatasaveok datasaveok ;

wimp_msgdataload dataload;

wimp_msgdataopen dataopen ;

wimp_msgramf etch ramf etch ;

wimp_msgramtransmit ramtransmit ;

wimp_msghelprequest helprequest;

wimp_msghelpreply helpreply;

wimp_msgprint print ;

data ;

wimp_msgstr ;

wimp_eventdata

typedef union

wimp_ openstr o ;

struct {

for redraw, close, enter, leave events

wimp_mousestr m;

wimp_bbi ts b ; } but;

wimp_box dragbox;

for button change event

for user drag box event

struct {wimp_caretstr c ; int chcode;} key ; for key events

int menu [10 J ; for menu event: terminated by -l

struct {wimp_openstr o ; int x , y;} scrol l;forscrollrequest

wimp_ caretstr c;

wimp_msgstr msg;

} wimp_eventdata ;

x=-l for left , +I for right

y=- 1 for down , +I for up

scroll by +/-2 ->page scrol l request

for caret gain/lose

for messages

wimp_eventstr

Wimp event description

typedef struct

wi mp_ e t ype e ;

wimp_ eventdata data ;

} wimp_ eventstr ;

wimp_menuhdr

typedef struct

char title[12] ;

RISC OS library reference section

event type

menu title (optiona l)

char tit_fcol, tit_ bcol, work_ fcol , work_ bcol; colours

int width , height ;

int gap;

} wimp_menuhdr ;

wimp_menuflags

size of following menu items

vertical gap between items

Use wimp_ INOSELECT to shade the item as unselectable , and the button type to
mark it as writeable.

typedef enum

wimp_MTICK = 1 ,

wimp_MSEPARATE = 2 ,

wimp_Mwriteable = 4 ,

wimp_ MSUBLINKMSG = 8 ,

wimp_MLAST = Ox80

} wimp_menuflags;

wimp_menuptr

show a=> flag , and inform program
when it is activated

signal last item in the menu

Only for the circular reference in menui tern/ str.

1typedef struct wimp_menustr *wimp_menuptr;

301

wimp

302

wimp_menuitem

Submenu can also be a wimp_ w, in which case the window is opened as a dialogue
box within the menu tree.

typedef struct

wimp_menuflags flags ;

wimp_menuptr submenu;

wimp_ iconflags iconflags;

wimp_ icondata data;

} wimp_menuitem ;

wimp_menustr

typedef struct {

wimp_menuhdr hdr;

} wimp_menustr ;

wimp_dragstr

typedef struct

wimp_w window ;

wimp_ dragtype type ;

wimp_box box ;

wimp_box parent ;

} wimp_ qragstr ;

wimp_which_block

typedef struct

wimp_w wibdow ;

int bit_mask ;

int bit_set ;

} wimp_which_ b l ock ;

menu entry flags

wimp_menustr* pointer to sub
menu, or wimp_w dialogue box, or
-! if no submenu

icon flags for the entry

icon data fo r the entry

zero or more menu items follow in
memory

initial position for drag box

parent box for drag box

handle

bit set=> consider this bit

desired bit setting

wimp_pshapestr

typedef struct

int shape_num ;

char *shape_data;

int width , height ;

int activex, activey ;

} wimp__pshapestr ;

wimp_font_array

typedef struct

char f[256];

} wimp_ font _ array;

wimp_template

Template reading structure

typedef struct

int reserved ;

wimp_wind *buf;

char *work_ free;

char *work_end;

wimp_ font_ array *font;

char *name ;

RISC OS library reference section'

pointer shape qumber (0 turn off
pointer)

shape data, NULL pointer implies
existing shape

Width and height in pixels Width=
4n , where n is an integer

active point (pixels from top left)

initialise all to zero before using for
first load_ template, then just
use repeatedly without altering

ignore - implementation detail

pointer to space for putting
template in

pointer to start of free Wimp
workspace -you have to provide the
Wimp system with workspace to
store its redirected icons in end of
workspace you are offering to the
Wimp

points to font reference count array;
0 pointer implies fonts not allowed

name to match with (can be
wildcarded)

303

Function prototypes

int index ;

} wimp_ template ;

wimp_paletteword

position in index to search from (0
= start)

The gcol char (least s ignificant) is a gcol colour except in 8-bpp modes, when bits

0 .. 2 a re the tint and bits 3 .. 7 are the gcol co lour.

typedef union {

struct {char gcol ; char red ; char green; char blue;}

bytes;

int word ;

} wimp_paletteword ;

wimp_palettestr

typedef struct

wimp_paletteword c[16] ; Wimpcolou rs0 .. 15

wimp_paletteword screenborder , mousel , mouse2, mouse3;

} wimp_palettestr ;

Function prototypes

304

wimp_initialise

os error *wimp_initialise(int *v)

Closes a nd deletes a ll windows, returning Wimp version number.

wimp_taskinit

os error *wimp_taskinit(char *name, int *version, wimp_ t
*t)

name is the name of the program. Used instead of wimp_ ini tialise. Returns
your task handle . Version sho uld be at least 200 on entry, and is set to the current
wimp vers ion numbe r on return .

RISC OS library reference section

wimp_create_wind

os_ error *wimp_create_wind(wimp_wind *, wimp_w *)

Defines (but does not disp lay) wi ndow, retu rn ing window hand le.

wimp_create_icon

os_ error *wimp_create_ icon(wimp_icreate *, wimp_ i *result)

Adds icon defin ition to that of wi ndow, return ing icon handle.

wimp_delete_wind

os_ error *wimp_ delete_ wind(wimp_w)

wimp_delete_icon

os_error *wimp_ delete_icon(wimp_w, wimp_ i)

wimp_open_wind

os_ error *wimp_open_ wind(wimp_ openstr *)

Makes a window appear on the screen.

wimp_close_wind

os_ error *wimp_close_wind(wimp_ w)

Re moves fro m the active li st t he window with its handle in the integer a rgument

wimp_poll

os_ error *wimp_ poll(wimp_ emask mask , wimp_ eventstr
*result)

Polls the next event from the Wimp.

wimp_save_fp_state_on_poll (void)

os_error *wimp_ save_fp_state_ on_po l l(void)

Activates the savi ng of the fl oat ing po int state on ca ll s to wimp_ pol l and
wimp_poll idle; this is needed if you do a ny fl oating point at a ll , as othe r
progra ms may corrupt t he FP status word , which is e ffective ly a globa l in your
program.

305

Function prototypes

306

wimp_corrupt_fp_state_on_poll (void)

void *wimp_corrupt_fp_ state_on_poll(void)

Di sables the saving of the fl oating point state on ca lls to wimp_pol l and
wimp_pollidle: use only if you never use FP at a ll .

wimp_redraw_wind'

os_error *wimp_ redraw_wind(wimp_ redrawstr* , BOOL*)

Draws a window outline and icons. Return Fal se if there's nothing to draw.

wimp_update_wind

os_error *wimp_update_wind(wimp_ redrawstr* , BOOL*)

Returns the visible portion of a window. Returns False if there's nothing to redraw.

wimp_get_rectangle

os_error *wimp_get_ rectangle(wimp_ redrawstr* , BOOL *)

Return s the next rectangle in the list, or False if done.

wimp_get_wind_state

os_error *wimp_get_wind_ state(wimp_w, wimp_wstate
*result)

Reads the current window state.

wimp_get_wind_info

os_error *wimp_get_wind_ info(wimp_winfo *result)

On entry resul t->w gives the window in question. Space for any icons must
follow *result.

wimp_set_icon_state

os_error *wimp_ set_ icon_ state(wimp_w, wimp_ i ,
wimp_ iconflags value , wimp~iconflags mask)

Sets an icon's fl ags as (old_ state & -mask) " value.

wimp_get_icon_info

os_error *wimp_get_ icon_ info(wimp_w, wimp_ i , wimp_ icon
*result)

RISC OS library reference section

Gets the current state of an icon .

wimp_get_point_info

os_ error *wimp_ get_point_ info(wimp_mousestr *result)

Gives information regarding the sta te of the mouse.

wimp_drag_box

os error *wimp_ drag_ box(wimp_dragstr *)

Starts the Wimp dragging a box.

wimp_force_redraw

os_ error *wimp_force_redraw(wimp_ redrawstr *r)

Marks an area of the screen as invalid. If r->wimp_w == -1, use screen
coordinates. Only the first five fields of rare valid.

wimp_set_caret_pos

os_ error *wimp_ set_ caret_pos(wimp_ caretstr *)

Sets the position and size of the text caret.

wimp_get_caret_pos

os_ error *wimp_ get_ caret_pos(wimp_ caretstr *)

Gets the position and size of the text caret.

wimp_create_menu

os_ error *wimp_create_menu(wimp_menustr *m, int x , int y)

'Pops up' a menu structure. Set m== (wimp_menustr*) -1 to clear the menu
tree.

wimp_decode_menu

os_ error *wimp_ decode_menu(wimp_menustr * void * void *)

wimp_which_icon

os_error *wimp_which_icon(wimp_which_block *, wimp_i
*results)

The results appear in an array, terminated by a (wimp_i) - 1.

307

Function prototypes

308

wimp_set_extent

os_error *wimp_ set_ extent(wimp_ redrawstr *)

Alters the extent of a window's work area - on ly the handle and the first set of fou r
coordinates are looked at.

wimp_set_point_shape

os_error *wimp_set_point_shape(wimp_pshapestr *)

Sets the pointer shape on screen .

wimp_open_template

os_error *wimp_ open_ template(char *name)

Opens the named file to allow load_ template to read a template from the file.

wimp_close_template

os_error *wimp_close_template(void)

Closes the currently open template file.

wimp_load_template

os_error *wimp_load_ template(wimp_ template *)

Loads a window template from an open file into buffer.

wimp_processkey

os_error *wimp_processkey(int chcode)

Hands back to the Wimp a key that you do not understand.

wimp_closedown

os_error *wimp_ closedown(void)

wimp_taskclose

os error *wimp_ taskclose(wimp_ t)

Calls closedown in the multi-tasking form .

wimp_starttask

os_error *wimp_ starttask(char *clicmd)

RlSC OS library reference section

Starts a new Wimp task, with the given CL! command.

wimp_getwindowoutline

os_ error *wimp_ getwindowoutline(wimp_redrawstr *r)

Sets r~w on entry. On exit. r~box will be the screen coordinates of the window,
including border, title, scroll bars.

wimp_pollidle

os error *wimp_pollidle(wimp_emask mask, wimp_ eventstr
*result, int earliest)

Like wimp_poll, but does not return before the earliest return time. This is a
value produced by OS_ ReadMonotonicTime.

wimp_ploticon

os error *wimp_ploticon(wimp_ icon*)

Called only within an update or redraw loop, and just does the plotting This need
not be a real icon attached to a window.

wimp_setmode

os error *wimp_setmode(int mode)

Sets the screen mode. Palette colours are maintained, if possible.

wimp_readpalette

os_ error *wimp_ readpalette(wimp_palettestr*)

wimp_setpalette

os_ error *wimp_setpalette(wimp_palettestr*)

The bytes. gcol values of each field of the pal et testr are ignored; only the
absolute colours are taken into account

wimp_setcolour

os error *wimp_ setcolour(int colour)

bits 0 .. 3 =Wimp colour (translate for current mode)

4 ... 6 = gcol action

7 = foreground/background.

309

Function prototypes

310

wimp_spriteop

os_error *wimp_spriteop(int reason_ code , char *name)

Calls SW! Wimp_ SpriteOp

wimp_spriteop_full

os_ error *wimp_spriteop_full(os_regset *)

Calls SW! Wimp_Spri teOp allowing full informat ion to be passed

wimp_baseofsprites

void *wimp_baseofsprites(void)

Returns a sprite_ area*, which may be moved about bymergespritefile.

wimp_blockcopy

os_error *wimp_blockcopy(wimp_ w, wimp_ box *source, int x,
int y)

Copies the source box (defined in window coordinates) to the given destination (in
window coordinates). Invalidates any portions of the destination that cannot be
updated using on-screen copy.

wimp_errflags

typedef enum {

wimp_EOK = 1 ,
wimp_ECANCEL = 2 ,
wimp_EHICANCEL 4
} wimp_errflags;

If OK and CANCEL are both 0 you get an OK.

wimp_reporterror

put in OK box
put in CANCEL box
highlight CANCEL rather than OK

os_error *wimp_reporterror(os_ error* , wimp_errflags , char
*name)

Produces an e rror window. Uses sprite ca lled error in the Wimp sprite poo l.
name shou ld be the program name, appearing after error in at the head of the
dialogue box.

RISC OS library reference section

wimp_sendmessage

os_error *wimp_ sendrnessage(wimp_etype code , wimp_msgstr *
msg, wimp_ t dest)

dest can also be 0, in which case the message is sent to every task in turn,
including the sender. msg can also be any other wimp_ eventdata * value.

wimp_sendwmessage

os_error *wimp_sendwmessage(wimp_etype code , wimp_msgstr
*msg, wimp_w w, wimp_ i i)

Sends a message to the owner of a specific window or icon . msg can also be any
other wimp_ eventdata *value.

wimp_create_submenu

os_error *wimp_create_submenu(wimp_menustr *sub, int x , int
y)

sub can also be a wimp_w, in which case it is opened by the Wimp as a dialogue
box.

wimp_slotsize

os error *wimp_ slotsize (int *currents l ot ,
int *nextslot,
int *freepool)

currentslot/nextslot==O - > just read setting.

wimp_transferblock

os_error *wimp_ transferblock(
wimp_ t sourcetask ,
char *sourcebuf ,
wimp_t desttask,
char *destbuf,
int buf len)

Transfers memory between domains.

wimp_setfontcolours

os_error *wimp_set fontcolours(int foreground , int
background)

Sets font manager colours. The Wimp handles how many shades etc. to use.

311

wimpt

312

wimp_readpixtrans

os_error *wimp_ readpixtrans(sprite_ area *area , s p rite_ i d
*id , sprite_ factors *factors , sprite_pixtrans *pixtrans)

Tells you how the Wimp wi ll plot a sprite when asked to Pu tSp ri teScaled

wimp_command_tag

typedef enum
wimp_ command_ TITLE = 0 ,
wimp_command_ACTIVE = 1 ,
wimp_ command_ CLOSE_ PROMPT 2 ,
wimp_ command_ CLOSE_ NOPROMPT = 3
} wimp_ command_ tag ;

wimp_commandwind

typedef s t ruct
wimp_command_ tag tag ;
char *title
} wimp_ commandwind ;

wimp_commandwindow

os_error *wimp_ commandwi ndow(wimp_ commandwi nd
commandwi ndow)

Opens a text window for normal VDU 4-type output. The tag types correspond to
the four kinds o f call to SWI wimp_CommandWindow described in the RISC OS
Programmer's Reference Manual. t itle is only required if tag ==
wimp_command_ TITLE. It is the application 's responsibility .to set the tag
correctl y.

These functions provide low-level Wimp functionality.

wimpt_poll

Polls for an event from the Wimp (with extras to buffer one event) .
Syntax:

Parameters :

os_error *wimpt_poll(wimp_emask mask , wimp_eventstr
*result)

wimp_ emask mask - ignore events in the mask
wimp_eventstr *result - the event returned from
Wimp

Returns :

Other Information :

wimpt_fake_event

RISC OS library reference section

possible error condition.

If you want to poll at thi s low level (ie avoiding
event_process ()),use thi s function rather than
wimp_poll Using wimpt_poll allows you to use the
routines shown below.

Posts an event to be collected by wimpt_poll
Syntax:

Parameters :

Returns:

Other In formation:

wimpt_last_event

void wimpt_fake_event (wimp_eventstr *)

wimp_ eventstr - the posted event

void

use with ca re!

Informs the caller of the last event returned by wimpt_pol l.
Syntax: wimp_eventstr *wimpt_last_event(void)

Parameters: void

Return s: pointer to last event returned by wimpt_poll.

wimpt_last_event_was_a_key

Informs the ca ll er if the last event returned by wimpt_pol l wa s a key stroke.
Syntax:

Parameters:

Returns:

Other Information:

wimpt_noerr

int wimpt_last_event_was_a_key(void)

void

non-zero if last event was a keystroke.
retained for backwards compatibility Use
wimpt_ last_ event for preference, and test if e field of
returned struct == wimp_EKEY.

Halts the program and reports an error in a dialogue box (if e!=O)
Syntax:

Parameters:

Returns:

Other Information :

void wimpt_noerr(os_error *e)

os_error *e - error return from system ca ll
void.

Useful for 'wrapping up' system ca lls which are not
expected to fai l ; if failure occurs, your program probably
has a logica l error Ca ll when an error wou ld mean
di saster: for example:

313

wimpt: control of graphics environment

wimpt_noerr(s ome_ system_call(.......)) ;

The error message is:

ProgName has suffered a fatal interna l error
(errormessage) and must exit immediately .

wimpt_complain

Reports an error in a dialogue box (if e!=O)

Syntax: os_error *wimpt_ complain(os_ error *e)

Parameters:

Returns:

Other Information:

os_ error * e - error return from system call

the error returned from the system call (ie e).

Use ful for 'wrapping up' system ca ll s which may fai l. Call
when your program can still limp on regardless (taking
some appropriate action) .

wimpt: control of graphics environment

314

wimpt_checkmode

Registers the current screen mode with the wimpt module.

Syntax:

Parameters:

Returns :

wimpt_mode

Reads the screen mode.

Syntax:

Parameters :

Returns:

Other Information:

wimpt_dx/wimpt_dy

BOOL wimpt_checkmode(void)

v oid

True if screen mode has changed .

int wimpt_ mode(void)

void

screen mode.

faster than a normal OS ca ll . Value is only valid if
wimpt_checkmode is called at redraw events .

Informs the caller of OS x/y units per screen pixel.

Syntax: ; - · wimpt_ dx(void)

int wimpt_dy(void)

Parameters: void

Returns: OS x/y units per screen pixel

Other Information

wimpt_bpp

AISC OS library reference section

faster than a normal OS call. Value is only valid if
wimpt_checkmode is called at redraw events.

Informs the caller of bits per screen pixel.

Syntax:

Parameters:

Returns:

Other Information:

wimpt_init

int wimpt_ bpp(void)

void

bits per screen pixel (in current mode)

faster than a norma l OS call. Value is only valid if
wimpt_ checkmode is called at redraw events.

Set program up as a Wimp task.

Syntax: int wimpt_ init (char *programname)

Parameters:

Returns:

Other Information:

char *programname - name of your program

the current wimp version number.

Remembers screen mode, and sets up signal handlers so
that task exits cleanly, even after fatal errors. Response to
signals SIGABRT, SIGFPE, SIG ILL, SIGSEGV and SIGTERM
is to display error box with message:

progname has suffered an internal error (type = signal)
and must exit immediately

SIG INT (Escape) is ignored . progname will appear in the Task manager display
and in error messages. Calls wimp_ taskini t and stores task_ id returned .
Also installs exit-handler to close down task when program calls exit () function.

wimpt_wimpversion

Tell wimpt what version of the wimp you understand.

Syntax:

Parameters:

Returns:

Other Information:

void wimpt_wirnpver sion(int version) ;

int - the version number of the wimp that you
understand.

void.

Call this routine before calling wimpt_ ini t, if you know
about the features in a Wimp beyond version 2.00.

This argument will then be passed to wimp_ini t, allowing the Wimp to
understand what facilities you know about. Then call wimpt_ini t, allowing the
wimp to return its current version number.

315

win

316

wimpt_programname

Informs the caller of the name passed to wimpt_in i t.

Syntax: char *wirnpt_prograrnnarne(void)

Parameters : void.

Returns: pointer to the program 's name.

wimpt_reporterror

Reports an OS error in a dialogue box (including program name) .

Syntax:

Parameters :

Returns:

Other Information :

wimpt_task

void wirnpt_reporterror(os_error*, wirnp_errflags)

os_error* - OS error block
wimp_errflags - flag whether to include OK and/or
CANCEL (highlighted or not) button in dia logue box

void.

similar to wimp_ reporterror (), but includes the
program name automatica lly (eg the one passed to
wimpt_ini t).

Informs the caller of its task handle.

Syntax: wirnp_t wirnpt_ task(void)

Parameters : void

Returns: task handle.

wimpt_forceredraw

Causes the whole screen to be inva lidated (run ning applications will be requested
to redraw all windows).

Syntax:

Parameters:

Returns:

void wirnpt_forceredraw(void)

vo id.

vo id.

This fi le offers central management of RISC OS windows , constructing a very
simple idea of 'window class' within RISC OS. RISC OS window class
implementat ions register the existence of each window with th is modu le.

RISC OS library reference section

This structure allows event-processing loops to be constructed that have no
knowledge of what other modules are present in the program For instance. the
dialogue box module tan contain an event-processing loop without reference to
what other window types are present in the program .

Claiming Events

win_register _event_handler

Insta ll s an event handler function for a given window.

Syntax:

Parameters:

Returns :

Other Information:

void win_register_event_handler(wimp_w , win_event_handler ,

void *handle)

wimp_w - the window's handle
win_event_handler - the event handler function
void *handle - ca ller-defined handle.

void.

Thi s call has no effect on the window itself- it just
informs the win module that the supplied function
should be ca lled when events are delivered to the
window. To remove a handler, ca ll with a null function
pointer:

win_register_ event_handler(w , (win_event_handler)0 , 0)

To catch key events for an icon on the icon bar, register a handler for .
win_I CONBAR:

win_event_handler(win_ ICONBAR , hand ler_ func , handle)

To catch load events for an icon on the icon bar, register a handler for
win_ICONBARLOAD:

win_event_handler(win_I CONBARLOAD , load_ func , handle)

win_read_event handler

Read current event handler for a given window, and the handle which it is passed.

Syntax: BOOL win_read_ e v e n t handler (wi mp_w w, win_ event_ha ndler *p,

vo i d **handle) ;

Parameters:

Returns:

wimp_w w - the window's handle

win_ event_ handler *p - the handler function

void **ha ndl e - the handle passed to the handler
function

TRUE if given window is registered , FALSE otherwise

317

318

Other Information:

win_claim_idle_events

This is useful for registering an alternative event handler
which can vet events, before passing them on to the
original handler.

Causes 'idle' events to be delivered to a given window.
Syntax: void win_claim_idle_ events(wimp_ w)

Parameters:

Returns:

Other Information:

wimp_w - the window's handle.
void.

To cancel this, call with window handle
(wimp_w) -1.

Note that idle (or null) events will not be delivered to your
window unless you also enable null events using
event_ setmask(O).

win_add_unknown_event_processor
Adds a handler for unknown events onto the front of the queue of such handlers.
Syntax: void win_add_unknown~event_processor

Parameters :

Returns:

Other Information:

(win_ unknown_event_processor , void *handle)

win_unknown_ event_processor - handler function
void *handle - passed to handler on call.
void.

The win module maintains a list of unknown event
handlers. An unknown event results in the 'head of the
list' function being called; if this function doesn't deal
with the event it is passed on to the next in the list, and
so on. Handler functions should return a Boolean result
to show if they dealt with the event, or if it should be
passed on. 'Known' events are as follows:

ENULL, EREDRAW, ECLOSE, EOPEN, EPTRLEAVE, EPTRENTER, EKEY, ESCROLL,
EBUT and ESEND/ESENDWANTACK for the following msg types
MCLOSEDOWN, MDATASAVE, MDATALOAD, MHELPREOUEST

All other events are considered 'unknown'. If none of the unknown event handlers
deals with the event, then it is passed on to the unknown event claiming window
(registered by win_ claim_unknown_events ()).If there is no such claimer,
then the unknown event is ignored.

RISC OS library reference section

win_remove_unknown_event_processor

Removes the given unknown event handler with the given handle from the stack of
hand lers.

Syntax:

Parameters:

Returns:

Other Information:

win idle_event_claimer

void win_remove_unknown_event_processor
(win_unknown_event_processor , void *handle)

win_unknown_event__proces sor -the handler to be
removed
void *handle - its handle.

void.

The handler to be removed can be anywhere in the stack
(not necessarily at the top)

Informs the ca ll er of wh ich window is claiming idle events.

Syntax: wimp_w win_ idle_event_claimer(void)

Parameters:

Returns:

Other Information :

void

Handle of window claiming idle events.

Returns (wimp_ w) -1, if no window is cla iming idle
events.

win_claim unknown_events

Cause any unknown, or non-window-specific events to be delivered to a given
window.

Syntax: vo i d win_claim_ unknown_ e vents(wi mp_w)

Parameters: wimp_w - handle of window to which unknown events
shou ld be delivered .

Returns :

Other Information:

void.

Call ing with (wimp_w) -1 ca nce ls thi s. See
win_add_unknown_ event_ processor ()for details
of which events are 'known'.

win unknown_event_claimer

Informs the ca ller of wh ich window is claiming unknown events.

Syntax: wimp_w wi n_unknown_event_ claimer (voidl

Parameters: void

Returns: Handle of window claiming unknown events.

Other In format ion: Return of (wimp_w) -1 means no cla imer registered.

319

w111: menus

win: menus

win_setmenuh

Attaches the given menu structure to the given window.
Syntax: void win_ setmenuh(wimp_w , void *handle)

Parameters:

Returns:

Other Information :

win_getmenuh

wimp_w - handle of window
void *handle - pointer to menu structure.
void.

Mainly used by higher level RISC_OSLib routines to
attach menus to windows (eg event_attachmenu ()).

Returns a pointer to the menu structure attached to the given window.
Syntax: void *wi n_getmenuh(wimp_w)

Parameters:

Returns:

Other Information :

wimp_w - handle of window

pointer to the attached menu (0 if no menu attached).
As for win_ setmenuh () ,this is used mainly by higher
level RISC OS routines (eg event_attachmenu ()).

win: event processing

320

win_processevent

Delivers an event to its relevant window, if such a window has been registered with
this module (via win_re gister_ e v ent_ha ndler ()).
Syntax: BOOL win_processevent(wimp_eventstr *)

Parameters :

Returns:

Other Information :

wimp_ eventstr* - pointer to the event which has
occurred

True if an event handler (registered with this module) has
dealt with the event, Fa lse otherwise.
the main client for this routine is event_process () ,
which uses it to deliver an event to its appropriate
window. Keyboard events are delivered to the current
owner of the ca ret.

