
ACORN~

RISC iX USER GU DE
3027/21 3 81

Copyright © Acorn Computers Limited 1988

Neither the whole nor any part of the information contained in, nor the
product described in this manual may be adapted or reproduced in any
material form except with the prior written approval of Acorn Computers
Limited.

The product described in this manual and products for use with it are subject
to continuous development and improvement. All information of a technical
nature and particulars of the product and its use (including the information
and particulars in this manual) are given by Acorn Computers Limited in
good faith. However, Acorn Computers Limited cannot accept any liability
for any loss or damage arising from the use of any information or particulars
in this manual.

All correspondence should be addressed to:
Customer Support and Service
Acorn Computers Limited
Fulbourn Road
Cherry Hinton
Cambridge CBl 4JN

Within this publication, the term 'BBC' is used as an abbreviation for 'British
Broadcasting Corporation'.

ACORN, ARCHIMEDES, ARM, and ECONET are trademarks of Acorn
Computers Limited.

POSTSCRIPT is a trademark of Adobe Systems, Inc.
UNIX is a trademark of AT&T.
DEC and VAX are trademarks of Digital Equipment Corporation.
MS-OOS is a trademark of Microsoft Corporation.
ETHERNET is a trademark of Xerox Corporation.
X WINDOW SYSTEM is a trademark of the Massachusetts Institute of
Technology.

Published December 1988: Issue 1
ISBN 1 85250 058 I
Published by Acorn Computers Limited
Part Number 0483,708

iii

iv

About this guide

Readership of this
guide

Overview

Chapters

This guide is an introduction to the use of RISC iX - Acorn's own
implementation of the UNIX operating system.

Early sections describe UNIX per se for people who have never used UNIX
before, introducing the most popular commands, programs and tools of the
UNIX operating system.

Later sections contain more specialist information on text editing, networking,
communication, the windowing environment plus information on where to find
out more about your workstation.

Here is a summary of what you will find in this guide:

Introducing RISC i.X - contains a brief description of the characteristics of
RISC iX.

Overview of UNIX - describes the basic concepts of the UNIX operating
system, including the structure of the filing system and how it works.

Using UNIX - introduces the basic commands of UNIX, including the shell
and the commands that you can usc to create and manipulate files.

Using the UNIX shell - describes how to use the shell to simplify existing
commands and to create some of your own commands.

Text editing - describes the text editors available on your system with a
brief description of how to use a few of them.

Networking and NFS - if your workstation is connected to a network, this
chapter shows you how to access other workstations and file systems on the
network.

About this guide v

Reference sections

Communicating with other systems and users - details the utilities
available to transfer information to other users of your workstation and to

users on other systems.

Using the X Window System - describes what the X Window System is and
how to use some of the facilities it provides.

Further uses of RISC iX - introduces some of the other things that you can
do with RISC iX that are beyond the scope of this guide, but which you may
like to pursue. Likely sources of information for each of these uses are also
provided.

The reference sections at the back of the guide contain supplementary
information.

Trouble-shooting - helps you to locate the source of your problem should
you get into difficulty using your workstation.

Command summaries - summarises all the commands available on your
RISC iX workstation and their use.

RISC iX manual pages -contains a selection of reference manual pages.

An extensive bibliography is also included along with an index to help you
find your way around the guide.

vi About this guide

Conventions used In
this guide

The following typographical conventions are used throughout this guide:

Convention

<DELETE>
<CTRL-D>
.J

login :
cat
filename

For example:

l ogin : guest .J

Another example:

Meaning

Press the key inJicateJ .
Hold down the first key anJ press the seconJ.

Press the RETURN key
Text Jisplayed on the screen.
Text that you type in.
A variable, where you should substitute what the
word represents.

$ cat filename .J

where filename is the name of the file; for example, readmel:

$ cat readmel .J

About this guide vii

viii About this guide

Contents

Introducing RISC iX

Overview of UNIX

Using UNIX

Using the UNIX shell

Text editing

Networking and NFS

Communicating with other systems and users

Using the X Window System

Funher uses of RISC iX

Bibliography

Reference Section A: Trouble-shooting

Reference Section B: Command summaries

Reference Section C: RISC iX manual pages

Index

Contents

3

19

41

63

109

129

161

179

185

187

195

211

ix

X Content~

Introducing RISC iX

What is RISC iX? RISC iX is a port to the ARM processor of the Berkeley 4.3 UNIX operating
system (4.3BSD) wilh SVID extensions, Network File System (NFS) software,
the X Window System and window managers.

I Jere is a general list of the software supplied:

• Berkeley BSD 4.3 Kernel with System V virtual memory extensions,
compatible with the System V Interface Definition, SVID.

• Device Jrivers for many peripherals.

• Berkeley 4.3 toolkit.

• Assorted User Contributed Software (UCS).

• System Administration tools.

• C Compiler with ANSI C and pee (Berkeley) compatibility considerations.

• ARM Assembler.

• Sun NFS Version 3.2.

• XII Window System Release 2 with awm, t.wm and uwm window managers.

• disc formatters for floppy discs and hard discs.

• Data interchange tools: transfer to/from MS-DOS and ADFS floppy discs.

AdJitional operating systems:

• Acorn's RISC OS, with separate disc partition (standard).

• MS-DOS emulation, using RISC OS (optional).

This chapter has only given you a thumbnail sketch of RISC iX. The remaining
chapters will help you to get further acquainted and to steer you through all
the available software. Examples will be provided throughout the guide and
pointers to other sources of information (documentation, system tutorials etc.)
will also be given, to encourage you to learn more ahout RISC iX.

Introducing RISC iX

2

To get started, set up your system, switch on and log in as described in the
Operations Guide. Then turn to the next chapter in this guide, Overview of
UNIX; read through the text and try some of the examples on your
workstation as you proceed.

Introducing RISC iX

Overview of UNIX

Introduction

What is UNIX?

If you are a newcomer to UNIX, the next three chapters of this guide are for
you - they provide enough information for you to start using your system by
introducing:

• the underlying concepts of the UNIX operating system (as succinctly as
possible),

• the basic UNIX commands, and

• the uses of the UNIX shell.

The remaining material in this guide assumes knowledge of these three
chapters, so take your time reading them and where possible, try out the
examples on your system as you proceed.

The guest directory that you logged into in the Operations Guide should
assist you in this respect as it contains many of the example files and
directories that are used throughout this guide. So if you haven't done so
already, log in to your system as guest and then begin reading this guide,
stopping occasionally to try out the commands for yourself.

UNIX is an operating system consisting of a set of software programs that act
as a link between your computer and you, the user. It controls the computer
and gives you an efficient and flexible computing environment. In addition,
UNIX also provides a whole host of very powerful commands that can help
you in your work.

UNIX is a multi-user operating system. This means that it can support more
than one user (multiple users) at any one time. For example, if your
workstation is on a network, you can be busy typing commands on your
workstation and meanwhile another user from another workstation on the
network can also log in to and use your workstation. The good thing is that you
are unaware of this additional user, because UNIX looks after it all.

Overview of UNIX 3

4

Even if your workstation is not connected to a network you can still take
advantage of the multi-user concept. Just as UNIX can cope with more than
one user, it can also cope with more than one task. For example, if you are
doing something on your system that takes a long time, UNIX allows you to
start doing another task while you are waiting for the first one to finish. This
ability to run tasks concurrently is known as multi-tasking.

The concept of a computer operating system, what it does and how it does it, is
beyond the scope of this guide. If you would like more information, have a
look at a suitable book - for example, Fundamentals of Operating Systems by
AM Lister.

The UNIX operating system can be split up into three parts:

• The core 'operating system' - this controls the computer hardware and at its
centre is the core of the UNIX system, the kernel. The kernel controls
access to the computer hardware, manages the computer memory and
allocates computer resources between the various tasks the computer is
performing.

• The commands - UNIX has many commands designed to help you with
your work. There are commands for electronic communication, text editing
and layout, system administration, and commands to help you with program
development. A typical programming language, like C, can be used in
combination with these commands to develop an application program
suitable for running on a UNIX system. You may already have such an
application running on your system that has already been written from this
environment- for example, the X Window System or a desktop etc.

• The shell - this is the part of UNIX you see on the screen. It takes your
typed input and 'interprets' what you type, so that the computer can process
it. The shell is also a programming language in its own right that can be
used for a variety of purposes. For example, to set up a personalised user
environment, redirect input and output to files and run commands in the
background. Although the shell shares many of the characteristics of
standard UNIX commands and can be used as a standard command, its
role as a command processor sets it apart from the other commands in
UNIX.

Overview of UNIX

If you like, you can visualise these three parts of UNIX as a series of
interdependent concentric rings with the hardware of your system at the core
and the application you are running, if any, on the periphery.

Applications programs

The kernel is a program called vmunix which controls the hardware of your
system. It is loaded when the system is started and runs continuously until the
system is shut down. The commands and applications programs are tools
which you use to do your work. Sandwiched between these two layers is the
shell which acts as the interface between the kernel and you.

This rest of this chapter elaborates on each of the three parts of the UNIX
operating system. Therefore, let's look first at the kernel and its related topics.

Overview of UNIX 5

The root directory

UNIX recognises three different types of file that together comprise the
complete file system:

• An ordinary file is simply a collection of alphanumeric characters or
binary data. These files arc used to store textual information or programs
that you write.

• A directory is a file maintained by the operating system that ts used for
organising the structure of the operating system as shown above. A directory
may contain files as well as other directories called sub-directories. These
sub-directories can in their turn contain both files and further sub­
directories (sub-sub-directories), and so on, theoretically ad infinitum.

Directories normally contain a set of related files. For example, you may
create a directory containing files representing all the memos you write -
this is good file system management as it helps you to keep track of the
files you create.

In the file system diagram, all directories are placed in boxes to
distinguish them from files.

• A special file, which is the file used to represent a physical device on your
system, such as your floppy disc drive. There is at least one special file
corresponding to each physical device on your system.

Some operating systems require you to be specific about which type of file
you arc using and limit you in the ways you can use each type of file. With
UNIX however, this is not the case - all files, even special files, are treated
alike.

This not only simplifies the structure of the file system but makes it easy for
you to use. For example, if you need to access your floppy disc drive in the
course of a program you are writing, you just specify the name of the device as
you would any other one of your files.

The 'I' symbol represents the root directory. All the other files and
directories that comprise the UN IX file system are below this directory.
Before looking at where you fit into the file system, let's have a look at some
of the more important directories contained in the root directory:

/bin

Overview of UNIX

Contains executable versions of the most common UNIX
commands that you will usc. For example, the command
cat that you used in the Operations Guide to display a
file, lives in this directory.

7

I /dev

/e t c

I

/l i b

/tmp

/us r

8

Contains the special files that UNIX uses to represent the
physical devices that you have on your system. For
example, this directory contains a special file for your
hard disc drive.

Similar to /bin, but contains the programs and files that
a system administrator uses. These are usually collectively
referred to as the System Administrator's Toolbox.

Contains most of the available programming and language
libraries that are installed on the system.

A directory where you can create and store temporary
files.

Contains more UNIX commands and software libraries
similar to the those found in /bin and I 1 ib respectively
and also a users directory for users of the system.

/usr/bin - executable versions of some of the less
common UNIX commands.

/usr/lib - less common programming and language
libraries.

/usr/users -directory where you and other users of the
system normally store their files and directories. Each
user will have his or her own directory below which arc
further sub-directories containing their files. For example
user guest uses the directory /usr /users I gues t .

Note that this directory may not always be called users
and may not even be in .the directory usr - on your system
this directory may be called /usr2 or /u or something
similar.

Overview of UNIX

Your place in the file
system

In short then, the directory /usr/users/username, or some similar name,
is the place in the file system where you create files and directories and is
the only directory that is structured and controlled by you. The other parts of
the file system are either controlled by other users or controlled
automatically by the UNIX operating system.

Be aware however, that the structure we have defined is merely a quick sketch
of what is contained in the file system and where certain types of files reside.
As UNIX has evolved, the guidelines for locating certain types of files have
altered and many inconsistencies have resulted. For example, as described
above /usr has a directory called /usr/bin that contains files similar to

those found in /bin. Therefore, as you search through the file system, don't
be surprised to find similar types of files located in different directories!

Also, particularly if your system is on a network, your system may have had
its structure changed by your System Administrator to suit the needs of the
resources available in your computing environment and to make more efficient
usc of them.

When you first log in, UNIX places you automatically in a specific part of
the file system called your home directory. This is normally under /usr - ie
our example home directory for user guest is /usr /users/ guest.

Any commands you give at first will normally take effect on your home
directory, unless you specify otherwise - for example, if you issue the ls
command without any options, to list files and directories, it is the files and
directories in your home directory that will be listed.

Within your home directory, you can create files and additional directories to
organise them, you can move and delete these files and directories, and you
can control who can access your files and directories. You have full
responsibility for everything you create in your home directory because you
own it.

Your home directory is a vantage point from which to view all the files and
directories it holds. It is also a point from which to view the rest of the file
system all the way up the directory tree to the root directory.

When you first log on, your home directory is your current working directory
(CWD). To access files and directories in another directory, you have either
to change your current working directory, or specify a pathname that points to
another part of the fi le system.

Overview of UNIX 9

Path names As you can imagine, with all the files and directories which are created over a
period of time, it could get pretty confusing finding your way around the file
system. This is one of the reasons why some form of addressing mechanism is
necessary in order to identify the location of files and directories.

A pathname is an address of a file or directory. For example, if your current
working directory as shown in the diagram below is /usr/users/guest,
then there is no confusion if you address the file readme 1 . The system will
understand that the file referred to is the one in your current working
directory.

However, if you want to refer to the special file sdOa, which is down a
completely different track, you have to give a full pathname telling the
system how to get there. It's like being in a town - if you're already in
Mafeking Terrace, there is no confusion if you are asked to go to number 7.
But if you're asked to go to number 5 Jubilee Street in another town
altogether, you have to be given more information than just number 5.