RISC OS library reference section

win: termination

win_activeinc

Increment by one the win module's idea of the number of active windows owned
by a program .

Syntax : void win_activeinc(void)

Parameters:

Returns:

Other Information:

win_activedec

void

void.

event_process () ca ll s exit () on behalf of the
program when the number of active windows reaches
zero. Programs which wish to remain running even when
they have no act ive windows should ensure that
win_activeinc () is ca lled once before creati ng any
windows, so that the number of active windows is always
>=I. This is done for you if you use bar icon () to install
your program's icon on the icon bar.

Decrements by one the win module's idea of the number of act ive windows owned
by a program.

Syntax:

Parameters :

Returns :

Other Information :

win_activeno

void win_activedec(void)

void.

void.

See the note in win_activeinc () regarding program
termination .

In forms the ca ller of the number of active windows owned by your program

Syntax: int win_activeno (void)

Parameters:

Returns :

Other Information:

void.

number of act ive windows owned by the program .

This is given by (number of ca ll s to win_act i veinc ())
minus (number of ca ll s to win_act i vedec ()). Note
that modules in the RISC OS library itself may have made
calls to win_activeinc () and win_activedec ().

321

win: termination

322

win_give_away _caret

Gives the caret away to the open window at the top of the Wimp's window stack (if
that window is owned by your program)
Syntax: void win_give_away_caret(void)

Parameters:

Returns:

Other Information:

win_settitle

void.

void.

If the top window is interested it will take the caret. If not
then nothing happens. This only works if polling is done
using the wimpt module, which is the case if your main
inner loop goes something like: while (TRUE)
event_process ().

Changes the title displayed in a given window.
Syntax:

Parameters:

Returns:

Other information:

void win_settitle(wimp_w w, char • newtitlel ;

wimp_w w - given window's handle
char *newtitle - null-terminated string giving new
title for window.

void.

The title icon of the given window must be indirected text.
This will change the title used by all windows created
from the given window's template if you have used the
template module (since the Window Manager uses your
address space to hold indirected text icons). To avoid
this, the window ca n be created from a copy of the
template, ie

template *t = template_copy(template_find("name"));
wimp_ create_wind(t->window, &w);

win init

Initialise the centra lised window event system
Syntax: BOOL win_init (void I;

Parameters:

Returns:

Other Information:

void

TRUE if initial isat ion went OK.
If you use wimpt_ ini t (), to start your application,
then this call is made for you.

xferrecv

RISC OS library reference section

This file covers the general purpose importing of data by dragging icons.

xferrecv _ checki nsert
Sets up the acknowledge message for a MDATAOPEN or MDATALOAD and gets the
filename to load from.

Syntax:

Parameters:

Returns:

Other Information:

xferrecv _i nsertf i leok

int xferrecv_checkinsert(char **filename)

ch ar * * f i lenarne - returned pointer to filename.

the file's type (eg OxOfff for Edit)

This function checks to see if the last Wimp event was a
request to import a file. If it was, the function returns file
type and a pointer to file's name is put into * f i l enarne.
Otherwise, it returns -1.

. Deletes the scrap file (ff used for transfer), and sends acknowledgement of
MDATALOAD message.

Syntax:

Parameters:

Returns:

xferrecv _ checkpri nt

void xferrecv_insertfileok(voidl

void

vo i d.

Sets up an acknowledge message to a MPrintTypeOdd message and gets the
filename to print

Syntax:

Parameters:

Returns:

Other Information:

xferrecv _pri ntfi leok

int xferrecv_checkprint(char ** filename)

char **file name - returned pointer to filename.

The file's type (eg OxOfff for Edit)

The application can either print the file directly or convert
it to Printer$Temp for printing by the printer application.

Sends an acknowledgement back to the printer application. If a file is sent to
Printer$Temp, this also fills in the file type in the message.

Syntax:

Parameters:

Returns:

void xferrecv_printfileok(int type)

int type -type of file sent to Printer$Temp (eg OxO ff f
for Edit)

void.

323

xferrecv

324

xferrecv _checkimport

Sets up an acknowledgement message to a MDATASAVE message.

Syntax:

Parameters:

Returns :

xferrecv _buffer _processor

int xferrecv_ c heckimport(int *estsize)

int *estsize - sender's estimate of file size

File type

This is a typedef for the caller-suppli ed function to empty a full buffer during data
transfer.

Syntax: typedef BOOL (*xferrecv_ buffer_processor) (char ** buffer,

i nt *size)

Parameters :

Returns:

Other Information

xferrecv _doimport

char **buffer - new buffer to be used
int *size - updated size.

Fa lse if unable to empty buffer or create new one.

This is the function , supplied by the application , which
wi ll be called when the buffer is full. It shou ld empty the
current buffer, or create more space and modify size
accordingly, or return False *buffer and *size are the
current buffer and its size on function entry

Loads data into a buffer, and cal ls the ca ller-supplied function to empty the buffer
when full.

Syntax:

Parameters :

- Returns:

xferrecv _file_is_safe

int x fe r recv_doimport (c har *b u f , i nt size ,

x ferrec v_ b uffer_proces s or)

char *buf - the buffer
int size - buffer's size
xf errecv _ buff er_ proces sor - caller-supplied
function to be ca lled when the buffer is full.

Number of bytes transferred on successful completion; -
I otherwi se.

Informs the ca ller if the file was received from a 'safe' source (see below for what
this means) .

Syntax: BOOL x ferrecv_file_is_ safe (void)

Parameters : void

Returns: True if file is safe

xfersend

Other Informati on:

RISC OS library reference section

'Safe' in thi s context means that the supplied fil ename
will not change in the fo reseeable future.

Thi s fi le covers the general purpose export of data by dragging icons.

xfersend: caller-supplied function types

xfersend_saveproc

A function of thi s type should save to the give n fi le and return Tru e if success ful.
Handle is passed to the fun cti on by xfersend ().
Syntax:

Parameters:

Returns:

xfersend_sendproc

typedef BOOL (*xfersend_saveproc) (char *filename, void
*ha ndle)

char * filename - fil e to be saved
void *handle - the handle you passed to
xfersend ().

True if t he save was successfu I.

A funct ion o f t his t ype should ca ll xfersend_ sendbuf () to send one buffer-full
of data no bigger than *maxbu f

Syntax: typedef BOOL (*x fersend_ sendproc) (void *hand le , int
*ma xbu f)

Parameters:

Returns:

Other In fo rmation:

xfersend_printproc

vo i d * handle - handle which was passed to
xfersend ()
int *maxbu f - size of rece iver's buffer
True if the data was successfully transmitted .
Your sendpr oc will be ca lled by functi ons in the
x f ersend module to do an in-core data transfer. on
receipt o f MRAMFetch messages from the rece iving
applica tion. If xfersend_sendbu f () returns Fa lse ,
then return Fa lse immediately.

A fun cti on of thi s type should eith er print the fil e directly, or save it into the given
fi lename, from where it wi ll be printed by the printer application.
Syntax: t y pede f i nt (*x fe r send__printproc) (char *fil ena me , voi d

*ha nd le)

325

xfersend: library functions

Parameters:

Returns:

Other Information :

Reason codes:

char *filename - file to save into, for printing
void *handle - handle that was passed to
xfersend ()

Either the file type of the file it saved, or one of the reason
codes #defined below.

This is ca lled if the file icon has been dragged onto a
printer application.

#define xfersend_printPrinted -1
#de fine xfersend_printFail ed -2

file dealt with internally
had an error along the way

The saveproc should report any errors it encounters itse lf. If saving to a file , it
should convert the data into a type that can be printed by the printer application
(ie text)

xfersend: library functions

326

xfersend

Allows the user to export application data, by icon drag
Syntax: BOOL xfersend(int filetype , char • name , int estsize ,

xfersend_ saveproc , xfersend_ sendproc , x fersend_printpr oc ,

Parameters:

Returns :

Other Information :

wimp_eventstr *e , void *handle)

int filetype -type of file to save to
char *name - suggested file name
int estsize - estimated size of the file
xfersend_ saveproc - caller-supplied functi on for
saving application data to a file
xfersend_ sendproc - caller-supplied functi on for
in-core data transfer (if application is able to do this)
xfersend_printproc - ca ller-supplied function for
printing application data, if icon is dragged onto printer
application
wimp_event s tr * e - the event which started the
export (usually mouse drag)
void *handle - handle to be passed to handler
functions.

True if data exported successfully.

You should typically call this function in a window's event
handler, when you get a mouse drag event See the
saveas . c code for an example of this. xfersend deals
with the complexities of message-passing protocol s to

RISC OS library reference section

achieve the data transfer. Refer to the above type
definitions for an explanation of what the three
caller-supplied functi ons should do.

If name is 0 then a default name of Selection is supplied.

If you pass 0 as the xfersend_sendproc, no in-core data transfer wi ll be
attempted.

If you pass 0 as the xfersend_printproc, the file format for printing is
assumed to be the same as for saving. The estimated file size is not essential, but
may improve performance.

xfersend_pipe

Allows the user to export application data, without an icon drag.
Syntax:

Parameters :

Returns:

Other Information:

xfersend_sendbuf

BOOL xfersend_pipe(int filetype , char *name , int estsize ,
xfersend_saveproc , xfersend_sendproc , xf ersend_printproc ,
void *handle , wimp_t task) ;

int filetype - type of file to save to
char *name - suggested file name
int estsize - estimated size of the file
xfersend_ saveproc - caller-supplied function for
saving application data to a file
xfersend_sendproc - ca ller-suppl ied function for
in-core data t ransfer (if application is able to do this)
xfersend__printproc - ca ll er- supplied functi on fo r
printing appli cati on data, if "icon" is dragged onto printer
application

void *handle - handle to be passed to handler
functi ons.

wimp_t task - hand le of task to pass data to.
TRUE if data exported successfully.
This function works si milarly to xfersend, except it is not
normally used as the result of an icon drag. Typical use
may be to export data to another application (using the
same technique as xfersend), fo llowi ng a request for data
from that application (maybe as a result of receiving an
application-specific wimp message).

Sends the given buffer to a receiver.
Syntax: BOOL xfersend_ sendbuf(char *buffer , int size)

327

xfersend: library functions

328

Parameters:

Returns:

Other Information:

xfersend_file_is_safe

char *buffer - the buffer to be sent
int size - the number of characters placed in the
buffer.

True if send was successful.

This function should be called by the caller-supplied
xfersend_ sendproc (if such exists) to do in-core data
transfer (see notes on xfersend_ sendproc above).

Informs the ca ller if the file's name can be reliably assumed not to change (during .
data transfer!)

Syntax:

Parameters:

Returns:

Other Information:

Returns:

xfersend_set_fileissafe

BOOL xfersend_file_is_safe(void)

void.

True if file is 'safe'.

See also the xferrecv module.

True if file recipient will not modify it; changing the
window title of the file can be done conditionally on this
result. This can be called within your
xfersend_ saveproc,sendproc,orpr intproc,or
immediately after the main xfersend.

Allows the ca ller to set an indication of whether a file 's name will remain
unchanged during data transfer.

Syntax: void xfersend_ set_ fileissafelBOOL value)

Parameters :

Returns :

xfersend . close_on_xfer

BOOL value -True means the file is safe.

void.

Tells xfersend whether to close "parent" window after icon-drag export.

Syntax: void xfersend~close_on_xfer(BOOL do_we_ close, wimp_w wl ;

Parameters :

Returns:

Other Information:

BOOL do_we close -TRUE means close window after
export.

wimp_w w - handle of window to close (presumably
"parent" window.

void

The default is to not close the window after export. Once
used, this function should be called before each call to
xfersend().

RISC OS library reference section

xfersend_clear _unknowns

Removes any unknown event processors registered by xfersend or
xfersend__pipe.

Syntax:

Parameters:

Returns :

Other Information :

void xfersend_clear_unknowns(void l ;

void

void

xfersend and xfersend__pipe use unknown event
processors to deal with inter-application data transfer.
These may be left around after completion of the transfer
(especially if the transfer failed) . This function shou ld be
called when it is known that the transfer has ended.

xfersend_read_last_ref

•

Returns the my_ref value of the last wimp_MDATASAVE or wimp_MDATALOAD
message sent by xfersend or xfersend_pipe .

Syntax: int xfersend_read_last_re f (void) :

Parameters:

Returns :

Other Information:

void.

integer message reference

After saving a file to another application (ie wh'ere the
resulting file is not 'safe', the my _ ref value of the final
wimp _ MDATALOAD should be stored with the document
data , so that if a wimp_MDATASAVED is received , the
document can be marked unmodified. If t he document is
modified after being saved, the last_ ref value shou ld
be reset to 0, so that a subsequent wimp_ MDATASAVED

message will not cause the document to be marked
unmodified. NB: If RAM transfer is used. the my _ref of
the datasave message should be stored instead .

329

xfersend: library functions

•

330

13 Assembly language interface

Interworking assembly language and C - writing programs with both assembly
language and C parts - requires use of both the Acorn Desktop Assembler and

Acorn Desktop C products for anything other than trying the examples supplied
with Acorn Desktop C. Further explanation of examples is provided in the chapter
entitled Interworking assembler with C in Acorn Assembler Release 2 supplied with Acorn
Desktop Assembler.

Interworking assembly language and C can be very useful for construction of top
quality RISC OS applications Using this technique you can take advantage of
many of the strong points of both languages. Writing most of the bulk of your
application in Callows you to take advantage of the portability of C, the
maintainability of a high level language and the power of the C libraries and
language. Writing critical portions of code in assembler allows you to take
advantage of all the speed of the Archimedes and all the features of the machine
(eg use the complete floating-point instruction set).

The key to interworking C and assembler is writing assembly language procedures
that obey the ARM Procedure Call Standard (APCS) This is a contract between two
procedures, one ca lling the other. The called procedure needs to know which ARM
and floating-point registers it can freely change without restoring them before
returning, and the caller needs to know which registers it can rely on not be ing
corrupted over a procedure call.

Additionally, both procedures need to know which registers contain input
arguments and return arguments, and the arrangement of the stack has to follow a
pattern that debuggers and so on can understand . For the specification of the
APCS, see Appendix F - ARM procedure call standard in the Acorn Desktop Development
Environment user guide.

This chapter explains how C uses the APCS, in terms of the appearance of
assembly language optionally output by CC and the way the stack set up by the C
run-time library works

331

Register names

Register usage

332

The following names are used in referring to ARM registers :

al RO Argument l , also integer result, temporary
a2 RI Argument 2, temporary
a3 R2 Argument 3, temporary
a4 R3 Argument 4, temporary
vl R4 Register variable
v2 R5 Register variable
v3 R6 Register variable
v4 R7 Register variable
v5 R8 Register variable
v6 R9 Register variable
sl RIO Stack limit
fp Rl l Frame pointer
ip Rl2 Temporary work register
sp Rl 3 Lower end of current stack frame
lr Rl4 Link address on calls, or workspace
pc Rl5 Program counter and processor status

fO FO Floating point result
fl Fl Floating-point work register
f2 F2 Floating-point work register
f3 F3 Floating-point work register
f4 F4 Floating-point register variable (must be preserved)
f 5 F5 Floating-point register variable (must be preserved)
f6 F6 Floating-point register variable (must be preserved)
f7 F7 Floating-point register variable (must be preserved)

ln this section, 'at [rJ ·means at the location pointed to by the value in register r ;
'at [r , #nJ ' refers to the location pointed to by r +n. This accords with ObjAsm's
syntax.

The following points should be noted about the contents of registers across
function calls .

• Calling a function (potentially) corrupts the argument registers al to a4 , ip,
lr, and f O-f3. The calling function should save the contents of any of these
registers it may need.

• Register l r is used at the time of a function call to pass the return link to the
called function; it is not necessarily preserved during or by the function call .

Control arrival

Assembly language interface

• The stack pointer sp is not altered across the function call itself, though it may
be adjusted in the course of pushing arguments inside a function . The limit
register sl may change at any time, but should always represent a valid limit
to the downward growth of sp . User code will not normally alter this register.

• Registers v l to v 6, and the frame pointer fp , are expected to be preserved
across function calls. The called procedure is responsible for saving and
restoring the contents of any of these registers which it may need to use.

At a procedure call. the convention is that the registers are used as follows:

• al to a4 contain the first four arguments. If there are fewer than four
arguments, just as many of a l to a 4 as are needed are used.

• If there are more than four arguments, sp points to the fifth argument; any
further arguments will be located in succeeding words above [s p J.

• fp points to a backtrace structure .

• sp and s l define a temporary workspace of at least 256 bytes available to the
procedure.

• sl contains a stack chunk handle, which is used by stack handling code to
extend the stack in a non-contiguous manner.

• l r contains the value which shou ld be restored into pc on exit from the called
procedure.

• pc contains the entry address of the called procedure.

Passing arguments
All integral and pointer arguments are passed as 32-bit words. Floating point 'float'
arguments are 32-bit values. 'double' -argument 64-bit values. These follow the
memory representation of the IEEE single and double precision formats.

Arguments are passed as if by the following sequence of operations:

• Push each argument onto the stack, last argument first.

• Pop the first four words (or as many as were pushed, if fewer) of the arguments
into registers al to a4.

• Call the function, for example by the branch with link instruction

BL functionname

In many cases it is possible to use a simplified sequence with the same effect (eg
load three argument words into al-a3).

333

Return link

Return link

If more than four words of arguments are passed, the calling procedure should
adjust the stack pointer after the call, incrementing it by four for each argument
word which was pushed and not popped.

On return from a procedure, the registers are set up as follows:

• fp, sp, s 1, vl to v6 and f 4 to f7 have the same values that they contained at
the procedure call.

• Any resu lt other than a fl oa ting point or a multi-word structure value is placed
in register al.

• A fl oating point result should be placed in register fO.

Structure values returned as function results are discussed below.

Structure results

334

AC function which returns a multi-word structure result is treated in a slightly
different manner from other functions by the compiler. A pointer to the location
which should receive the result is added to the argument list as the first argument.
so that a declaration such as the following:

s _ type afunction(int a , int b, int c)
{

s_type d ;
/* ... */
return d ;

is in effect converted to this form

void afunction(s_ type *p, int a , int b, int c)

s_type d;
/ *-. .. * I
*p = d;
return ;

Any assembler-coded functi ons returning structure results , or calling such
functions, must conform to this convention in order to interface successfully with
object code from the C compiler

Assembly language interface

Storage of variables
The code produced by the C compiler uses argument values from registers where
possible; otherwise they are addressed relative to fp, as illustrated in Examples
below.

Local variables , by contrast, are always addressed with positive offsets relative to
sp In code which alters sp , this means that the offset for the same variable will
differ from place to place . The reason for this approach is that it permits the stack
overflow procedure to recover by changing sp and sl to point to a new stack
segment as necessary.

Function workspace

Examples

The va lues of sp and sl passed to a ca lled function define an area of readable,
writeable memory available to the ca lled function as workspace All words below
[sp J and at or above [sl , #- 512 J are guaranteed to be avai lable for reading and
writing, and the minimum allowed value of sp is sl-256. Thus the minimum
workspace avai lable is 256 bytes

The C run-time system, in particular the stack extension code, requires up to 256
bytes of additional workspace to be left free. Accordingly, all ca lled functions which
require no more than 256 bytes of workspace should test that sp does not point to
a location below s l, in other words that at least 512 bytes remain. If the value in
sp is less than that in sl, the function shou ld call the stack extension function
x$stack_overflow. Functions which need more than 256 bytes of workspace
should amend the test accordingly, and ca ll x$stack_overflowl, as described
below. The following examples illustrate a method of performing this test

Note that these are the C-specific aliases for the kernel functions
kernel stkovf_ split_ Oframe and_kernel_ stkovf_ split_ frame
respectively, described in the section entitled How to use the C library kernel on page
367.

The following fragments of assembler code illustrate the main points to consider
in interfacing with the C compiler. If you want to examine the code produced by the
compiler in more detail for particular cases, you can request an assembler list ing
by enabling the Assembler opt ion on the CC SetUp menu .

This is a function gggg which expects two integer arguments and uses on ly one
register variable, vl. It calls another function ffff.

335

336

AREA
IMPORT

IMPORT
EXPORT

gggx DCB

ALIGN
gggy DCD

IC$$codel , CODE , READONLY
I ff ff I

lx$stack_ overflowl
lggggl

"gggg "' 0 ; name of function , 0 terminated

; padded to word bounda ry
&ff 000000 + gggy - gggx

; dist . to start of name
; Function entry : save necessary regs. and args . on stac k
gggg MOV ip , sp

STMFD sp !, {al , a2, vl , fp , ip , lr , pc}

SUB fp , ip , #4 ; points to saved pc
; Test workspace size

CMPS sp , sl
BLLT lx$stack_overflowl

;Main activity of function

ADD
BL
CMP

vl , vl , 1

lffffl
vl , 99

; use a register variable
; call another function
; rely on reg . var . after call

; Return: place result in al , and restore saved registers
MOV al , result
LDMEA fp, {vl , fp , sp , pc}A

If a function will need more than 256 bytes of workspace, it should replace the
two-instruction workspace test shown above with the following:

SUB ip , sp , #n
CMP ip , sl
BLLT lx$stack_ overflowll

'·
where n is the number of bytes needed. Note that x$stack_overflowl must be
called if more than 256 bytes of frame are needed. ip must contain sp_needed,
as shown in the example above.

A function which expects a variable number of arguments should store its
arguments in the following manner, so that the whole list of arguments is
addressable as a contiguous array of values:

MOY ip , sp ;copy value of sp
STMFD sp !, {al , a2 , a3 , a4} ; save 4 words of args .
STMFD sp !, {vl , v2, fp , ip , lr , pc}

; save vl-v6 needed
SUB fp , ip , #20 ; fp points to saved pc
CMPS sp , sl ; test workspace
BLLT lx$stack_ overflowl

Some complete program examples are described in the chapter entitled
Interworking assembler witli C in Acorn Assembler Release 2 supplied with Acorn Desktop
Assembler.

14

Getting started

How to write relocatable modules
in C

Relocatable modules are the basic building blocks of RISC OS and the means by
which RISC OS can be extended by a user. The archetypal use for RISC OS

extensions is the provision of device drivers for devices attached to Archimedes
hardware.

Relocatable modules also provide mechanisms which can be exploited to :

• extend RISC OS's repertoire of built-in commands(* commands)
(analogous to plugging additional ROMs into a BBC microcomputer of
pre-Archimedes vintages)

• provide services to applications (for example, as does the shared C library
module)

• implement 'terminate and stay resident' (TSR) applications.

The idea of TSR applications will be most familiar to PC users , whereas extending
the * command set (via 'software ROM modules') will seem most familiar to those
with a background in the BBC computer. A complete discussion of these topics is
beyond the scope of this chapter.

For modules which provide services, the principal mechanism for accessing those
services from user code is the Software Interrupt (SWI) . For example, the shared C
library implements a handler for a single SWI which, when called from the library
stubs linked with the application, returns the address of the C library module
which in turn allows the library stubs to be initialised to point to the correct
addresses within the library module. Thereafter, library services are accessed
directly by procedure call , rather than by SWI call. All this illustrates is the rich
variety of mechanism avai lable to be exploited

To write a module in C you will need :

• the CC and CMHG tools suppl ied with Acorn Desktop C

• the C Shared Library module and shared C library stubs supplied with Acorn
Desktop C

337

Constraints on modules written in C

• a thorough understanding of RISC OS modules (read the chapter of the
RISC OS Programmer's Reference manual entitled Modules).

Constraints on modules written in C

A module written in C must use the shared C library module via the library stubs.
Use of the stand-alone C library (ANSI Lib) is not a supported option.

All components of a module written in C must be compiled with the compiler
SetUp menu option Module code enabled. This allows the module's static data to
be separated from its code and multiply instantiated.

Modules written in C should not be compiled with stack limit checking disabled.
The stack limit check is small and fast, and can save your machine from crashing.

Overview of modules written in C
A module written in C includes the fol lowing:

• a Module Header (described in the Modules chapter of the RISC OS Programmer's
Reference manual), constructed using CMHG;

• a set of entry and exit 'veneers', interfacing the module header to the C
run-time environment (also constructed using CMHG);

• the stubs of the shared C library;

• code written by you to implement the module's functionality - for example:
*command handlers, SW! handlers and service ca ll handlers.

These parts must be linked together using the Link tool with the SetUp box
Module option enabled.

The next section describes:

• how to write a CMHG input file to make a module header and any necessary
entry veneers

• the interface definitions to which each component of your module must
conform

• how to write a CMHG input file to generate entry veneers for !RO handlers
written in C.

Functional components of modules written in C

338

The following components may be present in a module written in C (all are
optional except for the title string and the help string which are obligatory) :

How to write relocatable modules in C

• Runnable application code (called start code in the module header
description). This will be present if you tell CMHG that the module is runnable
and include a main () function amongst your module code.

• Initialisation code. 'System' initialisation code is always present. as the shared
library must be initialised. Your initialisation function wil l be called after the
system has been initialised if you declare its name to CMHG.

• Finalisation code. The C library has to be closed down properly on module
termination. Your own finalisation code will be called on exit () if you
register it with the C library by using the atexit () library function .

• Service call handler. This will be present if you declare the name of a handler
function to CMHG. In addition, you can give a list of service call numbers
which you wish to deal with and CMHG will generate fast code to ignore other
calls without calling your handler.

• A title string in the format described in the RISC OS Programmer's Reference
manual. CMHG will insist that you give it a valid title string.

• A help string in the format described in the RISC OS Programmer's Reference
manual. Again, CMHG will insist that you give a valid help string

• Help and command keyword table. This section is optional and will be present
only if you describe it to CMHG and declare the names of the command
handlers to CMHG. Obviously, their implementations must be included in the
linked module.

• SWI chunk base number. Present only if declared to CMHG.

• SW! handler code. Present if you declare the name of a handler function to
CMHG.

• SW! decoding table. Present only if described to CMHG.

• SW! decoding code. Present on ly if you declare the name of your decoding
function to CMHG.

• !RO handlers. Though not associated with the module header, CMHG will
generate entry veneers for !RO handlers. You can register these veneers with
RISC OS using SWI OS_ Claim, etc; you have to provide implementations of the
handlers themselves . The names of the handler functions and of the entry
veneers have to be given to CMHG.

Each component that you wish to use must be described in your input to CMHG .
Use of most components also requires that you write some C code which must
conform to the interface descriptions given in the sections below.

339

340

The C module header generator

The C Module Header Generator (CMHG) is a special-purpose assembler of
module headers. It accepts as input a text file describing which module facilities
you wish to use and generates as output a linkable object module (in Acorn Object
Format) For details of how to run the CMHG tool, see the chapter entitled CMHG
earlier in this manual.

The format of input to CMHG

Input to CMHG is in free format and consists of a sequence of 'logical lines '. Each
logical line starts with a keyword which is followed by some number of parameters
and (sometimes) keywords. The precise form of each kind of logical input line is
described in the following sections.

A logical line can be continued on the next line of input immediately after a
comma (that it. if the next non-white-space character after a comma is a newline
then the line is considered to be continued).

Lists of parameters can be separated by commas or spaces, but use of comma is
required if the line is to be continued.

A comment begins with a ; and continues to the end of the current line. A
comment is valid anYwhere that trailing white space is valid (and, in particular,
after a comma) .

A keyword consists of a sequence of alphabetic characters and minus signs . Often ,
a keyword is the same as the description of the corresponding field of the module
header (as described in the RISC OS Programmer's Reference manual) but with spaces
replaced by minus signs. For example: initialisation-code;
title-string; service-call - handler.

Keywords are always written entirely in lower case and are always immediately
followed by a : . Character case is significant in all contexts: in keywords , in
identifiers, and in strings

Numbers used as parameters are unsigned. Three formats are recognised :

• unsigned decimal

• Oxhhh ... (up to 8 hex digits)

• &hhh .. (up to 8 hex digits)

In the following sections, the parts headed CMHG description tell you what you have
to describe to CMHG in order to use the facility described in that section; the parts
headed C interface introduce a description of the interface to which the handler
function you write must conform. You may omit any trailing arguments that you
don't need from your handler implementations.

HoV.lto write relocatable modules in C

Runnable application code

CMHG description:

module-is-runnable:

C interface:

int main(int argc , char *argv[]);

/ *
* Entered in user-mode with argc and argv

No parameters.

* set up as for any other application. Malloc

* obtains storage from application workspace .
* /

To be useful (ie re-runnable) as a 'terminate and stay resident' application, a
runnable application must implement at least one• command handler (see below)
for its command line, which , when invoked, enters the module (ca lls SWI
OS_Module with the Enter reason code).

Initialisation code

CMHG description:

initialisation-code : user_init The name of your initialisation function.
Any valid C function name will do.

C interface:

_kernel_oserror *user_init(char *cmd_fail, int podule_base, void *pw);
/ *

* Return NULL if your initialisation succeeds ; otherwise return a pointer to an
* error block. cmd_tail points to the string of arguments with which the
*module is invoked (may be "") .
* podule_base is 0 unless the code has been invoked from a podule .
* pw is the 'r l2 ' value established by module initialisation . You may assume
* nothing about its value (in fact it points to some RMA space claimed and .
* used by the module veneers) . All you may do is pass it back for your module
*veneers via an intermediary such as SWI OS_Call Every (use _kerne l _swi() to
* issue the SWI call) .
* /

Note that you can choose any valid C function name as the name of your
initialisation code (CMHG insists on no more than 31 characters).

Finalisation code

User finalisations are handled by using a t exi t () to register finalisation
functions. A call to library finalisation code is inserted automatically by CMHG: the
C library finalisation code will call these registered functions immediately before
closing down the library (on module finalisation)

341

Functional components of modules written in C

342

Service call handler

CMHG description

service-call-handler : sc_ handler <number> <number> ...

C interface:

void sc_handler(int service_nurnber, _kernel_swi_regs *r, void *pw) ;
/ *

* Return values should be poked directly into r->r[n] ;
* the right value/register to use depends on the service number
* (see the relevant RISC OS Programrne.r' s Reference Manual section for details) .
* pw is the private word (the 'r12' value .
* /

Service calls provide a generic mechanism. Some need to be handled quickly;
others are not time critical. Because of this , you may give a list of service numbers
in which you are interested and CMHG will generate code to ignore the rest quickly.
The fast recognition code looks like:

CMPS rl , #FirstinterestingServiceNumber
CMPNES rl , #SecondinterestingServiceNumber

CMPNES rl , #Nthln teres ting.Servi ceNumber
MOVNES pc , lr

; drop into service call entry veneer .

If you give no list of interesting service numbers then all service calls will be passed
to your handler.

In order to construct a relocatable module which implements a RISC OS
application (a TSR application) you must claim and deal with the Service_Memory
service ca ll. See the relevant section in the Programmer's Reference Manual for
details of this service call.

The following is a suitable handler written in C for this service call :

#define Service_ Memory Oxll
extern void FrontEnd_ services(int service_ number ,
_kernel_swi_regs *r , void
*pw)
{

IGNORE (pw);
/ * keep application workspace (r2 holds CAO pointer) * /
if (service_ number == Service_ Memory && r->r[2]
(int)Image~RO_Base)

{

r->r[l] = O; / * refuse to relinquish app . workspace * /

How to write relocatable modules in C

The above handler needs to compare the contents of rl 21 with the address of the
base of your module containing it. This is not a value directly available in C, so the
following assembly language fragment can be used to gain access to the symbol
lmage$$RO$$Base. which is defined by Link when your module is linked together

IMPORT 1Image$$RO$$Basel
EXPORT Image~RO_Base

AREA Code_Description, DATA, REL
Image~RO_Base DCD 1Image $$RO$$Basel

END

As an assembler is not supplied with Acorn Desktop C, thi s assembly language
fragment is supplied as a ready to link object file user . RMBase . o . Base, which
has been already assembled using ObjAsm.

Title string

CMHG description

title-string: <title>

<tit le> must consist entirely of printable, non-space ASCII characters.

Any underscores in the title are replaced by spaces. CMHG will fault any title
longer than 31 characters and warn if the length of the title string is more than 16.

Help string

CMHG description:

help-string : <help> d . dd <comment> ; help string and version number

The help string is restricted to 15 or fewer alphanumeric, ASCII characters and
underscores. Longer strings are truncated (with a warning) to 15 characters then
padded with a single space Shorter titles are padded with one or two TAB
characters so they will appear exactly 16 characters long.

The version number must consist of a digit, a dot. then 2 consecutive digits.
Conventionally, the first digit denotes major releases; the second digit minor
releases ; and the third digit bug-fix or technical changes If the version number is
omitted, 0.00 is used .

CMHG automatically inserts the current date into the version string, as required by
RISC OS convention.

343

Functional components of modules written in C

344

A 'comment' of up to 34 characters can also be included after the version number.
It will appear in the tail of the module's help string, after the date. A typical use is
for annotating the help string in the following style:

SomeModule 0 . 91 (27 JUN 1989) Experimental version

CMHG refuses to generate a help string longer than 79 characters and warns if it
has to truncate your input.

Help and command keyword table

CMHG description

command-keyword-table: cmd_handler command-description+

(Here command- descript ion+ denotes one or more command descriptions) .

A command-description has the format:

<star-command-name> " ("
min-args : <uns igned-int >
max-args :
gstrans-map :
fs-command :
status :
configure :
he lp :

<unsigned-int >
<unsigned-int >

inva lid-syntax: <text>
help-text : <text>
II) II

default 0
default 0
default 0

; >flag bi ts in
;>the flag byte
; >of the cmd table
; >info word.

Each sub-argument is optional. A comma after any item allows continuation on
the next line.

A <text> item follows the conventions of ANSI C string constants: it is a
sequence of implicitly concatenated string segments enclosed in " and " .

Segments may be separated by white space or newlines (no continuation comma
is needed following a string segment).

Within a string segment\ introduces an escape character. All the single character
ASCII escapes are implemented, but hexadecimal and octal escape codes are not
implemented. A\ immediately preceding a newline allows the string segment to be
continued on the following line (but does not include a newline in the string; if a
newline is required , it must be explicitly included as \n).

How to write relocatable modules in C

min-args and max- args record the minimum and maximum number of
arguments the command may accept; gs trans-map records , in the least
significant 8 bits, which of the first 8 arguments should be subject to expansion by
OS_GSTrans before calling the command handler.

The keywords fs-command, status, configure and help set bits in the
command's in formation word which mark the command as being of one of those
classes .

invali.d-syntax and help-text messages are (should be) self-explanatory.

Example CMHG description:

command- keyword-table: cmd_handler
tmO(min-args : 0 , max-args : 255 ,

help-text: "Syntax\ttml <filenames>\n ") ,
tml(min-args : l , max-args : l ,

help-text : "Syntax\ttm2 " " <integer> "
" \ n ")

This describes two * commands, *tmO and •tm I, which are to be handled by the C
function cmd_handler. The handler function wi ll be ca lled with 0 as its third
argument if it is being called to handle the first command (tmO, above). l as its
third argument if it is being cal led to handle the second command (tm l , above),
etc. The programmer must keep the CMHG description in step with the
implementation of cmd_handler.

C interface:

_ kernel _ oserror *cmd_handler(char *arg_ string, int argc , int cmd_no, void *pw);
/ * ·

* If cmd_ no identifies a *HELP entry , then cmd_handler must return
* arg_string or NULL (if arg_string is returned , the NUL-terminated
* buffer will be printed) .
* Return NULL if if the command has been successfully handled ;
* otherwise return a pointer to an error block describing the failure
* (in this case, the veneer code will set the 'V' bit) .
* *STATUS and *CONFIGURE handlers will need to cast 'arg_string' to
* (possibly unsigned) long and ignore argc . See the RISC OS Programmer ' s
* Reference Manual for details .

pw is the private word pointer (' rl2 ') value passed into the entry veneer
* /

SWI chunk base number

CMHG description :

swi-chunk-base-number : <number>

345

Functional components of modules written in C

346

You should use this entry if your module provides any SWI handlers. It denotes the
base of a range of 64 va lues which may be passed to your SWI handler. SWI chu nks
are all ocated by Acorn: read the documentation carefu lly to discover which chunks
you may use safely. In some cases you may need to write to Acorn to get a chunk
allocated uniquely to your product (though this should not be undertaken lightly
and shou ld only be done when all alternat ives have been exhausted) See the
chapter entitled An introduction to SWls in the RISC OS Programmer's Reference manual
for more details.

SWI handler code

CMHG description

swi-handler-code : swi_handler any valid C function name will do

C interface:

_ kernel_ oserror *swi_ handler (int s wi _ no , _ kerne l_swi_ regs *r , void *pw) ;
/ *

* Return : NULL if the SWI is handled successfully ; otherwise r eturn
* a pointer to an error block which describes the error .
* The veneer code sets the ' V' bit if the returned value is non-NULL .
* The handler may update any of its input registers (r0-r9) .
* psis the private word pointer (' rl2 ') value passed into the
* swi_ handler entry veneer .

* !

If your module is to handle SWls then it must include both swi-handler-code
and swi - chunk-base.

Example CMHG descri ption:

swi-chunk-base -number: Ox88000
swi-handler -code:

SWI decoding table

CMHG description :

widget_ swi

swi-decoding-table : <swi-base-name> <swi - name>*

Thi sftable, if present, is used by OS_SWINumberTo/FromString

Example CMHG description:

swi-chunk-base - number: Ox88000
swi-handler- code : widget_ swi
swi-decoding- table: Widget ,

Init Read Write Close

This wou ld be appropriate fo r the fo llowing name/number pa irs:

How to write relocatable modules in C

Widget_ I n it
Widget_ Read
Widget_Write
Widget_ Close

SWI decoding code

CMHG description :

Ox88000
Ox88001
Ox88002
Ox88003

swi-decoding - code : swi_ decoder any valid C
function name will do

C interface:

void swi_ decode(int r[4] , void *pw) ;
/ *

* On entry , r[O] < 0 means a request to convert from text to a number .
* In this case r[l] points to the string to convert (terminated by a
* control character , NOT necessarily by NUL) .
* Set r[O] to the offset (0 . . 63) of the SWI within the SWI chunk if
* you recognise its name ; set r[O] < 0 if you don ' t recognise the name .

* On entry , r[O] >= 0 means a request to convert from a SWI number to
* a SWI string :

r[O] is the· offset (0 . . 63) of th SWI within the SWI chunk.
r[l] is a pointer to a buffer ;
r [2] is· the off set within the buffer at which to place the text ;
r[3] points to the byte beyond the end of the buffer .

* You should write th SWI name into the buffer at th position given
* by r[2] then update r[2] by the length of the text written (excluding
* any terminating NUL , if you add one) .

* pw is the private word pointer (' rl2 ') passed into the swi_ decode
* entry veneer .
* /

If you omit a SWI decoding table then your SWI decoding code will be called
instead. Of course, you don't have to provide either.

IRQ handlers

CMHG descripti on:

i r q-handlers : entry_ name / handler_ name

Any number of entry_name/handler_name pairs may be given. If you omit the I and

I
the handler name, CMHG constructs a handler name by appending _ handler to
the entry name. .

347

Functional components of modules written in C

348

C interface:

extern int entry_ name(_ kernel_ swi_ regs *r , void *pw) ;
/ *

* This is name of the IRQ handler entry veneer compiled by CMHG.
* Use this name as an argument to, for exampl e , SWI os_ claim , in
* order to attach your handler to IrqV.
* /

int handler_ name(_ kernel_ swi_ regs *r , void *pw) ;
! *

* This is the handler function you must write to handle the IRQ for
* which entry_name is the veneer function.

* Return 0 if you handled the interrupt.
* Return non-0 if you did NOT handle the interrupt (because ,
* for example, it wasn't for your handler , but for some other
* handler further down the stack of handlers).

* 'r ' points to a vector of words containing the values of r0 - r9 on
* entry to the veneer. Pure IRQ handlers do not require these , though
* event handlers and filing system entry points do. If r is updated,
* the updated values will be loaded into r0-r9 on return from the
* handler .

* pw is the private word pointer ('r12') valµe with which
* the IRQ entry veneer is called .
* !

Handlers must be installed from some part of the module which runs in SVC mode
(eg initialisation code, a SW! handler. etc). The name to use at installation time is
the entry _na me (not the name of the handler function) This is because C
functions cannot be entered directly from !RO mode, but have to be entered and
exited via a veneer which switches to SVC mode. Running in SVC mode gives your
handler maximum flexibility

!RO handlers can also be used as event handlers and filing system entry points . A
full discussion of these topics is beyond the scope of this Guide; refer to the
RISC OS Programmer's Reference manual for details and for information on how to
install and remove handlers .

Turning interrupts on and off

The following (<ker nel . h >) library functions support the control of the interrupt
enable state :

How to write relocatable modules in C

int _irqs_disabled(void);
/ *

* Returns non-0 if IRQs are currently disabled .
* /
void _irqs_off{void);

/ *
* Disable IRQs .
* /
void _irqs_on(void);

/ *
* Enable IRQs.
* /

These functions suffice to allow saving, restoring and setting of the IRO state.
Ground rules for using these functions are beyond the scope of this document.
However, general advice is to leave the IRO state alone in SWI handlers which
terminate quickly, but to enable it in long-running SWI handlers.

What a SWI handler does to the IRO state is part of its interface contract with its
clients: you, the implementor, control that interface contract.

349

Functional components of modules written in C

350

15 Overlays

Overlays are a very old technique for squeezing quart-sized programs into

pint-s ized memories: a kind of poor man's paging.

In common with paged programs, an overlaid program is stored on some backing

store medium such as a floppy disc or a hard disc and its components (called

overlay segments) are loaded into memory only as requi red. In theory, this reduces

the amount of memory required to run a program at t he expense of increasing the

time taken to load it and repeatedly re- load parts of it. It is a classic space-tim e

trade-off. In practice, except in rather specia l circumstances, the saving in memory

accruing from the use of overlays is rather modest and less t han you might expect.

Indeed, as discussed below, overlays have rather restricted applicability under

RISC OS Nonetheless, their use can occasiona lly be a 'life saver'.

Paging vs overlays
In a paged system, a program and its workspace is broken up into fi xed size chunks

ca lled pages. A combination of special hardwa re and operating system support

ensures that pages are loaded only when needed and that un-needed pages are

soon discarded. In principle, the author of a paged program need not be awa re that

it will be paged (but this is often not true in practice if t he author wishes the

program to run at maximum speed). Both code and data are paged, automati ca ll y.

In genera l, for single programs which re-use t heir workspace whenever possible,

one sees a ratio o f program size plus workspace size to occupied memory size in

the region 1.5 to 3. One ca n always increase the rati o arbitrarily by integrating

several sequentially used programs into a single image and by never re-using

workspace. But. fundamentall y, paging rarely squeezes more than a quart-sized

program into a pint-sized memory. Of course, there are other benefits of paging,

but these are beyond the scope of thi s sect ion.

RISC OS is not a paged system, but Acorn's sister product (the Uni x-based RISC iX

operat ing system) is.

In contrast. an overlaid program is broken up into va riable sized chun ks (called

overlay segments) by the use r, who also determines which of these chunks may

share the same area of memory. As the overlay system permits two code fragments

which share the same area of memory to ca ll one another and return successfu l ly

to the ca ll er, this is merely a matter of performance. However, if data is included in

an overlaid segment the situation becomes more complicated and the user has

351

more work to do. For example, it must be ensured that all code which uses the data
resides in the same segment as the data. Furthermore, it must be acceptable that
the data is re-initialised every time the segment is re-loaded . Thus, in general, it is
possible to overlay two work areas each of which is private to two distinct sets of
functions which are not simultaneously resident in memory. Overall, it wou ld be
unusual to overlay more than a quart-sized program into a pint-sized memory,
much as with paging (you may achieve a factor as high as four for code, but
non-overlaid data will usually dilute the overall factor substantially; it all depends
on the details of your application)

A more detailed description of the low-level aspects of overlays is given in the
section entitled Generating overlaid programs in the chapter entitled Link in the Acorn
Desktop Development Environment user guide. If you are especially interested in using
overlays you may prefer to read that section next Otherwise , if you are more
interested in when to use overlays, please read on .

When to use overlays

352

Overlays work best when a program has several semi-independent parts . A good
model for purposes of understanding is to think of a special-purpose command
interpreter (the root segment) which can invoke separate commands (overlay
segments) in response to user input Consider, for example, a word processor
which consists of a text editor and a collection of printer drivers. It is clear that
each of the printer drivers can be overlaid (you are unlikely to have more than one
printer); it may even be plausible to overlay each with the editor itself (you may not
be able to edit while printing- depending on how fast the printer goes and on how
much CPU time is required to drixe it) Furthermore, if the time taken to load an
overlay segment can be tacked on to an interaction with the user, it is probable that
the program will feel little slower than if it were memory-resident. In summary:
overlays work best if your program has many independent sub-functions.

On the other hand, if your program has many semi-independent parts, it may be
better to structure it as several independent programs, each called from a control
program By using the shared C library, each program can be relatively sma ll, and
the Squeeze utility can be used to reduce the space taken by it on backing store by
nearly a factor of 2. (See the chapter entitled Squeeze in the Acorn Desktop Development
Environment user guide for details) . In contrast, overlay segments cannot be
squeezed (though the root program can be) Consider, for example , the following
command line programs from this release of C:

Pro~ram

CMHG
Link
Squeeze

Squeezed Size
9Kb
22Kb
8Kb

Unsqueezed Size
16Kb
41Kb
14Kb

Overlays

So, if you can structure your application as independent, squeezed programs it
may take up less precious floppy disc space and load faster, especially from a
floppy disc, than if you structure it using overlays

If adopted, this strategy will force the independent programs to communicate via
files Provided the data to be communicated has a simple structure this causes no
problems for the application ; provided it is not too voluminous, use of the RAM
filing system (RamFS) is suggested as thi s is fast and requires no special
application code in order to use it

So, overlays are most appropriate for applications which manipulate very large
amounts of highly structured data - Computer Aided Design applications are
archetypal here - whereas multiple independent programs are most appropriate
for applications which manipulate relatively small amounts of simply structured
data and are otherwise dominated by large amounts of code.

Naturally, if you are porting an existing application to RISC OS, your view will be
coloured by whether or not it is already structured to use overlays If it is , it will
probably be best to stick to using overlays, rather than attempting to split the
application up into semi-independent sub-applications .

On the other hand, if you are writing an application from scratch, you probably
want to ponder this question in more depth . For example , to what other systems
will the application be targetted? Using multiple semi -independent applications
may work very nicely under Unix or OS/2 where the output of one process can be
piped into another, but less well under MS-DOS where use of overlays is much
more the norm .

353

When to use overlays

354

16

Guidelines

Using memory efficiently

This chapter provides basic information on memory management by RISC OS
applications. It is intended to provide some specialist knowledge to help you

write efficient programs for RISC OS, and to provide some practical hints and tips

All the information in this chapter relating to programs written in C refers to the
Acorn Desktop C product.

Follow the guidelines in this section to make the best use of avai lable memory The
guidelines are explained in more detail on the following pages

• Use recovery procedures - Your program shou ld keep the machine
operationa l. Don't allow your program to lock up when memory runs out; your
program should indicate that it has run out of memory (with an error or
warning message) and on ly stop subsequent actions that use more memory.
Ideally, ensure that actions which free up memory have enough reserved
memory to run in.

• Return unwanted memory- You should return any memory you have no
further use for. Claiming memory then not returning it can tie up memory
unnecessarily until the machine is re-booted. RISC OS has no garbage
collection, so once you have asked for memory RISC OS assumes that you
want it until you explicitly return it, even if your program terminates execut ion.
Language libraries often provide you with protection from this, as long as
memory is claimed from them .

• Don't waste memory- You should avoid wasting memory. It is a finite
resource, often wasted in two ways:

• by permanently claiming memory for infrequent operations

• by fragmenting it, so that although there is enough unused memory, it is
either in the wrong place, or it is nqt in large enough blocks to use.

Recovery from lack of memory

An important consideration when designing programs for RISC OS is the recovery
process . not just from user errors, but also from lack of system resources .

355

Avoiding permanent loss of memory

An example of a technique that can be designed into an application is to make an
algorithm more disc-based and less RAM-based on detection of lack of memory.
This could allow you to continue using an application on a small machine
(especiall y one with a hard disc) at the expense of some speed

When implementing your code , expect the unexpected and program defensively.
Be sure that when the system resources you need (memory, windows, files etc) are
not available, your program can cope. Make sure that. when a document managed
by your program expands and memory runs out. the document is still valid and can
be saved . Don't just check that your main document expansion routines work;
check that all routines which require memory (or in fact any system resource) fail
gracefully when there is no more .

Centralising access to system resources can help: write your program as if every
operating system interface is likely to return an error

Avoiding permanent loss of memory

356

Permanent loss of memory is mainly a problem for applications or modules written
entirely in assembly language. When interworking assembler routines with C or
another high level language you should use memory handed to you by the high
level language library (eg use ma l loc to get a memory area from C and pass a
pointer to it as an argument to your assembler routine) . The language library
automatically returns such areas to RISC OS on program exit Additional types of
program requiring care to avoid memory loss are those expected to run for a long
time (eg a printer spooler) and those making use of RMA directly through SWI
calls .

When using the RMA for storage directly through SWI calls, especially for items in
linked lists , consider using the first word as a check word containing four
characters of text to identify it as belonging to your program When a block of RMA
is deallocated , the heap manager puts it back into a list of free blocks , and in so
doing overwrites the first word of the block.

This technique therefore serves two purposes :

after your program has been run and exited, your check word can be searched
for, showing up any blocks you have failed to deallocate

2 it avoids problems when accidentally referencing deallocated memory.

A typical problem of referencing deallocated blocks results from using the first
word as a pointer to your program's next block, then accidentally referencing a wild
pointer when it is overwritten .

Using memory efficiently

You can use the following BASIC routine to search for any lost blocks

100 REM > LostMemory check s for un - r eleased blocks
110 RMA% =&0180 0000 : RMAEnd% = RMA% + (RMA% ! 12)
12 0 FOR Possib leBlock% = RMA%+20 TO RMAEnd% - 12 STEP 16

130 REM Now loop look ing f or "Prog"
140 IF Pos s i b leBlock %! 0 = &676 F7250 THEN
150 PRI NT "Block found a t &"; - PossibleBlock %
160 ENDI F
170 NEXT Poss ibl eBlock%
180 END

Avoiding memory wastage

The key factor in writing programs that use memory efficiently and don 't waste it is
understanding the following

• how SWI XOS_Module and SWI XOS_Heap work if you are constructing a
relocatable module or are using the RMA from an application

• how C flex and mal loc work when writing a C program (parts o f which may be
written in assembler) .

This understanding will lead you to writing programs that will work in harmony
with the storage allocator. See the following section for a description of C memory
allocation .

The C storage manager

Normal C applications (ie those not running as modules) claim memory blocks in

two main ways:

• from malloc

• from flex.

The malloc heap storage manager is the standard interface from which to claim
sma ll areas of memory. It is tuned to give good performance to the widest variety of

programs.

In the following sections. the word heap refers to the section of memory currently
under the control of the storage manager (usually referred to as mal l oc, or the

ma lloc heap)

The flex facility is available as part of RISC_OSLib, and can be useful for claiming

large areas of data space It manages a shift ing set of areas. so its operation can be
slow, and address-dependent data cannot be stored in it However. it has the

following advantages

357

Avoiding memory wastage

358

• it doesn't waste memory by fragmenting free space

• it returns deallocated memory to RISC OS for use by other applications

Allocation of malloc blocks

All block sizes allocated are in bytes and are rounded up to a multiple of four bytes .
All blocks returned to the user are word-aligned All blocks have an overhead of
eight bytes (two words) . One word is us_ed to hold the block's length and status, the
other contains a guard constant which is used to detect heap corruptions . The
guard word may not be present in future releases of the ANSI C library When the
stack needs to be extended, blocks are allocated from the malloc heap

When an allocation request is received by the storage manager, it is categorised
into one of three sizes of blocks

• small

• medium

• large

0~64

65 ~ 512

513 ~ 16777216.