devj etc

sdOa --- Special file

10

=u <Eo--- Root directory

~~~,~---
l tmp l ~ 

... -,- _L ,, 
[U;e!S] 

I guest i '""---~-- Directory 

----.--L 
readme1 Ordinary file 

Overview of UNIX 



Pathname syntax 

Security in the file 
system 

root- the super-user 

Finding the address of a house depends (to some extent, anyhow) on where 
you are standing at the time. Similarly, finding the address of a file in the 
file system depends on which is your current working directory at the time. 

A typical full pathname would be written: 

/us r /users/gues t /readmel 

The initial '/' refers to the root directory. Following this (below root in the 
directory structure) is u sr /users, which is the home directory of user guest. 

guest is a sub-directory of users, and readmel is a file within the guest 
directory. 

Files and directories are all separated by the character '/', so you can use this 
syntax to refer to any file or directory in the file system. 

Because the UNIX operating system is a multi-user system, you are not 
working alone in the file system - you and other system users can follow path 
names and run system commands to move to various directories and to read 
and use files belonging to one another, if they have permission to do so. So 
you may choose to protect your files and directories against an unwanted or 
accidental intrusion. 

In general, the files and directories created by individual users can be 
protected by those users, since they are the owners. The important files and 
directories that are created in the root directory are owned by a super-user 
who uses the login name root and who looks after your system. 

If your system is on a network then it is usually your System Administrator 
who is root. If you are the only user of your system, you may also be root and 
it will be up to you to look after your system. For more information, refer to 
the RISC iX System Administrator's Manual. 

root is a privileged user with access to all the files and directories on the 
system, including yours. root looks after the security of the system by 
controlling whether you can use the system and most importantly, where on 
the system you are allowed to create and remove files and directories. 

Overview of UNIX 11 



Protecting your files and 
directories 

Do not be put off by the idea of someone else being able to read your files. 
root is a trusted user of the system and will prove a useful ally in helping 
you find your way around the system and hopefully, saving you from potential 
disasters such as accidentally deleting all your files. 

The amount of security on the system is left to the discretion of root. However, 
withm the confines of the restrictions on security imposed by root, you are 

able to protect your files and directories against other ordinary user~. 
sometimes referred to as 'mortals'. 

For more information nbout root and how to log in as root , refer to the 

OJ>erations Guide. 

UNIX allows you some degree of security on the files and directories you 
create by allowing you to determine their access permissions. For example, 
who is allowed to read, alter ami execute your files and more importantly, 
who is not. 

In the file system, users can act independently of each other hut they can abo 
act under the umbrella of a group name. For example, a team of 
programmers working on a new windowing system could he m a group called 
windows. 

root normally defines which group you belong to and also which other 
groups you can have access to. For example, one of the programmers in the 
group windows, may be a regular contributor to the company newsletter -
this is a group called news folk. So root can also assign the programmer to 

be able to access the files owned by this group as well. The members of this 
group may even be placed in a sub-directory of the home directory. For 
example, /usr /users/windows followed by their user name. 

The benefit of being in such a group is that you can allow its members to have 
special privileges in terms of access to the particular files and directories that 
the other users of the system who are not in the group or do not have access to 
the group, are denied. For example, the directory containing the latest version 
of the source-code for the new window system could be set up so that only the 
team of programmers in the group windows could edit the files in that 

directory. 

12 Overview of UNIX 



Types of protection 

If your system has been set up in groups, you may find that you are in an 
extra directory beneath /usr/users. For example, suppose there are three 
users; wsha kespeare, t ha r dy and lcarroll on your system. They could 
be placed in a group called writers and the home directory for 

wshakespeare would then be: 

/usr/users/writers/wshakespeare 

and wshakespeare could protect his files so that only the users belonging 
to the group writers could access his home directory and the files in his 
home directory. 

The access permissions that you can attach to each file and directory that you 
own, can be split up into three types: 

• permission to read a file and copy its contents 

• permission to write changes into a file 

• permission to run an executable file 

• none of the above, ie no access. 

Each of these types of protection can be applied to one of three different 
classes of user: 

• the owner- called the user of the file 

• the group to which the owner belongs 

• other users of the system. 

For example, you can protect one of your files so that only you have read and 
write access to the file, members of your group have read access and users 
outside your group have no access. 

When you first create a file, the initial access permissions are set up by the 
UNIX system. But once you have created your file you are free to change 
these permissions as often as you like. 

The access permissions that you set up for files can also be set up for 
directories but the meanings of the permissions are slightly different. 

Overview of UNIX 13 



For example, penmsston to read a file means you can examine its contents 
pennission to read a directory means that you can display the names of the 
files in that directory but you are not able to read the contents of the files 
themselves or move to that directory. This has to be set up for each individual 
file. 

Write permission to a directory means that you can add new files to that 
directory and likewise remove files from that directory even tf you have no 
write permission for these files! So be carefu l about setting write permissions 
on directories as they override the permissions that you h~ve set for each 
individual file contained in the directory. 

Execute permission is required for you to access the files contained in that 
directory and the sub-directories beneath tt. For example, if you have execute 
pennb~ion for a directory, hut no read permission, then you can use files in 
that directory as long as you know their name - without read permission you 
cannot list the contents of the directory. 

You may at first find the option of protecting files and directories against 
yourself slightly peculiar. However, experience shows that quite often the 
biggest danger to the existence of a file is the owner of that file! 

Although you will rarely deny yourself permission to read one of your own 
files, it is quite often useful to prevenl yourself from accidentally writing over 
an existing file by denying yourself write access permission for the file. For 
example, if you are editing a new file and decide to save it under the name of 
a file that already exists, you will normally receive a warning message from 
the editor that you arc usmg. 

The actual UNIX command you usc to set the protection on your files and 
directories is explained in the next chapter, Usin~ UNIX. 

14 Overview of UNIX 



Input and output - the 
shell 

Now that you are familiar with the UNIX file system, the next step is to 
introduce you to the means by which the information you input to the system is 
understood and acted upon and how the system outputs any information back 
to you - ie how you interact with the system. 

All your interactions with the system are controlled by the shell. The shell is 
a UNIX program that acts as an interpreter between you and the heart of the 
UNIX system, the kernel. Remember the diagram at the start of this chapter: 

( 
\ 

Applications programs 

Overview of UNIX 15 



The commands 

The shell tlffaps around the kernel and acts as the interface between the 
kernel and you by running commands when you type them, redirecting input 
and output and expanding wildcard character~ etc. 

When you type a command, the ~hell tramlatcs your request into a language 
that the kernel understands and can act upon: for example, by calling 
requested programs into memory and executing them. 

Because of this ability to translate your commands, the shell is known as the 
command line interpreter (CLI). 

The request you enter is considered input, and the shell takes this input and 
searches through one or more directories for the program you specified. 
When the program is found, the shell alerts the kernel. The kernel then takes 
over and follows the program's instruct ions and executes your request. When 
this is complete, the shell takes over again and asks you for more input or 
tells you it is ready for a fresh command. 

As well as being a command line interpreter, the shell is also quite a 
powerful programming language that you can usc to tailor how you interface 
to the system to suit your own needs and rcquircmcms. For example, you can 
redirect any messages generated by a program to a file, instead of back to 

your screen. 

You can also use the shell to make the output generated by one program be 
the input of another program this facility ts probably one of the most 
powerful attributes of the UNIX system. 

The capabilities of the shell arc fully described in the chapter, Using the 
UNIX sheU. 

The commands of the UNIX operating system form a set of individual 
programs that you can run separately or in combination to produce results that 
you can use. 

For example, ls is a command you have already met in the Operations Guide, 
which lists out the files and directories contained within a directory. Most 
operating systems have commands like this but the advantage of most of these 
commands in UNIX is their added flexibility. 

For example, ls lists out files in lexicographic order, but you can use ls with 
an option to list out the filt:s in chronological order instead. 

16 Overview of UNIX 



Using the features of the shell you can combine these quite simple software 
commands to produce very powerful tools for processing text, managing 
information, communicating with other systems and users etc. 

There is also a suite of program development commands that you can use with 
a standard programming language like C, to create sophisticated applications 
programs that run under UNIX. For example, graphics-based desktops, 
business software packages etc. In fact, your system may be supplied with 
such an application. 

The most common of these basic UNIX commands and how to use them, is 
described in the next chapter, Using UNIX. 

Overview of UNIX 17 



18 Overview of UNIX 



Using UNIX 

Introduction 

This chapter assumes that you have logged in to your system as guest. 

Now that you have got some idea of the basic principles of the UNIX 
operating system and how it works, this chapter moves on and introduces you 
to the basic tools and commands of UNIX. 

To benefit from this chapler, read through the text and try some of the 
examples on your own system ::ts you proceed. 

Be warned however, although UNIX has many commendable features, one 
feature that is sorely lacking is any sort of diagnostic information for the 
novice UNIX user. 

Most of the commands described below execute silently to the user if they 
work correctly and in some cases remain just as quiet if they don'l! So just 
because you didn't get an error message back when you typed a command, 
don't presume that your command worked. Moreover, if you do receive an 
error message it is sometimes decipherable only by a UNIX expert. 

The commands in this chapter and throughout the rest of the guide will be 
described with sufficient clarity to circumvent any problems, but if you are in 
any doubt, ask a more experienced UNIX user or have a look at the reference 
section Trouble-shooting, at the back of th is guide. 

The commands described in this chapter are grouped as follows: 

• commands to help you find your way around the file system 

• commands to create and manipulate files and directories 

• a selection of some of the most useful miscellaneous commands. 

Many of the commands described have additional, more sophisticated uses 
that are more relevant to the advanced UNIX user and are not documented 
here. However, at the end of this chapter you arc directed to other sources of 
information that describe each command in more detail. 

Using UNIX 19 



Format of commands Before introducing the commands and before you start trying any of the 
commands on your workstation, read the following section which shows the 
structure of a typical UNIX command. 

The format for typing commands in UNIX is: 

commandname [options] [arguments) 

or: 

commandname [options ] arguments ... 

where: 

commandname 

[options] 

is the name of the command that you want to execute. 

is one or more of a number of optional modifiers which 
affect the way the command behaves. 

[arguments] is one or more of a number of optional files or directories 
on which the command is to operate. 

dots that specify any number of arguments may be 
entered. 

The brackets around the words indicate that the command can be used without 
having to specify any options or arguments at all. If there are no brackets, 
then an option or argument must be included. 

For example, the command to list out the contents of a directory is ls (short 
for Lise). The command format of l s would be shown as: 

ls [options) [arguments) 

The above format shows that l s can be used without any options or arguments. 
For example: 

ls 

ls can also be used with just an option. Options usually begin with a minus 
sign to distinguish them from arguments and each option is normally 
represented by a single lower-case letter. 

20 Using UNIX 



For example: 

1s -1 

The -1 option is short for long and gives a more detailed listing than that 
given by the command 1s. 

1 s can also be used with a series of arguments. In the case of ls, these 
arguments arc just names of existing files and directories, which can just be 
appended alongside the command. For example, to list the files contained in 
a specific directory, you could type: 

1s directoryname 

The command can be used with both options and arguments: 

1s - 1 filename 

which gives a long listing of the file specified. 

You can even specify multiple options and arguments on the same line. For 
example: 

1 s -1 -t directoryname filename 

which give~ a long listing and also sorts the file and directory specified, by 
the date last modified (the - t option). 

This can be abbreviated to: 

1s - 1t directoryname filename 

Other instructions may also be added to the command line: for example, to 
redirect the output produced from such commands. These instructions together 
with how to use them arc discussed in the next chapter, Using the UNIX shell. 

Using UNIX 21 



Finding your way 
around the file system 

To show you how to find your way around the file system, let's use the 

structure in your current directory (/usr/users/guest) and show how the 
commands can be employed to move around this file system: 

UJ 
-.-1 

I users I 

I 
guest I 

I editing-files I glossary jmetacharacter-usa~ readme1 

_L 
I I I I I I I 

example quotes lots of files info-ching 

readme2 I witticism~ 

allen churchill wilde 

The next few sections describe the commands to move around the above file 
system. If you haven't already done so, log in to your workstation as guest 
and try out the commands. You can then use the commands you learn to move 
around the entire file system. 

22 Using UNIX 



Finding out your 
path name 

Changing your current 
working directory 

To find out where you are in the UNIX file system, type: 

pwd 

ami your current working directory will be displayed on your screen (pwd is 
short for print working directory - although it displays the information on your 
screen rather than printing it on paper, it is still a useful mnemonic). 

For example, if you log in as guest and at the normal shell prompt type 
pwd, your location in the fil e system would be shown as: 

/usr/users/guest 

which is the home directory of guest. This command is also useful when you 
lose track of where you are in the file system, which quite often happens at 
the beginning! 

So as a quick check of where you are in the file system you could type pwd 
followed by the command ls -1 that will show you all the files anJ 
directories that are contained in the directory you are in. 

To change your current working directory, rype: 

cd directoryname 

To use cd (short for change directory), the directoryname must be the name 
of a directory within your current working directory - in other words, a sub­
directory one level below where you are at that time. To jump any further 
across the file system requires you to use pathnames. 

For example, to move to the directory witticisms, you could simply type: 

cd witticisms 

your new current working directory would then be displayed as, 
/usr/users/guest/witticisms. However to move back up the directory 
tree and into the directory editing-files you would have to rype: 

cd /usr/users/guest/editing-files 

The example /usr/users/guest/editing- files is a full or absolute 
pathname, because it will get you to the directory editing-files wherever 

1 you are in the directory structure. 

Using UNIX 23 



Getting back to your 
home directory 

Abbreviating your CWO 
path name 

Substituting your 
parent directory 
path name 

When you specify a pathname beginning with the 'I' character you are telling 
the system to start searching for the new path from the top of the directory 
tree. So as long as you type the name of the directories in the pathname 
correctly and these directories exist, the system will always find the new 
directory. 

Wherever you are in the directory structure, you can get back to your home 
directory by typing: 

cd 

Your home directory will become your current working directory. This is a 
useful command to have at your fingertips, when you want to return quickly to 
your home directory. 

For example, if you are in the directory editing-files and you type cd, 
you are returned to your home directory, namely /usr /users/guest. 

To save typing, you can abbreviate the pathname of your current working 
directory (CWD) to a '.' character. This can save a lot of typing when, for 
example, you want to copy a file from a directory in another part of the file 
system into your current working directory. 

For example, the command cp (short for copy) could be used as follows: 

cp / usr/ users / guest / witticisms / wilde . 

The above command would copy the file wi lde from your directory called 
witticisms to your current working directory. For more information on the 
cp command, see the later section Copying files. 

Another useful substitution is two full slops ' .. ', to signify the pathname of 
the parent directory of your currenl working directory. The parent directory is 
the one above your current working directory. In other words, if you are in the 
directory /usr/users/guest/witticisms your parent directory would 
be /usr /users/guest. 

For example, if your 
/usr/users/guest/witlicisms 
be used as follows: 

mv allen .. 

24 

current working directory was 
the mv command {short for move), could 

Using UND 



Creating and 
manipulating files and 
directories 

Creating and naming 
files 

Thi~ would move the file allen from the current working directory 
(/usr/users/guesL/witticisms) to the p<lrent directory, 
/usr/users/guest. 

For more information on the mv command, see the later :;ection Renaming and 
moving files. 

You can also use this abbreviation to switch to other directories - for 
ex<~mple, to make the parent directory the current working directory, type: 

cd .. 

This command would now make /usr/users/guest the current working 
directory. 

From the same position in the file system, the command: 

cd .. / .. 

would now make /usr /users the current working directory. 

The above pathnamcs are referred to as relative pathnamcs because they 
move you around the file system relative to your current position in the file 
system. 

Although these abbreviations are useful, keep in mind that you can always usc 
an absolute pathnamc in place of a relative one. This ensures that you arc 
copying and moving files to the right place. 

The following section introduces the commands used to create and then 
manipulate files and directories: 

• creating and naming files and directories 

• displaying and listing (i!es and directories 

• renaming and moving files and directories 

• copying files and directories 

• removing files and directories. 

The simplest way to create a new file is by using rhc command cat (short for 

catenate). Type: 

cat > filename 

Using UNIX 25 



where filename is the name you wish to give to the file you are creating. 
Having decided what you want to call your new file, if you want to put some 
text into it, just carry on typing, remembering to type .J at the end of each line 
of text. 

When you have completed entering the text, press: 

<CTRL-D> 

on a line by itself. This indicates to UNIX that the file should end here. The 
file is now created. 

If you list the contents of your directory using the command ls, you can 
confirm that the file has been created. 

You can call a file almost anything you want, but avoid using any of the 
following characters in the name - these characters have special meanings to 
the shell: 

\><!&?$[]*()#!"'%-"(} ; @ 

Also, don't put spaces or 'I' in the middle of filenames, or start filenames 
with a'.' (this indicates a hidden file). 

You should also not attempt to call the file, 
this have special meanings to the shell. 

or as again, files called 

You will discover all about the uses of these special characters and hidden 
files in the next chapter, Using the UNIX shell. 

To avoid any potential confusion, filenames should be composed only of the 
following set of characters: 

0-9 a-z A- Z . - + 

The use of '- ' as the first character of a filename clashes with its universal 
use as the flag character for program arguments, and is therefore strongly 
discouraged. Also do not start filenames with a'+'. 

26 Using UNIX 



Creating and naming 
directories 

Displaying files 

You can create a new directory to keep your files in, with the command 
mk d i r ( shortfor make director)'). Type: 

mkdir directoryname 

This creates a new sub-directory, called di rectoryname, within your current 
working directory. 

Note that the conventions already discussed for naming files apply equally to 

nC~ming directories. 

T o display an ordinary text file using cat, type: 

cat filename 

The file will be typed up on the screen. If it is a long file, it will scroll too 
fa~t for you to read. Press <CTRL-S> to stop it scrolling, and <CTRL- Q> to 

restart. 

To display the file one screenful at a time, which is much easier to read, type 
the command: 

more filename 

The first page of the file will be displayed. If there is more information in 
the file, press the space bar to display subsequent pages, until you reach the 
end of the file. 

If you want to quit from more before you reach the end of the file, type q at 
the --more-- prompt. To read the list of other options available with more, 

type h. 

Be careful not to try and display the contents of directories, since directories 
contain unprintable characters. If you try to display a directory using the 
command more you will get the error message: 

*** directoryname : directory *** 

If you try to display a directory using the command cat you will receive 
garbled output. 

The file system diagram at the start of this chapter distinguishes directorie:. 
by placing them in boxes, so do not try to cat or more any of these. 

Using UNIX 27 



Listing files 

Renaming and moving 
files 

To display a list of the files and directories you have created, type: 

ls 

The files and directories will be printed out on the screen in lexicographic 
order. To produce a longer listing of the files and directories, type: 

ls -1 

For more infonnation about the output produced from this command, refer to 
the section Protecting your files later on in this chapter. 

To list out the files and directories contained within a particular directory, 
type: 

ls directoryname 

The files and directories in the specified directory will be listed out. 

One of the idiosyncracies of UNIX is the dual purpose of some of its basic 
commands. For example, the command mv can be used to rename files and 
also to move files to another directory in the file system. 

To change the name of a file using mv, type: 

mv oldfilename newfilename 

This command renames oldfilename as newfilename. The 
oldfilename disappears, but its contents live on as newfilename. 

Where two files already exist, you can use this command to replace one file 
by another file. For example, the command: 

mv sun moon 

would replace the ex1stmg file called moon by the file sun. This effectively 
deletes the file called moon, and you won't be able to get it back, so be 
careful how you use this command. 

If you want to place a number of files into a directory - in order to tidy up 
the structure of your file system, for example - first create a directory using 
mkdi r (see the previous section, Creating arul naming directories). Then, either 
move the files one at a time into the directory, using the mv command. 

28 Using UNIX 



Renaming and moving 
directories 

Copying files 

For example: 

mv filename directoryname 

or to save yourself some time, use the mv command to move the files all at 
once, by typing: 

mv filenamel filename2 filename] directoryname 

See also the section Copying a file into a directory, later on in this chapter. 

The mv command works for directories just as it does for files. To move or 
rename a directory, type: 

mv directoryl directory2 

If the directory directory2 does not already exist, then the existing 
directory, directoryl, is renamed as directory2. 

If directory2 is 
of directoryl 
effectively moved 
directory2. 

For example: 

the name of a directory which already exists, the contents 
(including all its files and sub-directories) will be 
into directory2, and become a sub-directory of 

mv planets solarsys 

moves the directory planets into the directory solarsys (providing it 
exists). planets thus becomes a sub-directory of solarsys. 

Be careful when using this command. For example, if you try renaming a 
directory as a filename that already exists, then the directory is renamed but 
the file is deleted. 

To make a copy of a file, type: 

cp filenamel filename2 

where filenamel is the name of the file to be copied, and filename2 is 
the name you want to give to the copy you have made. cp doesn't affect the 
contents of the original file at all. 

Using UNIX 29 



Copying a file into a 
directory 

Deleting files 

Removing directories 

Be careful, however, not to give your copy of the file an ex1stmg filename by 
mistake, as the newly-made copy will overwrite the contents of the existing 
file, and delete it. 

To make a copy of a file and place it in another directory, type: 

cp filename directoryname 

The original file you copied will remain where it was and a separate copy of 
the same file with the same name, will appear in the directory specified. 

You can delete files you no longer need, freeing storage space for new work, 
with the command rm (short for remove). Type: 