The storage manager keeps track of the free sections of the heap in two ways. The
medium and large sized blocks are chained together into a linked list (overflow list)
and small blocks of the same size are chained together into linked lists (bins) The
overflow list is ordered by ascending block address, while the bins have the most
recently freed block at the start of the list

When a small block is requested, the bin which contains the blocks of the required
size is checked , and, if the bin is not empty, the first block in the list is returned to
the user. If there was not a block of the exact size available, the bin containing
blocks of the next size up is checked, and so on until a block is found. If a block is
not found in the bins, the last block (highest address) on the overflow list is taken.
If the block is large enough to be split into two blocks, and the remainder is a
usable size(> 12 including the overhead) then the block is split. the top section
returned to the user and the remainder, depending on its size, is either put in the
relevant bin at the front of the list or left in the overflow list

When a medium block is requested, the search ignores the bins and starts with the
overflow list. This is searched in reverse order for a block of usable size, in the same
way as for small blocks.

When a large block is requested, the overflow list is searched in increasing address
order, and the first block in the list which is large enough is taken. If the block is
large enough to be split into two blocks, and the size of the rema inder is larger
than a small block(> 64) then the block is split. the top section is returned to the
overflow list, and bottom section given to the user.

Using memory efficiently

Should there not be a block of the right size available. the C storage manager has
two options:

Take all the free blocks on the heap and join ad jacent free blocks together
(coalescing) in the hope that a block of the right size will be created which can
then be used

2 Ask the operating system for more heap, put the block returned in the overflow
list. and try again.

The heap wi ll on ly be coa lesced if there is at least enough free memory in it to
make it worthwhile (ie four times the size of the requested block, and at least one
sixth of the total heap size) or if the request for more heap was denied. Coa lescing
causes the following:

• the bins and overflow list are emptied;

• the heap is scanned;

• . adjacent free blocks are merged;

• the free blocks are scattered into the bins and overflow li st in increasing
address order.

Deallocation of malloc blocks

When a block is freed, if it will fit in a bin then it is put at the start of the relevant
bin list. otherwise it is just marked as being free and effectively taken out of the
heap until the next coalesce phase. when it will be put in the overflow li st. This is
done because the overflow li st is in ascending block address order, and it wou ld
have to be scanned to be able to insert the freed block at the correct position.
Fragmentation is also reduced if the block is not reusable until after the next
coalesce phase It is worth noting that deallocating a block and then reallocating a
block of the same size can not be relied upon to deliver the original block.

Reallocation of malloc blocks

You shou ld be cautious when usi ng realloc. Reallocating a block to a larger size
wi ll usually require another block of memory to be used and the data to be copied
into it. This means that you ca nnot use the whole of the heap as both blocks need
to be present at the same time.

If consecutive ca ll s keep increasing the block size until al l memory is used up, then
only about a third of the heap is likely to be available in one block. A typical course
of events is:

The first block is present (block A)

2 It is extended to a larger sized block (block B) Block A must st ill be present
(see above)

359

r111VllJlll~ lllGlllVlf l'l'Q,;:)U::f:~C

360

3 It is again extended to a larger sized block (block CJ Block B must still be
present (see above) However, block A also still exists because it is too small to
use, and cannot be coalesced with another block because block B is in the way.

Wimp slots and the C flex system
A typical C application running under the Wimp has a single contiguous
application area (wimp slot) into which are placed the following:

• program image

• static data

• stack

• malloc data.

The initial wimp slot size is set by the size of the Next slot (in the Task display
window) when the application is started, or by *WimpS!ot commands in the !Run
file associated with the C application If the malloc heap is full , and the flex
system has not been initialised and the operating system has free memory, the
wimp slot grows, raising its highest address. Once enla rged by malloc, the wimp
slot never reduces again until program termination.

The stack is al located on the heap, in 4K (or as big as needed) chunks: the ARM
procedure call standard means that disjoint extension of the stack is possible . The
only other use that the ANSI library makes of the mal loc heap is in allocating file
buffers, but even this usage can be prevented by making the appropriate calls to
the ANSI library buffer handling facilities (setvbuf). The operation of the
malloc heap is described above and is designed to provide good performance
under heavy use. Its design is such that small blocks can be allocated and freed
rapidly.

Any malloc heap tends to fragment over time. This is particularly serious in the
following circumstances:

• no virtual memory

• multitasking - if memory is not in use, it should be handed to other
applications

• if a program runs out of memory it must not crash, but must recover and
continue.

These are just the conditions under which a desktop application operates!

Because of this, the flex facilities are available as part of RISC_OSLib (the
RISC OS-specific C library provided with Acorn Desktop C). These provide a shifting
heap, intended for the allocation of large blocks of memory which might otherwise
destroy the structure of a mal lac-style heap.

Using memory efficiently

Flex works by increasing the size of the application area , using space above that
reserved for use by mal lac. Once the flex system is initialised the ma l lac heap
cannot grow, unless you enable this (see later) . The benefits of using flex can be
seen in Draw, Paint and Edit, which are all written in C using early versions of
RISC_OSLib. Their application areas expand when new files are added, contract
when files are discarded, and do not suffer from needless incremental application
area growth over time .

The implementation of flex is quite simple There is no free list as memory is
shifted whenever a block is destroyed or changed in size. New blocks are always
allocated at the top . When blocks are deallocated or resized , those above are ·
moved. This means that deallocating or changing the size of a block can take quite
a long time (proportional to the sum of the sizes of the blocks above it in memory) .
Flex is also not recommended for allocation of small blocks . Its other limitation is
that as flex blocks can be shifted , you shou ld not use them for address-dependent
data (eg pointers or indirected icon data)

In addition to the facilities described above, RISC_ OS Lib also provides an obsolete
mallac-like allocator of non-shifting blocks called heap

Two facilities are provided, because no one storage manager can solve all
problems in the absence of Virtual Memory. A program which works adequately
with ma l lac should feel no compulsion to use anything else . The use of flex ,
however, particularly in desktop applications such as editors (which are li kely to be
resident on the desktop for a long period of time) can go a long way towards
improving their memory usage.

The model of a C application 's memory layout is as follows :

Ox8000 top of wimpslot

code statics stack/malloc-heap

If the application uses flex store as supported by RISC_OSLib , the model is

original new
Ox8000 top of wimpslot top of wimpslot

code statics stack/malloc-heap flex store

361

Avoiding memory wastage

362

To expand the malloc heap when a flex store area is being used the flex area has
to be moved. To achieve this, malloc calls a flex function to move the flex blocks.
The flex function called is registered with the C library, and may be a dummy
function which does not move flex . If a dummy function is registered or flex cannot
be successfully moved, then malloc itself returns a 0 to indicate failure.

The Acorn Desktop C version of RISC_OSLib regi sters a dummy flex-moving
functi on during flex_ ini t (), inhibiting malloc heap expansion after
flex_ ini t () has been called. This is registered with a call to the function
_kernel_register_ slotextend()

A functional flex-moving function performs the relocation, sets a pointer to the
newly available space, and returns the size of the memory thus obtained (which
may be less than that requested by malloc).

Allowing mal loc heap expansion to move flex makes the use of pointers into flex
blocks potentially hazardous when the pointers are set before, but used after, the
following:

• calls to flex_alloc, flex_ free, flex_ extend

• calls to malloc and kernel_alloc

• calls to any functions which may cause stack extension (since stack extension
uses the malloc-heap for this purpose)

Consider the following code fragment:

#define FLEX_SIZE 1024 I* for example* I
#define OFFSET 42 ' I* for example *I

static void nonleaf_function(char *p)
{

I* declaration of local va rs, and calls to other functions here * /
I* use of p happens here ... *I

static void access_flex_ store(void)

char *message;

flex_alloc((flex_ptr)&message , FLEX_SIZE);
nonleaf_function(message+OFFSET) ;

Notice that when the value of the char pointer message+OFFSET is passed by
value to the function nonleaf_function (), use of p in this function may no
longer be valid, since stack extension may have happened during the function call,
which may have caused the allocated flex store to move.

Using memory efficiently

Working in this Environment

If you have an existing binary, linked with a version of stubs pre-dating the 3.1 b
intermediate release, such as that included with ANSI C Release 3, then you do
not get an extending wimpslot, and hence no new problems arise (the shared
C library 'knows' which stubs the application was linked with) You must make
your initial wimpslot large enough to accommodate your stack/heap needs.
This is important for old applications which rely on malloc returning 0 when
the application's initial wimpslot is exhausted.

2 If you link with the Acorn Desktop C version of stubs, but do not use the flex
functions in RISC_OSLib, you get a wimpslot extendable bymalloc, and have
no new problems. When more heap is required your wimpslot may be
increased by the C library (but will not shrink when free () is called)

3 If you link with the Acorn Desktop C version of stubs, and use the flex functions
in RISC_OSLib, then your malloc-heap will (by default) not be allowed to grow
You must make your initial wimpslot large enough to accommodate your
stack/heap needs.

Note: flex_init () makes the call:

_kernel_register_slotextend(flex_dont_budge) ;

This means that when the C library attempts to acquire more wimpslot, the
extension will fail This gives you the guarantee that flex store will only be
relocated due to flex_alloc, flex_extend, and flex_ free. Your
wimpslot will grow or shrink to satisfy flex requests, but your malloc-heap will
have a bound fixed by the size of your initial wimps lot

4 If you link with the Acorn Desktop C version of stubs, use the flex functions in
RISC_OSLib, and require malloc to extend the application's wimpslot, you
must be prepared to exist in a world where flex store may move as described in
the section above.

After calling flex_ini t (),you can make the call

_kernel_register_slotextend(flex_budge);

This registers a function which will relocate flex store whenever the C library
needs to grow its malloc-heap.

If you choose to do this, then the following guidelines will be of use to you

• Always pass flex_ptr's (void * *'s) to your own functions, with an
integral offset

Avoid passing direct flex block pointers.

• Direct calls to malloc may cause the flex store to move in the same way
that calls to flex_alloc, flex_extend and flex_free do.

363

Avoiding memory wastage

364

• You can safely make SW! calls which require pointer arguments where
these arguments point into flex blocks , by using _ kernel_swi (),since
_kernel_swi cannot cause stack extension . This state must be
guaranteed by the C library, since flex_ budge () uses
_ kernel_ swi () and may be called during stack extension .

• Using the Acorn Desktop C version of RISC_OSLib , you can also call any
SW! 'veneer' functions , with the knowledge that the stack will not be
extended. These functions have been compiled with stack checking turned
off. The functions (which are all in RISC_OSLib) are :

bbc.h
colourtran.h
drawmod.h
font.h
os.h
print .h
sprite.h
visdelayh
wimp.h

• You can turn stack checking off in your own code using pragmas, thus:

#pragrna no_ stack_ checks

I * functions defined after here are compiled without stack checks * I

#pragrna stack_checks

I * functions defined after here are compiled with stack checks * I

Or for a whole source file by compiling using the flag - zps 1

Note that functions which are compiled with stack checking off have only
512 bytes of stack available to them , and any 'non-stack-check' functions
which they call.

• You can toggle whether the malloc-heap is permitted to extend , using
ca lls to _ kernel_ register_ slotextend () with arguments
flex_ budge or flex_ dont_ budge. This can be used to surround
critical regions of code, where you may wish to temporarily stop flex
blocks moving due to malloc-heap extension.

You can set the root stack segment size using:

int root stack_size = 16*1024 ; / *togetal6kbstacksize* /

Using memory efficiently

Usi·ng heap_alloc and heap_free
Since when mal loc heap expansion is inhibited (as it is by default with the Acorn
Desktop C version of flex) the bottom flex block is static, it is va lid to retain
pointers into it. and useful to manage a malloc style heap of fixed blocks within it.
The heap_alloc () and heap_free () functions provide facilities to perform
this.

Using the heap functions to do memory allocation is similar to mal loc () in that
a pointer to the block allocated is returned to the caller: the routine to do this is
called heap_alloc (). Memory may be released with heap_ free (). Before you
use heap, you must call heap_ini t (); if heap_ini t () is called with a non-zero
parameter, then the heap will be shrunk when it is possible to do so after a call to
heap_free (). The call to heap_ini t () must be made after flex has been
initialised with flex_ini t ().Since the heap functions support a heap in the first
flex block allocated, heap_ini t must be called before any calls to flex allocation
functions, and you must not allow the Cheap to extend thus ca using all flex blocks
to be relocated (ie you must not have reg istered flex_budge with
kernel slot_ extend()).

Using memory from C relocatable modules

All memory allocated by malloc comes from the RMA when your program is
executing in non-user mode. So remember to free it up when you 've finished with
it. If your module allocates any RMA blocks by calling SW! XOS_Module directly,
the C run-time system does not clear them out when your module finalises, so
make su re you do!

There are two sets of atexi t () routines, the ones which you registered during
initialisation ie before your module was entered via the main () entry point
(because the module was RMRun for instance) , and the ones you registered after.
The ones registered before will be executed when your module is finalised - this is
how to clear up after yourself; the ones after will be called when your module exits
from being run, ie when main () terminates.

When you are writing a C module, use exit (), not SW! XOS_Exit

Never access your application 's workspace from an interrupt routine. During
interrupts, the state of the applicat ion area is effectively random. Since your
interrupt routine cou ld execute at any time, it could happen while some other
application is switched in. If this did happen, and the interrupt routine updated
application space , then some other application cou ld be affected. To get around
this problem, al locate some RMA space for your interrupt routine to use when it
needs to; this memory will be visib le when your application is running Remember
to free up the RMA space when you've finished with it.

365

Using heap_alloc and heap_free

366

When executing as C module SVC mode code (during initiali sa tion, finali sation,
service or interru pt entry) your stack will be small. Also, your stack, unlike when in
USR mode (ie running as an appl icat ion) will not extend dynamica ll y. It is therefore
very important to be extremely economical with stack space; avoiding large auto
arrays , using malloc where larger spaces are required, then free ing at the routine
end .

Static va riables (and arrays etc) in a C module are extant for the lifetime o f th e
module, ie the entire tim e it is loaded. If they are only needed when it is running as
an application , then th ey should be claimed using malloc instead

17 Machine-specific features

This chapter describes the following machine-specific features of the Acorn C
compiler:

• the C library kerne l

• calling other programs from C

• the shared C library

• #pragma directives

• storage management

• handling host errors.

How to use the C library kernel

C library structure

The C library is organ ised into layers, like the skins of an on ion. At the centre is the
language-independent library kernel. This is implemented in assembly language
and provides basic support services, described below, to language run-time
systems and, directly, to client appli cations.

One level out from the library kernel is a thin, C-specific layer, also implemented in
assembly language. This provides compiler support functions such as structure
copy, interfaces to stack-limit checking and stack extension, setj mp and
longjmp support, etc. Everything above this level is written in C.

Finally, there is the C library proper This is implemented in C and , with the
exception of one module wh ich interfaces to the library kernel and the C-specific
veneer, is highly portable

The library kernel

The library kernel is designed to all ow run-time libraries for different languages to
co-reside harmon ious ly, so that inter-language ca lling ca n be smooth . At the
present time, the Fortran-77 library uses the run-time kernel, but the Pascal library
does not Currently, code compiled by the F77 compiler does not adhere to the
ARM Procedure-Call Standard, so inter-working with C is not possible in this
release.

367

How to use the C library kernel

368

The li brary kernel provides the fo llowing facilities :

• a generic, status-returning, procedu ral interface to SWis

• a procedural interface to the following commonly used SWls:

OS_Byte
OS_Rdch
OS_Wrch
OS_BGet
OS_BPut
OS_GBPB
OS_ Word
OS_Find
OS_File
OS_Args
OS_CLI /* use is not advised - use _kernel_system () */

• a procedural interface to the following arithmetic functions:

unsigned integer division
unsigned integer remainder
unsigned divide by I 0 (much faster than general division)
signed integer division
signed integer remainder
signed divide by I 0 (much faster than general division)

• a procedura l interface to the fo llowing miscellaneous functions :

finding the identity of the host system (RISC OS, Arthur. etc)
determining whether the floating point instruction set is available
getting the command string with which the program was invoked
returning the identity of the last OS error
reading an environmenta l variab le
setting an environmenta l variab le
invoking a sub-application
claiming memory to be managed by a heap manager
unwinding the stack
finding the name of a funct ion conta ining a given address
finding the source language associated with code at a given address.

• support for manipulating the IRO state from a relocatable module:

getting the processor mode
determining if IROs are enabled
enabling IROs
disabling IROs.

Machine-specific features

• support for allocating and freeing memory in the RMA area

allocating a block of memory in the RMA
extending a block of memory in the RMA
freeing a block of memory in the RMA.

• support for stack-limit checking and stack extension

finding the current stack chunk
four kinds of stack extension -

small-frame and large-frame extension,
number of actual arguments known (eg Pascal), or unknown (eg C) by
the ca ll ee.

• trap handling, error handling, event handling and escape handling.

Most of these functions are described in the C library header file <kern e l. h >.
This header also declares the data structu res you wil l need to use in order to ca ll
these functions or to interpret their results . See Appendix C kerneU1 for a detailed
description .

Interfacing a language run-time system to the Acorn library kernel
In order to use the kernel, a language run-time system must provide an area named
RTSK$$DATA, with attributes READONLY The contents of this area must be a
_ ker nel_l anguagedescr i pt i on as follows :

typedef enum { NotHandled , Handled } _ kerne l_Handled OrNot

typedef struct
int regs [16] ;

} _ kernel_ registerset ;

typedef struct {
int regs [10] ;

} _ kernel_ eventregisters ;

typedef void (*PROC) (voi d) ;
typedef _ kernel_ HandledOrNot

(*_ke rnel_ trapproc) (int code , _ kernel_ registerset *regs) ;
typedef _ kernel_ HandledOrNot

(*_kernel_ eventproc) (int code , _ kernel_ registerset *regs) ;

typedef struct {
int size ;
int codestart , codeend ;

369

How to use the C library kernel

370

char *name ;

PROC (*InitProc) (void) ; / * that is , InitProc returns a PROC * /
PROC FinaliseProc ;
kernel trapproc TrapProc ;
_ kernel_trapproc UncaughtTrapProc ;

_ kernel_ eventproc EventProc ;
_ kernel_ eventproc UnhandledEventProc ;
void (*FastEventProc) (_ kernel_ eventregisters *) ;
int (*UnwindProc) (_kernel_unwindblock *inout , char ** language) ;
char * (*NameProc) (int pc) ;

_ kernel_ languagedescription ;

Any of the procedure values may be zero, indicating that an appropriate default
action is to be taken . Procedures whose addresses lie outside
lcodes tart ... codeend] also cause the default action to be taken.

codestart, codeend

These values describe the range of program counter (PC) values which may be
taken while executing code compiled from the language. The linker ensures that
this is describable with just a single base and limit pair if all code is compiled into
areas with the same unique name and same attributes (conventionally,
Language$$code, CODE, READONLY The values required are then accessible
through the symbols Language$$code$$Base and Language$$code$$Limit).

InitProc

The kernel contains the entrypoint for images containing it. After initialising itself,
the kernel calls (in a random ord~r) the lnitProc for each language RTS present in
the image They may perform any required (language-library-specific) initialisation:
their return value is a procedure to be called in order to run the main program in
the image. If there is no main program in its language, an RTS should return 0. (An
lnitProc may not itself enter the main program, otherwise other language RTSs
might not be initialised. In some cases, the returned procedure may be the main
program itself, but mostly it will be a piece of language RTS which sets up
arguments first.)

It is an error for all lnitProcs in a module to return 0 What this means depends on
the host operating system; if RISC OS, SWI OS_ Generate Error is called (having first
taken care to restore all OS handlers). If the default error handlers are in place, the
difference is marginal.

FinaliseProc

On return from the entry call , or on call of the kernel's Exit procedure, the
FinaliseProc of each language RTS is called (again in a random order) The kernel
then removes its OS handlers and exits setting any return code which has been
specified by call of _kernel_set r e turnc ode.

TrapProc, UncaughtTrapProc

- I '·
I j

Machine-specific features

If an image is not being run under a debugger, the kerne l installs OS trap and error

handlers. On occurrence of a trap , or of a fatal error, all registers are saved in an

area of store belonging to the kernel. These are the registers at the time of the

instruction causing the trap, except that the PC is wound back to address that
instruction rather than pointing a variable amount past it.

The PC at the time of the trap together with the call stack are used to find the
TrapHandler procedure of an appropriate language If one is found, it is invoked in
user mode. It may return a value (Handled or NotHandled). or may not return at
all. If it returns Handled, execution is resumed using the dumped register set
(which should have been modified, otherwise resumption is likely just to repeat
the trap) If it returns NotHandled , then that handler is marked as failed, and a
search for an appropriate handler continues from the current stack frame.

If the search for a trap handler fails , then the same procedure is gone through to
find a 'uncaught trap' handler.

If this too fails, it is an error. It is also an error if a further trap occurs while handling
a trap. The procedure _kernel_ exittraphandler is provided for use in the
case the handler takes care of resumption itself (eg via longjmp).

(A language handler is appropriate for a PC value if LanguageCodeBase <=PC and
PC< LanguageCodeLimit. and it is not marked as failed Marking as 'failed ' is local
to a particular ke.rnel trap handler invocation. The search for an appropriate
handler examines the current PC, then RI4, then the link field of successive stack
frames If the stack is found to be corrupt at any time, the search fails)

EventProc, UnhandledEventProc

The kernel always installs a handler for OS events and for Escape flag change On
occurrence of one, all registers are saved and an appropriate EventProc, or failing
that an appropriate UnhandledEventProc is found and cal led. Escape
pseudo-events are processed exact ly like Traps . However, for 'rea l' events, the
search for a handler terminates as soon as a handler is found, rather than when a
willing handler is found (this is done to limit the time taken to respond to an
event) If no handler is willing to claim the event, it is handed to the event handler
which was in force when the program started. (The ca ll happens in Call Back, and if
it is the result of an Escape, the Escape has already been acknowledged.)

In the case of escape events, all side effects (such as termination of a keyboard
read) have already happened by the time a language escape handler is ca ll ed.

371

nuw 1u u:;;t: tflt: v 11orary Kernel

372

FastEventProc

The treatment of events by EventProc isn't too good if what the user level handler
wants to do is to buffer events (eg conceivably for the key up/down event). because
there may be many to one event handler call. The FastEventProc allows a call at the
time of the event, but this is constrained to obey the rules for writing interrupt
code (called in IRO mode; must be quick; may not call SWls or enable interrupts ;
must not check for stack overflow) The rules for which handler gets called in this
case are rather different from those of (uncaught) trap and (unhandled) event
handlers, partly because the user PC is not available, and partly because it is not
necessarily quick enough. So the FastEventProc of each language in the image is
ca lled in turn (in some random order).

UnwindProc

UnwindProc unwinds one stack frame (see description of _kernel_unwindproc
for details). If no procedure is provided , the default unwind procedure assumes
that the ARM Procedure Call Standard has been used; languages should provide a
procedure if some internal calls do not follow the standard.

NameProc

NameProc returns a pointer to the string naming the procedure in whose body the
argument PC lies, if a name can be found; otherwise, 0.

How the run-time stack is managed and extended
The run-time stack consists of a doubly-linked list of stack chunks. The initial stack
chunk is created when the run-time kernel is initiali sed. Currently, the size of the
initial chunk is 4Kb. Subsequent requests to extend the stack are rounded up to at
least this size, so the granularity of chunking of the stack is fairl y coarse. However,
clients may not rely on this.

Each chunk implements a portion of a descending stack. Stack frames are singly
linked via their frame pointer fields within (and between) chunks. See Appendix F -
ARM procedure call standard in the Acorn Desktop Development Environment user guide for
more details .

In general. stack chunks are allocated by the storage manager of the master
language (the language in which the root procedure -that containing the language
entry point - is written). Whatever procedures were last registered with
_kernel_register_allocs () will be used (each chunk 'remembers' the
identity of the procedure to be called to free it) Thus, in a C program, stack chunks
are all ocated and freed using malloc () and free ().

In effect, the stack is allocated on the heap, which grows monotonically in
increasing address order.

Machine-specific features

The use of stack chunks allows multiple threading and supports languages which

have co-routine constructs (such as Modula-2) . These constructs can be added to C
fairly easily (provided you can manufacture a stack ch unk and modify the fp, sp

and sl fields of a jmp_buf. you can use setjmp and longjmp to do this) .

Stack chunk format

A stack chunk is described by a _kernel_stack_chunk data structure located

at its low-address end. It has the fo llowing format:

typedef struct stack_chunk {
unsigned long sc_mark ; / * == Oxf60690ff * /
struct stack_chunk * sc_next , *sc_prev ;
unsigned long sc_size ;
int (*sc_deallocate) ();

_kernel_stack_chunk;

sc_mark is a magic number; sc_next and sc_prev are forward and backward

pointers respective ly, in the doubly linked list of chunks; sc_si ze is the size of

the chunk in bytes and includes the size of the stack chunk data structure;
sc_deallocate is a pointer to the procedure to ca ll to free this stack chunk­

often free () from the C library. Note that the chunk lists are terminated by NULL

pointers - the lists are not circular.

The seven words above the stack chunk structu re are reserved to Acorn. The

stack-l imi t register points 512 bytes above this (ie 560 bytes above the base of the

stack chunk)

Stack extension

Support for stack extension is provided in two forms:

• fp, arguments and sp get moved to the new chunk (Pascal/Modu la-2-style)

• fp is left pointing at arguments in the o ld chunk, and sp is moved t o the new

chunk (C-style)

Each form has two variants depending on whether more than 4 arguments are
passed (Pascal/Modula-2-style) or on whether the required new frame is bigger

than 256 bytes or not (C-style) See Appendix F - ARM procedure call standard in the

Acorn Desktop Development Environment user guide for more details.

_kernel_stkovf_copyargs

Pascal/Modula-2-style stack extension, with some arguments on the stack (ie stack

overflow in a procedure with more than four arguments). On entry, ip must

contain the number of argument words on the stack.

373

Calling other programs from C

_kernel_stkovf_copyOargs

Pascal/Modula-2-style stack extension, without arguments on the stack (ie stack
overflow in a procedure with four arguments or fewer) .

_kernel_stkovf_split_frame

C-style stack extension , where the procedure detecting the overflow needs more
than 256 bytes of stack frame. On entry, i p must contain the value of sp - the
required frame size (ie the desired new s p which would be below the current stack
limit) .