rm filename 

where f i 1 en a me is the name of the file you want to delete. 

Use the command rmdir (short for remove directory) to remove directories you 
no longer need. They must be empty before you can remove them. 

Type: 

rmdir directoryname 

If the directory is not empty, you will get a message reminding you of this 
and nothing will be removed. You will have to delete all the files that the 
directory contains (see previous section) before you can delete the directory. 

Alternatively, you can delete a directory and all the files and subJirectories 
it contaim, using the command rm - r. 

For example: 

rm -r directoryname 

This command will delete the directory specified, whether or not It contains 
any fib. 

It will also delete all the other files and directories beneath it, regardless of 
whether they arc empty. 

This is obviously a very dangerous command, so should be used with caution, 
otherwise you might delete much more than you wanted to. 

30 Using UNIX 



Miscellaneous 
commands 

Printing files 

If you want the system to check each of your removal commands, use rm with 
the -i option. When this option is specified, you will be asked to confirm 

your deletion. 

For example: 

rm -i filename 

rm: remove filename? 

Answering y to the above prompt removes the file. Answering <lnything else 

stops the file from being removed. 

If you have specified more than one file to be removed, rm moves on and asks 

you about removing the second file. For example: 

rm -i filenamel filename2 

rm: remove filenamel? n 

rm: remove filename2? y 

In this example, only filename2 is removed. 

This section describes a few of the more useful miscellaneous UNIX 
commands, covering: 

• sending files to the printer 

• protecting your files 

• accessing reference documentation. 

Assuming that you have a prinler, you are connected to it, and it is set up and 
working, type the command lpr (short for line printer) with the name of the 

file you want to print. For example: 

lpr filename 

The file will be printed out on your printer. After issuing this command, you 
can examine whether your file has been sent successfully to the printer using 
the command, lpq (short for line printer queue). 

Using UNIX 31 



Removing an entry from 
the printer queue 

At your normal shell prompt, type: 

lpq 

you will receive the following type of infonnation back: 

Rank Owner Job Files Total Size 

active lcarroll 709 

1st l carroll 710 

/tmp/chapter5odocoF438 16238 bytes 

/tmp/reportsoJ438 17834 bytes 

The list displays a summary of the contents of the printer's spooling queue -
The printer can only print one job at a time so the spooling queue acts like an 
in-tray for the printer by holding the files to be printed in a temporary 
spooling area on the disc, until the printer is ready to receive and process the 
file. 

For each job submitted (that is, each time you type lpr), lpq reports the 
user's name, current rank in the queue, the names of files comprising the job, 
the job identifier (a number which may be used for removing a specific job, 
sec below), and the total size of the file in bytes. 

In the above example, user lcarroll has submitted two jobs to the printer. 
The first file (/tmplchapter5odocoF438) is currently being sent to the 
printer and is printing. The second file (I tmp I reports o J 4 3 8) is next in the 
queue and will be sent to the printer as soon as the first file has been printed. 

To remove entries from the printer's spooling queue, use the command lp rm 

(short for line printer remove) followed by the job number of the entry you 
wish to delete. 

This command can only be used to remove jobs that you have placed on the 
queue - ic jobs that arc owned by you. In the previous example, if user 
lear roll wishes to remove the file called ltmplreports 0 J4388 (job 
number 710) from the printer queue, he types: 

lprm 710 

The system removes the specified job from the temporary spool area on the 
disc of the workstation called acorncpd as shown by the following message: 

dfA710acorncpd dequeued 

cfA710acorncpd dequeued 

32 Using UNIX 



Protecting your files 

Self-explanatory messages ~hould be issued if there is no such JOb number, 
the job is not owned by you or the queue is empty. However, UNIX, as you 
will discover, tends to be very terse and will only respond if your command 
has been successful. 

Unfortunately, the commands and procedure~ outlined above can quite easily 
be fraught with problems when you try using them. For more information 
about printing and the problems that can occur, see the RISC iX System 
Administrator's Manual or con~ult your System Administrator. 

The previous chapter introduced you to the concept of protecting your files 
and determining different access permissions for different classes of user. 
This section introduces the command you u~e to protect your files and 
directones and the options avatlable with the command. 

If you own a file, then you Me able to determine who has the right to read 
that file, to make changes to or write to the fi le, and to run or execute the file 
if it is a program. 

Determining existing permissions 

To determine what permb~ions are currently in effect on your files and 
directories, use the 1 s command with the -1 opt ion to specify a long I isting of 
the contents of the directory. For example: 

ls -1 

If you arc in the directory /usr/users/guest/editing-files, the 
above command will display the contents of the directory in a fonu similar to 
the following: 

-rw-r--r-- 1 guest 274 Oct 20 09 : 52 example 

-rw-r--r-- 1 guest 269 Oct 21 10:46 quotes 

The permtssions for the two files are shown on the extreme left of the display. 

The first character, '-' is not relevant to access permissions and is used to 
determine the type of file. The following nine characters represent three 
groups of three characters. 

The first set of three characters refers to your permissions as owner of the 
file, the second set to members of the group to which you belong, if any, and 
the last set refers to the access permissions for all other system users. 

Using UNIX 33 



For example: 

- rwx rwx rwx 

I \ 
user group other 

Within each set of characters, the r, w and x indicate the access permissions 
currently enabled for each of the three groups. 

These permissions are defined as follows: 

• r allows users to read a file or to copy its contents 

• w allows users to write changes into a file 

• x permits users to run an executable file 

• - means that the access permission is not set (so that no access is 
permitted to the file. 

So, for example, the file example has read and write perm1ss1ons set for the 
owner (guest) and only read permission set for group and other members. 

Changing existing permissions 

To change the access permissions, use chmod (short for change mode) according 
to the following format: 

chmod who+/-permission filename 

where who refers to one, or more, of the following: 

• u for user - the owner of the file 

• g for group 

• o for other 

• a as a synonym for all users. 

'+'or'-' is an instruction that grants (+)or denies (-)access permission. 

permission is the authorisation to read, write or execute the file. 

34 Using UNIX 



Accessing reference 
documentation 

For example, to give users in your group read and write access to the file 
example, type: 

chmod q+rw example 

To deny read access to the file example to users not in your group, type: 

chmod o-r example 

To change the file example so that every user on your system has write 

permission to the file, type: 

chmod uqo+w example 

The letter a can be used as a synonym to refer to all users. Therefore, you 

could also type: 

chmod a+w example 

to give write permission to all users of your system. 

Manual pages are the standard form of reference documentation used to 
describe UNIX commands. Each command has its own separate manual page 
detailing how to use it, what the options are, any likely error messages and 
finally, any known hugs. 

A lthough the manual pages are very thorough in describing each command, 
you may find them a little daunting in the amount of detail they contain. 
However, most experienced UNIX users prefer them. As your knowledge of 
UNIX increases you should also begin to use them to find out more about 
your system. 

The Berkeley 4.3 UNIX User's Reference Manual contains all the manual pages 
for the commands intr<xluced so far in this chapter. A selection of these 
manual pages along with the manual pages for commands specific to RlSC iX 
arc contained in the reference section, RISC iX manual pages at the back of this 
guide. 

The manual pages for system administrators are in the Berkeley 4.3 UNIX 
System Manager's Manual. A selection of these manual pages along with the 
manual pages for commands specific to RISC iX are contained in the RISC iX 
System Administrator's Manual. 

Using UNIX 35 



The manual pages more pertinent to programmers are in the Berkeley 4.3 
UNIX Programmer's Reference Manual. 

A set of all the above manual pages is installed on your system in the 
directory, /usr /man - you can read them from your screen using the man 
command (short for manual). At your normal shell prompt, type: 

man commandname 

where commandname is the name of the UNIX command you are interested 
in. After a few moments the manual page describing commandname will be 
displayed on your screen. 

For example, suppose you want some information about the command cat. 
Type: 

man c at 

the manual page for the command cat will be scrolled on to your screen. 

The manual page is headed CAT ( 1) meaning that the command name is cat 
and this is the entry in section 1 of the Berkeley 4.3 UNIX User's Reference 
Manual. Then comes the name of the command again, with a very brief 
explanation of what it does. 

The SYNOPSIS section is important; it tells you the command fonnat for 
using the command. The synopsis for cat is: 

cat [-u) [-n] [-s) [-v ) filename 

showing that tO issue the command you type: 

cat 

along with any of the optional arguments -u, -n, -s, - v followed by the 
name of the file you wish to read. In the synopsis, anything enclosed in square 
brackets is optional and doesn't have to be supplied if you don't want it. Any 
word not enclosed in brackets has to be included on the command line. In the 
above example, this means you have to supply at least one filename. The dots 
mean, in this case, that more than one filename can be entered. 

Thus, a valid command for cat would be: 

c at - n c omedies no tes 

36 Using UNI> 



Accessing online help 

Other information provided in a manual page will be a de~cription of all the 
available options, other manual pages of similar commands you could refer 
lO, likely error messages (DIAGNOSTICS) and any known bugs in the 
command. 

The remainder of this guide will refer to manual pages that you can consult 
for more information about a particular topic or command - ie for further 
deta ils about manual pages, see man(l). This means, the command called 
man which is described in section 1 of the Berkeley 4.3 UNIX User's Reference 
Manual. 

Note that if your system contains the X Window System, you can also usc the 
utility xman(l ), which is a graphics-based manual page browser. For more 
information about the X Window System and Xman, refer to the chapter 
Using the X Window System later on in this guide. 

An on-line system turorial called learn can be used if you want to find out 
more about using UNIX. At your normal shell prompt, type: 

learn 

you will see the following information displayed: 

These are the availabl e courses -

files 

editor 
vi 
more files 
macros 
eqn 
c 

If you want more information about the courses , 

or if you have never used ' learn ' before , 
press RETURN ; otherwise type the name of 
the course you want, followed by RETURN. 

The files and more i iles courses cover some of the information that has 
been discussed in this chapter. The remaining l earn courses will be 
referenced at appropriate locations throughout the rest of this guide. 

Using UNIX 37 



Command summary The following list is a summary of the UNIX commands that have been 
described in this chapter. 

Command 

cat(l ) 

cd (1) 

chmod( l) 

cp (1) 

learn{l ) 

lpq(l) 

lpr (1) 

lprm ( 1) 

ls (1) 

Syntax 

cat filename 

cat > filename 

Use 

Display a file; stop scrolling 
with <CTRL-S>, restart with 
<CTRL-Q>. 

Create a new file called 
filename, end with 
<CTRL-D>. 

cd directoryname Change current working 
directory. 

cd Return to home directory. 
chmod arguments filename Change access permissions on 

files. 
cp filenamel filename2 Copy filenamel to 

filename2. 

cp filename directoryname Copy filename into a 
directory. 

learn Computer aided instruction 
about UNIX. 

lpq Examine the printer's 
spooling queue. 

lpr filename Send the file filename to 
the printer. 

lprm jobnumber Remove jobnumber from 
the printer queue. 

ls List files and directories in 
the current directory. 

ls directoryname List files and directories (for 
that directory). 

man(!) man commandname Display the manual page for 
commandname. 

mkdir(l) mkdir directoryname 

more(!) more filename 

38 

Create a new directory. 
Display the contents of a file 
(see also cat) . 

Using UNIX 



Sources of further 
information 

mv (1) 

pwd(1) 

rmdir(1) 

rm (1) 

mv filenamel filename2 

mv filename directoryname 
mv directoryl directory2 

pwd 

rmdi r directoryname 

rm filename 

Move or rename a file; 
contents (if any) of 
filen ame2 will be 
replaced by filenamel. 
Move a file into a directory. 
Make directoryl a sub­

directory of directory2 
if it exists. If not, rename 
directoryl as 
directory2. 
Display the current working 
d irectory. 
Remove a directory which is 
empty. 
Remove a file . 

For more information about the above commands and the options that can be 
used with them, refer to the relevant manual page for each command. 

Possible error messages that you may receive while using these commands arc 
outlined in the reference section Trouble-shooting, at the back of this guide. 

Using UNIX 39 



40 Using UNI)I 



Using the UNIX shell 

Introduction 

Available shell types 

This chaJner assumes that you have logged in to your system as gues t . 

The UNIX shell has been described so far purely as a command line 
interpreter; that is, as a systems program which reads a command line that you 
type, interprets and executes the command and then returns control back to 
you, prompting for another command or additional input. 

This chapter moves on from the use of the shell in this manner and shows you 
how to use it interactively to improve your efficiency when using the system. 

For example, this chapter describes how you can use the shell to: 

• modify existing shell variables 

• interpret the name of a file or directory you input in an abbreviated way, 
using a set of characters that are special to the shell 

• redirect the flow of input and output 

• write a simple shell program. 

Ultimately, you can customise your whole UNIX environment to suit your 
individual needs and preferences. 

As in the previous chapter, read through the text, trying some of the examples 
and, if you think you understand enough, some examples of your own. The 
only way to become familiar with using the shell is by practice and 
experimentation. 

There are two shells available for use on your system: 

• the standard shell ( sh), sometimes called the Bourne shell after its 
creator - Stephen R. Bourne 

• the C shell (csh), developed by Bill Joy and others at the University of 

California at Berkeley, unfortunately never referred to as the 'Joy shell'. 

Using the UNIX shell 41 



Creating a login shell 

Both shells have many similar attributes when you use them interactively. 
However, their paths begin to diverge quite sharply when used for complex 
shell programming. 

Th is chapter will only deal with simple shell programming, so where 
possible, it will try to describe the use of the shell as suitable for both shell 
types. But where differences occur, the shell deM:ribed will be the Bourne 
shell. 

Why choose the Bourne shell ? Well, most UNIX systems support the Bourne 
shell, so any shell scripts that you write will be portable to other systems. 
Also, the Bourne shell executes faster, uses less memory and is the default 
shell that the system uses to execute programs, unless told otherwise. 

Following login, the shell is called to read and execute command~ typed by 
you. However, if your home directory contains a file named . profile, then 
this file is executed once by the shell before reading any commands that you 
type . 

. prof i 1 e is called a hidden file but is just a normal file that you create that 
contaim commands to set up shell variables or execute commands. 

Files like this are called hidden because they are not seen in normal ls 
listings of directories. 1 s ignores files like these, unless it is used with the 
appropriate option. For example, to view all the hidden files in your home 
directory, type: 

l s -ld .* 

Belowisatypical .profile: 

echo 

echo " Welcome to the Acorn RISC iX workstation " 

42 

echo "" 

echo "Today ' s date and time is :" 

date 

HOME /usr/users/guest 

PATH= : /bin :/usr/bin 

export HOME PATH 

Using the UNIX shell 



In csh, the comparable file is called .login, and is also executed 
following log in. A typical . login file is similar in syntax to the . profile 
file. For example: 

echo 

echo "Welcome to the Acorn RISC iX workstation" 

echo 

echo " Today's date and time is: " 

date 

set home=/usr/users/guest 

set path=( :/bin: /usr/bin) 

The settings of the shell variables shown in both example login shells, are 
described below: 

HOME 

PATH 

Is the default directory that is used when the cd command 
is issued with no arguments. 

Is the search path that is followed when the shell tries to 
execute a command you have requested. The above path 
setting specifies the following search path. Firstly: 

the current directory, then 

/bin bin sub-directory of '/'directory, and 

/usr/bin bin sub-directory of /usr. 

For example, when you issue the 1 s command, your 
system looks in the directories specified by PATH. The 
first directory it looks in is /bin where ls lives - so the 
program is run to carry out the command. 

The export command used in the Bourne shell ensures that the values you 
have assigned for each of the variables (HOME and PATH) are propagated to 
the commands and processes that you execute. The C shell takes care of this 
with the set command in the .login fil e. 

Using the UNIX shell 43 



Metacharacters and 
their use 

You can also use your login shell 
characteristics of your keyboard, and 
should be delivered. 

to define, amongst other things, the 
to specify where your electronic mail 

There are also several other hidden files that may reside in your home 
directory, or that can be created by you, to describe other software 
applications on your system. 

These hidden files normally begin with a dot so that they do not show up in a 
normal ' ls' listing and end in 'rc'. For example, you can create a hidden file 
to describe the features of an X Window System window manager called 
uwm. The appropriate hidden file is called . uwmrc. 

In short, hidden files can be used to tailor an application on your system to 
suit your individual preferences. 

The hidden files for the applications available on your system, will be 
introduced in the appropriate chapters of this guide. 

Perhaps one of the simplest and yet most powerful uses of the shell is the use 
of metacharacters. These are special characters that the shell understands 
and that you can use to save yourself typing when you are using the system. A 
list of the most useful shell metacharacters and their meaning is shown below: 

* 

[ ... ] 

& 

44 

match any sequence of characters including an empty 
sequence. 

match any single character. 

match any of the characters enclosed by the square 
brackets. A pair of characters separated by a minus sign 
will match any character between the pair. 

The metacharacters above are sometimes called wildcards 
as they are commonly used as shortcuts for referring to 
filenames and directory names. 

this metacharacter instructs the shell to run the following 
command in the background - ie not to wait for the 
command to finish befor.e returning control back to you, 
allowing you to carry on working. 

Using the UNIX shell 



Generating filenames 

allows you to type more than one command on a line. 

\ ignore the meaning of the following metacharacter. 

Examples of the use of these metacharacters Me provided in the next few 
secrion:,. 

Filename generation is the term used to describe the process of referring to 
groups of files using shell metacharacters. For example, the following files 
appear in the directory /usr/users/guest/metacharacter-usage: 

chinglO ching9 section3.doc synopsis3 

chingll info-ching synopsis-final synopsis4 

ching7 sectionl . doc synopsis! 

ching8 section2 .doc synopsis2 

This section will show you how you can use metacharacters to refer to groups 
of the ::~hove files. If you arc unfamiliar with using metacharacters, log in as 
guest and change directory to metacharacter-usage (using the cd 
command), and try the examples out on your syMem. 

To list the file sect ion 1 . doc you would type: 

1s -1 sectionl.doc 

which would print information about the the file sect ion 1 . doc. However, if 
you also wanted to list out the other two files, section2. doc and 
sect ion3 . doc, you could type: 

1s -1 sectionl.doc section2.doc section3.doc 

To save time, you could usc the shell metacharacter '*', which will match any 
sequence of characters including an empty sequence. For example, all the 
above fib end in '.doc'. So, to list all the files in the directory that end in 
'.doc', you could type: 

1s -1 *.doc 

This generates, as arguments to the command 1 s , all filenames in the current 
directory that end in '.doc '. The shell searches through the directory looking 
for every file that matches the pattern that you have specified in other 
words, looking for every filename chat ends in'. doc'. 

Using the UNIX shell 45 



The other metacharacters are used in a similar way to refer to different file 
patterns. 

For example, to list out the files synopsisl, synopsis2, synopsis3 and 
synopsis4, type: 

1s -1 synopsis? 

The metacharacter '?', matches any single character in a filename. So the 
pattern the shell looks for in this case is every filename beginning synopsis 
and ending in any one single character. Therefore, the file synopsis­
final, although starting with the correct pattern, is not listed because it has 
more than one character after synopsis. 

The '?' metacharacter can also be used more than once. For example, to list 
the files ch i ngl 0 and chingll, but not ching7, ching8 or ch i ng9, type: 

1s -1 ching?? 

You can also specify a range of characters to search for within a filename, 
using the metacharacters ' [ ... ) '. For example, to list the files ching7 and 
ching8 but not ching9, chingl 0 and chingll, you could type: 

1s -1 ching[7-8] 

This command sets the shell searching for filenames beginning with ching 
followed by a single character within the range 7 to 8. Therefore, it matches 
the files ching7 and ching8. 

The metacharacters can also be used in combination when you need to specify 
a file pattern that needs to use the attributes of more than one metacharacter. 
For example, to list out the files synopsis2, synopsis3, synopsis4 and 
ching7 and ching8, you could type: 

1s -1 *[2-8] 

This matches any filename with any number of characters ending with a 
number from 2 to 8. 

46 Using the UNIX shell 



The usc of metacharacters has so far only been described in conjunction with 
the command ls. However, you can also use these metacharacters with other 
UNIX commands. For example, to move all the files related to ching to a 
directory called info-ching, use the mv command in the following format: 

mv ch* info-ching 

This moves the files th<n match the pattern 'ch*' into the directory info­
ching. Therefore, the files ching7, ching8, ching9, chinglO and 
chingll , in our example directory, are moved into the directory info­
ching. 

You can also use the rm command with metacharacters to remove a set of 
files. But take care when using the command in this way: more files could 
easily be removed than intended. One way to reduce the chance of error is 
first to list out the files that match the pattern and then remove them. For 
example: 

ls -1 syn* 

which lists out all the files beginning with syn including synopsis- final, 
synopsis! , synopsis2, synopsis3 and synopsis4. If you are satisfied 
that these are the files you want to remove, just type: 

rm syn* 

taking care not to introduce a space between syn and *, otherwise the shell 
interprets the command as 'remove the file syn followed by all the files in 
the current directory'. This is a common mistake, even amongst experienced 
UNIX users. 

To be even more cautious, use the rm command, with the -i option set. This 
asks you whether you wish to delete the files specified. For example: 

rm - i syn* 

rm : remove synopsis-final? y 

rm : remove synopsis!? y 

r m: remove synopsis2? y 

rm : remove synopsis3 ? y 

rm : remove synopsis4? y 

Using the UNIX shell 47 



Running commands in 
the background 

You can now be assured that you have only deleted the files that you wanted 
to. This is a good habit to get into when you start deleting files as it is very 
easy to delete files accidently. 

To execute a command, the shell normally creates a new process and waits 
for it to finish before returning control back to you. However, you can add the 
metacharacter ' & ' alongside the command to instruct the shell to run the 
command, but not to wait for the command to finish before returning control 
back to you. 

For example, to compile a C program in the background, use the command cc 
(short for C compiler) as follows: 

cc filename & 

2436 

calls the C compiler (cc ), to compile the file filename. The trailing & 

instructs the shell not to wait for the command to finish. 2 4 3 6 is the process id 
number that the command is given by the kernel. 

After displaying the process id number, the normal shell prompt returns and 
you can usually carry on with another task, while the command is running 
silently in the background. However, if an error occurs during the compilation 
you may receive an error message on your screen. 

You can have more than one process running in the background. At your 
normal shell prompt, just type each command, with the ' & ' metacharacter 
appended. 

As your experience in using the various tools of UNIX grows, you will find 
that some of the commands you use will take a while to execute, so this 
command is very useful as it allows you to continue using the system. 

To find out how many processes you have running at any one time, usc the ps 
command (short for process status) with no arguments: 

ps 

This displays a list of background jobs running on your system. 

48 Using the UNIX shel 



Running commands in 
sequence 

Quoting metacharacters 

For example, if you arc compiling the c program filename in the 
background, there would be an entry in the output from ps confirming it was 
running: 

PID TT STAT TIME COMMAND 

602 co s 0 : 00 cc filename 

For more information about the ps command and the output it generates, 
refer tO the manual page ps (l ). 

The metacharacter •; • allows you to type a number of commands on a ~ingle 

command line. The format for placing commands on a single line ts: 

commanda ; commandb ; commandc 

The shell executes the commands in the order they were typed. Therefore, 
commanda is executed first, followed by commandb and finally, commandc . 

Executing commands in sequence like this is useful when you want to type in a 

series of quick commands without having to press .J after each command. For 
example, an often-used combination of commands is to change directory, using 
cd and then list the contents of the new directory, using ls. This can all be 
placed on one line as follows: 

cd /bin ; ls -1 

To he able to quote a mctacharacter so that its special meanmg is ignored by 
the shell, the metacharacter must be preceded by a'\'. 

For example, echo is a UNIX command that displays its arguments on the 
screen. A simple example would be: 

echo hello there 

hello there 

This may not at first seem like a useful command, but as you use UNIX more, 
you will begin to appreciate its applications - for exnmple, outputting 
diagnostic information to the screen when running shell programs. For more 
information about the echo command, refer to the manual page echo(l). 

Using the UNIX shell 49 



To use echo to display the metacharacter ' & ',you would have to type: 

e c ho \& 

Note, that if you type the character without a 1
\' , the shell interprets your 

instruction to run the command in the background. The command is read as 
echo with no arguments. 

By prefixing 1 
& ' with the metacharacter '\ ', the first '\' is skipped so that the 

command is read as, echo the character ' & '. The metacharacter is said to be 
quoted and loses its special meaning to the shell. 

Another example: 

echo \ \ 

will echo a single '\'. 

To allow long strings to be continued over more than one line, a ' \' followed 
by .J is ignored. This is sometimes called a hidden newline. 

The '\' is convenient for quoting single characters. When more than one 
character needs quoting you can enclose the string between single quotes. For 
example: 

e c ho x.x ' ?& ' x.x 

will echo: 

xx?&xx 

Note that the quoted string may not contain a single quote. This method of 
quoting using single quotes is the simplest and is recommended for casual use. 

You may think that this section is rather labouring the point about quoting 
metacharacters - but be warned, if you intend to use the shell for 
programming purposes, it is vital that you grasp this idea. It will save you a 
lot of time in the long run. 

50 Using the UNIX shell 



Redirecting Input and 
output 

Redirecting output 

One of the most important and powerful tools available when you are using 
the shell is the ability it gives you to redirect the input and output of 
commands and programs. 

The shell has certain defaults set for where it expects to find the input for a 
command (called standard input) and where it puts the output from a 
command (called standard output). For example: 

STANDARD 

INPUT 
COMMAND 

STANDARD If I~ 
OUTPUT ~ ~ ~ 
~~. 

In the default case a command expects to receive its input from the keyboard 
(standard input), and to send its output to your screen (standard output). 

However, using a few shell metacharacters you can redirect each of these 
inputs and outputs. 

To direct the standard output into a file for further manipulation, editing or 
printing, use the character'>'. 

For example, to redirect the standard output from an ls command (the 
information produced on your screen when you issue the command) you could 
type: 

ls - 1 > filename 

The above command is interpreted by the shell and the output from the 1 s 
command is redirected to the file filename instead of to your screen. 

Using the UNIX shell 51 



For example: 

STANDARD 

INPUT 
1s -1 

> 

STANDARD 

OUTPUT 

If the file filename does not exist then the shell creates it; otherwise the 
original contents of filename are replaced with the output from ls. 

If you want to append the output to the end of an existing file, you can use the 
notation'>>', instead of'>'. For example: 

ls -1 >> filename 

For example: 

STANDARD 

INPUT 
1s -1 

Again, f i 1 en a me is created if it does not already exist. 

52 

>> 

STANDARD 

OUTPUT 

Using the UNIX shel' 



Redirecting input 

This is an immensely useful feature of the shell that you can use with many 
UNIX commands. For example, there is a UNIX command called spell, 

that checks the spelling of the words in a given file and sends all the 
incorrectly spelled words it finds to the standard output. 

If you have a very large, poorly edited file, it would be nice to be able to 
direct all your misspellings to a file that you could then read at your leisure. 
This can be done easily. For example: 

spell -b filenamel > filename2 

The above command runs the spelling checker program, spell on the file 
filename], with the -b option set to specify British as opposed to American 
spelling. The offending words produced are sent to the file filename2 
instead of to your screen. Therefore, make sure that you do not use the same 
file name for redirecting your output to, otherwise you lose the original text 
file. 

Instead of entering information from your keyboard all the time, you can 
redirect the text of a file to be the input for a command. For example: 

mail username < filename 

accepts input from the file f i 1 ename instead of from the keyboard. 

mail is a UNIX command that you use to send mail to someone. The 
command expects one argument with the name of the user to whom you are 
sending mail. After typing this, press .J and type in the mail message from 
your keyboard and terminate it with <CTRL-D>. 

The trouble is that once you have started typing the message, there is no easy 
way of editing the message you are sending. 

A nice way around this is to first create a file using your favourite text editor, 
containing the message you want to send. Then at your normal shell prompt, 
type: 

mail username < filename 

The '<' character causes mail to read the message text from the file 
filename, instead offrom your keyboard. 

Using the UNIX shell 53 



Using pipes 

For example: 

STANDARD 

OUTPUT 

< 

STANDARD 

INPUT 

One of the most important and useful features of the UNIX operating system 
is the ability it gives you to redirect the standard output of one command to 
be the standard input of another, using the pipe operator '1' (represented by a 
broken vertical bar on your keyboard). For example: 

more allen I we 

Two commands connected in this way constitute a pipeline. The file listing 
output from the more command is sent to be used as the input for the 
command we (short for word count) that counts the number of lines, words and 
characters. For example: 

54 

STANDARD 

OUTPUT 

more allen 

STANDARD 

INPUT 

we 

STANDARD 

OUTPUT 

Using the UNIX shell 



The overall effect is almost the same as: 

more allen >file; we <file rm file 

except that no interim file is used. Instead the two processes arc connected by 
a pipe that is created by an operating system call. we waits when there is 
nothing to read and more waits when the pipe is full. 

The pipe is particularly useful if you want to direct the output of a command 
to the printer. For example, to print the manual page for the command we, 
you could type: 

man we I lpr 

which would send the formatted manual page straight to the printer instead of 
to your screen. 

Pipes are very useful for creating your own t::~i l ored commands out of two or 
more existing UNIX commands. For example, you could use we and ls to 

count the number of files in a directory. For example: 

ls directoryname I we -1 

Using we with the -1 option instructs we to count only the number of lines in 
the standard input. As 1 s lists each file on a single line when used with a 
pipe, this would display the number of files in that directory. 

If you want to send output both to your screen and to a file you can use the 
tee command. For example, to display the number of files in the directory 
and also send this result to a file, you could type: 

l s directoryname I we - 1 I tee file- count 

The above command displays the number of files in the directory and creates 
the file file-count that also contains this information. 

Using the UNIX shell 55 



Using filters 

Programming in the 
shell 

Creating your own 
commands 

Many UNIX commands act in a similar way to we, by reading their standard 
input if no filename is given, then modifying or using the information in some 
way and then writing the result to the standard output. 

When a command is used in this way it is known as a filter. One such filter, 
grep, selects from its input those lines that contain some specified string. For 
example: 

1s -1 I grep ching 

prints those lines, if any, of the standard output from 1 s -1 that contain the 
string ching. 

Another useful filter is sort. For example: 

who I sort 

The who command displays a list of all the people that are using your 
machine. (Don't be surprised to find other users as well as yourself logged in, 
if your system is on a network. Remember, because UNIX is a multi-user 
operating system, there may be other people accessing your machine from 
another workstation.) 

The output from who is then sent to sort which arranges the list of users 
logged in into alphabetical order and outputs the result to your screen. 

As well as being a command line interpreter, the shell is also a powerful 
programming language. This section describes how to use the shell to write a 
simple program. 

You have already seen how to use the shell to concatenate commands so that 
each command is executed sequentially on one command line. 

You can also include such commands in a file and then use the shell to read 
this file and execute the commands in it. 

For example, the sequence of commands: 

cd /bin ; ls - 1 

which changes directory to /bin and then displays a long listing of the 
contents of that directory, can be placed in a fi le. 

56 Using the UNIX shell 



For example: 

cat > dirlist 

cd /bin ; ls -1 

<CTRL-D> 

You can then use the shell to execute the commands contained in the file, 
di r 1 is t. As the file contains shell commandl>, it is known as a shell program 
or more commonly, a shell script that can be invoked by the shell using the 
sh command. For example, to execute the shell script di r1 ist, type: 

sh dirlist 

This instructs the shell to take its input from the file dir1ist, instead of 
from your keyboard. The sh command invokes a shell and the two commands 
are executed as if they had been typed on 1 he command line. 

Nmice however, that after the command finishes you arc still in the same 
directory where you issued the command . This is because your original shell 
has invoked a secondary shell to exccute the shell script, dir1ist. When the 
shell has finished executing the command, you return to the original shell. 

This notion of running multiple shells is an important concept in RISC iX. 
Shells can be invoked from within other shells which themselves can also 
invoke other shells. 

To make dirlist appear like a fully blown RISC iX command similar to 

cat or pwd, you need to make the file executable by changing the access 
permissions on the file using chmod. By makmg the file executable, you are 
telling the shell that it contains commands thm can be executed directly by 
the shell. 

For example: 

chmod u+x dirlist 

gives execute permissions to the fil e dir 1 is t for the owner of the file. 

Following this, the command: 

dirlist 

Using the UNIX shell 57 



is equivalent to: 

sh dir1ist 

You have now created your first RISC iX command. 

You could improve your shell script to change to and list out the contents of 
any directory on your system. This can be done by introducing a substitutable 
parameter in your shell script. 

For example, using your favourite editor, substitute the directory /bin by $1 

in dirlist. Your new file should now read: 

cd $1 ; 1s -1 

$1 is a substitutable parameter that tells the shell to substitute it by the first 
argument it finds. 

For example, if you type: 

dir1ist /tmp 

the shell replaces $1 by the argument I tmp, so that the contents of the 
directory /tmp are listed. In effect, the shell executes the command: 

cd /tmp ; 1s - 1 

For more information about using the shell for programming, refer to the 
manual pages for sh(l) and csh(l ). 

58 Using the UNIX shell 



Command summary 

Features of the shell 

The following list summarises the features of the shell that have been 
discussed in this chapter along with a list of the new commands that have been 
introduced: 

Shell operator 

* 

[ ... ) 

$1 

& 

\ 

I I 

> 

>> 

< 

Meaning 

Match any character, including none. 

Match any single character. 

Match any of the set or range of characters enclosed by 
the square brackets. 

Substitute by first argument found 

Run a command in the background. 

Command. separator. 

Quote the next character. 

Quote a string. 

Redirect output. 

Append output. 

Redirect input. 

Pipe - redirect standard output to standard input. 

Using the UNIX shell 59 



Command summary Command Syntax 

cc(J) cc filename 

ps(l) ps 

echo( 1) echo arguments 

spell(l) spell filename 

mail(!) mail username 

we (1) we 

tee( I) I tee filename 

grep(l) grep pattern 

who(!) who 

sh(l) sh filename 

sort{l) sort 

60 

Use 

Call the C compiler to 
compile filename. 

Print information about the 

processes running. 

Echo arguments. 

Check the :;pelling of the 
contents of filename. 

Send mail to username . 

Count lines, words and 
characters. 

Redirect stan<..l<trd output to 
a file as well ns to the 
screen. 

Search for pattern. 

Display list of logged in 
users. 

Execute the file filename 
as a shell script. 

Arrange the contents of the 
standard input. 

Using the UNIX shel 



Sources of further 
information 

Where to go from 
here? 

For more information about the use of the shell for quoting, use of 
metacharacters, redirecting input and output and simple programming, refer 
to the following sources: 

• An Introduction to the UNIX Shell by S. R. Bourne in the Berkeley 4.3 UNIX 
User's Supplementary Doettments. 

• An Introduction to the C shell by William Joy in the Berkeley 4.3 UNIX 
User's Supplementary Documents. 

• sh(l) and csh(l) manual pages. 

For more information about the commands described in this chapter and the 
options that can be used with them, refer to the relevant manual page for each 
command. 

Possible error messages that you may receive while using these commands are 
outlined in the reference section, Trouble-shooting, at the back of this guide. 

Well, now that you arc familiar with the basics of the UNIX file system and 
some of the attributes of the shell, you can begin to explore a few of the 
interactive programs on the system. 

Some of the most frequently used interactive programs are those that allow 
you to exchange and transfer information to other users. The capabilities of 
your system for these tasks is explained in the chapter entitled Communicating 
with other systems and users. 

Another widespread set of programs arc text editors. The editors available 
on your system are detailed in the next chapter. 

Later chapters are devoted to describing using your workstation on a network, 
communicating with other users, using the X Window System and finally, a 
chapter detailing the more advanced uses of UN IX. Take your pick! 

Using the UNIX shell 61 



62 Using the UNIX shel ~ 



Text editing 

Introduction You will need to become familiar with at least one RISC iX editor for 
writing programs, creating large files etc. There are many editors available 
for use on your workstation, this chapter describes two of them - ed, a line 
editor, and vi (pronounced vee-eye), a screen-based interactive editor. 

It is your choice which of these two editors you usc. The main considerations 
are availability, and ease of usc. 

You will find that ed is available on almost any other UNIX system, 
whereas vi, although widely available, is less common. If you are going to 
usc many different UNIX systems, it is therefore a good idea to learn ed. 

Be warned that although both editors arc widely used amongst the UNIX 
community, neither was designed with the first time user in mind, so many of 
the commands may appear slightly esoteric <1nd cumbersome. Of the two, 
most people find vi easier to usc, as it is a screen-based editor and therefore 
closer in character to other editors they may be f<1miliar with. 

The first half of this chapter Je:;cribcs e d, and the second half describes vi. 

(Quick references to most of the commands available are given, and also 
included in the reference section Command summaries, at the back of this 
guide.) 

A final section contains sources of further information for each editor and 
lists the other editors that arc provided with your system. 

Text editing 63 



Introduction to ed In an attempt to simplify ed, its description is split up into two distinct 
halves. The first half describes sufficient ed commands to enable a first time 
user to get started. The second half describes the more advanced features of 
the editor. Each half ends with a summary of the commands described in the 
previous sections. 

Creating files using ed To create a file using ed: 

Entering ed 

Appending text 

• entered 

• append text 

• save the text 

• leave ed. 

Each of the above steps will be described in this section and you will be 
shown how to create an example file. Try creating this file on your own 
system as you read through the section. The file has some deliberate mistakes 
in it, which will be used later on in this chapter for you to try out some of the 
more advanced features of ed. 

Alternatively, if you do not trust your typing skills, log in to your system as 
guest and in the directory /usr/users/guest/editing- files you 
will find the example file used, called example. 

At the normal command line prompt, type: 

ed 

Although nothing appears to happen, you have entered ed. Unlike the shell, 
ed does not have a prompt, but it is waiting for you to input a command. 

ed can also be invoked with an existing file that you wish to edit. At the 
normal command line prompt, type: 

ed filename 

where filename is the name of the file that you wish to edit. 

To create the example file, type: 

a 

64 Text editing using ec. 



The a is a command to ed, telling it to append (or add on) any text that 
follows. 

You can enter as many lines of text as you like. If you make a mistake while 
typing, use the <DEL> key to erase the text. Press .J at the end of each line of 

text you enter. To create a blank line press .J twice. 

When you have finished entering the text, add a final line that contains just a 
full stop. This tells ed that you have finished, and it is then ready for another 
command. 

f ed 
a 
'Twas brillif, andsss teh slithy ssstoves 
Did gyre and gimble in the wabe; 
All malmsy were the borogoves, 
And teh mome raths sssoutgrabe. 

"Beware the Jabberwock, my son! 
The jaws that bite, the claws that catch! 
Beware teh jubjub bird, and shun 
The frumious Bandersnatch!" 

I 

Text editing using ed 65 



Saving the text 

Leaving ed 

To save the example text to a file, type w followed by an appropriate 

filename and then press .J. The text that you typed in will automatically be 
written to this file. The number of characters written is displayed on the next 
line. 

If you are editing an ex1stmg filename already given on the command line, 
you need not specify the filename when you save the file; ed knows which file 
it is and updates it for you. 

To leave ed type q and then press .J. This will take you out of ed and back to 
your normal command line prompt. 

If ed 
a 
'Twas brillif, andsss teh slithy ssstoves 
Did gyre and gimble in the wabe; 
All malmsy were the borogoves, 
And teh mome raths sssoutgrabe. 

"Beware the Jabberwock, my son! 
The jaws that bite, the claws that catch! 
Beware teh jubjub bird, and shun 
The frumious Bandersnatch! " 
w example 
274 
q 
.. 
I 

If you try to leave ed without having saved the changes made to the file, a '?' 

will be displayed to warn you. If you forgot to save the file, use the w 

66 Text editing using ed 



Commands and error 
messages 

Looking at a file 

Selected lines 

command before trying again to quit. If you do not want to save the file, use 
the q command a second time to leave ed. 

Before you edit the example file you just made, you ought to know a little 

about giving commands, and how ed tells you about errorl>. 

Because ed does not have a prompt it is very easy to forget whether you are 
giving ed commands or entering text. If you arc ever giving commands and 
nothing seems to be happening, try typing a full stop on a line of its own. This 
makes sure that ed is ready for a command, and is a useful get-out. 

All commands must be on a line of their own, and you must press .J after 
each one. 

If you give ed an incorrect command, or it could not do what you asked it to, it 
tells you by displaying a '?' . This is the only error message that ed gives, 
and it is left up to you to work out why ed gave the message. 

Load the example file you just saved by cntt:ring cd and using thee command: 

e 

e example 

The file example is copied into a buffer, so that you are not changing the file 

itself. The number of characters in the buffer appears on the screen, but none 
of the buffer itself. Before you can do anything else, you need to be able to 

sec the text. The ed command you need to use is: 

p 

Try all the p commands below using the example file. 

The p command prints one or more lines of the text to your screen. You can 
tell ed which lines to start and stop printing: 

1 ,3p - prints lines I to 3 inclusive 

2,4p - prints lines 2 to 4 inclusive 

If you wanted to print all of the example you could type: 

1, 9p - prints lines 1 to 9 inclusive 

Text editing using ed 67 



All lines 

Single lines 

Selected lines - using 
arithmetic 

For a long buffer you arc unlikely to know the number of the last line, and so 
ed uses the character '$' as an abbreviation for this. You can print all of the 

buffer by typing: 

1,$p - prints all of the buffer 

Of course no abbreviation is needed for the start of the buffer - it is always 
line number 1. So you can print the first line of the buffer by typing: 

l,lp - prints line I 

This can be abbreviated to: 

lp - prints line 1 

An even simpler abbreviation is to just type the line number: 

1 - prints line 1 

$ - prints the last line 

You can also use constructs such as: 

$-3,$p - prints the last 4 lines 

There are other ways to use the p command, but first you need to know about 
the current line. 

68 Text editing using ed 



The current line Try the following two commands on the example: 

1,4p 

p 

- prints lines 1 to 4 inclusive 

Jt ed example 
274 
1,4p 
'Twas brillif, andsss teh slithy ssstoves 
Did gyre and gimble in the wabe; 
All malmsy were the borogoves, 
And teh mome raths sssoutgrabe. 
p 

And teh mome raths sssoutgrabe. 

4 
I 

The second command (p) printed the fourth line of the buffer. Because you 
didn't tell ed what line numbers to use, it printed the current line - the last 
line you did something to. ed uses the character . (called 'dot') as a symbol 
for the current line. 

Text editing using ed 69 



Stepping through the 
text 

Editing the buffer 

You can find out the value of dot with the command: 

= 
You can use dot in commands just as you use line numbers. Try these on the 
example; remember that after a print command the value of dot is set to the 
last line printed: 

4 

.-2, . +2p 

= 
. ,$p 

- print line 4, making it the current one 

- print from 2 lines before to 2 lines after the current 
one ( ie lines 2 to 6 inclusive). 

- print the current line number- now line 6 

- print from the current line to the end of the buffer ( ie 
line 6 onwards). 

These two commands are especially useful: 

.+lp - print the next line in the buffer 

.-lp - print the previous line in the buffer 

You can use them to step forwards or backwards through the buffer, printing 
a line at a time. They are such useful commands that they both have 
abbreviations: 

.J - print the next line in the buffer 

-.J - print the previous line in the buffer 

Try these on the example. If ed shows a '?' it means you are trying to go past 
the start or end of the buffer. 

There are a number of ways you can edit the buffer: 

• add new text by appending it before or inserting it after the current line 

• remove text by deleting lines 

• move lines from one part of the buffer to another 

• replace text by substituting one string for another. 

70 Text editing using ed 



Adding text 

Deleting lines 

Moving lines 

Replacing text 

The simplest way of adding text using ed is to use one of the following 

commands: 

a - append text after the current line 

i · insert text before the current line 

These commands can also be used with line numbers: 

3a - append text after line 3 

3i - insert text before line 3 

Remember to type a full stop on a line by itself to finish adding the text. 

You can delete any unwanted lines by typing: 

d - delete the current line, and set dot to the next line 

This command can also be used with line numbers: 

4d 

1 , . d 

.+3, $d 

- delete line 4 

- delete line 1 to the current line inclusive 

- delete from 3 lines after the current one to the end of 
the buffer. 

You can move lines using: 

start line,end line m after this line J 

For example: 

S , Sm$ - move line 5 to after the last line 

1,4m$ - move lines 1 to 4 inclusive to after the last line 

The substitute command is one of the most used and important ed commands. 

Its simplest form is: 

s/this/that/ - changes the first occurrence only of this to that on the 
current line 

Text editing using ed 71 



Trouble-shooting 

So to correct the first mistake in the example you could use these commands: 

1 - make sure line 1 is the current line 

s/if/ig/ - make the change 

p - and display it 

You can use line numbers with s, just like with other commands, so you could 
instead have typed: 

ls/if/ig/ - make the change to line 1 

p - and print it 

You can in fact also combine these two commands - a p can follow almost 
any command. (Note that otherwise ed does not allow multi-command lines.) 
This is so useful with the s command that most of the examples from now on 
will use it: 

ls/if/ig/p - make the change and print it 

If you want to delete text, tell ed to change the text to nothing: 

ls/sss//p - change s s s in line I to nothing, ie delete it 

If you want to change all occurrences in a line rather than just the first one, 
you need to add a g to the end of the command: 

ls/sss//gp - change all occurrences of sss in line I to nothing, ie 
delete them 

There is one very important command that will help you to get out of 
difficulty or to avoid complete catastrophe! 

u - undo the last change made 

If you delete something from a line or a number of lines or even the whole 
file and then change your mind, you can recover the previous situation by 
typing u . Typing u a second time reverses the effect of the 'undo'. 

72 Text editing using el 



An exercise Use what you have learned already to correct and add to the text. Your 
finished text should read as follows when you use 1, $p to print it all to the 
screen: 

1,$p 
'Twas brillig, and the slithy toves 
Did gyre and gimble in the wabe; 
All mimsy were the borogoves, 
And the mome raths outgrabe. 

"Beware the Jabberwock, my son! 
The jaws that bite, the claws that catch! 
Beware the Jubjub bird, and shun 
The frumious Bandersnatch!" 

He took his vorpal sword in hand: 
Long time the manxome foe he sought­
So rested he by the Tumtum tree, 
And stood awhile in thought. 

- Lewis Carroll 
Through the Looking Glass 

I 

Text editing using ed 73 



Basic command 
summary 

Context searches 

The following commands are sufficient to get started with ed: 

Command Use 

i 

a 

d 
p 

.J 

rn 
s 
w filename 

q 
u 

insert text before the current line 
append text after the current line 
finish adding text 
delete the current line 
print the current line 

print the next line 
print the previous line 
move lines 
substitute text on the current line 
write out the changes to filename 

quit. A second q bypasses checking 
undo the last change made 