_kernel_stkovf_split_Oframe

C-style stack extension, where the procedure detecting the overflow needs 256 or
fewer bytes of stack frame .

Stack chunks are deallocated on returning from procedures which caused stack
extension, but with one chunk of latency. That is , one extra stack chunk is kept in
hand beyond the current one, to reduce the expense of repeated call and return
when the stack is near the end of a chunk; others are freed on return from the
procedure which caused the extension.

Calling other programs from C

374

The C library procedure sys tern () provides the means whereby a program can
pass a command to the host system 's command line interpreter. The semantics of
this are undefined by the draft ANSI standard.

RISC OS distinguishes two kinds of commands, which we term built-in commands
and applications. These have different effects. The former always return to their
callers, and usually make no use of application workspace; the latter return to the
previously set-up 'exit handler', and may use the currently-available application
workspace. Because of these differences, sys t e m () exhibits three kinds of
behaviour. This is explained below.

Applications in RISC OS are loaded at a fixed address specified by the application
image Normally, this is the base of application workspace, Ox8000. While
executing, applications are free to use store between the base and end of
application workspace The end is the value returned by SW! OS_GetEnv They
terminate with a call of SW! OS_Exit, which transfers control to the current exit
handler.

When a C program makes the call sy s t ern (" command") several things are done:

• The calling program and its data are copied to the top end of application
workspace and all its handlers are removed.

Machine-specific features

• The current end of application workspace is set to just below the copied

program and an exit handler is installed in case 11 command 11 is another

application .

•
11 command 11 is invoked using SW! OS_Cli

When 11 command 11 returns. either directly (if it is a built-in command) or via the
exit handler (if it is an application). the caller is copied back to its original location.
its handlers are re-installed and it continues. oblivious of the interruption .

The value returned by system () indicates

• wJiether the command or application was successfully invoked

• if the command is an application which obeys certain conventions, whether or
not it ran successfully.

The value returned by system (with a non-NULL command string) is as fol lows:

< 0- couldn't invoke the command or application (eg command not found);

>=0 - invoked OK and set Sys$ReturnCode to the returned va lue.

By convention, applications set the environmental variable Sys$ReturnCode to 0 to
indicate success and to something non-0 to indicate some degree of failure.
Applications written in C do this for you. using the value passed as an argument to
the exit () function or returned from the main () function.

If it is necessary to replace the current application by another. use:

system(11 CHAIN:command 11
) ;

If the first characters of the string passed to system () are 11 CHAIN : 11 or
11 chain : 11

• the caller is not copied to the top end of application workspace, no
exit handler is installed, and there can be no return (return from a built-in
command is caught by the C library and turned into a SW! OS_Exit)

Typically, CHAIN: is used to give more memory to the called application when no

return from it is required The C compiler invokes the linker this way if a link step is
required On the other hand. the Acorn Make Utility (AMU) calls each command to
be executed. Such commands include the C compiler (as both use the shared C
library, the additional use of memory is minimised) Of course. a ca lled application
can call other applications using system ().A callee can even CHAIN: to another
application and still, eventually, return to the caller. For example, AMU might
execute:

system(11 cc hello.c 11
);

to call the C compiler. In turn. cc executes:

system(11 CHAIN : link -o hello a . hello $.CLib.o.Stubs 11
) ;

375

1 ne snarea (.; uorary

to transfer control to the linker, giving link all the memory cc had.

However, when Link terminates (calls exit (),returns from main () or aborts) it
returns to AMU, which continues (providing Sys$ReturnCode is good).

The shared C library

376

Release 4 of C makes extensive use of the shared C library module, first introduced
with Release 2 of C and subsequently used by the RISC OS applications Edit. Paint ,
Draw and Configure.

The shared C library is a RISC OS relocatable module (called SharedCLibrary)
which contains the whole of the ANSI C library. Once installed in your computer it
can be used by every program written in C. Consequently, it save both RAM space
and disc space.

In fact, this is as much as you really need to know about the shared C library and
probably as far as you should delve at first reading. So, if you are eager to try your
first practical work with this release of C, skip the rest of this section. However, if
you are curious and would like to know more about what it really costs to use it. its
benefits, and a little of how it works, then read on.

Costs involved in using the shared C library

The SharedCLibrary modules occupies about 60Kb. Each program that uses it must
be linked with the library stubs, a small object module containing space for a copy
of the shared C library's data and,an entry vector via which functions in the shared
library can be called. The stubs occupy just 5Kb. Thus a single program linked with
the shared C library consumes about 65Kb of RAM for C library However, two
programs in memory at the same time use only 70Kb for library and three
programs, only 75Kb.

In contrast. a program linked with Release 3 of ANSI Lib will include a minimum of
40Kb. So, as soon as you have two or more C programs in memory at the same
time, it is cheaper to use the SharedCLibrary. Usually, you will have SrcEdit
resident (which uses the shared C library anyway) and then you may want to run CC
under Make. In this situation, use of the shared C library saves 45Kb of RAM.

Efficient use of RAM is not the only consideration. The C compiler includes 48Kb of
ANSI Lib and when squeezed occupies l 72Kb on disc. However, when linked with
Stubs and squeezed it occupies only l 40Kb. There are similar savings from Link,
AMU, and Squeeze, as well as for the programs you compile (the 'hello world'
program is reduced in size from over 40Kb to just 5.5Kb).

Machine-specific features

Without using the shared C library it would not be possible to use C Release 4 on a
system with only a single floppy disc drive (imagine the loss of l 50Kb of work
space, together wi th a minimum image size of 40Kb) . And, of course, smal ler
programs load much faster from a fl oppy disc.

If you have a larger Acorn system, use of the shared C library sti ll brings benefits:

• Small programs load noticeably faster, even from a hard disc.

• No hard disc is ever big enough; saving 25-40Kb per program is not to be
sneezed at if you have 40 or 50 programs (I-2Mb saved).

• Much more can be packed into the RAMFS - perhaps al l t he tools you ever
use, giving almost instantaneous loading of them .

Execution time costs

It costs only 4 cycles (0.5µs) per function ca ll and a very sma ll penalty on access to
the library's stat ic data by the library (the user program 's access to the same data is
unpenalised) . In general, the difference in performance between using the shared
C library and linki ng a program stand-alone with ANS! Lib is less than i%. For the
important Dhrystone-21 benchmark the performance difference cannot be
measured (you can try this experi ment for yourself using the sources provided in
User).

How it works

The shared C library module implements a single SW! which is called by code in
the library stubs when your program linked with the stubs starts running. That SW!
ca ll tells the stubs where the library is in the machine. This al lows the vector of
library entry points conta ined in the stubs to be patched up in order to point at the
relevant entry points in the library module.

The stubs also conta in your private copy of the library's stat ic data. When code in
the library executes on your behalf, it does so using your stack and relocates its
accesses to its stat ic data by a value stored in your stack-chunk structure by the
stubs initialisation code and addressed via the stack-limit register (this is why you
must preserve the stack-limit register everywhere if you use the shared C library
and call your own assembly language sub-routines). The compiler's register
al location strategy ensures that the real dynam ic cost of the relocation is almost
always low: for example, by doing it once outside a loop that uses it many times.

If you go on to write you r own relocatable modules in C, you'll use the Module
code SetUp option of the compiler which ca uses similar code to be generated.

377

1Fpragma mrecuves

#pragma directives

378

Pragmas recognised by the compiler come in two forms:

#pragma -<letter><optional-digit>

and

#pragma [no] <feature-name >

A short-form pragma given without a digit resets that pragma to its default state;
otherwise to the state specified

For example,

#pragma -sl
#pragma nocheck_stack

#pragma -p2
#pragma profile_statements

The current list of recognised pragmas is:

pragma name short form

warn_ implicit_fn_decls al
warn_ implicit_ casts bl
check_memory_ accesses cl
warn_ deprecated dl
continue_after_hash_error el
optimise_ crossjump jl
optimise_multiple_ loads ml
profile pl
prof ile_ statements p2
check_stack sO
check_printf_formats vl
check_ scanf formats v2
check_formats v3
side_effects yO
optimise_ cse zl

'no' form

aO
bO
co
dO
eO
jO
mO
pO
pO
s l
vO
vO
vO
yl
zO

The set of pragmas recognised by the compiler, together with their default settings,
varies from release to release of the compiler. In general, the only pragmas you
should need to use are check_ stack and nocheck_ stack. These enable and
disable, respectively, the generation of code to check the stack limit on function
entry and exit. In reality there is little advantage to turning stack checks off: they
cost at most two instructions and two machine cycles (about 0.25µs) per function
call. The one occasion when nocheck_stack would be used is in writing a signal

Machine-specific features

handler for the SIGSTAK event. When this occurs, stack overflow has already been
detected, so checking for it again in the handler would result in a fatal circu lar
recursion.

Storage management (malloc, calloc, free)
The aim of the storage manager is to manage the heap in as 'efficient' a manner as
possible. However, 'efficient' does not mean the same to all programs and since
most programs differ in their storage requirements, certain compromises have to
be made The main issues to be considered are speed and heap fragmentation .

You should also try to keep the peak amount of heap used to a minimum so that,
for example, a C program may invoke another C program leaving it the maximum
amount of memory This implementation has been tuned to hold the overhead due
to fragmentation to less than 50%, with a fast turnover of sma ll blocks.

The heap can be used in many different ways. For example it may be used to hold
data with a long life (persistent data structures) or as temporary work space; it may
be used to hold many small blocks of data or a few large ones or even a
combination of all of these allocated in a disorderly manner The storage manager
attempts to address all of these problems but like any storage manager, it cannot
succeed with all storage allocation/deallocation patterns. If your program is
unexpectedly running out of storage, see the chapter entitled Using memory
efficiently, earlier in this guide This gives you information on the storage manager's
strategy for managing the heap, and may help you to remedy the problem

Note the following

• The word fieap refers to the section of memory currently under the control of
the storage manager.

• All block sizes are in bytes and are rounded up to a multiple of four bytes.

• All blocks returned to the user are word-a ligned

• All blocks have an overhead of eight bytes (two words) One word is used to
hold the block's length and status, the other contains a guard constant which
is used to detect heap corruptions. The guard word may not be present in
future releases of the ANSI C library

Handling host errors
Calls to RISC OS can be made via one of the functions in the C header file
kernel . h , (such as _kernel_ osfind (64 , " ")).If the call causes an
operating system error, the function will return the va lue _kernel_ERROR. To
find out what the error was, a ca ll to _kernel_ las t _oserror shou ld be made.
This will return a pointer to a _kernel_oserror block conta ining the error

379

I IYllUllll~ llV~l O"l lVI~

380

number and any associated error string. If there has been no error since
_kernel_last_oserror was last called, the function returns the NULL pointer
Some functions in the ANSI C library call _kernel functions, so if an ANSI C
library function (such as fopen (11

•••••
11

,
11 r 11

)) fails, try calling
_kernel last_oserror to find out what the error was.

For more details about operating system calls, refer to the kernel. h header
(reproduced as Appendix C kernel.h in this Guide), and for more information about
RISC OS error handling, refer to the chapter entitled Generating and handling errors in
the RISC OS Programmer's Reference manual.

Appendices

381

382

18 Appendix A: New features of
Desktop C

Acorn Desktop C is the fourth release of an Acorn C compiler product for .n RISC OS, and replaces the ANSI C Release 3 product For the first time you can
develop C programs within a desktop development environment provided by 19
programming tools working together in the RISC OS desktop

Some of these tools are completely new, such as the windowed DDT debugger and
desktop Make, while some are improved versions of o ld tools such as the Form Ed
template file editor and the SrcEdit desktop program editor. The C compiler is one
of many tools which previously was operated from the command line, and has now
been provided with a standardi sed desktop interface. Many tools such as the text
searching programs Diff and Find which were previously part of the Software
Developer's Toolbox are now included in Acorn Desktop C.

In addition to the new support for developers whi le working on their host systems,
additions and improvements have been made to the support of finished
applications running on their target machines. The FrontEnd relocatable module
supplied with Acorn Desktop C can provide a complete RISC OS desktop interface
for a non-interactive command line program knowing nothing of the RISC OS
desktop. This has been used to add interfaces to tools such as the C compiler, and
you can use it for your programs. The performance of some tools such as the C
compiler has been enhanced, and some additions made to library support

The user guides supplied with Acorn Desktop C now extend to two vo lumes,
incorporating coverage of the new tools and interfaces. an increased number of
worked examples and details of how the Desktop Development Environment fits
together so that you can extend it with your own tools if you wish.

Acorn Desktop C tools
The programming tools included with Acorn Desktop Care all either new or
enhanced since release 3. They are:

• DDT- the new Desktop Debugging tool. capable of debugging RISC OS
desktop applications

• SrcEdit - the new programmer's editor operating in the desktop (a
development of Edit)

383

Acorn Desktop c; tools

384

• Make - the new desktop make and automatic makefile generator.

• Form Ed - an improved version of the old Form Ed template file editor.

• CC - the C compiler. This has the addition of a desktop front end, plus further

optimisation yielding a few percent more compact code.

• CMHG - the C Module Header Generator, now with a desktop front end.

• ToANSI - the C dialect conversion program, now with a desktop front end .

• ToPCC - the C dialect conversion program , now with a desktop front end .

• AMU - the make utility with a new desktop front end.

• Common - a utility to count the most common words in a text file . This was
previously part of the Software Developer's Toolbox, and has an added desktop
front end.

• Di ff - a utility to compare two text files. This was previously part of the
Software Developer's Toolbox, and has an added desktop front end.

• DecAOF- a utility to decode Acorn Object Format files, with a desktop front
end.

• DecCF - a utility to decode Chunk Files, with a desktop front end.

• Find - a utility to find text in file names and text file contents. This was
previously part of the Software Developer's Toolbox, and now has a desktop
front end.

• Link- the linker, now with a qesktop front end.

• LibFile - the tool for constructing and managing linkable libraries of object
files This performs the job of two utilities provided as part of the Software
Developer's Toolbox, and has an added desktop front end.

• Obj Size - a tool extracting size information from an Acorn Object Format file,
with an added desktop front end.

• Squeeze - a tool for compacting executable binary fi les, now also capable of
compacting relocatable modules, with an added desktop front end.

• WC - a utility to count the number of words in a text file . This was previously
part of the Software Developer's Toolbox, and has an added desktop front end.

The only tool supplied with release 3 which is no longer included is ASD, a
command line debugger superseded by DDT, which has greater versatility and a
windowed display

Appendix A: New features of Desktop C

New technical features

User guides

The C compiler has been enhanced in the following ways since release 3:

• Conformance with the newly ratified ANSI standard (see the Introduction of
this manual for more details)

• Slightly improved space efficiency of generated code- code files generated are
on average a few percent smaller than those of the release 3 compiler

The RISC_ OS Lib linkable library of OS specific routines assisting the production of
applications has been extended, with the addition of over 30 new functions

The procedure call standard has not changed since release 3.

Since only a very low percentage of Archimedes users still run the Arthur operating
system which was superseded by RISC OS, the Arthurlib library and its header
(which were documented as obsolescent in release 3) are no longer included.

The user guide for Acorn Desktop Chas been split into two volumes - Desktop
Development Environment and ANSI C Release 4. The former volume covers all
tools and other information not specific to programming in C, whereas the latter
covers the C processing tools, language issues and programming information.

The volume of material in the user guides has increased significantly as a result of
describing the new tools, their user interfaces and information to extend the
development environment with your own tools. Each tool now has a chapter
devoted to it

385

User guides

386

19 Appendix B: Errors and warnings

This appendix gives a brief description of the intended purposes of error and
warning messages from the CC tool. along with some hints for interpreting

them. It then lists most of them in alphabetical order. Since the messages are
designed as far as possible to be self-explanatory, some of the more simple ones
are not listed here.

Interpreting CC errors and warnings

The compiler can produce error and warning messages of several degrees of
severity. They are as follows:

• Warnings indicating curious, but legal, program constructs, or constructs that
are indicative of potential error;

• Non-serious errors that still allow code to be produced;

• Serious errors that may cause loss of code;

• Fatal error~ that may stop the compiler from compiling;

• System errors that signal faults in the system itself.

Warnings from CC are intended to provide a helpful level of checking, in addition to
the level required by the ANSI standard. On some other systems, such as UNIX,
separate facilities (like lint) are provided to perform this checking. Warnings flag
program constructs that may indicate potential errors, or those not recommended
because they may function differently on other machines, and hence hinder the
portability of code

Some warnings point out the use of facilities provided in this ANSI C
implementation which are above the minimum required by ANSI - for example,
use of external identifiers that are identical in the first six characters, which may
not be differentiated by other systems which conform to the ANSI standard.

Programs ported from other machines may cause large numbers of warning
messages from CC, which you can disable with the Suppress option (see the
chapter entitled CC for more information) When you have finished producing
high-quality software, you can also enable additional checks with the CC Feature
option

387

Interpreting CC errors and warnings

388

Errors and serious errors collectively respond to ANSI 'diagnostics'; whether an
error is serious or not reflects the compiler's view, not yours. or that of the ANSI
committee.

After issuing a warning, non-serious, or serious error, CC continues compiling,
sometimes producing more such messages in the process. Compilation of C by CC
can be thought of as a pipeline process. starting with preprocessing, syntax
analysis, then semantic analysis (when the structure of a portion of code is
analysed). When syntax errors in Care encountered by CC, the compiler can often
guess what the error was, correct it, and continue. When semantic errors are found,
portions of your code are often ignored before continuing, and serious error
messages are reported .

Unfortunately, the compact and powerful nature of C leads to a high proportion of
semantic errors. Ignoring portions of your code is likely to make subsequent
portions incorrect. so one serious error can often start a cascade of error messages.
Often, therefore, it is sensible to ignore a set of error messages following a serious
error message.

If the compiler produces any message more serious than a warning, it will set a bad
return code, usually terminating any 'make' of which it is a part in the process Any
serious error will cause the output object file to be deleted; fatal and system errors
cause immediate termination of compilation, with loss of the object file and bad
return code set

Future releases of the compiler may distinguish further forms of error, or produce
slightly different forms of wording.

In pee mode, constructs that are erroneous in ANSI mode are reported, even
though legal in pee mode.

Warnings

Appendix B: Errors and warnings

Warning messages indicate legal but curious C program s, or possibly unintended

constructs (unless warnings are suppressed). On detection of such a condition, the

compiler issues a warning message, then continues compilation.

Warning messages

'&' unnecessary for function or array xx

Thi s is a reminder that if xx is defined as char xx [1 OJ then xx already has a pointer

type. There is a similar reminder for function names too. Example:

static char mesg[] = "hello\n ";
int main ()

char *p &mesg ; / * mesg is already compatible with char * * /

actual type 'xx' mismatches format '%.x'

A type error in a pr int f or scanf format string. Example:

int ·i ;
printf("%s\n ", i) ; / * %s need char* not int * /

ANSI 'xx' trigraph for 'x' found - was this intended?

This helps to avoid inadvertent use of ANSI trigraphs . Example

printf("Type ??/ ! ! : ") ; / * " ??/ " is trigraph for " \ " * /

argument and old-style parameter mismatch : xx

A function with a non-ANSI declaration has been called using a parameter of a
wrong data type . Example:

389

Warnings

390

int fnl (a , b)
int a ;
int b;

return a * b;

int main ()

int l ; float m;
fnl(l,m) ; / * m should be ' int ' * /

character sequence /* inside comment

You cannot nest com ments in C. Example :

/ * comment out func() for now ...
/ * func() returns a random number * /
int func(void)

return i ;

* /

Dangling 'else' indicates possible error

This hints that you may have mis-matched your ifs and els es. Remember an
else always refers to the most recent un-matched if. Use braces to avoid
ambiguity. Example

if (a)
if (b)

.return 1 ;
else if (c)
return 2 ;

else / * this belongs to the if (a) . Or does it?*/
return 3 ;

Appendix 8: Errors and warnings

Deprecated declaration of xx() - give arg types

A feature of the ANSI standard is that argument types should be given in function

declarations (prototypes). 'No arguments' is indicated by void. Example:

extern int func() ; / * should have ' void ' in the parentheses * /

extern clash xx , xx clash (ANSI 6 char monocase)

Using compiler Feature opt ion e, it was found that two externa l names were not

distinct in the first six characters. Some linkers provide on ly six significant
characters in their symbol table. Example:

extern double functionl (int i);
extern char * function2 (long 1) ;

extern 'main' needs to be 'int' function

This is a reminder that main () is expected to return an integer. Example:

void main()

extern xx not declared in header

Compiling with Feature h , an external object was discovered which was not

declared in any included header file

floating point constant overflow

Th is is typically caused by a division by zero in a floating point constant expression

eva luated at compile time . Example:

#define lim 1
#define eps 0 . 01
static float a= eps / (lim-1) ; / * lim-1 yi elds 0 * /

floating to integral conversion failed

A cast (possibly implicit) of a floating point constant to an integer failed at compile

time . Example:

static int i = (int) l . Oe20 ; / * INT_ MAX is about 2e10 * /

391

VVdll llll!J:S

392

formal parameter 'xx' not declared - 'int' assumed

The declaration of a function parameter is missing. Example:

int func(a)
/ * a should be declared here or within the parentheses* /
{

Format requires nn parameters, but mm given

Mismatch between a printf or scanf format string and its other arguments.
Example:

printf(" %d , %d\n ",l); / * should be two ints * /

function xx declared but not used

When compiling with Feature v, the function xx was declared but not used within
the source file

Illegal format conversion '%x'

Indicates an illegal conversion implied by a printf or scanf format string.
Example:

printf(" %w\n ", 10) ; / * n~ such thing as %w * /

implicit narrowing cast : xx

An arithmetic operation or bit manipulation is attempted involving assignment
from one data type to another. where the size of the latter is naturally smaller than
that of the assigned value. Example:

doubled= 1 . 0 ; long 1 = 2L ; int i 3 ;
i d * l;
i 1 3 ;
i 1 & -1 ;

implicit return in non-void function

A non-void function may exit without using a return statement. but won't return a
meaningful result Example:

Appendix B: Errors and warnings

int func(int a)

int b =a*lO ;
... /* no return <expr> stat ement */

incomplete format string

A mi stake in a printf or scanf fo rmat string. Exa mple:

printf("Score was %d% " ,score) ; / * 2nd% should be%% * /

· 'int xx()' assumed - 'void' intended?

If the definiti on of a fun ction omits its return type - it defaults to int. You should
be explicit about the type, using void if the fun ction doesn't return a result.
Exa mple:

main()
{

inventing 'extern int xx();'

The decla ration of a functi on is miss ing. Exa mple:

printf("Type your name : ") ;
/ * forgot to #inc l ude <stdio.h> */

lower precision in wider context: xx

An a rithmetic operation or bit manipulati on is attempted involving ass ignment
from int, short or char to long. Exa mple:

long 1 = lL ; int i = 2 ; short j = 3 ;
1 i & j ;
1 = i I 5 ;
1 = i * j ;

One circum stance in which thi s causes problems is when code like

long f(int x) {return l <<X ; }

(which fa il s if int has 16 bits) is moved to machines such as the IBM PC.

393

Warnings

394

No side effect in void context: 'op'

An expression which does not yield any side effect was evaluated; it will.have no
effect at run-time. Example :

a+b ;

no type checking of enum in this compiler

Compi ling with Feature x, an enum declaration was found, and this message
refers to the ANSI stipu lation that en um va lues be integers, less strict ly typed than
in some earlier dialects of C.

Non-ANSI #include <XX>

A header file has been #included which is not defined in the ANSI standard.<>
should be replaced by " "

non-portable - not 1 char in 'xx'

Assigning character constants containing more than one character to an int wi ll
produce non-portable results . Example:

static int exitCode = ' ABEX ';

non-value return in a ncin-void function

The expression was omitted from a return statement in a function which was
defined with a non-void return type. Example:

int func(int a)

int b=a*lO;

return ; / * no <expr> * /

odd unsigned comparison with 0 : xx

An attempt has been made to determine whether an unsigned variable is negative.
Example:

unsigned u , v;
if (u < 0) u = u * v ;
if (u >= 0) u = u I v ;

Appendix B: Errors and warnings

Old-style function: xx

Compiling with Feature o, it was noted that the code contains a non-ANSI
function declaration. Example:

void fn2 (a , b)
int a ;
int b;
{ b = a ;

omitting trailing '\0' for char[nn]

The character array being equated to a string is one character too short for the
whole string, so the trailing zero is being omitted. Example

static char rnesg[14] = "(C)19 88 Acorn\n "; /* needs 15 */

repeated definition of #define macro xx

When compiling with Feature h, a macro has been repeated ly #defined to take the
same value.

shift by nn illegal in ANSI C

This is given for negative constant shifts or shifts greater than 31. On the ARM, the
bottom byte of the number given is used, ie it is treated as (unsigned char)
nn. NB negative sh ifts are not treated as positive sh ifts in the other direction.
Example:

printf("%d\n",1<<-2);

'short' slower than 'int' on this machine (see manual)

For speed you are advised to use in ts rather than shorts where possible. This is
because of the overhead of performing implicit casts from short to int in
expression evaluation. However, shorts are half the size of in ts, so arrays of
shorts can be useful Example:

short i , j; /* quicker to use ints */

spurious {} around scalar initialiser

Braces are only required around structure and array initialises. Example:

395

Warnings

396

static int i {INIT_ I} ; / *don ' t need braces */

static xx declared but not used

A static variable was declared in a file but never used in it. It is therefore
redundant.

Unrecognised #pragma (no '-' or unknown word)

#pragma directives are of the form

#pragrna -xd
or
#pragrna long_ spelling

where xis a letter and dis an optional digit. These messages warn aga inst unknown
letters and miss ing minus signs.

use of 'op' in condition context

Warns of such possible errors as= and not == in an if or looping statement.
Example:

if (a=b)

variable xx declared but not used

This refers to an automatic va riable which was declared at the start of a block but
never used within that block. It is therefore redundant. Example:

int func(int p)

int a ; /* this is never used * /
return p*lOO;

xx may be used before being set

Compiling with Feature a , an automatic va riable is found to have been used
before any val ue has been assigned to it.