Sometimes you may know which part of the text you want to edit, but not the 
line it is on. You can replace line numbers in any command by a context 
search: 

/the/p - prints the first line after the current one that contains 
'the' 

just as 2p .J could be abbreviated to 2 .J, so the above can be abbreviated to: 

/the / - prints the first line after the current one that contains 
'the' 

If your context search did not find the occurrence of the that you were 
looking for, you'll probably have to repeat the search. It's a nuisance having to 
type the whole command again, but you can shorten it to: 

II - repeat the last context search 

Context searches are often most useful with the substitute command. For 
instance, to correct malmsy in our example, you could type: 

/ rnalrns y /s/rnalrnsy/ rnirnsy/p 

- changes the next malmsy to mimsy 

74 Text editing using ed 



Backward searches 

This means: find malmsy starting from the next line, change malmsy to 

mimsy, and print the result. Again we can save a bit of typing and not repeat 

malmsy: 

/malmsy/s//mimsy/p 

- changes the next malmsy to mimsy 

This means: find malmsy starting from the next line, change what you found 
to mimsy, and print the result. Just as above, the I I refers to rhe last context 

search. 

Note that we have now seen two different uses for I I - this command shows 
them both: 

/sss/s///p 

- delete the next s s s 

The first two I I of the group of three slashes immediately after the last s is 
telling ed what to replace, and so refers to sss, the last context search; the 

pair of I I immediately before the p tells ed what to replace it with, and so 
represents nothing. Make sure you understand this difference. 

When a context search is specified, ed starts looking from the line after the 
current one to the end of the buffer, then move~ up to the start of the buffer 
and searches up to the current line. This wrap-around effect ensures that the 
whole of the file is searched through irrespective of where you arc in the 
buffer. 

You can change the direction of any context search by using? inMead of I : 

?malmsy?s??mimsy?p 

- on the first line it finds that contains malmsy, changes 

the first occurrence of rna lmsy to mimsy 

In the above example, the whole buffer is searched through, but in the 
opposite direction. 

Text editing using ed 75 



Making global changes Sometimes you want to make the same changes or corrections throughout a 
file. You can do this with the commands you have already learnt: 

l,$sl teh I the lp 

- change the first teh in each line to the 

l,$sl teh I the lgp 

- g specifies to change all tehs in each line to t he 

Note the spaces before and after the, which ensure that a whole word is 
found and not just three letters contained within a longer word. 

In fact, these commands only print the last line that was changed - the value 
of dot when the command finished. The g modifier is easier to use and can 
print all the changes it makes. If you put a g at the start of a line, the 
command will be repeated over all of the file. So this command that changes 
one line: 

I teh lsll the lgp 

- find the next line containing teh, and change all tehs 
to the 

could become this one, which changes all lines: 

gl teh lsll the lgp 

- find all lines containing t eh, and change all tehs to 
the 

This is the most commonly used form of the global g modifier: 

gl theselsll thoselgp 

This can be shortened to: 

gsl thesel thoselgp 

76 Text editing using ed 



Special characters 

The character 11 

The character $ 

You can also use the g modifier with other commands such as d (delete). For 
example: 

g/ something/d 

- delete all lines containing something 

If you've been trying the above commands you may have found that they don't 
always work as you expect. This is because some characters have a special 
meaning toed when you are telling it what to search for. They are: 

" $ . [ * & \ 

This section provides a summary of the special characters. 

The character'"' stands for the start of a line, so: 

/Astart of a line/ 

finds: 

start of a line ... 

but not: 

This is the start of a line. 

Likewise: 

s/Ahello/Hello/p 

- changes he 11 o to He 11 o, if it is at the start of a line 

Similarly, the character'$' stands for the end of a line, so: 

/end of a line$/ 

finds: 

look for the end of a line 

but not: 

The end of a line is 

Text editing using ed 77 



The character . 

The character [ 

The character • 

Likewise: 

s/hello$/Hello/p 

- change hello to Hel lo if it is at the end of a line 

The character' . ' stands for any character, so: 

/m.h/ 

finds: 

mjh, m3h, m%h or mAh 

but not: 

mh, mash, m32h or m# * %h 

The character [ is used for a similar purpose. It introduces a character class 

which matches any single character in the class. The class is ended by the 
character'] ': 

/[0123456789]/ 

finds the next digit. 

You can shorten a character class if the characters follow each other in the 
alphabet, so: 

/ [0-9]/ 

also finds the next digit. 

s/[a- z]/!/qp 

changes all lower case letters on the current line to ! 

The character '*' means 'the greatest pol>l>iblc number of the previous 
character'. This includes zero, something that you could find confusing: 

/mj*h/ 

finds: 

mh, mjh,mjjh, mjjjh, mjjjjh,e~. 

78 Text editing using ed 



The character & 

The character \ 

If instead you want there to be at least one of the character, you can tell ed to 
find the character, then to fintl any number more: 

/mjj*h/ 

This no longer finds mh, bur still finds mjh, mj jh, mj j jh, mj j j jh, etc. 

The character '&' is used on the right side of an s (substitute) command to 
stantl for the text that was matched: 

s/ .*/ (&)/p 

finds all of a line (. * is any number of any character) and puts brackets 
around it. 

It can be u!>cd more than once: 

s/on and/& & & on ... /p 

changes on and to on and on and on and on ... 

Finally, the '\' character can be used to remove the special meaning from a 
character: 

s/\A\.\&/caret dot ampersand/p 

changes " . & to caret dot ampe rsand. 

Remember that the backslash itself is a special character: 

s/\\/j/p 

changes \ to #. 

You can usefully combine the special characters: 

g fA[0- 9]*/s///gp 

- tlelcte all digits from the start of every line 

g/A$/d - delete all blank lines 

Text editing using ed 79 



ed command summary The following list of ed commands have been covered in this chapter. This list 
is also included in the reference section, Command summaries, at the back of 
this guide. 

Command 

i 

a 

d 

p 

.J 

m 

s 
/pattern/ 

?pattern? 

II 
?? 
g 
e fil ename 

w f il ename 

q 
u 

80 

Use 

insert text before the current line 

append text after the current line 
finish adding text 

delete the current line 
print the current line 

print the next line 
print the previous line 
move lines 
substitute text on the current line 
search forwards for pattern 

search backwards for patt e r n 

repeat a context search in the forward direction 
repeat a context search in the backward direction 
global modifier- make a command affect all lines 
edit filename 

write out the changes to fil e name 

quit. A second q bypasses checking 
undo the last change made 

Text editing using ed 



Introduction to vi 

Creating files using vi 

In an attempt to simplify vi, its description is split up into two distinct 
halves. The first half descrihes sufficient vi commands to enable a first time 
user to get started. The second half is devoted to describing the more 
advanced features of the editor. Each half ends with a summary of the 
commands described in the previous sections. 

To create a file using vi : 

• Enter vi 

• insert text 

• save the text 

• leave vi . 

Each of the above steps will be described in this section and you will be 
shown how to create an example file. Try creating this file on your own 
system as you read through the section - the file created will be useful later 
on in this chapter for you to try out some of the more advanced features of vi. 

Alternatively, if you do not trust your typing skills, log in to your system as 
guest and in the directory /usr/users/guesl/editing-files you 
will find the example file used, called quo tes. 

Text editing using vi 81 



Entering vi At the normal command line prompt, type: 

vi 

After a short delay, vi erases the current screen display and creates its own 
interactive screen. The cursor is on the top line and marks the current position. 

The'-' signs represent non-existent lines. 

I 

vi can also be invoked with an existing text file that you wish to edit. At the 
normal command line prompt, type: 

vi filename 

where filename is the name of the file that you wish to edit. 

82 Text editing using vi 



Inserting text To insert text, type i followed by the text you want to enter. i is an 
instruction that stands for insert and will not show up on your screen. It puts 
v i into insert mode and allows you to enter text - as shown in the diagram 
below. 

You can enter as many lines of text as you like. If you make a mistake while 
typing, use the <DEL> key to erase the text. Press .J at the end of each line 

of text you enter. To create a blank line press .J twice. 

"Oh! Pardon me, thou bleeding piece of earth, 
That I am meek and gentle with these grocers" 

" There is a tilde in the affairs of men 
Which, taken at flood, leads on to fortune; " 

"Cowards die many times before their deaths; 
The valiant never taste ol 

When you have finished entering the text, press <ESC>. This takes vi out of 
insert mode and back to its original mode, known as command mode. Pressing 
<ESC> always puts vi into command mode and is a useful get-out command 

Text editing using vi 83 



Saving the text 

to remember if you ever make a mistake or get confused as to which mode you 
are in. 

To save text to a file, with vi in command mode, type a colon ( : ) - this puts 
vi into colon mode. Type w <SPACE> followed by an appropriate filename 
and then press .J. 

The text on your screen will be automatically written to this file. The 
filename you have specified will appear at the bottom of the screen along 
with information about the size of the file. 

For example, in the diagram below, a new file called quotes has been 
created; it is 9 lines long and contains 269 ASCll characters. 

"Oh! Pardon me, thou bleeding piece of earth, 
That I am meek and gentle with these grocers" 

"There is a tilde in the affairs of men 
Which, taken at flood, leads on to fortune; " 

"Cowards die many times before their deaths; 
The valiant never taste of garlic but once" 
I 

"quotes" [New file) 9 lines, 269 characters 

84 Text editing using v 



Leaving vi To leave vi, type : to enter colon mode followed by q for quit. This will 
take you out of v i and back to your normal command line prompt. 

If you try to leave v i without having saved the changes made to the file, you 
will receive a warning message. 

As indicated by the message below, to leave vi without saving the file, type 
q! (abbreviation for quit ! ). If you forgot to save the file, type : to return to 
command mode, save the file by typing w followed by .J and then leave vi. 

"Oh! Pardon me, thou bleeding piece of earth, 
That I am meek and gentle with these grocers" 

"There is a tilde in the affairs of men 
Which, taken at flood, leads on to fortune;" 

"Cowards die many times before their deaths; 
The valiant never taste of garlic but once" 
I 

No write since last change (:quit! overr i des) 

Text editing using vi 85 



Moving around within 
a file 

Character to character 

Word to word 

To edit a file of text, you need to be able to locate a particular position in the 
text and then make some change. v i has several commands that enable you to 

move throughout a file - from character to character, word to word, line to 
line and by screenfuls of text. 

vi has four commands, one for each direction, that enables you to move to any 
single character in a file: 

h - move left or ·west by one character on the screen 

j - move downwards or south by one line on the screen 

k - move upwards or north by one line on the screen 

1 - move right or east by one character on the screen. 

The keys are grouped together on the keyboard to facilitate their use for 
moving the cursor around, although they are hopelessly non-mnemonic! 

Two more useful commands for moving from character to character are: 

$ - move to the last character on the current line 

0 - (zero) move to the first character on the current line. 

A quicker way to move along a line than by character to character, is by 
jumping from word to word. There are various commands available to do this: 

w - move forward to the beginning of the next word 

b - move back to the beginning of the previous word 

e - move forward to the end of the current word. 

w, b, and e will stop at punctuation in the text, so they may not always take 
you to your desired location. The capital letter versions W, B and E treat any 
non-blank character as part of the word and so override punctuation. 

All of the above commands may be prefixed with a number to move any 
number of words at a time. For example, Sw moves forwards five words from 
the current position. 

86 Text editing using vi 



Line to line 

Screenfuls 

v i also has commands to take you to specific lines on the screen: 

H - move to the Home or top line on the screen 

M - move to the Middle line on the screen 

L - move to the Last line on the screen. 

H and L can also be prefixed with a number to give you a greater range of 

labelled lines. For example, 3H will take you to the third line on the screen. 
3L will take you to the third line from the bottom of the screen. 

A count with the M command is meaningless and has the ~arne effect as M by 
itself. 

The basic idea of vi is that what you see on the screen is p;ut of a buffer that 
contains the file to be edited. The screen acts as a window to this buffer. 
Therefore, you need a set of scrolling and paging commands that give you 
window control and allow you to move through the buffer when you arc 
editing large files that cannot be contained on one screen. 

The ~crolling commands are: 

<CTRL-D> -scroll Down by half a screenful 

<CTRL-U> -scroll Up by half a screenful. 

The paging commands arc: 

<CTRL-F> -page Forward by a screenful 

<CTRL-B> -page Backward by a screenful. 

Thankfully these commands are more pertinent to the functions they perform 
and therefore easier to remember. Scrolling is usually preferable to paging 
since it is a slightly smoother movement and leaves more context from the 
previous window. 

When the end of the buffer is reached, vi will display non-existent lines as 
a '-'. Two more useful commands for window control are: 

<CTRL-E> - to Expose one more line at the bottom of the screen, ie scroll 

down one line. 

Text editing using vi 87 



Editing a file 

Adding text 

<CTRL-Y> - to Yank another line onto the top of the screen, ie scroll up 
one line. 

There are a number of ways you can edit a file: 

• add new text by appending it after or inserting it before the current cursor 
position or the current line 

• replace text by substituting one string for another 

• remove text by deleting all or part of an object 

• move text from one part of a file to another. 

The simplest way of adding text using v i is to use one of the following 
commands: 

a - append text after the current cursor position 

i - insert text before the current cursor position 

o - open a gap in the file to append text after the current line. 

These commands can be capitalised to give them slightly different meanings: 

A - Append text at the end of the current line 

I - Insert text at the beginning of the current line 

0 -Open a gap in the file to insert text before the current line. 

All of the above commands are accessed with v i in command mode; while 
using them you are in insert mode. For each command you exit from insert 
mode by pressing <ESC>, when you have finished making the changes. 

88 Text editing using v 



The example below shows how the o command is used, starting with v i in 
command mode and the cursor positioned at the top of the file. 

"Oh! Pardon me, thou bleeding piece of eart;-J 
That I am meek and gentle with these grocers" 
- Antony; Julius Caesar III- I 

"There is a tilde in the affairs of men 
Which, taken at flood, leads on to fortune;" 

"Cowards die many times before their deaths; 
The valiant never taste of garlic but once" 

:"quotes " [New file) 9 lines, 269 characters 

The sequence of instructions used were: 

• move to the end of the line ending grocers " by typing $ 

• type o followed by the text- Antony; Julius Caesar III-i 

• press <ESC> to exit from insert mode 

• type : to put vi into colon mode, followed by w .J to save the changes. 

Text editing using vi 89 



Replacing text 

Use the same sequence of commands to add the l>peaker and title of the play 
to the other two quotes: 

• - Brutus ; Julius Caesar IV-iii 

• - Caesar; Julius Caesar II-ii 

There arc three basic commands that allow you to change or replace text in a 
file: 

s to substitute a string of characters for the character under the cursor 

c w to change a word 

cc- to change an entire line. 

Just as with the adding text commands, you access these commands with vi in 
command mode; while using them you are in insert mode. For each command 
you exit from insert mode by pressing <ESC> when you have finished making 
the changes. 

To substitute a string of characters for the character under the cursor, position 
the cursor on the character you wish to replace and type s. vi will go into 
insert mode and identify the letter up to which the text will be changed, by 
replacing it with a $ sign. 

90 Text editing using vi 



The example below shows how the s command is used, starting with vi in 
command mode and the cursor positioned at the top of the file. 

"Oh! Pardon me, thou bleeding piece of earth, 
That I am meek and gentle with these grocers" 
- Antony; Julius Caesar III-i 

"There is a tilde in the affairs of men 
Which, taken at thel flood , leads on to fortune ;" 
- Brutus ; Julius Caesar IV-iii 

"Cowards die many times before their deaths; 
The valiant never taste of garlic but once" 
- Caesar; Julius Caesar II-ii 

:"quotes" 12 lines , 364 characters 
L _____ -------- --

The sequence of instructions used were: 

• position the cursor over the letter t 

• type s followed by the text, t the 

• press <ESC> to exit from insert mode 

• type : to put vi into colon mode, followed by w .J to save the changes. 

Text editing using vi 91 



The cw command works in the same way, except the substitution symbol 
appears on the last character of the word you are changing. The word is 
changed from the cursor position onwards, so if you issue the c w command in 
the middle of a word the first part of the word remains unchanged. For 
example: 

~
Oh! Pardon me, thou bleeding piece of earth, 
hat I am meek and gentle with these bul cer$" 

Antony ; Julius Caesar III-i 

"There is a tilde in the affairs of men 
Which, taken at the flood , leads on to fortune; " 
- Brutus; Julius Caesar !V-iii 

"Cowards die many times before their deaths; 
The valiant never taste of garlic but once" 
- Caesar; Julius Caesar !I-ii 

:"quotes" 12 lines, 364 characters 
L 

The cc command is similar ro s and cw. To use the command, pos1t10n the 
cursor anywhere on the line you wish to alter and type cc. The line will 
disappear and you can then type the new line, terminated by <ESC>. 

92 Text editing using vi 



Deleting text 

Moving text 

Use the replace commands just discussed to change: 

• til de to tide in the second quote 

• garlic to death in the third quote. 

Text may be deleted u~ing various commands. In contrast to adding and 
replacing text commands, text is deleted with vi m command mode. 

The basic commands used are: 

x - to delete the current character 

dw - to delete the current word 

dd - to delete the current line. 

To use the commands, just position the cursor over the letter, word or line that 
you wish lO delete and type the appropriate command. 

All the above commands can be prefixed with a number to give you a 
repetition count. For example, 4 x will delete four characters, ~tarrmg with the 
current character. 

Text may be moved from nne place to another using a delete command 
followed by the p command: 

p - puts back the deleted text after the current cursor position or current 
line, if you deleted a whole line. 

P - Pub hack the deleted text before the current cursor position or current 
line, if you deleted a whole line. 

Again, this command is used with vi in command mode. The delete command 
saves the deleted text in a buffer and allows you to take as many copies of it 
as you like. 

Text editing using vi 93 



The example below shows how to use the p command. 

"Cowards die many times before their deaths; 
The valiant never taste of death but once" 
- Caesar; Julius Caesar II-ii 

"Oh! Pardon me, thou bleeding piece of earth, 
That I am meek and gentle with these butchers" 
- Antony; Julius Caesar III-i 

"There is a tide in the affairs of men 
Which, taken at the flood, leads on to fortune;" 
- Brutus; Julius Caesar IV-iii 

:"quotes" 12 lines, 364 characters 

The sequence of instructions used to make the last quote the first quote, were: 

• with vi in command mode, move the cursor to the beginning of the line 
commencing, "Cowards die ... 

• type 3dd and then B to return the cursor to the top line 

• type P. The three lines you just deleted should appear at the top of the file. 

94 Text editing using vi 



Trouble-shooting 

Instead of deleting and moving the text, you can make a copy of the text and 
move it. The Y command will yank (copy) the current line into a buffer. You 
can then use the p command in the ~arne way as hefore w copy the text to 

another part of the file. For more information regarding the use of buffers in 
vi see the later section entitled Editing u.smg mulriple fn1f[ers. 

There are two vel) tmportant commands that will help you to get our of 
difficulty or to avoid complete catastrophe! 

u - undo the last change made 

U - Undo the last set of changes made m the current line. 

Both commands arc issued with vi in command mode. So if you delete 

something from a line or a numher of lines or even the whole file and then 
change your mind, you can recover the previous situation by typing u. Typing u 
twice in a row undoes the last u. 

The u command lets you reverse only a single change. However, if you have 
really made a mess of editing the current line after a number of commands, 
and have not moved the cursor off the line, you can recover the line in its 
original state by using the U command. 

Text editing using vi 95 



Basic command 
summary 

The following commands are sufficient to get started with vi : 

Command 

h 

j 

k 

1 

<CTRL- D> 

<CTRL-U> 
<CTRL-F> 
<CTRL-8> 

i 

0 

X 

dd 
y 

p 

:w filename 

:q 
u 

96 

Use 

move left by one character on the screen 
move down by one line on the screen 
move up by one line on the screen 
move right by one character on the screen 
scroll down by half a screenful 
scroll up by half a screenful 
page forward by a screenful 
page backward by a screenful 
insert text before the current cursor position 
open file to append text after the current line 
delete the current character 
delete the current line 
yank lines into a buffer 
put back the deleted text after the current cursor position 
write out the changes to filename 

quit. : q! bypasses checking 
undothelastchangeJnade 

Text editing using" 



More advanced 
features 

Locating high-level 
objects 

Location by context 

The requests described so far can be learned with just a few sessions on your 
system. The second half of this chapter introduces a few more advanced 
ediling concepts plus some short cuts for the more experienced user. 

The positioning commands described earlier, can be used to locate any 
character in a file. However, v i has extra commands that allow you to locate 
more complex, high-level objects such as a sentence or paragraph. For 
example: 

) - move the cursor to the end of the current sentence 

( - move the cursor to the start of the current sentence 

move the cursor m the end of the current paragraph 

{ - move the cursor to the start of the current paragraph. 

A sentence is defined as an object that ends with a dot (. ), exclamation mark 
(!) or question mark (?) followed by newline or two spaces. A paragraph is 

defined as beginning and ending with a blank line. 

The commands are used with vi in command mode and can also be prefixed 
with a number to instn1ct the cursor to move by that number of sentences or 
paragraphs. 

It is also possible to search for a particular word or string of text by 
specifying a string pattern. With vi in command mode, type: 

I 

The cursor will jump to the bottom of the screen. You can then type in the 
string pattern you are searching for, followed by .J. Following this, the cursor 
will move forwards through the file searching for the specified string. 

There is also a command to instruct vi to search backwards for a string 
pattern. Again, with v i in command mode, type: 

? 

The cursor will jump to the bottom of the screen. You can then type in the 
string pattern you are searching for followed by .J. The cursor will then move 
backwards through the file searching for the specified string pattern. 

Text editing using vi 97 



Repeating the last 
command 

Joining two lines 

Splitting a line 

When a context search is specified, vi stans looking from the line after the 
current one to the end of the file, then moves up to the start of the file and 
searches up to the current line. This wrap-around effect ensures that the whole 
of the file is searched through irrespective of where you are in the file. 

In hoth cases, if the string cannot be found, an error messagl' will be issued to 
state that no such string pattern can be found. 

Once a ~tring pattern is found, the command n can be used to repeat the 

context search in either direction: 

n repeats a context search in the same direction 

N repeats a context search in the oppositl' direction. 

The above commands can he used continuou~ly to find all occurrences of the 
string pattern in the file. 

The lnst text change that you entered, with vi in command mode, can he 
repeated hy pressing'.'. 

Thts ts very handy when used with a search command. For example, suppose 
you are editing a file that contains references to 'great Bntam' instead of 
'Great Britain' but also contains instances of the word 'great'. 

One wny you could correct this problem is search for 'great'. The first time 
you found 'great' in great Britain, you would change the 'g' to 'G' using '-'. The 
next occurrence you found, you could simply press the '.' key and vi would 
repeat the last editing command you made, te change the 'g' to 'G'. Whenever 
you find 'great' on its own, just type n to search for the next tmtance of the 

word. 

Any two continuous lines in a file can be joined together using the J 

command. To use the command, with vi in command mode, place the cursor 
anywhere on the current lme and press J . The line helow the current line 
will he JOined on to the end of the current line. 

Not icc that vi automatically places a space he tween the last word on the fir~t 

line and the first word on the second line. 

To split a line, put vi into insert mode at the point in the line where you want 

to ~plit the text and pre:.!~ .J. The remaining text will jump to a new ltne. 

98 Text editing using vt 



Editing using multiple 
buffers 

Numerical buffers 

Alphabetical buffers 

In earlier sections you were introduced to the concept of using a buffer in v i 

to move or yank text from one part of a file to another. This buffer is a 
hidden buffer that vi ul>eS to preserve the last text object deleted, changed or 

yanked - and you cannot reference it directly. However, v i does have two 
sets of buffers that can be referenced: 

Nine numerical buffers ( 1-9) are used to store the last mne deleted blocks 
of text. However, note that in order to be stored in this way, the block must be 
at least one complete line (so that when you delete it, the file has fewer lines 
of text). When a new block is deleted, it is stored in buffer I after the 
contents of each existing buffer are moved to the next highest numbered 
buffer. Any text previously stored in buffer 9 is discarded. 

26 alphabetical buffers (a-z) can be referenced directly in a delete or yank 
command. Unlike the numerical buffers, the contents of the alphabetical 
buffers are not lost when you change files, so they are ideal for moving text 
from one file to another. 

With vi in command mode, the contents of buffer 1 (ie the last bit of text 

that you deleted) can be examined by the command: 

"lP 

The " notifies vi that you are about to quote the name of a buffer and P 

places its contents before the current line. The remaining buffers can be 
examined in a similar way. When searching through these buffers looking for 
a particular section of deleted text, be careful to use u (the undo command) 
rather than just redcleting the unwanted text as this will then be put in a new 
buffer and you may lose the previous deletion you were looking for. 

The command Y which you met in an earlier section, will yank the current line 

into the unnamed buffer. However, if preceded by a buffer name, for 
example t, the command " tY will place the current line into buffer t. 

You can subsequently refer to this buffer and include it anywhere in the file 
using the command " t p to put the text after the cursor, or " t P to put the text 
above the cursor. If you have deleted a whole line, then the command "tp 
puts the text after the current line and " t P puts the text before the current 

line. 

Text editing using vi 99 



The line editor 

Making global changes 

Remember, you can also give Y a count of lines to yank and thus duplicate 
several lines. These lines can then be transferred to another part of the same 
file. 

Alternatively, you can read in a new file and transfer the contents of the 
buffer to this file. With vi in command mode, type: 

: e filename 

The new file called filename will be read in, yet the contents of the 
alphabetic buffers will be saved. So you can use the p or P commands to 

place text in this new file. 

If you wish to append text to these buffers without destroying their current 
contents, you can do so using the same command format as previously 
described but instead capitalising the alphabetic name of the buffers, A-Z. 

For example, to add two more lines to buffer t with vi in command mode, 
type: 

"T2Y 

The two lines following the current cursor position are added to buffer t. 

Just like ed, vi also has some line editing capabilities. The line editor 
associated with vi is called ex. The commands that ex provides are very 
similar to those used by ed, and you will find that this helps you if you wish 
to learn both vi and ed. 

ex is invoked from within vi by typing a colon, ie putting vi into colon mode. 
A few commands have already been described with vi in colon mode so you 
should already be familiar with some ex commands. For example, w to save 

a file, q to quit vi etc. 

There are many other commands in the ex editor that can be called from vi. 

Some of the commands will be discussed here but for a complete description 
of ex, refer to the Ex Reference Manual - Version 3.7 by William Joy and 
Mark Horton in the Berkeley 4.3 UNIX User's Sup/Jlementary Documents. 

One of the most powerful commands in ex is the global command. It is also 
one of the most dangerous, so it is advisable to practise with this command on 
a test file before doing any serious editing with it. 

100 Text editing using vi 



The command format for making global changes from ex is: 

g/pattern/ command-list 

A simple example should explain the fundamentals of this command. 

Suppose you have typed in several pages of text about Shakespearian 
tragedies but have misspclt 'tragedies' as 'tragedys': 

• The first action is to scan the file to find every line that matches the 
pattern. Then command- 1 is t is executed for each such line. Thus the 
command, 

:g/tragedys 

instructs ex to do a global search for the first instance of the characters 
'tragedy s' on each line in the file. 

• The wmmand-list is as follows: 

:s/tragedys/tragedies/ 

This is the substitute command that will change the first occurrence of 
'tragedys' in the current line with 'tragedies'. To change every 
occurrence of'tragedys', add a gat the end: 

: s/tragedys/tragedies/g .J 

• The complete command to substitute ' tragedies' for every instance of 
' tragedys' is therefore: 

:g/tragedys/s/tragedys/tragedies/g 

This can be abbreviated to: 

:g/tragedys/s//tragedies/g 

as the substitute command remembers the word 'tragedys' after the 
global command g. 

Text editing using vi 101 



Executing shell 
commands from within 
vi 

Editing multiple files 

There are two ways you can execute a shell command from within v i . 

• You can execute one command only, with vi in command mode by typing: 

: ! cmd 

The shell command cmd will be executed and then you will be instructed 

to press .J to go back to v i. 

• Alternatively, you can temporarily start a new shell, perform some shell 
commands and then retun to vi. Type: 

:sh 

You will receive a normal shell prompt, from which you can perform some 
shell commands (you could even begin to edit another file in vi). 

After you have executed the shell commands, press: 

<CTRL- D> 

or whatever means you use to log out. 

You will then return to the exact line and file you were editing before you 
left v i . 

In vi it is possible to edit a number of files one after the other. At the 
normal command line prompt, type: 

vi file1 fil e 2 

file1 will be displayed for editing. 

When this file has been edited to your satisfaction, type: 

: w 

followed by, 

:n 

From the commands above, the changes to f i 1 e 1 are saved and the next file 
in the list ( fi 1 e2) is read into the buffer. 

102 Text editing using vi 



Setting options 

If the first file is not saved, an error message is printed and no action is taken. 
: n! can be used to override this and move on to the next file in thl' list to he 
edited. 

Also, if you try to quit vi without having edited all the files in the list, vi 
will display a warning message and refuse to quit. However, if you issue the 
command a second time, vi will he persuaded that you are serious and allow 

you to exit. 

vi ha~ a number of option~ for controlling its behavtour. Some of the option~ 
have a value; others are either on or off. 

A list of the most useful options available, together with their ahhreviatiom 
and default values, is given in the following table: 

Name 
autoindent (ai) 

autowrite (aw) 

ignorecase(ic) 
list 

number (nu) 

Default 
noai 

noaw 

noic 
nolist 

nonu 

Description 
Supply program indentation 
automatically. 
Automatic write when : n or ! i~ tssued 

Ignore upper/lower case when searching 
Print tabs as' "" I'; end of lines marked 
with$. 
Display lines prefixed with line 
numbers. 

To list the options which are currently set, with vi in command mode, type: 

:set all 

Ccrtam opttons are set tnitially by default but can be changed to suit your 
own needs. With vi in command mode an option value can he altered by a 
command of the form: 

:set optionname=value 

Other option~ may be turned on or off respectively by commands of the form: 

:set optionname 

:set nooptionname 

Text editing using vi 103 



At any time during an editing session you can get a list of all the options 
which you have changed. With vi in command mode type: 

:set 

set can be abbreviated to se and multiple options can be placed on one line. 

For example: 

:se ai aw nu 

Options set by the set command will only last for as long as you arc in the 
editor. To have some options set up whenever you use the editor, use the shell 
variable EX IN IT. 

For example, suppose you want to give shiftwidth (sw) a value of 15 and set 

the autoindent (a i) option so that you get an automatic indent for your 
programs, ie: 

se sw=15 ai 

How you do this depends on the shell you are using. 

If you are using the Bourne shell, put the following lines in the file 
. profile in your home directory: 

EX I NI T='se sw=l5 ai' 

export EXINIT 

If you are using the C shell, put the following line in the file .login in your 
home directory: 

se t env EXINIT 'se sw=15 ai' 

After you reread your . profile or .login file by logging out and logging 
in again, these commands will then be run every time you start up vi. 

104 Text editing using vi 



Macro commands vi can also map a common sequence of commands ro an unused character on 
the keyboard. For example: 

:map K eas <CTRL-V> <ESC> 

defines K w be equivalent to eas followed by <ESC>, where <CTRL-V> 

escapes the <ESC> character when typing in the above mapping. Otherwise, the 
first <ESC> would return vi to command mode, rather than become pan of 
the map definition. 

Th is means that if the cursor is at the beginning of a word and you type K, the 

word will have an s added to it. 

The followmg characters have no associated meaning in vi and can therefore 
be used as macro commands: 

K V g q v * 

Macro commands can also be set in the shell variable EXINIT and grouped 
together along with the options described in the previous section. For 
example, if you are using the Bourne shell you would put the following in 
your . profile file: 

EXINIT = ' se sw=lS ai I map K eas <CTRL-V> <ESC> ' 

export EXINIT 

and if you are using the C shell you would put the following in your . login 
file: 

setenv EXINIT ' se sw=lS ai I map K eas<CTRL- V> <ESC>' 

Similarly to setting options, after you reread your . profile or .login fi le 
by logging out and logging in again, these commands will then he nm every 
time you start up vi. 

For more information about login shells, see the chapter Using the UNIX shell. 

Text editing using vi 105 



vi command summary The following list of vi commands have been covered in this chapter. This list 
is also included in the reference section Command summaries, at the back of 
this guide. 

Command 
h 

j 

k 

1 

$ 
0 

w 

b 

e 
w 

B 

E 

H 

M 

L 

<CTRL- 0> 
<CTRL-U> 
<CTRL- F> 
<CTRL-B> 
<CTRL-E> 

<CTRL-Y> 
) 

( 

l 
{ 
/pa ttern 
?pattern 
n 

N 

106 

Use 
move left by one character on the screen 
move down by one line on the screen 
move up by one line on the screen 
move right by one character on the screen 
move to the last character on the current line 
move to the first character on the current line 
move forward to the beginning of the next word 
move back to the beginning of the previous word 
move forward to the end of the current word 
move forward to the beginning of the next word, 
ignoring punctuation 
move hack to the beginning of the previous word, 
ignoring punctuation 
move forward to the end of the current word, 
ignoring punctuation 
move to the home or top line on the screen 
move to the middle line on the screen 
move to the last line on the screen 
scroll down by half a screenful 
scroll up by half a screenful 
page forward by a screenful 
page backward by a screenful 
expose one more line at the bottom of the screen 
yank another line onto the top of the screen 
move the cursor to the end of the current sentence 
move the cursor to the start of the current sentence 
move the cursor to the end of the current paragraph 
move the cursor to the start of the current paragraph 
search forwards for pat tern 
search backwards for pattern 
repeat a context search in the same direction 
repeat a context search in the opposite direction 

Text editing using vi 



a 
i 
0 

A 

0 
s 

cw 
cc 
X 

dd 
dw 
y 

p 

p 

u 
u 

J 

append text after the current cursor position 
insert text before the current cursor position 
open a file w append text after the current line 

append text at the end of the current line 
open a file to insert text before the current line 

suhstiture a string of characters for the cursor 
character 
change a word 
change an entire line 
delete the current character 

delete the current line 
delete the current word 
yank lines into a buffer 

put back the deleted text after the current cursor 
position or current line 
put back the deleted text before the current cursor 
position or current line 
undo the last change made 

undo the last set of changes made to the current line 
repeat the laM buffer change command 
join together the current line with the line below 

ex command summary The following list of ex commands have been covered in this chapter. This list 
is also included in the reference section Command summaries, at the back of 
this guide. 

Command 

: w filename 

: q 
: e 

:g 
:s 
: ! cmd 

:sh 
:n 

:set 
:map 

Text editing using vi 

Usc 
write out the changel> to filename 
quit. : q! bypasses checkmg 
edit a new file. : e! bypasses checking 
globally search for a wing 

substitute one Mring for another 
execute the shell command, cmd ami return to vi 
execute a shell 
edit the next file in an argument list. : n! bypasses 

checking 
print or set options 
define a macro command 

107 



Sources of further 
information 

• A Tutorial Introduction w the UNIX Text Editor by Brian W. Kernighan in 
the Berkeley 4.3 UNIX User's Supplementary Documents. 

• Advanced editing on UNIX by Brian W. Kernighan in the Berkeley 4.3 UNIX 
User's Supplernenta1)' Documents. 

• An Introduction to Display Editing with vi by William Joy & Mark Horton in 
the Berkeley 4.3 UNIX User's Supplementa1)' Documents. 

• The Ex Reference Manunl - Version 3.7 by William Joy & Mark Horton in 
the Berkeley 4.3 UNIX User's Supplementary Documents. 

• ed(l), vi(!) and ex(!) manual pages. 

Possible error messages that you may receive while using ed and Vl are 
outlined in the reference section Trouble-shooting, at the back of this guide. 

Other editors provided The following editors may also be available on your system: 

• edi t(l), a simplified line-based editor based on ex - for more 
information, refer to Edit: A Tutorial by Ricki Blau and James Joyce in the 
Berkeley 4.3 UNIX User's Supplementary Documents. 

The utility learn has a useful system tutorial on ed i t (the course called 
editor). 

• uemacs (short for micro - e macs), a cut-down version of emacs, the 
screen-based extensible text editor. uemacs lives in /usr/new/uemacs 
and has a useful online help facility. 

• xedi t, the screen-based interactive editor that runs from the X Window 
System. For information on how to start using xedi t, refer to the chapter 
Using the 'X Window System later on in this guide and also to the manual 
page for xedit(l). 

108 Text editint 



Networking and NFS 

Introduction 

What is a network? 

Types of network 

This chapter is split into two sections. The first section defines some of the 
terms and concepts of networking. The second section describes the networking 
software that is available on your workstation. 

A network is a group of computer:. connected together so that they can 
transmit information between each other. For example, there is a whole host 
of networking commands you can use to transfer files and send messages to 

other users on the network. 

Networks also allow you to share resources. For example, a printer may be 
connected to a workstation on your network. If you wish co use this printer 
from your local workstation, you can use the network to send your file to this 
printer via the remote workstation that is connected to it. 

Note that local refers to the workstation you initially log in to and remote 
refers to other workstations and machines on the network. 

There arc many different types of networks. The two types discussed in this 
chapter are: 

• Local Area Network (LAN) 

• Wide Area Networks (WAN) 

The characteristics of these networks are discussed in the next few sections. 

Networking and NFS 109 



Local area network A local area network usually refers to n number of 
and peripherals connected together within a 
workstation may be connected to other workstation:. 
Econet cable. 

workstations, mainframes 
single premises. Your 
by an ethernet cable or 

Ethernet is the physical cable that atraches m the t:themet port of your 
workstation and provides a high ~peed communication link hetween all the 
ocher machines connected on your network. There ts also a thin wire version of 
cthcmet, called cheapernet. 

Econet is another similar cable that attaches to the econet port of your 
workstation and provides a similar communications link to an cthcrnet cable. 

Whichever cable is used to connect two machines, they also need to use the 
same 'language' to talk to each other, so that you can usc commands to copy 
files etc. In networking this is referred to as a communications protocol. The 
protocols supported by ethernet and Econet on your RISC iX workstation arc 
1 he internet communications protocols. 

This idea of increasingly sophisticated levels of communication can be 
represented as a series of layers. For example: 

·I Applications layer - commands 

I --1f Communications protocol layer - internet LS.T1 
t==x::-3 /~ __ "f ..,_ 

. • ~} ... ELL 
feo::; +;::::;:a :' 

=>= J i:l 
Physical layer - ethernet/cheapernet/Econet 

110 Networking and NFS 



A typical local area network, coulJ be shown as: 

,:J.J .0 1 
// ·rb 

RISC iX workstation workstation1 

internet layer 

laser printer 

workstatlon3 

The machines communicate using the internet 
combination of cthemet, cheapemet and Econet cahlcs. 

Cl. 
ai lli.J) 

_____;:; 

workstation2 

l 

mainframe 
computer 

protocols layer over a 

With a set-up like this, you can use the networking commands on your 
workstation to communicate with, and access information on, every other piece 
of hardware on the network. 

Networking and NFS 111 



Wide area network As well as being connected to a local area network, your workstation can also 
he connected to other machines over longer distances via a Wide Area 
Network. (WAN). In this case, the connection is normally made from the 
serial port of your workstation to a modem and then to the outside world via 
telephone cables. For example: 

Serial port 
f 

RISC iX workstation 

modem 
link 

wide area 
network 

Alternatively, you could have access to hoth types of network hy being 
connected locally, via ethernet, to a large mainframe computer which is also 
connected to a modem: 

112 

r 

RISC iX workstation 

local area 
network 

~ I 

mainframe 
computer 

modem 1 
link 

wide area 
network 

Networking and NF~ 



In thi~ example, the mainframe acts as a gateway between the two networks, 
by being able to transfer the information from one type of net work and 
communication line to another type of network and communication line. 

As with a local area network, the physical link must be ~upported by an 
appropriate communications protocol for the machines to be able ro talk to 

each other. Due to the vanety of machines that use these linh, there is a wide 
variety of protocols. 

To circumvent this problem <1 series of programs exists that support a range of 
communications protocols. One of the most popular of these programs is 
UUCP (UNIX to UNIX copy program) which permits communication between 
all types ()f UNIX systems, typically over serial lines. 

It is likely that your System Administrator ha~ already set up UUCP on your 
workstation to enable you to communicate over wide area networks and local 
area networks as well. For more information about UUCP and the other 
progmms avr~i lable, refer to the next chapter Communicating with other systems 
and users. 

The second part of this chapter describes how co use the software available on 
your workstation for networking in a local ;uer~ network envtronment. It 
assumes that your works tat ion hr~s been installed on a local area network. If it 
has not, skip the rest of this chapter ami move on to the next chapter 
Communicating with other systems and users. 

Networking and NFS 113 



NFS - the Network 
File System 

The industry standard Sun Network File System (NFS) is available on your 
workstation and uses internet protocols along with some other advanced 
communications protocols to provide a facility for sharing files in a local area 
network. 

It allows you to perform many operations over the network without you even 
realising you are doing so. For example, you can access a file on a remote 
workstation and treat it as if it were on your local workstation. 

This is accomplished by mounting a remote file system, or just a particular 
directory of the file system, then reading or writing files in place. In the 
diagram at the start of this chapter you could, for example, access a file on 
workstation2 from your workstation, provided the directory where the file 
resides has been mounted on your workstation. 

RISC iX workstation 

I 

I 
[§n] 

I I 
~~ [&ork2usr I 

I 

I 
I bin] 

workstation2 

I 

I 

I usrl 
> 

I 

I 
ldev l 

In the above diagram, if the directory /usr on workstation2 has been mounted 
on your workstation as /work2usr, then the shaded directory tree for 
/usr /man and /usr /lib on workstation2 would appear below 
/work2usr/man and /work2usr/lib respectively, on your workstation. 
The shaded area 'belongs' to workstation2 but appears to be part of your 
filing system. 

114 Networking and NFS 



You can then refer to the contents of this directory as you would any normal 
directory on your workstation. The fact thm the information resides on the 
hard disc of another workstation on the network is of no consequence. To you 
as a user, there seems to be no difference between reading and writing a file 
contained on your own hard disc and reading or writing a file on a disc 
connected to another workstation. 

So unless you know which directories are mounted on your worbtauon you are 
unaware of any network activity - the network is said to he transparent and 
you have transparent access to the files. 

As NFS makes it so easy to access the resources of any other system on a 
network, it is normal for certain !>ystems to act as central servers that provide 
resources for the other system!> on the network called clients: 

RISC iX workstation 

workstation3 

Networking and NFS 

workstation1 

internet layer 

laser printer 

workstation2 

mainframe 
computer 

115 



On a typical network, a server would be a mainframe computer with a lot of 
disc storage and a large amount of memory. The sample network used in this 
chapter shows a typical set-up. 

One advantage of this client-server relationship is that all the user files can 
be stored on the server, thereby facilitating backups and generally making the 
onerous tasks of system administration that much easier. 

Also, only one copy of a particularly large directory needs to be kept. For 
example, the set of manual pages /usr/man could be kept on the server and 
removed from the clients, thus freeing disc space. 

An addition to NFS, called yellow pages, may also be running on your 
workstation. As it eases even further the duties of the System Administrator, 
this is more than likely to be the case! 

Yellow pages is a distributed, network database contammg key information 
about the characteristics of your network, such as the password file and the 
files describing the machines that can be accessed over the network. The 
database is normally stored and updated on a server machine (called the 
yellow pages master). The remaining machines in the network (yellow pages 
slaves) are then periodically updated with the files from this database. 

The benefits of this set-up are substantial. An application can access data 
served by yellow pages, independent of the relative locations of the client 
and server. The job of the System Administrator is also eased as only one set 
of files needs to be updated, when a change in the profile of the network is 
required. For more information about setting up the yellow pages database on 
your network, refer to the RISC iX System AdministratOr's Manual. 

The task of mounting file systems and directories, creating servers, setting up 
yellow pages on the network is looked after by your System Administrator. 
So before you use your workstation, you should contact your System 
Administrator for a profile of your network, including which workstations you 
have access to and what is mounted on your workstation. 

The rest of this chapter describes the commands you can usc to access 
workstations on your local network whose files are not mounted on your 
workstation. 

116 Networking and NFS 



Setting up your 
network environment 

The following list summarises the networking command::. covered m thi::. 
chapter: 

Command 

rlogin(lC) 

rep( I C) 

rsh(lC) 

I rup(IC) 

rusers(lC) 

I <wall(IC) 

Description 

remote loR in - log in to another works tat ion from your 
workstation. 

remote copy - copy files between two workstatiom. 

remote shell- execute a command on a remote 
workstation. 

remote utnime - find out how much a remote 
works tat ion is being used. 

remote users - find out who the users of a remote 
workswt ion are. 

remote ·write wall- send a message to all the users of 
a remote workstation. 

The ahovc commands are referred to as the Berkeley networking commands. 
They assume that the workstations are UNIX systems running Berkeley 
4.3BSD and arc using internet protocols over a suitable physical layer such as 
ethernet. A summary of the use of the commands is listed at the end of this 
chapter. 

For information on accessing workstations that do not us<.: internet protocols, 
refer to the next chapter, Communicating ·wich ocher systems and users. 

Before using the above commands, you necJ to have certain files and access 
permissions setup on your workstation. 

Some of the above commands require you to be able to log in to at lea::.t two 
workstations on the network (rlogin, rsh and rep). For example, you need 
a login id on your workstation and permission to access the account of another 
user on a remote workstation. Your System Administrator usually ::.cts this up 
for you, so if you arc in any doubt, ask first. 

You can decide which users on which remote workstations have the right to log 
in to your workstation and whet her they should have to gtve a password in 
order to do so or not. In the same way, they can determine whether you should 
be able to log in to their workstations. 

Networking and NFS 1H 



Access without a 
password 

The files that control the Ievell> of access on your network arc the system files 
/E?tc/hosts, /etc/hosts . E?quiv and /etc/passwd and the hidden file 
. rhosts in your home dtrcctory. The fib /etc/hosts, 
/etc/hosts . equiv and /etc/passwd are controlled by your System 
Administrator, so normally the only file that you can alter is the file 
. rhosLs in your home directory. 

You can communicate with the workstations whose names and internet 
addresses (the address used to locate your workstation on the network) arc 
listed m the file /etc/hosts, 'o you should read the contentl> of this file to 

find out which workstations you have permission to log in to. 

In the ftle /etc/hosts, each line contains a number refemng to the internet 
address of the workstation followed by the hostname of the workstation. Any 
other names included alongside the hostname arc tliscrct ionary nicknames 
assigned to each workstation by your System Administrator. 

To find out the name of your workstation, at your normal command prompt 
type: 

hostname 

The name d1splayed is the name by which other users on other workstations 
refer to your workstation. For more mformation, refer to the manual page for 
hostname(l). 

You can let users of specified workstations log in using your user id without 
having to type a password. 

The simplest case is where the two workstations have similar /etc/passwd 
files ( ie all users have the same login name and userid on both workstations). 