Appena1x 13: t:rrors ana warnings

xx treated as xxul in 32-bit implementation

This message warns of two's complement arithmetic's dependence on assigning
negative constants to unsigned in ts, and it explains that in ts and long
in ts are both 32 bits .

Non-serious errors

These are errors which wil l a llow 'working' code to be produced - they will not
produce loss of code. On detection of such an error the compiler issues an error
message, if enabled , then continues compilation.

',' (not ';') separates formal parameters

Incorrect punctuation between function parameters. Exa mple:

extern int func(int a;int b);

ANSI C does not support 'long float'

This used to be a synonym for double, but is not allowed in ANSI C

ancient form of initialisation, use '='

An obsolete syntax fo r initialisation was used, o r incorrect ly nested brackets have
been fo und . Example:

int i{l} ; /* use int i=l; */

array [0] found

The minimum subscript count a llowed is I . (Remember that the subscripts go from
0 .. n-1.) Example:

static int a[OJ ;

array of xx illegal - assuming pointer

Illegal ob jects have been declared to occupy an array. Examples:

int fn2 [5] ();
void v[lO J;

/* array of functions */
/* array of voids * /

assignment to 'canst' object 'xx'

You can't assign to objects declared as cons t. Example:

397

Non-serious errors

398

canst int ic = 42 ; / * initial isation ok * /
ic = 69 ; / * can ' t change it now * /

comparison 'op' of pointer and int:
literal 0 (for == and !=) is the only legal case

You cannot use the comparison operators between an integer and a pointer type .
As the message implies, you can only check for a pointer being (not) eq ual to NULL
(int 0) Example:

int i , j ,* ip ;
j = i>ip ; / * can ' t compare an int and an int * * /

declaration with no effect

The compiler detected what appeared to be a declarati on statement, but which
resulted in no store being a llocated. This may imply that a data type name was
omitted.

differing pointer types: 'xx'

An illegal implicit type cast was detected in a comparison operat ion between two
pointers of different types . Example:

int *ip ;
char *cp;
printf(" %d\n ", ip==cp); / * can't compare these*/

differing redefinition of #define macro xx

#define gives a definition contradicting that already ass igned to the named macro.

ellipsis (...) cannot be only parameter

Although Callows variable length argument lists , the ' ... ' parameter cannot
stand alone in this function declaration . Example:

void fnl (.. .) { }

Appendix B: Errors and warnings

expected 'xx' or 'x' - inserted 'x' before 'yy'

Often caused by omitting a terminating symbol in a statement when the compiler
is able to insert this symbol for you. and then to recover. Example:

int f(int j)
{

return j;

int main ()
{

int i=f(lO ;
return i;

/ * ')' omitted here*/

formal name missing in function definition

This error occurs when a comma in a function definition led the compi ler to
suspect a further forma l parameter was going to follow, but none did. Example:

int a(int b ,) /*missing parameter*/

function prototype formal 'xx' needs type or class - 'int'
assumed

A formal parameter in a function prototype was not given a type or class. It needs
at least one of these (register being the on ly allowed class) Example

void func(a) ; /* I mean int a or perhaps register a * /

function returning xx illegal - assuming pointer

A function apparent ly intends to return an illega l ob ject. Example:

int fn3 () [J
{

int list[3]
return list;

/ * hoping to return an array */

{l , 2 , 3} ;

399

Non-serious errors

400

function xx may not be initialised - assuming function
pointer

A functi on is not a variable , so ca nnot be initialised . As an attempt to initialise xx
has been made, xx is treated as of type fun ction *. Example

extern int func(void) ;
static int fn() = func ; / * the compiler will use

static int (*fn) () = func ; instead * /

<int> op <pointer> treated as <int> op (int)<pointer>

Warns of an illega l impli cit cast within an express ion. Typica lly op is an operato r
which has no business being used on pointers anyway, such as I o r dyadic *.
Exa mple:

int i , *ip ;
i = i I ip ; / * bitwise-or on a pointer?! * /

junk at end of #xx line - ignored

The xx is eithe r else or endif. These d irectives should not have anything
fo llowing them on the line. Exa mple

/ * text after the #else,should be a comment * /
#else if it isn ' t defined

L' ... ' needs exactly 1 wide character

The wchar_ t decla ration of a wide cha racter names an identifie r compri si ng other
than one characte r. Example:

wchar_ t wc = L ' abc ';

linkage disagreement for 'xx' - treated as 'xx'

There was a lin kage type d isagreement fo r decla rati ons, eg a fun ction was decla red
as extern then defined later in the fil e as static. Exam ple:

Appendix B: Errors and warnings

int func(int a); / * compiler assumes extern here * /

static func(int a) / *but told static here * /

more than 4 chars in character constant

A character constant of more than fou r characters cannot be assigned to a 32 bit
int. Example:

inti= ' 12345 '; /*more than fo ur chars*/

no chars in character constant ''

At least one character shou ld appear in a character constant. The empty constant
is taken as zero. Example:

int i ''.
' / * less than one char

objects that have been cast are not 1-values

' \ 0' * /

The programmer tried to use a cast expression as an I-va lue. Exa mple:

char *p;
* ((int *)p) =10; / * (int *)p is NOT an 1-value * /

omitted <type> before formal declarator - 'int' assumed

This is given in a formal parameter declaration where a type modifier is given but
no base type. Example:

int func(*a) ; /* a is a pointer , but to what? * /

'op': cast between function pointer and non-function object

Casts between function and object pointers can be very dangerous! One possibly
va lid (but sti ll very suspect) use is in casting an array of int into which machine

code has been loaded into a function pointe r. Example:

401

Non-serious errors

402

static int mcArray[lOOJ;
/ *pointer to function returning void*/
typedef void (*pfv) (void) ;

((pfv)mcArray) () ; /*convert to fn type and app l y * /

'op': implicit cast of non-0 int to pointer

Zero, equa l to a NULL pointer, is the only int which can be legally implicitly cast
to a pointer type. Example:

int i , *ip;
ip = i; / * only the constant int 0 can be

implicitly cast to a pointer type */

'op': implicit cast of pointer to non-equal pointer

An illegal implicit cast has been detected between two different pointer types The
type casting must be made explicit to escape this error. Example:

int *ip ;
char *cp ; ,
ip = cp ; /* differing pointer types * /

'op': implicit cast of pointer to 'int'

An illegal implicit cast has been detected between an integer and a pointer Such
casts must be made explicitly. Example:

int i, *ip ;
i = ip ; / * polnter must be cast explicitly */

overlarge escape '\\xxxx' treated as '\\xxx'

A hexadecimal escape sequence is too large. Example :

Appendix B: Errors and warnings

int novalue ()
{

if (seize) return ' \xfff ';
else return ' \xff' ;

/ * \xff f ' too large * /

overlarge escape '\\x' treated as '\\x'

An octa l escape sequence is too large. Example :

int novalue ()
{

if (huit) return ' \777 ';
else return ' \77 ';

/ * \777 too large * /

<pointer> op <int> treated as (int)<pointer> op <int>

The only legal operators allowed in this context are+ and -

prototype and old-style parameters mixed

Use has been made of both the ANSI style function/definition (including a type
name for formal parameters in a function's heading) and pee style parameters lists .
Example:

void fn4(a , int b)
int a ;

a = b;

'register' attribute for 'xx' ignored when address taken

Addresses of register variables cannot be calculated, so an address being taken of
a variable with a register storage class causes that attribute to be dropped
Example:

register int i, *ip;
ip = &i ; /* & forces i to lose its register attribute */

403

Non-serious errors

404

return <expr> illegal for void function

A function declared as void must not return with an expression . Example:

void a(void)

return O;

size of 'void' required - treated as 1

This indicates an attempt to do pointer arithmetic on a void *, probably
indicating an error. Example:

void *vp;
vp++ ; /* how many bytes to increment by ? * /

size of a [] array required - treated as [1]

If an array is declared as having an empty first subscript size, the compi ler cannot
calculate the array's size. It therefore assumes the first subscript limit to be I if
necessary This is unlikely to be helpful

extern int array[] [10] ;
static int s = sizeof(array) ; /*can ' t determine this*/

sizeof <bit field> illegal - sizeof(int) assumed

Bitfields do not necessa ril y occupy an integral number of bytes but they are always
parts of an int, so an attempt to take the size of a bitfield wi ll return
sizeof (int). Example:

struct s . {

} ;

int exp : 8;
int mant : 23 ;
int s : 1 ;

int main(void)

struct s st ;
int i = sizeof(st . exp) ; / * can ' t obtain this in

bytes * /

Appendix B: Errors and warnings

Small (single precision) floating value converted to 0. 0
Small floating point value converted to 0.0

A floating point constant was so small that it had to be converted to 0 0. Example:

static float f = l.OOOle-38 - l . Oe-38 ; /* le-42 too
small for
float */

Spurious #elif ignored
Spurious #else ignored
Spurious #endif ignored

One of these three directives was encountered outside any #if or #i fdef scope.
Example:

#if defined sym

#endif
#else / * this one is spurious * /

static function xx not defined - treated as extern

A prototype dedares the function to be static, but the function itself is absent from
this compi lation unit .

string initialiser longer than char [nn]

An attempt was made to initialise a character array with a st ring longer than the
array. Example:

static char str[lO J = "1234567891234 ";

struct component xx may not be function - assuming function
pointer

A variable such as a structure component can not be declared to have type
function, on ly function *.Example:

struct s {

} ;

int fn() ; / * compiler will use int (*fn) () ; * /
char c ;

405

Non-serious errors

406

type or class needed (except in function definition) - int
assumed

You can 't declare a function or variable with neither a return type nor a storage
class. One of these must be present. Examples:

f unc (void); / *need, e g, int or s t a ti c * /
x ;

Undeclared name, inventing 'extern int xx'

The name xx was undeclared, so the default type extern int was used. This may
produce later spurious errors , but compi lation continues . Example:

int main(vo i d)
int i = j; / * j has not b een previously d ec l a r ed* /

unprintable character xx found - ignored

An unrecognised character was found embedded in your source - this cou ld be file
corruption, so back up your sources! Note that 'unprintable character' means any
non-whitespace, non-printable character.

variable xx may not be function - assuming function pointer

A va riable cannot be declared to have type function, on ly f un c tion *
Example:

int main(void)

auto void fn(void) ; / * treated as void (* fn) (void) ;* /

xx may not have whitespace in it

Tokens such as the compound assignment operators (+= etc) may not have
embedded whitespace cha racters in them. Example:

i nt i;

i + = 4 ; / * s p ace not allowed b etween + a nd * /

Serious errors

Appendix B: Errors and warnings

These are errors which will cause loss of generated code. On detection of such an
error, the compiler will attempt to continue and produce further diagnostic
messages, which are sometimes useful, but will delete the partly produced object
file

' ... 'must have exactly 3 dots

This is caused by a mistake in a function prototype where a variable number of
arguments is specified Example:

extern int printf(const char * format ,) ; / *one . too many * /

'{' of function body expected - found 'xx'

This is produced when the first character after the formal parameter declarations of
a function is not the { of the function body. Exa mple

int func(a)
int a ;

if (a) ... / * omitted the { * I

'{' or <identifier> expected after 'xx', but found 'yy'

xx is typically struct or union, which must be followed either by the tag
identifier or the open brace of the field list Example

struct *fred ; / * Missed out the tag id * /

'xx' variables may not be initialised

A variab le is of an inappropriate class for initialisation . Example:

int main ()

extern int n =l ;
return 1;

'op': cast to non-equal 'xx' illegal
'op': illegal cast of 'xx.' to pointer

'op': illegal cast to 'xx'

These errors report various illega l casting operati ons. Examples:

407

Serious errors

408

struct s {

int a,b ;
} ;

struct t {

float ab;
} ;

int main(void)

int i ;
struct s sl ;
struct t s2 ;

/* '=': illegal cast to ' int ' */
i = sl;

/* '=': illegal cast to non-equal 'struct' */
sl = s2 ;

/* <cast>: illegal cast of 'struct' to pointer * /
i =*(int*) sl;

/* <cast>: illegal cast to ' int ' */
i = (int) s2;

'op': illegal use in pointer initialiser

(Static) pointer initialisers must evaluate to a pointer or a pointer constant plus or
minus an integer constant. Thi;; error is often accompanied by others. Example:

extern int count ;
static int *ip = &count*2;

{} must have 1 element to initialise scalar

When a scalar (integer or floating type) is initialised, the expression does not have
to be enclosed in braces, but if they are present, only one expression may be put
between them. Example:

static int i = {1 , 2} ; /* which one to use? * /

Array size nn illegal - 1 assumed

Arrays have a maximum dimension of Oxffffff. Example:

static char dict[OxlOOOOOOJ ; /*Too big*/

Appendix B: Errors and warnings

attempt to apply a non-function

The function call operator () was used after an expression which did not yield a
pointer to function type Example:

int i ;
i () ;

Bit fields do not have addresses

Bitfields do not necessarily lie on addressable byte boundaries, so the & operator
cannot be used with them. Example:

struct s {
int h l, h2 13 ;

} ;

i nt main(void)

struct s sl ;
short *sp = &sl . h2 ; / * can ' t take & o f bit field * /

Bit size nn illegal - 1 assumed

Bitfields have a maximum permitted width of 32 bits as they must fit in a single
integer. Example:

struct s {

} ;

int fl
int f2

4 0 ; / * Th i s one is too big * /
8 ;

'break' not in loop or switch - ignored

A break statement was found which was not inside a f or, whil e or do loop or
switch . This might be caused by an extra }. closing the statement prematurely.
Example:

int ma in (i nt a r gc)

if (a rgc == 1)
b r eak;

409

Serious errors

410

'case' not in switch - ignored

A case label was found which was not inside a switch statement. This might be
caused by an extra }. closing the switch statement prematurely Example:

void fn (void)
{

case I* I • return ;

<conunand> expected but found a 'op'

This error occurs when a (binary) operator is found where a statement or
side-effect expression would be expected. Example:

if (a) / 10 ; / * mis-placed) perhaps? * /

'continue' not in loop - ignored

A continue statement was found which was .not inside a for, while or do loop.
This might be caused by an extra }, closing the loop statement prematurely.
Example:

whil e (cc)
if (dd) / * intended a { here */

error () ;

if (ee)
continue ;

/ *this closes the while * /

'default' not in switch - ignored

A default label was found which was not inside a switch statement. This might
be caused by an extra }, closing the switch statement prematurely. Example:

Appendix B: Errors and warnings

switch (n) {
case 0 :

return fn (n) ;
case 1: if (cc)

return - 1 ;
else

break ;
} / * spurious } closes the switch * /

default:
error() ;

duplicated case constant: nn

The case labe l whose va lue is nn was found more than once in a switch
statement. Note that nn is printed as a decimal integer regardless of the form the
expression took in the source. Example:

switch (n) {
case ' '.

case ' '.

duplicate 'default' case ignored

1\vo cases in a s ingle switch statement were labelled default . Example:

switch (n) {
default :

default :

duplicate definition of 'struct' tag 'xx'

There are duplicate definitions of the type s truct xx { ... } , . Example:

struct s { int i , j ; } ;
struct s {float a , b ; } ;

411

Serious errors

412

duplicate definition of 'union' tag 'xx'

There are duplicate definitions of the type union xx { ... } , . Example:
union u {inti ; char c[4] ;};
union u {doubled; char c[8] ;};

duplicate type specification of formal parameter 'xx'

A formal function pa rameter had its type declared twice, once in the argument list
and once after it. Example:

void fn(int i)
int i;

EOF in comment
EOF in string

/* this one is redundant * /

EOF in string escape

These all refer to unexpected occurrences of the end of the source file.

Expected <identifier> after 'xx' but found 'xx'
expected 'xx' - inserted before 'yy'

This typically occurs when a terminating semi-colon has been omitted before a}.
(Common amongst Pascal programmers) Another case is the omission of a closing
bracket of a parenthesised expression. Examples:

int fn(int a, int b , int c)

int d = a*(b+c ;
return d

/* missing
/ * missing

Expecting <declarator> or <type>, but found 'xx'

xx is typica lly a punctuation characte r found where a variable or function
declaration or definition wou ld be expected (at the top leve l) . Example

*/
* /

static int i = MAX ; +l ; / * spurious ; ends expression * /

Appendix B: Errors and warnings

<expression> expected but found 'op'

Similar to above. An operator was found where an operand might reasonably be
expected . Exa mple:

func(>>lO) ; / *missing left hand s ide of>> * /

grossly over-long floating point number

On ly a certain number of decimal digits are needed to specify a fl oat ing point
number to the accuracy that it ca n be stored to. This number of digits was
exceeded by an unreasonable amount.

grossly over-long number

A constant has an excessive number of leading zeros, not affect ing its value.

hex digit needed after Ox or OX

Hexadecimal constants must have at least one digit from the set O . . 9, a .. f,
A .. F fo llowing the Ox. Example:

int i = Oxg ; /* illegal hex char */

<identifier> expected but found 'xx' in 'enum' definition

An unexpected token was found in the list o f identifiers with in the braces of an
enum definition . Example:

enum colour {red , green , blue ,; }; / * spurious ; * /

identifier (xx) found in <abstract declarator> - ignored

The s i zeof () function and cast expressions require abstract declarators , ie types
without an identifier name. This error is given when an identifier is found in such a
situation. Examples:

i (int j) ip ; /* trying to cast to integer */
1 sizeof(char str[lO]) ; / * probably just mean

sizeof(str) */

illegal bit field type 'xx' - 'int' assumed

Int (signed or unsigned) is the on ly valid bitfield type in ANSI-conforming
implementations. Example:

413

Serious errors

414

struct s { char a 4 ; char b 4;};

illegal in case expression (ignored): xx
illegal in constant expression: xx
illegal in floating type initialiser: xx

All of these errors occur when a constant is needed at compile time but a variab le
expression was found.

illegal in 1-value: 'enum' constant 'xx'

An incorrect attempt was made to assign to an enurn constant. This could be
caused by misspelling an enurn or variab le identifier. Example:

enurn col {red, green, blue};
int fn ()

int read ;
red = 10 ;

illegal in the context of an 1-value: 'xx'
illegal in lvalue: function or array 'xx'

An incorrect attempt was made to assign to xx, where the object in question is not
assignable (an I-value). You can't. for example, assign to an array name or a
function name. Examples:

int a ,b,c;
a ? b : c = 10;
if (a)

b 10 ;
else

c 10 ;

or, in the same context.

*(a? &b: &c) = 10 ;

/ * ?: can't yield 1-values. * /
/* use this instead */

illegal in static integral type initialiser: xx

A constant was needed at compile time but a suitable expression wasn't found .

Appendix B: Errors and warnings

illegal types for operands : 'op'

An operation was attempted using operands which are unsuitable for the operator
in question . Examples:

struct {int a , b ; } s ;
int i ;
i *s;
s = s+s ;

/ * can ' t indirect through a struct * /
/ * can ' t add structs * /

incomplete type at tentative declaration of 'xx'

An incomplete non-stat ic tentative definition has not been completed by the end
of the com pilat ion unit. Example:

int incomplete[] ;

/ * should be completed with a declaration like : * /
/ * int incomplete[SOMESIZE] ; * /

junk after #if <expression>
junk after #include "xx"
junk after #include <XX>

None of these di rect ives should have any othe r non-whitespace characters
fo llowing the expression/filename Example:

#include <stdio . h> this isn ' t allowed

label 'xx' has not been set

An attempt has been made to use a label that has not been decla red in the current
scope, after having been referenced in a goto statement. Example:

int main(void)

goto end ;

misplaced '{' at top level - ignoring block

{ } blocks can only occur within function definiti ons. Example:

415

Serious errors

416

/* need a function name here */
{

int i;

misplaced 'else' ignored

An else with no matching if was fo und . Example

if (cc) /* should have used { } * /
i = 1 · '
j =2 ;

else
k = 3.

'

misplaced preprocessor character 'xx'

Usua lly a typing error; one of the cha racters used by the preprocessor was detected
out of context. Exa mple:

char #str[J = "string "; /* should be char *str[J */

missing #endif at EOF

A# if or #i fdef was st ill activ~ at end of the source fil e. These directives must
a lways be matched with a #endif.

missing '"' in pre-processor command line

A line such as #include "name has the second " miss ing.

missing')' after xx(... on line nn

The clos ing bracket (o r comma sepa rating the a rguments) of a macro ca ll was
omitted. Exa mple:

#define rdch(p) {ch=*p++ ; }

rdch(p /* missing) */

Appendix B: Errors and warnings

missing',' or')' after #define xx(. ..

One of t he above cha racters was omitted after an identifier in the macro pa rameter
list. Example:

#define rdch(p {ch *p++; }

missing '<' or ' "' after #include

A #include fi lename shou ld be wi thin ei ther double quotes or angled brackets.

missing hex digit(s) after \x

The string escape \xis intended to be used to insert characters in a string using
t hei r hexadecimal va lues, but was incorrectl y used here. It should be fo llowed by
between one and three hexadecimal digits. Example:

printf(" \xxx/ "); /*probably meant "\\xxx/ " */

missing identifier after #define
missing identifier after #ifdef
missing identifier after #undef

Each of t hese direct ives should be fo ll owed by a va lid C identifier Example

#define @ at

missing parameter name in #define xx(...

No identifier was found after a , in a macro pa rameter li st Example:

#define rdch(p,) {ch=*p++ ; }

no')' after #if defined(...

The defined operator expects an identifier, optionally enclosed within brackets.
Example:

#if defined(debug

no identifier after #if defined

See above.

417

Serious errors

418

non static address 'xx' in pointer initialiser

An attempt was made to take the add ress of an automat ic variable in an expression
used to initia li se a static pointer Such add resses are not known at
compile-time. Example:

int i;
static int *ip &i ; /*&i not known to compiler*/

non-formal 'xx' in parameter-type-specifier

A parameter name used to declare the parameter types did not actually occur in
the parameter li st of the function. Example:

void fn(a)
int a , b;

number nn too large for 32-bit implementation

An integer constant was found which was too large to fit in a 32 bit int. Example:

static int mask = Ox800000000 ; /*Ox80000000 intended?*/

objects or arrays of type void are illegal

void is not a va lid data type.

overlarge floating point value found
overlarge (single precision} floating point value found

A floating point constant has been found which is so la rge that it will not fit in a
floating point variable. Examples :

float f = le40 ; / * largest is approx le38 for float * /
double d = le310 ; / * and le308 for double */

quote (" or '} inserted before newline

Strings and character constants are not a llowed to contai n unescaped newline
characters. Use \<nl> to allow strings to span lines. Example:

printf ("Total =

Appendix B: Errors and warnings

re-using 'struct' tag 'xx' as 'union' tag

There are conflicting definitions of the type struct xx { ... } ; and union xx
{ ... } ; . Structure and union tags current ly share the same name-space in C.
Example:

struct s {int a , b ; } ;

unions (int a ; doubled ; } ;

re -using 'union' tag 'xx' as 'struct' tag

As above.

size of struct 'xx' needed but not yet defined

An operation requires knowledge of the size of the st ruct. but this was not defined
This error is likely to accompany others. Example:

/* forward declaration * /
/ * pointer to s * /

struct s ;
struct s *sp;
sp++ ; / * need size for inc operation * /

size of union 'xx' needed but not yet defined

See above.

storage class 'xx' incompatible with 'xx' - ignored

An attempt was made to declare a va riable with conflicting storage classes.
Example:

static auto int i ; / * contradiction in terms * /

storage class 'xx' not permitted in context xx - ignored

An attempt was made to declare a variable whose storage class conflicted with its
position in thJ program . Examples:

419

Serious errors

420

register int i;
void fn(a)
static int a ;

/ * can ' t have top-level regs * /

/ * or static parameters * /

struct 'xx' must be defined for (static) variable
declaration

Before you can declare a static structure va riable, that structure type must have
been defined. This is so the compi ler knows how much storage to reserve for it.
Examples:

static struct s sl ;
struct t;
static struct t tl ;

/ * s not defined * /

/ * t not defined * /

struct/union 'xx' not yet defined - cannot be selected from

The structure or union type used as the left operand of a . or~ operator has not
yet been defined so the fie ld names are not known. Example :

struct s sl ;
sl . a 12;

/ * forward reference * /
/ * don ' t know field names yet * /

too few arguments to macro xx(... on line nn
too many arguments to macro xx(... on line nn

The number of arguments used in the invocation of a macro must match exactly
the number used when it was defi ned. Example:

#define rdch(ch , p) while((ch = *p++)== ' ');

rdch(ptr) ; / * need ptr and ch * /

too many initialisers in {} for aggregate

The list of constants in a static array or structure initialiser exceeded the number of
elements/fie lds for the type involved. Example:

stat i c int powers[8] = {0 , 1 , 2 , 4 , 8 , 16 , 32 , 64 , 128} ;

Appendix B: Errors and warnings

type 'xx' inconsistent with 'xx'
type disagreement for 'xx'

Conflicting types were encountered in function declaration (prototype) and its
definition . Example :

void fn(int) ;

int fn(int a)

A pernicious error of this type is caused by mixing ANSI and old-style function
declarations. Example:

int f (char x) ;
int f(x)char x ;

typedef name 'xx' used in expression context

A typedef name was used as a variable name. Example:

typedef char flag ;

int i flag ;

undefined struct/union 'xx' cannot be member

As truct/union not a lready defined cannot be a member of another
struct/union. In particular this means that a struct/union cannot be a
member of itself: use pointers for this. Example:

struct sl {

} ;

struct s2 type ; / * s2 not defined yet * /
int count ;

unknown preprocessor directive : #xx

The identifier following a # did not correspond to any of the recognised
pre-processor directives. Example:

#asm / * not an ANSI directive * /

421

Fatal errors

Fatal errors

422

uninitialised static [] arrays illegal

Static [J arrays must be initiali sed to allow the compiler to determine their size.
Example:

static char str[] ; / * needs {} initialiser * /

union 'xx' must be defined for (static) variable declaration
Before you can declare a static union variab le, that union type must have been
defined. Example:

static union u ul ; / * compiler can ' t ascertain size * /

'while' expected after 'do' - found 'xx'

The syntax of the do statement is do statement while (expression).
Example:

do / * should put these statements in {} * /
1 = inputLine() ;
err = processLine(l) ; / *finds err , not while * /

while (!err) ;

These are causes for the compiler to give up compilation. Error messages are
issued and the compi ler stops.

couldn't create object file 'file'

The compiler was unable to open or write to the specified output code file, perhaps
because it was locked or the o directory does not exist

macro args too long

Grossly over-l ong macro arguments, possibly as a result of some other error.

macro expansion buff er overflow

Grossly over-compli cated macros were used, possibly as a result of some other
error.