anti where the remote workstation name occurs in /etc/hosts . equiv. file 
of your workstation. This is usually :.et up hy your System Admimstrator. 

Havmg logged in to your local workstation, you are allowed to log in to the 
remote workstation (or usc rep or rsh), without having to give a password. 
This is only possible in a very open environment, or one where workstations 
are very secure. 

118 Networking and NFS 



If the workstation you are trying to log in to (via rlogin, rep or rsh) does 
not have your workstation name in its hosts.equiv file, then access i~ 

controlled by the file . rhosts in the home directory of the user you are 
trying to log in as on the remote worbtation. 

If this . rhos t s file contain~ a line wnh your workstation name and user 
name, then access is granted without asking for a pa!>Sword. In the same way 
you can decide who has access to log in as you by entering their usemame and 
workstation name in your . rhosts file in your home directory. 

For example, to add a new trusted user, ie someone you trust not to delete 
all your files, edit your . rhosts file to include the following line: 

workstation [ username ) 

where workstation is the name of the remote workstation used by 
username to log in to your workstation. The nf'!med user will then be able to 
log in to your workstation using your id, from the workstation specified, 
without having to type a password. 

For example, here is a typical . rhost s file, containing two trusted users: 

locke 

acorncpd 

einstein 

newton 

thi~ allows users einstein and newton m log in to your workstation with 
your id, from the remote workstations locke and acorncpd respectively. 

Note that the username argument 1s optional and if omitted, only lets you 
log in from the remote workstation . 

. rhosts is one of many hidden files that you can create in your home 
directory. For more information about other h1dden files, refer to the earlier 
chapter, Using the UNIX shell. 

If neither the .rhosts file nor the /eLc/hosts.equiv file has been set 
up to allow you remote access from your workstation, then you will not be 
able to use rsh or rep commands, since a password is required before you 
can obtain access and these commands never prompt for a password. 

Networking and NFS 119 



Password access to 
your workstation 

Logging in to other 
workstations using 
rlogin 

Possible errors using 
rlogin 

Therefore, you should ensure that your workstation is set up correctly before 
you try using any of the following commands as they are so dependent on 
correct access permissions. 

If the above authentication process fails, then rlogin command will prompt 
you for a password. It is read without echo, just like a normal login procedure. 

With your workstation set up correctly, the remaining sections describe how to 
use the networking commands available. 

This section outlines how to access other workstations from your workstation 
using rlogin. 

To log in to a remote workstation as yourself, using r 1 og in , type: 

rlogin worksta tion 

You may be prompted for a password - if so, type it in. The rest of the login 
procedure is very much the same as normal. When the shell prompt appears, 
it means you are successfully connected to the remote workstation 

work stat i on and you can execute commands and run programs as you 
normally would on your own workstation. 

For example, you could also use the rlogin command again to log in to yet 
another remote workstation from the remote workstation you are already 
connected to. 

If your workstation doesn't recognise the remote workstation you are trying to 
log in to, you may get the message: 

workstation unknown host 

This ml'ly be because: 

• you have made a mistake typing the nflme of the remote workstation - try 
typing the command again. 

• the name and address of the workstation is not listed in your / e t c / hosts 
file see your System Administrator. 

If your workstation doesn't recognise the login id you are using, you will get 
the error message: 

Login incorrect 

120 Networking and NF~ 



Logging in with a 
specified username 

Logging out of a remote 
session 

This means that the workstation does not contain a valid login id for you - see 
your System Administrator. 

For details about other errors, refer to the reference section Trouble-shooting, at 
the back of this guide. 

Where you have a different uscrname on the remote workstation where you 
want to log in, type: 

r1ogin workstation -1 username 

username in this case is the username you usc on the remote workstation. 

Also, if you log in as someone else who has an entry for you in his . rhos t s 
file you can log in as him, again without having to specify a password. 

It is quite possible that a guesl login id has been sel up on each workstation 
on your network by your System Administrator. This is normally not password 
protected and allows users to log in to the spccifieJ workstation, albeit with 
restricted access. For example: 

r1ogin workstation -1 guest 

Your workstation contains a gues t home directory (/usr/users/guest) 
containing sample text files for first-time UNIX users that are used in the 
earlier chapters of this guide. 

log out of a session on a remote worbtation in the normal way, by typing: 

exit 

or whatever means you normally use to log out. 

If you can't log out for some reason (for example, because the workstation 
hangs while you are using it), you can abort the session by typing, at the 
beginning of a new line: 

A tilde (-) appearing as the first character of a I inc is an escape signal and 
directs r login to perform some special action. The dot means 'break the 

connection'. After this commaml, you will be returned to your original 
workstation. 

Networking and NFS 121 



Sending commands to 
remote workstations 

Requesting network 
information using rup 
and rusers 

Possible errors using 
rup and rusers 

If you have used multiple rlogin's to leap-frog from one workstation to 
another, then typing '- .' brings you back to the workstation you first logged in 

to. 

There are several commands you can execute on remote workstations, without 
being logged in to them. These commands enable you to 

• request network infonmmon - using rup and rusers 

• send messages- using rwa ll 

• execute remote commands- using rsh. 

Using rup 

To find out how much a particular workstation 1s being used, type: 

rup workstation 

This command gives a status similar to the local command uptime(!). The 
information for the workstntion will be displayed in the following form: 

workstation up 1 day , 2 .4 5 , load average : 0 . 05, 0 . 00 , 1 . 20 

Using the command rup without specifying a workstation will display the 
status of all the workstations connected to your local network. 

Using rusers 

To find out who the users of a remote workstation are, type: 

rusers workstation 

This command gives a status similar to the local command users (l). If you 
omit workstation, the users of all the workstations on your local network 
will he listed. 

Ae careful when using rup and rusers with no works tat ion specified. If 
any workstation connected to the network has these commands disabled, then 
rhe command will take a long time before it gives up interrogating that 
worksunion. To escape from this predicament, type <CTRL-C>. 

122 Networking and NFS 



Sending messages using 
rwall 

Possible errors using 
rwall 

Executing remote 
commands using rsh 

You can send simple messages to remote workstations with the command 
rwall, by entering them in this fonn: 

rwall workstation 

here is a sample 

message compri s i ng two lines 

<CTRL-D> 

The message will be transmitted to the users of the other workstation, together 
with the time it was sent and who sent it. For example, if you receive the 
following message, it indicates that user einstein sent you a message from 
the workstation locke: 

Broadcast message at 12 .1 5 ... 

broadcast message from locke!einstein: here is a sample 

message comprising two lines 

Like rup and rusers, this command may also be disabled on the remote 
workstation you are directing your message to. If it is, then the message will 
not be received. 

You may also find when you type this command that you get the error 
message: 

rwall : Command not found 

If this is the case, you may need to change your search path - the command 
rwall lives in the directory /usr/etc. To change your search path, refer to 

the earlier chapter Using the UNIX shell. 

You can call up a shell and execute a command from a remote workstation 
using the command rsh . The syntax for this command is: 

rsh workstation command [ arguments 

The rsh command doesn't log you in to the remote workstation - it 
communicates directly with a daemon on the remote workstation, which is a 
process that runs in the background and executes the command on the remote 
workstation. 

Networking and NFS 123 



Copying files using 
rep 

General syntax 

Beware of trying to use shell metacharacters with command, as the shell 

expansion will take place on your local workstation before the remote 
workstation - so metacharacters have to be escaped if they are to be 
interpreted remotely. To be sure, type the command explicitly. 

lf you omit command, instead of executing a single command, rsh tries to log 
you in on the remote workstation as though you had typed rlogin. 

Using rsh enables you to use commands or facilities that are available on a 
remote workstation but not on yours, such as a piece of hardware like a printer. 

However, you must ensure that the right access permissions are set up for you 
to be able to use these facilities. 

rep is used to copy files and directories to and from remote workstations 
running UNIX, for which you have login access. 

You should be aware that there is more than one command you can use to 
copy files over a network. For details of the utilities you can use to copy files 

that do not support internet protocols, sec the next chapter, Communicating with 
other systems aru:l users. 

The general syntax for copying a file from a workstation to another 
workstation, using rep is very similar to the ep command, discussed in the 
chapter Using UNIX. For example 

rep <from> <to> 

where < from> can refer to your local workstation and <to> can refer to a 
remote workstation on the network. ln this case the command is used as 
follows: 

rep sourcefile workstation:destdir 

source file should be the name of the file on your workstation. 

destdi r should be the full pathname of the directory on the remote 
workstation where you want the copy of the file to be put. 

You could also use rep the other way round, where <from> can refer to a 
remote workstation and <to> can refer to your local workstation. 

124 Networking and NFS 



Copying from a remote 
workstation using rep 

Copying to a remote 
workstation using rep 

Copying a directory 

In chis case the command is used as follows: 

rep workstation:sourcefile destdir 

For example, to copy the file /tmp/chapterS . doc from the workstation 

acorncpd to the directory /tmp on your worbtarion, you would type: 

rep a e orncpd: /tmp/ehapterS . doe / tmp 

If you want to change the name of the file when it arrives in the directory on 
your workstation, specify a filename instead of a direccoryname as the second 
argument. 

For example, to rename chapterS. doc as chapS you would type: 

rep aeornepd:/tmp/ehapterS . doe /tmp/ehapS 

Note that rep requires you to have login access and the correct access 
permissions, for the file on the remote workstation. 

For example, to send a copy of the fi le quotes to the /tmp directory of the 
remote workstation acorncpd, you could type: 

rep /usr/users/guest/editing- files / quotes aeornepd : /tmp 

A copy of the file quotes would then appear in the /tmp directory of the 
remote workstation acorncpd, provided that you had the appropriate read 
and write permissions for the pathname specified. 

The syntax for copying whole directories from one workstation w another is 
very similar to chat used for copying a file with the cp command. For 
example: 

rep - r workstation:sourcedir destdir 

To transfer one of your directories and all its sub-directories to another 
workstation from your own workstation, type: 

rep - r sourcedir workslat ion :destdir 

Networking and NFS 125 



Networking command 
summary 

The following list summarise~ the major networking commands covered in this 
chapter: 

Command Syntax Use 

rep rep sourcefile workstation:destfile 

rlogin 

rsh 

rup 

126 

Transfer a copy of your file 

to a remote workstation and 
call it destfi 1 e. 

rep workstation:sourcefile destfile 

Copy a remote file ami 
transfer the copy w 
destfileon your 
workstation. 

rep -r sourcedir workstation:destdir 

rlogin workstation [ -1 user] 

rsh workstation command 

rup [workstation] 

Copy a directory and sub­
directories from your 
workstation to a remote 
workstation, and call it 
destdir. Can also be useJ 
in the other direction. 

Log in to the remote 
workstation (optionally, 
using a different uscmame). 

Abort an rlogin 
connection. 

Execute command on 
workstation !>pccificd. 

Display system ~latus 
information for all 
workstations on the network, 
(optionally, on workstations 
specified only}. 

Networking and NFS 



Sources of further 
information 

rusers rusers [workstation] Display all network users 
logged in (optionally, 
users on specified 
workstation only). 

rwall rwal l workstation Send the message which 

appears on the following 
lines to users of the 
workstation specified. 

Key: 

destfile 

destdir 

workstat ion 

sourcedir 

sourcefile 

the destination filename (the file to which the copy is to 
be sent). 

the de:.tination directory (the directory to which the copy 
is to be sem). 

the name of the remote workstation. 

the name of the directory which is to he copied. 

the name of the file which is to be copied. 

For further information about the commands discussed in this chapter, refer to 

the appropriate manual page entry for the command. 

Error messages that you may receive while using these commands ttre outlined 
in the reference section Trouble-shooting, at the back of this guide. 

Networking and NFS 127 



128 Networking and NFS 



Communicating with other systems and users 

Introduction 

Accessing remote 
machines 

The previous chapter, Networking and NFS, described UNIX utilities for 
accessing workstations connected together using internet protocols on a local 
area network. 

This chapter introduces the utilities you can use to communicate with machines 
that do not fall into this category and also introduces the more general UNIX 
commands that you can use to communicate or just exchange information with 
other systems and users. 

The topics covered in this chapter include: 

• Accessing remote machines - logging in to machines on your local 
network that do not support the Berkeley networking commands described 
in the previous chapter. 

• Serial line communications - communicating with other machines over a 
serial line. 

• Electronic mail - sending information using the UNIX electronic mail 
program. 

• Interactive communication - communicating with other users who are 
logged in on your local network. 

• Floppy disc utilities - transferring information using floppy discs for use 
with other types of workstations - including UNIX workstations, Acorn 
Archimedes RISC OS workstations and MS-DOS based workstation~. 

The following commands are discussed in this section: 

• ftp and tftp - (short for file transfer protocol and trivial file transfer 
protocol respectively) used to copy and transfer files to and from remote 
machines that do not support the Berkeley networking command rep. 

I • telnet - used to access machines that do not support the Berkeley 
networking command rlogin. 

Communicating with other systems and users 129 



Using ftp and tftp 

The above commands are primarily used to access machines that do not 
support the Berkeley networking commands discussed in the previous chapter. 
However, these commands use the internet communications protocol, so you 
can still use them between Berkeley 4.3BSD workstations. In some cases, you 
may choose to usc ftp in favour of rep due to the greater range of facilities 

it offers. 

ftp is a very elaborate program that provides a suite of options and 

commands for transferring files. 

t ft p is a simplified version of ft p. Although easier to use, it can only be 

used to copy publicly-readable files and also displays very esoteric error 
messages when things go wrong. It should really be used as a last resort for 
copying files. 

Using the file transfer protocol - ftp 

To copy a file from your local workstation to a remote machine using ftp, 
follow these steps: 

• At your normal shell prompt, type: 

ftp 

• After a few seconds the 'ftp>' prompt is displayed. At this prompt type: 

open machinename 

where machinename is the name of the remote machine. 

• Wait until a connection has been established. This is indicated by the 
following prompt being displayed: 

Name (machinename:username): 

• If you arc successfully connected, type in your username and password 
for the remote machine. 

If you do not have a user id for this machine, try logging in using the guest 
login id. If this fails, contact your system administrator for an appropriate 
login id. 

• If you successfully log in to the remote machine, the 'ftp>' prompt will 

appear again - the connection has been established. 

130 Communicating with other systems and users 



• To transfer a file, type: 

I • 

get sourcefile destfile 

sourcefile is the name of the file on the remote machine that you wish 
to copy to your workstation. 

destfile is the full pathname of the file on your workstation where you 
want the file to be copied to. 

When the transfer has been completed and the ' ftp>' prompt reappears, 
type quit to end the connection. 

To transfer a file from your workstation to a remote machine using ftp, 
follow this procedure: 

• Type ftp and wait for the 'ftp>' prompt to appear. 

• Open the connection and log in, as described above. 

• When you see the ' ftp>' prompt, type: 

put sourcefile destfile 

sourcefi le is the full path name of the file on your workstation. 

destfile is the full pathname of the file on the remote machine where 
you want the copy to go to. As with rep, you must have read and write 
permissions for the pathname specified. 

• When you are notified that the transfer is complete and the 'ftp>' prompt 
re-appears, type quit to terminate the connection. 

Getting help for ftp 

Note that during any time, with the' ftp>' prompt displayed, you can type: 

help 

to display a full list of the commands that you can issue from the 'ftp>' 
prompt. 

Communicating with other systems and users 131 



Using the trivial file transfer protocol t ftp 

t ftp is similar to ftp, but can only be used to copy publicly-readable files. 
This is the procedure to follow to copy such files (the procedure and 
command syntax is similar to ftp ): 

• Type tftp and wait for the 't ftp>' prompt to appear. 

• At the 't ftp>' prompt, type: 

connect machinename 

where machinename is the name of the remote machine. 

• When a connection has been established, the 't ftp>' prompt will appear 
again. At this prompt, type: 

get sourcefile destfile 

sourcefile is the full pathname of the file on the remote machine that 
you wish to copy to your workstation. 

destfile is the fu ll pathname of the file on your workstation - ie where 
you want the file to be copied to. 

• When the transfer has been completed, type quit to terminate the 
connection to the remote machine. 

To use t ftp to transfer a file to a remote machine, a file with the same name 
must already exist on the remote machine and you must have read and write 
permission to copy your file to it. 

This is the procedure to follow: 

• Type tftp and wait for the 'tftp>' prompt to appear. 

• At the 't ftp>' prompt, type: 

connect machinename 

where machinename is the name of the remote machine. 

• When a connection has been established (the 't ftp>' prompt will 
appear), type: 

put sourcefile destfile 

132 Communicating with other systems and usen 



Using telnet 

sourcefile is the name of the file on your workstation. 

des t f i 1 e is the full pathnamc of the file on the remote machine where 
you want the copy to go to. Again, as with rep, you must have read and 
write permissions for the pathname specified. 

• When you are notified that the transfer is complete and the t ftp prompt 
reappears, type quit to terminate the connection to the remote machine. 

Getting help for t f t p 

Note that during any time, with the ' t ftp> ' prompt displayed, you can type: 

? .J 

to display a full list of the commands that you can i:;sue from the 't ft p>' 
prompt. 

For more information, refer to the manual page entries for ftp (lC) and 
tftp(LC). 

You can use telnet to log in to machines that do not support the Berkeley 
rlogin command. 

To usc tel net , type: 

telnet machinename 

If the connection is successful, you will be told that you have been connected, 
and given an escape character (you will use this when you need to abort a 
tel net connection). For example: 

telnet acorncpd 

Trying 89 . 0 . 0 . 2 

Connected to acorncpd . 

Escape character is ' A) '. 

4 . 3 BSD UNIX (acorncpd) 

login: 

Communicating with other systems and users 133 



Serial line 
communications 

At the 'login:' prompt, try to log in as normal. If successful, you can execute 
commands as if you were using your own workstation. 

To abort a telnet connection during any time, type the 'Escape 
character' on a new line; which would be <CTRL-] > in the above 
example. 

After typing this, you will see the 'te l net>' prompt. At this prompt, type: 

quit 

During any time, with the 'te lnet>' prompt displayed, you can type: 

help 

to display a full list of the commands that you can issue. 

If you fail to connect to the remote machine, leave tel net by typing: 

quit 

For more information, refer to the manual page entry for telnet (lC). 

You can connect with machines that are not on your local network but which 
are accessible via a directly connected serial line or via telephone lines, by 
using any of the following commands: 

• tip (short for terminal imerface processor) 

• uucp (short for UNIX w UNIX CO/))' program) 

• kermit (general purpose copy program) 

In order to use any of the above commands, your workstation will first have to 
be set up to communicate with the outside world. 

All the information is transmitted down the serial line at the back of your 
workstation (called /dev/serial), so before using tip, check that your 
serial port is connected. 

134 Communicating with other systems and users 



If you arc connecting your machine via telephone lines, you will also require a 
modem (short for modulator-demodulator) to convert the output from your 
workstation into a form which can be transmitted down the telephone lines. 
Another modem at the other end translates the signals back again into a form 
which is readable by the machine there. 

It is beyond the scope of this guide to explain in detail how to configure your 
network to communicate with remote machines in this way. However, in normal 
operation over telephone lines, you may get involved in baud rates. The baud 
rate is the speed at which data is transmitted down a line. This is usually 
measured in bits per second, and the most common speeds arc I 200 and 9600 
baud ( 1200 and 9600 bits per second). 

Obviously, both machines must be set to transmit and receive data at the same 
speed, or - like one juggler throwing clubs to another faster than he can catch 
them they won't be able to communicate properly. Some machines adjust 
baud rates automatically, but if you sec rubbish on your screen once a 
connection has been made, you may need to check the transmit and receive 
baud rates of the two machines. 

As well as having your hardware configured correctly, you will also need to 
have the appropriate fi les set up on your workstation that describe the 
characteristics of the remote machine - for example, /etc/phones and 
/etc/remote. 

For information about setting up these files, refer to the manual page entry 
for tip(lC). Refer to the manual page for stty(l), for information on how 
to set up the baud rate on your system. 

For more information about setting up kermit and uucp on your RISC iX 
workstation, refer to the RISC iX System Administrator's Manual. 

Communicating with other systems and users 135 



Electronic mail Your system provides a number of ways of communicating electronically with 
other users. This section tells you about sending and receiving electronic mail 
messages (using ma i 1). 

Electronic mail combines the immediacy of a telephone conversation with the 
permanence of a letter: you can get straight through to another user, and you 
will also have a written record of your communication. 

The mail program described in this chapter is the /usr/ucb/mail version, 
which is the one most often used on Berkeley 4.3 BSD systems. If you are not 
sure if you are using this version of electronic mail, check with your system 
administrator and also check that you are set up to receive electronic mail. 

When someone sends you a mail message, the message is collected by the 
mail system and stored in your system mailbox file. When you next log in, 
you are notified if there is any mail for you in your system mailbox file. 

When you choose to read your mail, mail opens your system mailbox and 
displays all the mail messages that have been sent to you, with the name of 
the sender and the date it was sent attached to each one. You can then choose 
to read, delete, reply to or save these messages. 

The following sections describe how to perform each of the above actions. 

Sending a mail message To send an electronic mail message within your local network (ie, not across a 
gateway or via a dial-up network), use the mai 1 program, the main electronic 
mail facility on your system. 

Follow this procedure: 

• Type: 

mail username@machinename 

username is the name of the person you arc sending the message to and 
machinename is the name of the machine where the user receives their 
mail. You won't need to add the @machinename if you arc sending mail 
to someone who uses your workstation. 

• Type in the message you want to send. 

• End the message with <CTRL-D>. 

136 Communicating with other systems and user~ 



Typing in a message 
using vi 

For example: 

mail romeo@verona 

wherefore art thou? 

<CTRL-D> 

The screen will show EOT, to acknowledge the Erul-0[-Text. The mail message 
typed will then be sent to user romeo on the machine verona. 

To send the same message to more than one user, list their login names, 
separated by a space, on the command line. For example: 

mail romeo@verona einstein newton 

wherefore art thou? 

<CTRL-D> 

The above message is then sent to user romeo on the machine verona and 
also users einstein and newton on the local workstation. 

You can usc the text editor vi (described in an earlier chapter, Text editing) 
to type in longer messages. To use vi from within mail, type -v at the 
beginning of a line. For example: 

mail romeo@verona 

-v 

The tilde character (- ) temporarily escapes from rna i 1 and the following 
character ( v) is interpreted as a command - in this case a command to start up 
the text editor vi. Other tilde escape commands available like this will be 
discussed later in this section. 

However, note that over a network the tilde character is sometimes interpreted 
as an escape character, so if you arc remotely logged in (L:sing rlogin) you 

will have to type at least two tildes to get the host machine to interpret one 
tilde. If you are logged in over more than one machine, you will have to type 
a tilde for each machine. 

Communicating with other systems and users 137 



When you have composed your message, type : 