System errors

Appendix B: Errors and warnings

no store left
out of store (in cc_alloc)

The compiler has run out of memory- either shorten your source programs or free
some RAM using the *UNPLUG command. To do this, first check which modules
are present in your machine by typing *MODULES. If there is a module that you do
not current ly need, you can release its space by typing

*UNPLUG modulename
*RMTidy

It can later be restored using the *RMREINIT command. For further deta il s, refer
to the chapter entitled Modules in the Programmer's Reference Manual. (second
edition) .

If running under the desktop, you can use the Task Manager to increase your
wimpslot size.

too many errors

More than I 00 serious errors were detected.

too many file names

An attempt was made to compile too many files at once. 25 is the maximum that
will be accepted

There are some additional error messages that can be generated by the compiler if
it detects errors in the compiler itself It is very unusual to encounter this type of
error. If you do, note the circumstances under which the error was ca used and
contact your Acorn supplier.

These error messages all look l ike this :

* The compiler has detected an internal inconsistency . This can occu r
* because it has run out of a vital resource such as memory or disk
* s pace or b ecause there is a fault in it . If y ou canno t easily alte r
* your program to avoid caus ing this rare failure , pleas e contact your
* Acorn dealer . The dealer may be able to help you immed i a tely and will *
* b e able to report a s u spec t ed compiler fault to Acorn Computers .

423

System errors

424

20 Appendix C: kernel.h

#pragma force_ top_ level
#pragma include_ only_ once

/ *

* Interface to host OS .
* Copyright (C) Acorn Computers Ltd ., 1988
* /

#ifndef
#define

#ifndef

kernel_ h
kernel_ h

size t
define size_t 1
typedef unsigned int size_ t ; / * from <stddef.h> * /

#endif

typedef struct {
int r[lO] ; / * only rO - r9 matter for swi ' s * /

} _ kernel_ swi_ regs ;

typedef struct {
int load , exec ; / * load , exec addresses * /
int start , end ; / * start address/length , end address/attributes * /

} _ kernel_ osf ile_block ;

typedef struct {
void * dataptr ; / * memory address of data * /
int nbytes , fileptr ;
int buf_ len ; / * these fields for Arthur gpbp extensions * /
char * wild_ fld ; / * points to wildcarded filename to match * /

} _ kernel_ osgbpb_ block ;

typedef struct {
int errnum ; / * error number * /

char errmess[252] ; / * error message (zero terminated) * /
} _kernel_oserror ;

typedef struct stack_ chunk
unsigned long sc_mark; / * Oxf60690ff * /
struct stack_ chunk *sc_ nex t , *sc_prev ;
unsigned long sc_ size ;
int (* sc_ deal locate) () ;

J _kernel_stack_chunk ;

e x tern _kernel stack chunk *_kernel_ current_ stack_ chunk(void) ;

e x tern void _ kernel_ setreturncode(unsigned code) ;

425

426

extern void _kernel_exi t(int) ;

extern void _kernel_ raise_error(_ kernel_ oserror *) ;
/ * r eturn the specified error to the parent * /

e x tern void _ kernel_ e x ittraphandler(void);

#define _ kernel_ HOST_ UNDEFINED -1
#define _ kernel_ BBC_ MOSl_ O 0
#define _ kernel_ BBC_ MOS1_ 2 1
#define _ kernel BBC_ACW 2
#define kernel_ BBC_ MASTER 3
#define kernel_BBC_ MASTER_ ET 4
#define _ kernel_ BBC_ MASTER_ COMPACT 5
#define _kernel_ARTHUR 6
#define _ kernel SPRINGBOARD 7
#define kernel_ A_ UNIX 8

extern int _kernel_hostos(void) ;
/ *

* Returns the identity of the host OS
* /

extern int _kernel_ fpavailable(void) ;
/ *

* Returns 0 if floating point is not available (no emulator nor hardware)
* /

#define kernel_ NONX Ox80000000
extern _ kernel_ oserror *_kernel_ swi(int no , _ kernel_ swi_ regs *in ,

_ kernel_swi_ regs *out) ;
/ *

* Generic SWI interface . Returns NULL if there was no error .
* The SWI called normally has the X bit set. To call a non-X bit set SWI ,

kernel_NONX must be orred into no (in which case , if an error occurs ,
_kernel oserror does not return) .

* /

extern _kernel_oserror *_kernel_ swi_c(int no , _ kernel_ swi_ regs *in ,
_kernel_swi_ regs *out , int *carry) ;

/ *

* As _kernel_swi , but for use with SWis which return status in the C flag .
* The int to which carry points is set to reflect the state of the C flag on
* exit from the SWI .
* /

extern char *_kernel_command_string(void) ;
/*

* Returns the address of (maybe a copy of) the string used to run the program
*/

/ *

* The int value returned by the following functions may have value :
* >= 0 if the call succeeds (significance then depends on the function)

Appendix C: kernel.h

* -1 i f the call fa il s but causes no os error (eg escape for rdch) . Not
* all functions are capable of generating this result . This return
* value corresponds to the C flag being set by the SWI.
* -2 if the call causes an os error (in which case , _ kernel_ last_ oserror
* must be used to find which error it was)
*I

#define _ kernel_ ERROR (-2)

extern int _ kernel_ osbyte(int op , int x , int y) ;
/ *

* Performs an OSByte operation .
* If there is no error , the result contains
* the return value of Rl (XI in its bottom byte
* the return value of R2 (Y) in its second byte
* 1 in the third byte if carry is set on return , otherwise 0
* 0 in its top byte
* (Not all of these values will be significant , depending on the
* particular OSByte operation) .
* /

extern int _kernel_ osrdch(void) ;
/ *

* Returns a character read from the currently selected OS input stream
* /

extern int _kernel_ oswrch(int ch) ;
/ *

* Writes a byte to all currently selected OS output streams
* The return value just indicates success or failure .
* /

extern int _ kernel_ osbget(unsigned handle) ;
/ *

* Returns the next byte from the file identified by ' handle '.
* (-1 => EOF) .
* /

extern int _ kernel_ osbput(int ch , unsigned handle) ;
! *

* Writes a byte to the file identified by ' handle '.
* The return value just indicates success or failure .
* /

extern int _ kernel_ osgbpb(int op , unsigned handle , _ kernel_osgbpb_ block
*inout) ; / *

* Reads or writes a number of bytes from a filing system .
* The return value just indicates success or failure .
* Not~ that for some operations, the return value of C is significant ,
* and for others it isn ' t . In all cases, therefore , a return value of -1
* is possible , but for some operations it should be ignored .
* /

extern int _ kernel_osword(int op , int *data) ;
/ *

427

428

* Performs an OSWord operation .
* The size and format of the block *data depends on the particular OSWord
* being used ; it may be updated .
* /

extern int _kernel_osfind(int op , char *name) ;
/ *

* Opens or closes a file .
* Open returns a file handle (0 => open failed without error)
* Close the return value just indicates success or failure
* /

extern int _ kernel_osfile(int op , const char *name , kernel osf ile_block
* inout) ;
/ * Performs an OSFile operation , with values of r2 - r5 taken from the osfile

* block . The block is updated with the return values of these registers ,
* and the result is the return value of rO (or an error indication)
* /

extern int _kernel_ osargs(int op , unsi g ned handle , int arg);
/ *

* Performs an OSArgs operation .
* The result is an error indication , or
* the current filing system number (if op = handle = 0)
* the value returned in R2 by the OSArgs operation otherwise
*/

extern int _ kernel_ oscli(const char *s) ;
/ *

* Hands the argument string to the OS command line interpreter to execute
* as a command . This should not be used to invoke other applications :
* _ kernel_ system exists for that . Even using it to run a replacement
* application is somewhat dubious (abort handlers are left as those of the
* current application) .
* The return value just indicates error or no error
*/

extern _ kernel_ oserror *_kernel_ last_ oser ror(void) ;
/*

* Returns a pointer to an error block describing the last os error since
kernel_ last_ oserror was last called (or since there program started

* if there has been no such call) . If there has been no os error , returns
* a null pointer . Note that occurrence of a further error may overwrite the
* contents of the block .
* If kernel_ swi caused the last os error , the error already returned by that
* call gets returned by this too .
* /

extern kernel_ oserror *_kernel_ getenv(const char *name , char *buffer ,
unsigned size) ;

I *
* Reads the value of a system variable , placing the value string in the
* buffer (of size size) .
* (This just gives access to OS_ ReadVarVal) .
* /

Appendix C: kernel.h

extern _ kernel_ oserror *_kernel_ setenv(const char *name , const char *value) ;
/ *

* Updates the value of a system variable to be string valued , with the

* given value (value = NULL deletes the variable)

*I

extern int _ kernel_ system(const char *string , int chain) ;
/ *

* Hands the argument string to the OS command line interpreter to execute .
* If chain is 0 , the calling application is copied to the top of memory

first ,
* then handlers are installed so that if the command string causes an
* application to be invoked , control returns to _ kernel_ system , which then
* copies the calling application back into its proper place - the command
* is executed as a sub-program. Of course , since the sub-program executes
* in the same address space , there is no protection against errant writes
* by it to the code or data of the caller . And if there is insufficient
* space to load the sub-program , the manner of the subsequent death is
* unlikely to be pretty .
* If chain is 1 , all handlers are removed before calling the CLI , and if i t
* returns (the command is built-in) _kernel_ system Exits .
* The return value just indicates error or no error
* /

extern unsigned _kernel_ alloc(unsigned minwords , void **block) ;
/ *

* Tries to allocate a block of sensible size >= minwords . Failing that ,
* it allocate~ the largest possible block (may be size zero) .
* Sensible size means at least 2K words .
* *block is returned a pointer to the start of the allocated block
* (NULL if ' a block of size zero ' has been allocated) .
* /

typedef void freeproc(void *) ;
typedef void * allocproc(unsigned) ;

extern void _ kernel_ register_ allocs(allocproc *malloc , freeproc * free) ;
/ *

* Registers .procedures to be used by the kernel when it requires to
* free or allocate storage. The allocproc may be called during stack
* extension , so may not check for stack overflow (nor may any procedure
* called from it) , and must guarantee to require no more than 41 words
* of stack .
* /

typedef int _ kernel_ ExtendProc(int /*n * / , void** / *p */) ;
extern _ kernel_ ExtendProc *_kernel_register_slotextend(_kernel_ExtendProc
*proc) ;
/ * When the initial heap is full , the kernel is normally capable of extending
it (if the OS will allow). However , if the heap limit is not the same as
the OS limit , it is assumed that someone else has acquired the space between ,
and the procedure registered here is called to request n bytes from it.
Its return value is expected to be >= n or = 0 (failure) ; if success ,

429

430

*p is set to point to the space returned .
* /

extern int _ kernel_ escape_s een(void) ;
/ *

* Returns 1 if there has been an escape since the previous call of
* _kernel_ escape_ seen (or since program start , if there has been no
* previous call) . Escapes are never ignored with this mechanism ,
* whereas they may be with the language EventProc mechanism since there
* may be no stack to call it on .
* /

typedef union {
struct {int s : l , u : 16 , x : 15 ; unsigned mhi , mlo; } i;
int w[3]; } _extended_fp_number ;

typedef struct {
int r4 , r5 , r6, r7 , r8 , r9;
int fp , sp , pc , sl ;
_ extended_ fp_ number f4 , f5 , f6 , f7 ; } _ kernel_unwindblock ;

extern int _kernel_ unwind(_ kernel_ unwindblock *inout , char ** language) ;
/ *

* Unwinds the call stack one level .
* Returns >0 if it succeeds
* 0 if it fails because it has reached the stack end
* <0 if it fails for any other reason (eg stack corrupt)
* Input values for fp , sl and pc must be correct .
* r4-r9 and f4-f7 are updated if the frame addressed by the input value
* of fp contains saved values for the corresponding registers.
* fp , sp , sl and pc are always updated
* *language is returned a pointer to a string naming the language
* corresponding to the returned value of pc .
*/

extern char *_ kernel_procname(int pc) ;
/ *

* Returns a string naming the procedure containing the address pc .
* (or 0 if no name for it can be found) .
* /

extern char *_kernel_ language(int pc) ;
/ *

* Returns a string naming the language in whose code the address pc lies .
* (or 0 if it is in no known language) .
* /

/ * divide and remainder functions .
* The signed funct ion s round towards zero .

* The div functions actually also return the remainder in a2, and use of
* this by a code-generator will be more efficient than a call to the rem
* function.

* Language RTSs are encouraged to use these functions rather than providing

Appendix C: kernel.h

* their own , since considerable effort has been expended to make these fast.

* /

extern unsigned _ kernel_ udiv(unsigned divisor , unsigned dividend) ;

extern unsigned _ kernel_ urem(unsigned divisor , unsigned dividend) ;

extern unsigned _kernel_udivlO(unsigned dividend) ;

extern int _ kernel_ sdiv(int divisor , int dividend) ;
extern int _ kernel_ srem(int divisor , int dividend) ;
extern int _ kernel_ sdivlO(int dividend) ;

/ *
* Description of a ' Language description block '
* /

typedef enum { NotHandled , Handled } _ kernel_ HandledOrNot ;

typedef struct
int regs [16] ;

} _ kernel_ registerset ;

typedef struct {
int regs [10] ;

} _ kernel_eventregisters ;

typedef void (* PROC) (void) ;
typedef _ kernel_HandledOrNot (*_kernel_ trapproc) (int code ,
_ kernel_ registerset *regs) ;
typedef _ kernel_ HandledOrNot (*_ kernel_ eventproc) (int code ,
_ kernel_ registerset *regs) ;

typedef struct {
int size ;
int codestart , codeend ;
char *name ;
PROC (*InitProc) (void) ;
PROC FinaliseProc ;
_ kernel_ trapproc TrapProc ;
_ kernel_ trapproc UncaughtTrapProc ;
_ kernel_ eventproc EventProc ;
_ kernel_ eventproc UnhandledEventProc ;
void (* FastEventProc) (_ kernel_ eventregisters *) ;
int (*UnwindProc) (_ kernel_ unwindblock *inout , char ** language) ;
char * (*NameProc) (int pc I ;

} _ kernel_ languagedescription ;

typedef int _kernel_ ccproc(int , int , int) ;

e x tern int _ kernel_ call_ client(int al , int a2 , int a3 , _ kernel_ ccpr oc callee) ;
/ * This is for shared library use only , and is not exported to shar ed library

* clients . It is provided to allow library functions which call a r b itra r y
* client code (C library signal , e x it , _main) to do so correctly if the
* client uses the old calling standard .
* /

431

432

extern int _ kernel_ client_ is_module(void) ;
/ * For shared library use only , not exported to clients . Returns a

* non-zero value if the library ' s client is a module executing in user
* mode (ie module run code) .
* /

extern int _ kernel_processor_mode(void) ;

extern void _ kernel_ irqs_ on(void) ;

extern void _ kernel_ irqs_ off(void) ;

extern int _ kernel_ irqs_ disabled(void) ;
/ * returns 0 if interrupts are enabled ; some non-zero value if disabled . * /

extern void *_kernel_ RMAalloc(size_ t size) ;

extern void *_kernel_ RMAextend(void *p , size t size) ;

extern void _ kernel_RMAfree(void *p) ;

#endif
/ * end of kernel . h * /

21

FPE280

Appendix D: The floating point
emulator

The floating point emulator is a relocatable module which provides support for
floating point instructions. It must be resident in memory to run programs

which perform operations on real numbers.

Its primary function is to emu late floating point instructions in software on
machines which do not have the optional hardware floating point co-processor
attached.

However, even with the co-processor attached, the floating point emu lator is sti ll
required :

• to interface with the co-processor;

• to perform range reduction on trigonometric function arguments;

• for a few floating point instructions that the co-processor does not directly
support

There are two current variants of the floating point emulator:

FPE280

FPEmulator

software-only floating point support - v 2.80 and ea rlier

hardware-assisted and software-on ly support - v 3. 10 and later.

Both have the same module name, namely FPEmulator. You can find out the
version number of the module currently resident in your computer by typing the
fo llowing at the * prompt:

*help modules

On initiali sation, this module disables the fl oat ing point co-processor if it finds
one present It occupies 25Kb. This is the version supplied with Acorn Desktop C as
the file ! System . Modules. FPEmulator.

433

Using the compiler

FPEmulator

This behaves just like FPE280 if no co-processor is attached (ie it emulates all
floating point instructions in software). but it makes use of the co-processor if it is
present. It occupies 37Kb.

Using the compiler

Without the floating point maths co-processor
If your machine does not have the floating point co-processor attached, the
fl oating point emulator is required to run any C program which performs
operations on real numbers.

The floating point emu lator supplied with Acorn Desktop C is FPE280, and is the
file FPE280 in the$.! System directory.

Before loading the emu lator, it is a good idea to issue a command that will check
that no more recent version of the module is already present, by typing

*RMEnsure FPEmulator 2 . 80

Then load the emulator:

*RMLoad $.Modules .fpe280

When setting up your working environment, it is recommended that you place the
above module (as ! System . modules . FPEmulator) in your! System
directory and arrange for it to be loaded automatica lly on power up

Observe the change of file name to FPE280, since existing applications will
incorporate the earli er name in their start-up sequence.

With the floating point maths co-processor
In order to make use of the speed increase given by the floating point co-processor,
you wi ll need to use the FPEmulator modu le.

This is supplied with t he co-processor, and you will find it convenient to copy the
module into your ! System directory and arrange for it to be loaded automatically
on power up.

Floating point requirements of applications

434

Applications should cater for both floating point environments: with and without
the co-processor. In general, programs do not need to know whether a
co-processor is fitted; the only effective difference is in the speed of execution.
However, the combined hardware and software variant, FPEmulator, is larger than

Appendix D: The floating point emulator

the software-only variant, FPE280, since it includes the code for interfacing with
the co-processor. Therefore, to cater for both environments, an application must
be able to accommodate the extra l 2Kb RAM taken up by FPEmulator.

Software products do not have to supply either version of the floating point
emulator. FPE280 is supplied with new machines and FPEmulator is supplied with
the co-processor itself. It is then up to you to have the appropriate emulator in
your ! System directory; this should be covered in the manual accompanying the
application.

435

Floating point requirements of applications

436

Subject Index

Symbols
#include directives 29
#include files

including directives 39
searching for in CC 33

*Wimpslot 360
:mem

A

use in reinstating in-memory filing system in
search path 32

absolute machine addresses 96
active count 152
akbd 175
alarm 176 - 178

in desktop applications 173
alarm .h 173
ANSI standard

vs K&R C 94 - 97
ANSI standard 6 6
appli cat ion

access of workspace 365
application resources 151
applicat ions, desktop 149 - 174

error reporting 158 - 159
general form of 152
initiali si ng 152 - 153
loading 164 - 166
saving 166 - 167
see also alarm
see also memory management

standards for 149
terminate and stay resident 337
tracing 173 - 174

arguments
passing to assembler 333

arithmetic convers ions in ANSI standard 96

arithmetic functions 368
arithmetic operations 77 - 78
ARM Procedure Call Standard 367 , 372

arrays 84, 97
lifetime 366

assembly language interface 33 1 - 336
assembly li st files 29
assembly li sting of code from CC 43
assert.h I 05
atexit() 365

B
baricon 178
BASIC

routine to sea rch for lost memory
blocks 357

bbc 180-1 85
bins (linked lists) 358
bitfields 85
buffering of input/output 116
byte

limits 107
ordering see portability, byte ordering

c
C compiler 2
C libraries 24 - 25

C library kernel 367 - 374
interfacing to 369 - 372

C Module Header Generator (CMHG) see CMHG

437

Subject Index

C storage manager 357
C$Libroot. use 32
casts

reporting to CC 40
cc 9, 21 - 58

adding #include lines to listing file 39
adding to the command line 48
allowing writeable string literals 40
altering the command line 37
application menu 49
assembly list files 29
auto running and saving 49
Browser window I 0
C portabil ity 27
checking data flow anomalies 39
checking uniqueness of external names 39
code generation flag options 52
command line 36, 51 - 53
command line extension 48
compilation li st files 29
compiler checks 39
controlling execution 51
counting function executions (profiling) 36
default output location 26
entry vector to program 25
error browser 35
errors and warnings 51
file naming and placing conventions 25
filename conventions 27
filename validity 29
getting started 21 - 24
keyword options 52
Limited pee option

see Feature menu option
link step options 49
linking code to relocatable modules 36
linking object files 34
listing unexpanded source text 40
loading 9
location of CLib 25
managi ng with Make 21
menu options

Assembler 29 , 43

438

Command line 36
Debug options 42
Default path 28, 32, 40
Feature 37, 38
Keep comments 34, 38
Libraries 43
Listing 29, 37
Module code 36
Other 37, 48
Predefine 44
Profile 36
Suppress 46
Undefine 45
UNIX pee 38
Work directory 26, 47

naming include files 28
object files 28
output 50
Output window and Summary box -

toggling 50
preprocessor flag options 52
preprocessor opt ions 48
producing executable image files 21
program files 29
removing function names from code area 39
reporting unused declarations 40
rooted filenames 27
saving options 49
search path 31
searching for include files 29, 30
searching for nested #includes 39
searching for nested includes 31
setting your own system sea rch path 32
SetUp dialogue box 33
SetUp menu 35
Setup options

Compile on ly 28 , 34
Debug 34
Debug opt ion , limiting 42
Include 28, 30, 32, 33
Preprocess only 34, 38
Source 33
Throwback I 0, 35

specifying libraries 43
specify ing sea rch path (defau lt) 40
specifying sou rce files 33
starting (unmanaged by Make) 21
stubs 25
suppressing messages 46
switch ing between ANSI C and 'portable C

compiler' C 38
switch ing on reporting 39
turning on wa rnings 39
turning on wa rnings about short integers

and enums 40
using pee-style include files in ANSI mode

see Feature menu opti on
using with Link 21
wa rning feature flag options 53
work directory 26
worked examples 53 - 58

chai ning memory blocks 358
char, limits 107
characters 83

testing and mapping I 05
check words

using RMA 356
CLib module 25
CMHG 9, 340 - 348

application menu 60
command descriptions 344 - 345
command line 61
finalisation code 34 1
help string 343
initialisati on code 341
input to 340
!RO handler 347 - 349
load ing 9
menu options 60
runnable code 34 1
service ca ll handler 342
SetUp opti ons 60
SWI chunks 34 5 - 346
SW! decoding code 34 7
SW! decoding table 346
SW! handler code 346

Subject Index

title string 343
codeend 370
codesta rt 370
colourtranslation 169, 186-191
co lourmenu 185 - 186
co lours, desktop 170, 287
colourtran 169, 186- 191
compilati on li st fil es 29
compi li ng and linking applications without

Link 43
const 95
control statements 97
coordinates, work area vs screen 169
coords 191 - 194
ctype h 100, 105 - 106

D
data

elements 73 - 76
export 253 - 254, 32 5 - 328
import 323 - 32 5

data types
see also portability, data types
structured 76

dbox 195 - 205
DDE

C tools 9
DDT

debugging C programs 13
example session 13 - 18
usi ng CC Debug opti on to enable

source-level debugging 34
DecCF

use with libraries 19
declarators 85
default sea rch paths

SWls,kernel,pragmas and va rargs 30
desktop applications

examples 56
desktop C

new features 383

439

Subject Index

desktop compiler see CC
device dri vers 337
diagnostic messages 81
diagnostics I 05
dialogue box 170 - 172

creation 158, 195
deletion 195
events 199 - 205
fields 197 - 199 ,
functions 195 - 205
writab le fields in 171

dot see pointer into text
Draw files 167 - 168, 205 - 210

coord inates in 168
data types 205
object level interface 212 - 215

drawfdiag 167, 205 - 210
drawferror 210 - 21 I
drawfobj 167,212 -2 15
drawftypes 216
drawmod 216- 219

E
Edit 173
Ed itor throwback

SrcEd it
th rowback I 0

EDOM 106
empty comments in ANSI standard 95
empty decla rati ons in ANSI standard 97
entry vector in C program 25
enumerat ions 85
ERANGE 106
errno. h I 00, I 06
error

domai n 106
operating system 368
range I 06

error hand ling 371, 379
ESIGNUM 106
eval uation

440

expression 78
function argument 93

event 220 - 222
event handling 149-151 , 155-158, 170-171,

199 - 205 , 371
eventtypes 293

masks 293
EventProc 371
executable image files 21

F
FastEventProc 372
FILE 11 3
fil e

buffering 88
creation I 14
deletion I 14
opening 115 - 116
position indicators 124 - 126
renaming 114

fil e buffers
allocation 360

fil eicon 222
fil ename

va lidity 88
fil ename components, length o f I 02
filename conventions 27
fil ename extension I 02
fil ename generation 114
fil es

zero-length 88
FinaliseProc 370
fl ex 160 - 162, 223 - 225, 35 7

advantages 35 7
description 360
limitat ions 36 1
shifting heaps 36 1

fl oat 96
fl oat. h 107
fl oat ing point

co-processor 434

emulator 433 - 435
instructi on set 368
types 84

fl oating types 78

font 225 - 232
font management 225 - 232
font li st 232
fonts

counting into tree structure 232
fontselect 233 - 23 5

interface for choos ing fonts 233
FormEd 151
fpos_t 11 3
fragmentation 359

of malloc heap 360
FrontEnd 18

producing new RISC OS appli ca ti ons 18
function

G

ca ll , bypassing I 09 - 110
declarat ions 96
definitions 96
prototypes 96
workspace 335

graphica l data see Draw files
graphics output functions

BBC-style 181 - 184
guard constant. in memory blocks 358

H
headers

searching for with CC 33
headers fo r RISC_OSLib 30
heap 235

coa lescing 359

heap allocation 235, 379
help 235 - 238
hou rglass 166, 167, 285

HUGE_VAL 100

1/0
functions 113 - 127
red irect ion 82

icon 151
button state bits 289
button types 288
crea ting 292
data fi elds 290
fl ags 287
placing on icon bar 154, 178
placing on left of icon bar 178

icon bar 151
identifiers 73, 82, 86

limits 74 - 76
implementation limits 78
include fil es

naming in C program source 28
sea rching for 29

initialisat ion 400
lnitProc 370
input 121, 122, 123

funct ions 11 9 - 120
int. limits 107
integers 84
interact ive device 82
IRO state

manipulating 368
see also cmhg (IRO handler)

K
kernel 369

default sea rch path in CC 30
kern el.h I 02
keyboa rd polling 175

Subject Index

441

Subject Index

L
language libraries

recovering memory 355
LibFile

use with linkable libraries 19
librari es

ANSI vs BSD UNIX 99 - 102
library functions 86 - 90
lifetimes

static va riabl es and arrays 366
limits.h I 07
Link

using with CC 21
linkable librari es 19
li sti ng file

cc 37
locale.h I 07 - I 08
long 95
long double 95, 96
long fl oat 95
long int, limits 107

M
macros 44
magnifier 172, 239
magnify 238 - 239
Make

managing CC 21
use 9
using C tools I 0

Makefiles 9, 21
command lines and desktop interface 10

malloc 357
deallocation of blocks 359
use when designing programs 356

malloc heap 357
math.h I 00, I 08 - I 09
mathematical functi ons 87, I 08 - I 09, 133 - 134
memory

alignment 358

442

allocation in C 357
allocation of block sizes 358
allocation of file buffers 360
allocation with flex and malloc 357
avoiding permanent loss 356
avoiding references to deallocated

blocks 356
avoiding wastage 357
BASIC routine to sea rch for lost blocks 357
coalescing blocks 359
efficient use 355
fragmentation 359
malloc allocation 358
splitting blocks 358

memory allocation function s 130
memory management 160 - 162, 223 - 225, 355 ,

368
memory models in MS-DOS I 03
menu 239 - 242

amending 240 - 242
creating 154, 240
responding to user choice 157 - 158

menu syntax 239
message action codes 295 - 300
messages 242
modules, relocatable see relocatable modules
msgs 242
multibyte character

functi ons 134 - 135
limits 107

multibyte string functi ons 135 - 136

N
NameProc 372
nested include files

sea rching 31

0
object files

linking 34
·naming conventions 28

object files, prod ucing with CC 21
offsetof I I 3
operating system interface I 02 - I 03, 132
operating system library 24
OS 244 - 245
output 121 , 123, 124

functions 117 - 119, 120
output from CC 50
overlays 35 1 - 353

alternati ves to 353

p
paging 35 1
pathname

separato r in I 02
pee mode 98 - 99

preprocessor in 99
type checking in 99

piping 103
pointer 84, 93, 96, 160 - 16 1, 245 - 246

into text 172
subtraction 77
types 77

pointer, desktop 245 - 246
see also hourglass

portability 91 - I 03, 353
byte ordering 92
data types 91
hexadecima l constants 92
operating system ca ll s 94
pointers 93
store alignment 93

portabi lity o f C programs 27
pragmas

default search path in CC 30
predefi ning 44
preprocessor

contro lling with CC 34
options in CC 48

Subject Index

output 34
predefining macros 44
undefining macros 45

preprocessor directives 86, 97
print 246 - 252
procedures

storing in linkable libraries 19
profi Ii ng 36
program design

for effi cient use of memory 355
program fi Jes 29
program termination funct ions 131
programs, cal ling from C 374 - 376
ptrdiff_t 11 3

Q
qua l ifiers 85

R
RAM filing system 353
random number generating functions 129
register 84

names 33 2
usage 332 - 333

relocatable modules 33 7 - 349
components of 338 - 339
constraints on 338
linking code compiled by CC 36

res 252 - 253
resspr 253
RISCOS

command types 374
library 149
library, initialising 152

RMA
clearing blocks 365
deallocation 356
usi ng for storage though SWI ca ll s 356

443

Subject Index

s
saveas 253 - 254
saving multiple ob ject files in C 34
screen units see Draw files. coordinates in 168
search

for allocated memory blocks 356
functions 131, 132

searching fo r #include files 33
setjmp h I 09 - 110
setvbuf 360
shared C library 24, 376 - 377

modules 337
when to use 376 - 377

short int. limits I 07
signal handling 110 - 111
signalh 100, 110 - 111
signed 95
signed cha r, limits I 07
size_t 113
Software Interrupt see SWI
sort functions 133
source files

naming convent ions, see filename
conventions

paths and naming conventions 27
specifying to CC 33

source-level debugging
enabl ing 34

spooling output 173
sprite 254 - 261
sprite facilities 254 - 261
stack

allocation 360
extension 358, 362

stack extension 362, 373 - 37 4
stack, run-time 372 - 374
stack- limit checking 369
stat ic variab les

lifet ime 366
stdarg.h 111 - 112
stddef.h 113
std io h I 0 I , 111 , 113 - 127

444

std lib .h 101,127 - 136
storage management 379
storage manager

description 358
stream

closing 115
flushing 115

string funct ions
appending 137
comparison 137 - 138
conversion 127 - 129
copyi ng 136 - 137
error message mapping 141
length 139, 140, 141
locating 139 - 140
time 144 - 145
tokenising 140
transformation 138 - 139

string literal 97
stringh 101, 136- 141
strings in ANSI standard 95
struct 95

alignment of members 93
structure result 334
structures 85

see also struct
stubs 25
SVC mode 366
SWI 102, 33 7, 368

XOS_Heap 35 7
XOS_Module 357

SW ls
default search path in CC 30

switch statement 97

T
template 261 - 263

editor see Form Ed
text

displaying and editing 172 - 173
highlighting 172

text functions 264 - 279
text output functions

BBC-style 180
text streams 88

Throwback
example session

throwback
controlling in CC

time zones 88
time.h 141 - 145
ToANSJ 63 , 98

application menu
command line 66
loading 9
menu options 65
Setup options 64
use in DOE 9

token-pasting 97
ToPCC 67, 98

application menu
command line 70
loading 9
menu options 69
SetUp options 68
use in DOE 9

trace 263
trace.h 173
translation

10 - 12

35

65

69

ordering of phases 97
trap handling 371
TrapProc 371
tree structures

fonts 232
txt 264 - 276
txt.h 172
txtedit 277 - 279
txtedit.h 172
txtscrap 283
txtwin 283 - 284
txtwin h 172

Subject Index

u
UncaughtTrapProc 371
UnhandledEventProc 371

union 95
unions 85
uniqueness of names

checking 39
unsigned 95
unsigned char, limits I 07
unsigned int, limits 107
unsigned long int 96

limits 107
unsigned short int, limits I 07
UnwindProc 372
user files

naming conventions 30
USR mode 366

v
values, limits on 107
varargs

default search path in CC 30
variable

environmental 368
storage of 335

variadic functions in ANSI standard 95
visdelay 284 - 285
void 95
void* 95
volatile 94

w
wchar_t 113
werr 285
wimp 286-312
Wimp polling 149
wimp slot

contents 360
wimpt 312 - 316

445

Subject Index

win 316 - 322
window

creating 153 - 154
maintaining 155 - 156
opening 155

window coordinates 191 - 194
window drag types 289
window flags 286 - 287
window manager 316 - 322

function prototypes 304 - 312
idle events 163
unknownevents 163-164

work directory 26
specifying in CC 47

x
xfer_send 167, 254
·xferrecv 164, 323 - 325
xfersend 166 - 167, 325 - 328

446

Function Index

The main entry for each function is printed
in bold type

Symbols
_kernel_exittraphandler 371
_kernel_register_allocs 372

kernel_setreturncode 370
kerne l_swi I 02

A
abort 89, 130
abs 133
acos 108
akbd_pollct l 175
akbd_pollkey 175
akbd_pollsh 175
alarm_anypending 177
ala rm_callnext 178
alarm_init 176
alarm_next 177
alarm_remove 177
alarm_removeall 177
alarm_set 176
alarm_timedifference 176
alarm_timenow 176
asctime 143
asin 108
atan 108
atan2 108
atexit 13 1, 34 I
atof 127
atoi 127
atol 127

B
baricon 152, 178
baricon left 178
baricon_newsprite 179
baricon_textandsprite 179
baricon_textandsprite_left 180
bbc_adval 184
bbc_ci rcle 182
bbc_circ lefi ll 182
bbc_clg 183
bbc_cls 181
bbc_colour 181
bbc_cu rsor 184
bbc_draw 182
bbc_drawby 182
bbc_fill 183
bbc_gcol 183
bbc_get 184
bbc_getbeat 184
bbc_getbeats 184
bbc_gettempo 184
bbc_gwindow 183
bbe:_inkey 185
bbc_mode 182
bbc_modevar 184
bbc_move 182
bbc_moveby 182
bbc_origin 183
bbc_pa lette 183
bbc_plot 181
bbc_point 183
bbc_pos 181
bbc_rectangle 182
bbc_rectanglefi ll 182
bbc_setbeats 185
bbc_settempo 185

447

Function Index

bbc_sound 185
bbc_sou ndoff 185
bbc_soundon 185
bbc_stereo 185
bbc_st ringprin t 181
bbc_tab 181
bbc_tint 183
bbc_vdu 180
bbc_vduq 181
bbc_vduvar 183
bbc_vduvars 184
bbc_vduw 180
bbc_voices 185
bbc_vpos 181
bsearch 132

c
calloc 89 , 130
ceil 109
clearerr 126
clock 90, 142
colourmenu_make 170, 186
colourtran_colourn umbertoGCOL 190
colourtran_GCOL_tocolourn umber 190
colourtran_inval idate_cache 191
colourtran_return_colourformode 188
colourtran_return_colournumber 187
colourtran_return_GCOLformode 188
colourtran_return_Oppco lourformode 189
colourtran_return_Oppcolournumber 189
colourtran_return_OppGCOL 188
colourtran_return_OppGCOLformode 189
colourtran_returnfontcolours 190
colourtran_returnGCOL 187
colourtran_se lect_GCOLtable 186
colourtran_select_table 186
colourtran_setfontcolours 19 I
colourtran_setGCOL 187
colourtran_setOppGCOL 189
coords_box_toscreen 192
coords_box_toworkarea 192

448

coords_boxesoverlap 194
coords_intersects 194
coords_offsetbox 194
coords_point_toscreen 193
coords_poi nt_toworka rea 193
coords_wi thinbox 193
coords __ x_toscreen/coords_y_toscreen 192
coords_x_toworkarea/coords_y_toworkarea 192
cos 108
cosh 108
ctime 143

D
dbox_dispose 158, 195
dbox_eventhandler 170, 200
dbox_fadefie ld 170, 199
dbox_field/dbox_fieldtype 197
dbox_fi ll in 158, 170, 201
dbox_get 199
dbox_getfie ld 170, 198
dbox_getnumeric 170, 198
dbox_hide 196
dbox_init 172, 203
dbox_new 158, 195
dbox_pers ist 170, 202
dbox_popup 202
dbox_raweventhand ler 200
dbox_read 200
dbox_setfie ld 158, 170, 197
dbox_setnumeric 170, 198
dbox_show 158, 170, 196
dbox_showstatic 170, 196
dbox_syshand le 202
dbox_un fadefie ld 170, 199
dboxfi le 172, 203
dboxquery 172, 204
dboxtcol 204
difftime 142
div 133
draw_append_diag 206
draw_convertBox 209

draw_create_diag 212
draw_crea teObject 213
draw_deleteObjects 214
draw_doObjects 212
draw_extractObject 215
draw_querybox 208
draw_rebind_diag 209
draw_registerMemoryFunctions 207
draw_render_diag 207
draw_set_unknown_ob ject_handler 210
draw_setFontTable 2 I 3
draw_shift_diag 168, 208
draw_translateText 2 I 5
draw_verify_diag 206
draw_verifyObject 2 I 3
drawex_load_ram 168
drawex_ram_loader 168
drawfdiag_init 210
drawmod_ask_flattenpath 2 I 8

'- drawmod_ask_strokepath 217
drawmod_buf_transformpath 218
drawmod_do_flattenpath 2 I 7
drawmod_do_strokepath 2 I 7
drawmod_fill 2 I 6
drawmod_insitu_transformpath 218
drawmod_processpath 2 I 9
drawmod_stroke 2 I 6

E
event_anywindows 220
event_attachmenu 154, 155, 157, 220
event_attachmen umaker 154, 221
event_clear_current_men u 221
event_getmask 222
event_i s_menu_being_recrea ted 221
event_process 155, 220
event_setmask I 56, 222
exit 89, 13 I , 375
exp I 09

F
fabs 109
fclose 115
feof 126
ferror 126
fflush I I 5
fgetc 121
fgetpos 89, 124
fgets 121
fl ex_a lloc 223
flex_budge 224
flex_dont_budge 225
flex_extend 224
flex_free 223
flex_init 225
flex_m idextend 224
fl ex_size 223
fl oat. h I OI
fl oor 109
fmod 87, 109
font_cacheaddress 225
font_ca ret 228
font_charbbox 230
font_convertoos 228
font_converttopoints 228
font_cu rrent 229
font_fi nd 226
font_findcaret 229
font_findcaretj 232
font_future 229
font_list 230
font_lose 226
font_paint 227
font_readdef 226
font_readinfo 227
font_readsca lefactor 230
font_readthresholds 231
font_setcolour 23 I
font_setfont 229
font_setpa lette 231
font_setsca lefactor 230
font_setthresholds 231

Function Index

449

Function Index

font_st ringbbox 232
font_strwidth 227
fontlist_free_font_tree 233
font! ist_l ist_a ll_fonts 233
fontselect_attach_menu 234
fontselect_closedown 233
fontselect_closewindows 234
fontselect_init 233
fontselect_selector 234
fopen 115, 116
fprintf 89, I I 7, I 18
fputc I 21
fputs 122
fread 124
free 130, 160
freopen 116
frexp 109
fscanf 89, 119, 120
fseek 125
fsetpos 125
ftel I 89, 125
fwrite 124

G
getc 122
getchar 122
getenv 89, 131
gets 122
gmtime 143

H
heap_a l Joe 235
heap_free 235
heap_init 235
help_dboxrawevents 237
help_genmessage 236
help_process 236
help_register_handler 236
hel p_reply 238

450

help_s implehandler 237

isa lnum 87, 105
isa lpha 87, 105
iscntrl 87 , 105
isdigit 105
isgraph 105
islower 105
islowert 87
isprint 87, 105
ispunct 87
isspace I 06
isupper 87
isxd igit I 06

L
labs 133
lconv 108
ldexp 109
!div 133
limits. h IOI
locale. h 102
localtime 144
log 109
log lO 109
longjmp 109, 110, 373

M
magni fy_select 172, 238, 239
main 81 , 97 , I 02, 375
malloc 89, 130, 160
mblen 134
m bstowcs 13 5
mbtowc 134
memchr 139
memcmp 137
memcpy 136

me.mmove 136
memset 141
menu_dispose 240
menu_extend 240

menu_make_sprite 242
menu_make_writeable 241

menu_new 154, 240

menu_setflags 241
menu_submenu 241
menu_syshandle 242
mktime 142
modf 109
msgs_init 242
msgs_lookup 243
msgs_readfile 243

0
os_args 245
os_byte 244
os_cli 245
os_file 166, 245
os_find 245
os_gbpb 245
os_read_var_val 245

os_swi 244
os_swix 244
os_word 245

p
perror 89, 126
pointer_reset_shape 246
poi nter_set_shape 245

pow 109
print_abortjob 250
print_box 247
print_canceljob 250

print_checkfeatures 248

print_currentjob 249

print_drawpage 251

print_endjob 250
print_features 246
print_getrectangle 251
print_giverectangle 251

print_identity 246
print_info 248
print_infostr 247
print_pagesize 249
print_pagesizestr 247
print_posit ionstr 248
print_reset 250
print_screendump 252
print_selecti llustra tion 250

print_selectjob 249
print_setinfo 248
print_setpagesize 249
print_transmatstr 248
printf 118, 174
putc 123
putchar 123
puts 123

Q
qsort 132

R
rand 129
realloc 89, 130
remove 88, 114
rename 88, 114
res_findname 252
res_init 153, 252
res_openfi le 252
resspr_area I 55, 253
resspr_init 253
rewind 126

Function Index

451

s
saveas_read_leafname_during_send 254
scanf 120
setbuf 116
setjmp 373
setlocale 87
setvbuf 117
signal 87
sin 108
sinh 109
sprintf 119
sprite_area_in itiali se 255
sprite_area_load 255
sprite_area_m erge 255
sprite_area_read info 255
sprite_area_reinit 255
sprite_area_save 256
sprite_copy 257
sprite_create 257
sprite_create_mask 259
sprite_create_rp 257
sprite_delete 257
sprite_delete_column 259
sprite_delete_row 259
sprite_flip_x 259
sprite_flip_y 259
sprite_get 256
sprite_get_given 256
sprite_get_given_rp 256
sprite_get_rp 256
sprite_getname 256
sprite_insert_column 259
sprite_insert_row 259
sprite_outputtomask 260
sprite_outputtoscreen 261
sprite_outputtosprite 260
sprite_put 258
sprite_put_char_sca led 258
sprite_put_given 258
sprite_put_greysca led 258
sprite_put_mask 258
sprite_put_mask_given 258

452

sprite_put_mask_sca led 258
sprite_put_sca led 258
sprite_read mask 260
sprite_readpixe l 260
sprite_readsize 260
sprite_remove_m ask 259
sprite_removewastage 261
sprite~rename 257
sprite_restorestate 260
sprite_screenload 255
sprite_screensave 255
sprite_select 257
sprite_select_rp 257
sprite_sizeof_screencontext 261
sprite_sizeof_spritecontext 261
sprite_ writemask 260
sprite_writep ixe l 260
sqrt I 09
srand 129
sscanf 120
strcat 137
strch r 139
strcmp 138
strcoll 138
strcpy 136
strcspn 139
strerror 90, 141
strftime 144, 145
strl en 141
strncat 137
strncmp 138
strncpy 137
strpbrk 139
strrchr 139
strspn 140
strstr 140
strtod 127
strtok 140
strto l 128
strtoul 128, 129
strxfrm 138
switch statement 85
system 89, 132

T
tan 108
tanh 109
template_copy 261
template_find 262
template_in it 172, 253 , 262
template_loaded 262
template_readfi le 261
template_syshandle 263
template_use_fancyfonts 262

time 143
tmpfile 114
tmpnam 114
tolower 106
toupper 106
trace_is_on 263
trace_off 17 4, 263
trace_on 174, 263
tracef 263
txt_arrayseg 276
txt_bufsize 265
txt_charat 269
txt_charatdot 269
txt_charoptions 266
txt_charsatdot 269
txt_de lete 268
txt_dispose 265
txt_disposemarker 272
txt_dot 267
txt_eventhandler 275
txt_get 274
txt_hide 264
txt_indexofmarker 272
txt_init 276
txt_insertchar 268
txt_i nsertstri ng 268
txt_last ref 266
txt_movedot 268
txt_movedottomarker 272
txt_movehorizontal 270
txt_movema rker 271
txt_movevertical 270

Function Index

txt_new 264
txt_newmarker 271
txt_queue 275
txt_readeventhand le r 275
txt_replaceatend 270
txt_replacechars 269
txt_selectend 273
txt_selectset 272
txt_selectsta rt 273
txt_setbufsize 265
txt_setcharoptions 266
txt_setdisplayok 267
txt_setdot 267
txt_setlastref 266
txt_setselect 273
txt_show 264
txt_size 267
txt_syshandle 276
txt_unget 275
txt_visiblecolcount 271
txt_visiblelinecount 270
txtedit_dispose 277
txtedit_doimport 278
txtedit_doinsertfile 279
txtedit_getstates 281
txtedit_init 282
txtedit_install 277
txted it_mayqu it 277
txtedit_menu 278
txted it_men uevent 278
txtedit_new 277
txtedit_prequit 278
txted it_register_close_hand le r 280
txted it_registe r_open_hand le r 281
txtedit_register_save_ hand le r 279
txtedit_register_save_handler 279
txted it_registe r_s hutdown_hand le r 280

txtedit_registe r_undofa il_hand ler 281

txted it_registe r_update_ ha ndler 279
txtedit_register_update_handler 279

txtopt 282
txtopt_get_name 282
txtopt_set_na me 282

453

txtscrap_selectowner 283
txtscrap_setselect 283
txtwin_di spose 284
txtwin_new 283
txtwin_number 284
txtwin_setcurrentwindow 284

u
ungetc 123

v
va_arg 112
va_list 112
vfprintf 111, 120
visdelay_begin 284
visdelay_end 285
visdelay_init 285
visdelay_percent 285
vprintf 120
vspri ntf 121

w
wcstombs 135
wctomb 135
wimp_baseofsprites 31 O
wimp_bbits 289
wimp_blockcopy 31 O
wimp_box 290
wimp_ca retstr 295
wimp_close_template 308
wimp_close_wind 156, 305
wimp_closedown 308
wimp_command_tag 312
wimp_comma ndwind 312
wimp_commandwindow 312
wimp_corrupt_fp_state_on_poll 306
w1mp_create_icon 305
wimp_create_menu 307

454

wimp_create_submenu 311
wimp_create_wind 153, 305
wimp_decode_menu 307
wimp_delete_icon 305
wimp_delete_wind 305
wimp_drag_box 307
wimp_dragstr 302
wimp_dragtype 289
wimp_emask 293
wimp_errfl ags 310
wimp_etypes 293
wimp_eventdata 300
wimp_even tstr 30 I
wimp_flags 286
wimp_font_a rray 303
wimp_force_redraw 307
wimp_get_ca ret_pos 307
wimp_get_icon_info 306
wimp_get_point_in fo 307
wimp~get_rectangle 306
wimp_get_wind_info 306
wimp_get_wind_state 155, 306
wimp_getwindowout 309
wimp_i 289
wimp_ibtype 288
wimp_icon 292
wimp_icondata 290
wimp_iconflags 287
wimp_icreate 292
wimp_initial ise 304
wimp_load_template 308
wimp_menuflags 301
wimp_menuhd r 242 , 301
wimp_menu item 242 , 302
wim p_menustr 242 , 301 , 302
wimp_mousest r 294
wimp_msgaction 295 , 297
wimp_msgdata load 298
wimp_msgdataopen 298
wimp_msgdatasave 297 .
wimp_m sgdatasaveok 297
wimp_msghdr 297
wimp_msghelpreply 299

wimp_msghelprequest 299

wimp_msgprint 299
wimp_msgramfetch 298
wimp_msgramtransmit 299

wimp_msgstr 299
wimp_open_template 308
wimp_open_wind 155, 305
wimp_openstr 169, 292
wimp_palettestr 304
wimp_pa letteword 304
wimp_ploticon 309
wimp_poll 305
wimp_pollidle 309
wimp_processkey 308
wimp_pshapestr 303
wimp_readpalette 309
wimp_readpixtrans 3 12
wimp_redraw_wind 306
wimp_redrawstr 169, 294
wi m p_reporterror 310
wimp_save_fp_state_on_poll 305

wimp_sendmessage I 03, 164, 311

wimp_sendwmessage 31 1

wimp_set_caret_pos 307
wimp_set_extent 308
wimp_set_icon_state 306
wimp_set_point_shape 308
wimp_setcolour 309
wimp_setfontcolours 311
wimp_setmode 309
wimp_setpalette 309
wimp_slotsize 3 11
wimp_spriteop 310
wi m p_spriteop_fu II 3 IO
wimp_starttask 308
wimp_t 290
wimp_taskclose 308
wimp_taskinit 304
wimp_template 303
wimp_transferblock I 03 , 311

wimp_update_wind 306
wimp_w 289
wimp_wcolours 287

Function Index

wimp_which_block 302
wimp_which_icon 307
wimp_wind 291
wimp_winfo 291

wimp_wstate 292
wimpt_bpp 315
wimpt_checkmode 314
wimpt_complain 159, 314
wimpt_dx/wimpt_dy 314
wimpt_fake_event 313
wimpt_forceredraw 316
wimpt_init 153, 315
wimpt_last_event 313
wimpt_last_event_was_a_key 313

wimpt_mode 314
wimpt_noerr 159, 313
wimpt_pol l 312
wimpt_programname 316
wimpt_reporterror 316
wimpt_task 316
wimpt_wimpversion 315
wi n_activedec 321
win_activeinc 152, 321
win_act iveno 321
win_add_unknown_event_processor 163 , 318

win_claim_id le_events 163. 318
win_claim_unknown_events 164, 319

win_getmenuh 320
win_give_away_ca ret 322
win_id le_event_claimer 319
win_init 322
win_processevent 320
win_read_even t_handler 317
win_register_event_hand ler 317
win_remove_unknown_event_processor 164.

319
win_setmenuh 320
wi n_sett it le 322
win_unknown_event cla imer 319

wi n_u nknown_event_processor 163

455

Function Index

x
xferrecv_bu ffer_processor 165, 324
xferrecv_checkimport 324
xferrecv _checki nsert 166. 323
xferrecv_checkprint 323
xferrecv_do_import 165
xferrecv_doimport 324
xferrecv_file_is_safe 166, 324
xferrecv_insertfil eok 323
xferrecv _pri ntfi leok 323
xfersend 326
xfersend_clear_unknowns 329
xfersend_close_on_xfer 328
xfersend_file_is_safe 328
xfersend_pipe 327
xfersend_printproc 166, 254 , 325
xfersend_read_last_ref 329
xfersend_saveproc 166, 325
xfersend_sendbuf 327
xfersend_sendproc 166, 254, 325
xfersend_set_fileissafe 328

456

Reader's Comment Form
Acorn ANSI C Release 4

We would greatly appreciate your comments about this Manual , which wi ll be taken into account for the
next issue:

Did you find the information you wanted?

Do you like the way the information is presented?

General comments:

If there is not enough room for your comments, please continue overleaf

How would you classify your experience with computers?

D D D
Used computers before Experienced User Programmer

Cut out (or photocopy) and post to
Dept RC. Technical Publications
Acorn Computers Limited

Your name and address:

D
Experienced Programmer

645 Newmarket Road
Cambridge CB5 8PB
England

This information will only be used to get in touch with you in case we wish to explore your
comments further

,.,

Acornt