<ESC> :wq 

to return to mail. A temporary fil e is created containing your text nnd mail 

asks you if you would like to continue to add any more text: 

" /tmp/Re778 " 23 lines , 1096 characters 

(continue) 

After this prompt, add any more text, then type <CTRL-D> on a new line to 
send the message. The vi file you created plus any text you typed after 
' (con t i n ue) ' is sent as a complete mail message. 

To abort a final message To abandon a message before it is sent (ie, before you type <CTRL-D> ), type 
your interrupt character (usually <CTRL- C> ). You will be asked to confirm 
that you want to abon. A second interrupt character will confirm il. For 
example: 

Sending mailo an 
unknown user 

Security in the mail 
system 

Reading your mail 

mail romeo@verona 

Here is an example of an aborted mail message<CTRL-C> 

(Interrupt -- one more to kill letter) 

<CTRL-C> 

If the user is unknown on the network, the mailer-daemon (the mnil delivery 
sub-sy:;tem) will send your message back to you some time later and also 
notify the Postmaster (either you or your system administrator) that tt failed to 
deliver it. 

You should not really use any sort of electronic mail if you nre sending 
private or sensitive information. It could quite easily be intercepted and read 
by someone else. 

mail allow~ you to: 

• sec a list of your mail message~ 

• view individual messages 

• save messages to different files 

• delete fib. 

138 Communicating with other systems and users 



To sec a I i~t of your message~. type: 

mail 

mail docs nor display the whole contents of your system mailbox, but instead 
summari~cs the contents of each message in a message header and lists them 
out in the following form: 

Mail version 5.2 6/21/85 . Type ? for help . 
"/usr/spool/mail/newton": 2 messages 2 new 

>N 1 mother Mon Mar 22 15 :1 7 4/120 laundry 

N 2 einstein Tue Mar 23 11 : 37 12/347 relativity 

& 

From 1 he above example, i1 appears there arc two messages. Message number 
l is from your mother about laundry and message number 2 is from 
einstein about relativity. 

The ' & ' is the standard mail prompt from where you can issue a large number 

of ma i l commands. Some of these commands will be discu~ed in the next 
few ~ecrions. 

The upper-case N at the stan of each line sign ifies that both messages are new 
messages that have not yet been read. 

Fortunately you can skip Lhrough mail messages without having to read them 
in the order they were sent. So, in the above example, to read the message 
from e::..nstein first, at the mail prompt'&', type: 

2 

The message will be displayed, in the following form: 

Message 2 : 

From einstein Tue May 10 12;30;47 1988 

Date: Tue , 10 May 88 12 : 30:41 GMT 

From : einstein (Albert Einstein) 

To: newton 

Subject : relativity 

Communicating with other systems and users 139 



Asking mail for help 

Things should be made as simple as possible , but no 
simpl er. 

& 

To redisplay the above message (the current mail message) again: at the 
ma i 1 prompt, type: 

p 

To read the next message in the list, type: 

.J 

The subsequent message will be displayed. If there are no more messages to 

be displayed, as in the example, you will receive the message: 

& 

At EOF 

& 

To go back and read the the first message, type : 

1 

There is a useful help facility that lists the commands available from within 
ma i 1. To access it, at the ma i 1 prompt type: 

help 

A long list will be displayed of the mail commands and their syntax. 

You can also get a full list of the tilde escape commands available when you 
are composing a mail message, by typing'-?'. For example: 

here is some text 

-? 

The following - escapes are def i ned: 

Quote a single tilde 
-b users Add users to " b l ind" cc list 

140 Communicating with other systems and users 



If you have no mail 

Sorting your mail 

The list is not included in your mail message and you can carry on typing the 
rest of your message. Some of the tilde escapes listed will be discussed later 
on in this section. 

If there is no mail for you, after typing: 

mail 

you will get the message: 

No mail for username 

If this occurs, ring up some friends on your local network and ask them to 
send you some mail, so you can try out some of the features of rna i 1. Fai ling 

that, send yourself some! 

You can sort your mail messages, save the ones you want to keep into 
different files and delete the ones you don't want. 

To save a mail message, or a series of mail messages, to a file, type: 

save messagenumberl messagenumber2 ... filename 

You can abbreviate save to s and you can abo specify a range of messages 

to he saved in one file. For example: 

s 2-9 mail-file 

saves the mail messages and mail headers from 2 to 9 in the file mai 1-fi le . 

In either case, rna i 1 will respond with the name of the file created, its status 

and size. For example: 

"mail - file " [New file] 476/13319 

I( you don't specify any messagenumbers, only the current message will be 

saved. 

Once saved, the easiest way to read a mail message is to usc the cat 
command. For example, to read the messages contained in the (ile mai 1-
f i 1 e, at the normal shell prompt type: 

more mail-file 

Communicating with other systems and users 141 



Replying to mail 

Alternatively, you can display mail messages you saved to a file and read 
them as you would your normal system mailbox file. For example: 

mail -f mail- file 

This command is useful for browsing through the fil e and deleting or reading 
individually selected messages. 

To delete a mail message, enter the rna i l program and at the standard rna i l 

prompt display a list of your messages by typing: 

h 

which is short for headers. If you have more than a screenful of messages, you 
can also type: 

h messagenumber 

which will display all the mail message headers from messagenumber 
onwards. For example, if only 16 mail messages are displayed and you have 
20 mail messages as indicated at the top of the message header list, type: 

h 17 

to show the remaining message headers in your system mailbox - ie 17 to 20. 

To delete any of the messages you have been sent, type: 

d messagenumber 

The message will be deleted. 

If you mistakenly delete a message, type u (short for undelete). This will 
retrieve the last mail message you deleted. 

Enter the rna i l program, and display a list of your messages, using the h 

command. To reply to any of the messages listed, type: 

R messagenumber 

If you don't include a message number, the current message will be assumed. 
R will send your reply only to the sender of the message. 

142 Communicating with other systems and users 



To reply to the sender along with any other recipients, type: 

reply messagenumber 

r may be used as an abbreviation for reply. 

mail will automatically addre!>l> the message to the sender of the message 
and use the same subject, if any, with 'Re : ' placed before it. All you have to 
do is type the text, followed by: 

<CTRL-D> 

on a line by itself to end the message. 

For example: 

& p 

Message 2: 

From einstein Tue May 10 12 ; 30 ;4 7 1988 

Date: Tue , 10 May 88 12 : 30 :4 1 GMT 

From : einstein (Albert Einstein) 

To : newton 

Subject : relativity 

Things should be made as simple as possible, but no 
simpler . 

& reply 2 

To : einstein 

Subject : Re : relativity 

Thanks for your message - but what does it mean? 

<CTRL- D> EOT 

& 

If you want to add a copy of the message to which you are replying (as an 
aide-memoire to the recipient, for example), or a copy of any other relevant 
message, you can do this by typing, at any point in the message: 

-m messagenumber 

Communicating with other systems and users 143 



Quitting the mail 
program 

mail doesn't display the message to be inserted, but confirms that it is doing 
so with the message: 

Interpolating:messagenumber 

(continue} 

Agatn, if you are logged in remotely, watch out for tildes being interpreted 
incorrectly by the host machine. 

After interpolating the message, continue typing your mail message, ending 
the message with a <CTRL-D> in the normal way. 

You can insert a stamlard text file into a mail message in just the same way 
a~ you insert another mail message. Start writing the message and when you 
get to the point where you want to insert the file, type: 

-r filename 

Use the absolute pathname of the file to be inserted, to he sure that mai 1 
loob in the right place in the file system for the file. If it finds the file, 
rna i 1 will echo the name of the file, along with the number of lines and 
characters it contains, followed by EOT. For example: 

here is some text before the inserted file 

-r filel 

II filel II 12/303 

and here is some text after the inserted file 

<CTRL-D> EOT 

The file specified will be included in your mail message at the point 
specified. As shown above, after you have inserted the file you can continue 
with your message, and complete it with a <CTRL-D> in the normal way. 

To quit the mail program, at the mail prompt type: 

quit 

(quit may be abbreviated to q). 

144 Communicating with other systems and user. 



Looking at your mail 
from outside the mail 
program 

Customising mail 

When you leave mail, any messages which have been read, but not saved or 
deleted, arc placed in a file called mbox in your home directory. A 
confirmatory message will be displayed. For example: 

& quit 

Saved 2 messages in mbox 

$ 

The mbox file is similar to your system mailbox file hut is a private mail in­
tray file located in your home directory. 

Unread messages will remain in your mailbox and will he displayed again 
the next time you enter the mail program, prefixed by upper-case U - this 
signifies unread mail. 

To leave mail without saving the unread messages in the file mbox, type 
exit. The messages arc left in your system mailbox and displayed again 
when you enter mail. Your private mail in-tray mbox remains untouched. 

To get a quick summary of the contents of your system mailbox from outside 
the mail program, use the from command. This displays the 'from' lines in 
your system mailbox. For example, at your normal shell prompt, type: 

from 

A list of the senders and the date :.cnt of the mail messages contained in your 
mailbox is displayed on the screen. 

For more information, refer to the manual page for from( 1 ). 

mail has a number of options that you can include in a hidden file called 
. mailrc in your home directory to customise how you use the mail program. 

For example, to set up mail so that it prompts you for a subject of each 
message you send, you could enter in your . mail rc file: 

set ask=Yes 

If this line is included, whenever you send a message to anyone, you have the 
option of assigning a subject header to the message. 

Communicating with other systems and users 145 



Wide area network mail 

For example: 

mail romeo@verona 

Subject: a plea to your heart 

wherefore art thou? 

<CTRL-D> 

This is especially useful when you come to browse through a long list of mail 
messages. The subject of each message is displayed alongside the sender of 
the message and the date it was sent. 

If you do not want to add a subject to the message, just type .J at the 
'Subject:' prompt. 

You could also set up rna i 1 to prompt you for additional carbon copy 

recipients of the message you are sending. For example, you could enter the 
following line in your . rnai 1rc file: 

set askcc=Yes 

Whenever you send a message to anyone you have the option of adding a 
carbon copy list. For example: 

mail romeo@verona 

Subject : a plea to your heart 

wherefore art thou? 

<CTRL-D>Cc : newton 

You can also send electronic mail to other users over wide area networks 
provided that all the necessary network connections have been established. 
Different networks will have their own procedures for sending mail. 

For more information about sending mail over a wide area network, contact 
your system administrator. 

For more information about the mail commands described and the 
customising options for rna i 1, see the manual page entry for rna i 1 ( 1). 

146 Communicating with other systems and users 



Interactive 
communication 

Checking who's logged 
in 

There are a number of utilities on your system for communicating interactively 
with other users on your local network. For example: 

• tal k 

• write 

• wall 

To see who's logged in before you use any of the above utilities, you can usc 
one of three commands , users , who and w. 

users 

To display a list of the current user:. of your workstation, type users. For 

example: 

users 

jon dave jim 

who 

You can also use the command, who. For example: 

who 

The who command shows more information than users . For example: 

w 

jon 

dave 

jim 

ttypO 

ttyp1 

console 

May 10 10 : 01 

May 10 10 : 28 

May 10 09:58 

The w command displays even more system information than who, by also 

displaying the programs that each user is running, when they logged in etc. 

For more information, refer to the manual pages for users(!), who (l) and 

w(l). 

Communicating with other systems and users 147 



Using talk talk provides you with the facility to exchange messages interactively with 
other users. To start talking interactively to other users, type: 

talk username@machinename 

The @machinename argument is not needed when both parties are logged in 
on the same machine. 

Your system will attempt to make a connection with the other user's machine 
(until this is done, the message [No connection yet) will be displayed). 

Once a connection has been established, your machine will 'ring' the remote 
machine by flashing the message: 

Message from Talk Daemon@yourmachinename at time ... 

During this time the message [Waiting for your party to respond) 
appears on your screen, which is now split in two: 

[Waiting for your party to respond) 

148 Communicating with other systems and users 



Using write 

Replying to a talk call 

If you get the message: 

Message from Talk_ Daemon@remotemachinename at time ... 

you respond by typing: 

talk user@remotemachinename 

When the two users have agreed to talk, talk's 

displayed on both machines. Users can now 
independently and even at the same time, without clashing. 

Terminating a talk session 

interactive 

exchange 
screen is 

messages 

When you have finished your talk session, or if you don't get through to the 
other user, exit from talk by typing: 

<CTRL-C> 

For more information on talk, sec the manual page entry for talk(l). 

To send a message to a user on another terminal of the same system as 
yourself, you can use the program write. 

At you normal shell prompt, type: 

write username [ttyname] 

Here is the text of the message 

The message will be sent when you press .J at the enJ of the line. To write to 
a user who is logged in more than once, use the t tyname argument to indicate 
the appropriate terminal name. 

Replying to a written message 

Messages sent with writ e appear on your screen as follows: 

Message from machinename!username on LLypn at time ... 

Message follows here 

Communicating with other systems and users 149 



To reply to the message, just type: 

write username 

Here is my reply 

.J 

After typing the .J key, your message is sent back to the other user. All 
further text that you type in is sent to the your partner's terminal, until you 
both type <CTRL-D > to end the session. 

However, since you are now simultaneously typing and rece1vmg messages, 
you will end up with garbage on your screen unless you work out some sort of 
scheduling procedure with your partner. 

You might try the following convention protocol: when you first write a 
message, wait for your partner to write back before you start to send. Each 
person should end each message with a distinctive signal, - o - (for 'over') is 
standard - so that your partner knows when to begin a reply. To end your 
conversation, type -oo- (for 'over and out') before finishing the conversation 
with <CTRL- D>. 

For more information on write, see the manual page entry for write (I). 

To stop people talking and writing to you 

You can prevent write and talk messages from appearing on your screen, 
if you really want to, by adding the command 'mesg n' on a line by itself in 
your . profile file (or . login file if you are using the C shell). 

This will prevent every user, except root, from interrupting you with either 
talk or write. 

To make yourself available to talk and write again, change 'mesg n' to 

'mesg y'. 

Note that your new .profile or .login file must be read again by your 

login shell for the changes to take effect. The easiest way to do this is to log 
out and then log in again. 

150 Communicating with other systems and users 



Using wall 

System messages 

You can write simple messages addresseJ to everyone logged in to your 
workstation with the command wall, entering them in this form: 

wal l 

Here is a message t o all users 

o f this RISC iX workstat i on 

<CTRL- D> 

The message will be transmittetl to all other users of your workstation, 
together with the time it was sent. 

The wall command is useful for important messages which all users need to 
know, such as when the machine is going down for maintenance. Use this 
command sparingly, as most users find unimportant inlerruptions distracting! 

For more information on wall, see the manual page entry for wall(l). 

You may see a system message when you first log in, welcoming you to the 
system or telling you about backup times or when the syslem will be shut 
down for maintenance, so you shoultl always read and take note of these 
messages. 

The text of the messages is contained in the sy~tem file /etc/motd (short for 
message-of-the-day) and is usually owned and edited hy root. If you forget to 

reaJ the message when you first log in, you can read the message again by 
typing: 

mo re / etc/ motd 

Communicating with other systems and users 151 



Floppy disc utilities 

Transferring files 
between two UNIX 
workstations 

Storing information on floppy discs is useful for transferring information to 
other UNIX workstations that you cannot access directly using the 
communications utilities described previously. 

This section describes how to copy information to floppy discs for use by: 

• other UNIX workstations 

• MS-DOS based workstations 

• Acorn Archimedes RlSC OS workstations. 

The following procedure describes how to transfer files between two UNIX 
workstations. This includes RlSC iX workstations and any other UNIX 
workstation that supports tar (the tape archiver program) and also has a 3.5" 
floppy disc drive. 

You can transfer textual and binary files between two RISC iX workstations, 
but you can only transfer textual files between a RISC iX workstation and 
another UNIX workstation. 

In order to be able to transfer files between two workstations, you need to be 
able to log in as root on both workstations. 

First, you need to format the disc. Insert a blank unformatted floppy disc into 
your disc drive (having made sure that the write-protect slide tab is covering 
the hole}, and type: 

ffd 

Commencing format of /dev/rfdf1024 

Commencing read check 

Format completed satisfactorily 

f f d (short for format floppy disc) writes track layout information onto the disc: 
this is needed if you are going to store files on the disc. 

I dev I rfdfl 024 is the device name corresponding to your floppy disc drive. 

Once the disc is formatted, a quick read check is performed to check that the 
disc is not cormpt. If this check is successful, the confirmatory message, 
'Fo rmat completed satisfactorily' is displayed. 

With the floppy disc formatted, you can now copy files onto the floppy disc. 

152 Communicating with other systems and users 



For example, if you have two files (file1 and file2) that you wish to 
transfer to another UNIX workstation, type: 

tar cvf /dev/fdfl024 filel file2 

a filel 1 blocks 

a file2 1 blocks 

The command tar can be used for saving and restoring files between 
workstations that may not use the same file formats. tar produces one large 
file in a standard format containing the files specified, which is written onto 
your floppy disc and can then be transferred to the remote workstation. 

You can check that the files have been copied successfully, by typing: 

tar tvf /dev/fd£1024 

rw-r--r-- 0/0 291 Nov 21 16:19 1988 flle1 

rw-r--r-- 0/0 23 Nov 21 16:19 1988 file2 

To copy the archived files from the floppy disc to the remote workstation, log 
in to the remote workstation as root, change directory to where you want to 
put the files, insert the floppy disc containing the two files and type: 

tar xvf /dev/fdname 

where fdname is the floppy disc device name of the remore workstation. For 
example, if you were copying the files on to another RISC iX workstation you 
would type: 

tar xvf /dev/rfdfl024 

x file1, 291 bytes , 1 tape blocks 

x file2, 54 bytes, 1 tape blocks 

As indicated by the system messages above, this command extracts the two 
files filel and file2 from the floppy disc anJ copies them into your 
current directory on the remote RISC iX workstation. 

For more information, refer to the following manual pages - t a r (l) and 
ffd(8). 

Communicating with other systems and users 153 



Transferring MS-DOS 
files to your workstation 

MS-DOS version 3.2 floppy discs may be accessed using the following five 
floppy disc utilities: 

• msdosls - lists the contents of an an MS-DOS floppy disc in a format 
similar to l s and with similar options. 

• msdoscat - copies the contents of a file or files on an MS-DOS floppy 
disc to the standard output similar to cat. 

• msdoscp - copies a file or files on an MS-DOS floppy disc to a similarly­
named file or files under UNIX. Directory trees on the floppy disc may 
be searched recursively. 

• wrmsdos - copies or replaces files on an MS-DOS floppy disc. Options 
are available to format and/or initialise the MS-DOS structure on the 
floppy disc. Directories may be created, and recursively copied. 

• msdosrm - removes files and directories from an MS-DOS floppy disc. 

The above utilities are suitable for copying text files only. 

In MS-DOS, text files are held differently from under UNIX, in that each 
line is terminated by a carriage-return as well as a line feed, and the file is 
terminated by <CTRL- Z> . 

The MS-DOS utilities therefore convert files to and from this format when 
they are copied. Conversion may be suppressed by describing the file(s) as 
binary by supplying the option - b. If this option is omitted, but the files look 
as though they are binary, a warning message is output. 

Also note that IBM PS/2 models 50 upwards use quad density (1.44MByte) 
formats, which although supported by the floppy disc utilities are not 
available under RISC iX. 

Copying MS-DOS files to RISC iX 

If you have a formatted MS-DOS floppy disc that contains information you 
wish to transfer to your RISC iX workstation, insert the floppy disc and type: 

msdosls 

to check that the disc is readable. 

154 Communicating with other systems and users 



Transferring ADFS files 
to your workstation 

To copy two text file~ filel and file2 to the /tmp directory on your 
workstation, type: 

msdoscp -v filel file2 /tmp 

Created file /tmp/filel : 46 bytes 

Created file /tmp/file2 : 54 bytes 

As indicated by the system messages above (generated by specifying the -v 
option), the two fi les specified arc copied from the floppy disc to /tmp on 
your workstation. 

To check that the file was successfully cop1ed, list the contents of the current 
d1rectory, using the ls command. 

For more information, refer to the following manual pages msdoscat(l), 
msdoscp(l), msdosls( l ), msdosrm(l), wradfs(l) and wrmsdos(l). 

ADFS floppy discs, as used by RISC OS, may be accessed using similar 
specification routines to MS-OOS floppy discs: 

• adfsls - lists the contents of an ADFS floppy disc m a format similar to 

the UNIX command 1 s, and using similar options. 

• ad~scat - copies the contents of a file or files on an ADFS floppy disc 
to the standard output similar to the UNIX command cat. 

• adfscp - copies a file or files on an ADFS floppy dbc to a similarly­
nametl file or files under UNIX. Directory trees on the floppy d isc may 
he searched recursively. Files are renamed to take account of the fact that 
1 
/' is used as a filename separator under UNIX, where 1

.' is usetl under 
ADFS. 

• wradfs - copies or replaces files on an ADFS floppy disc. Options are 
available to format and/or initialise the ADFS structure on the floppy disc. 
Directories may be created, and recurs1vely copied. 

• adfsrm- removes files anti tlirectories from an ADFS floppy d1sc. 

Note that the above utilities can only be used to copy text files with floppy 
discs that have been formatted using RISC OS to the o ld AOFS 800* I K disc 
format (D format). 

Communicating with other systems and users 155 



If you have a formatted RISC OS floppy disc that contains information you 
wish to transfer to your RISC iX workstation, insert the floppy disc and type: 

adfsls 

to check that the disc is readable. 

To copy two text files filel and file2, to the /tmp directory on your 
workstation, type: 

adfscp -v filel file2 /tmp 

Created file /tmp/filel : 46 bytes 

Created file /tmp/file2: 54 bytes 

As indicated by the system messages above (generated by specifying the - v 
option), the two files specified are copied from the floppy disc to /tmp on 
your workstation. 

To check that the file was successfully copied, list the contents of the current 
directory, using the 1 s command. 

For more information, refer tO the following manual pages; adfscat(l), 
adfscp(l ), adfsls(l) , adfsrm(l) and wradfs(l). 

In addition, you can also use floppy discs for performing backups of your 
workstation and also as mountable file systems. For more information, refer 
to the RISC iX System Administrator's Manual. 

156 Communicating with other systems and usen 



Command summary 

ftp 

tftp 

tel net 

The following list summarises the major commands covered in this chapter: 

Command 
ftp 

open machinename 

get sourcefile destfile 

put sourcefile destfile 

help 

quit 

tftp 

c onnect machinename 
get sourcefile destfile 

put sourcefile destfile 

? 

quit 

telnet machine 

quit 
help 

Use 
Start file transfer program, using 
the following subset of commands: 
Establish a connection to the 
machine specified. 
Copy the remote file to your 
machine and call it destfile. 
Transfer the file from your 

machine to a remote machine and 
call it destfile. 
Display a list of commands you 
can use at the 'flp>' prompt 
Q uit ftp. 

File transfer program, including 
the commands: 
Connect to the machine specified. 
Copy file on machine to which you 
are connected, transfer it to your 
own mach ine and call it 
destfile. 
T ransfer a copy of a file from 
your machine to the existing 
destfile on the remote machine. 
Display a list of commands you 
can use at the 't flp>' prompt. 

Quit tftp. 

File transfer program, including 
the commands: 
Quit telnet program. 
Display a list of the commands 
you can use at the 'tel net>' 
prompt. 

Communicating with other systems and users 157 



mail 

Commands to check 
who is logged in 

Command Use 

mail username Start the mai 1 program. 

Commands given after the rna i l prompt ( & ) 

exit Exit the rna i 1 program without 
saving unread mail. 

headers Display numbered mail message 

list. 
messagenumber 

print [messagenumber] 

quit 
reply [messagenumber] 

save [messagenumber ) filename 

? or help 
tilde escape commands when sending mail 
-m ( messagenumber) 

-r filename 

-v 
-? 

users 

who 

Display message with specified 
number. 
Display current message 
(message with specified number). 
Exit rna i 1 program. 
Reply to current message (to 

specified message). 
Save current mail message 
(message with specified number) 
into specified file. 
Help information. 

Insert a copy of the current mail 
message (message with specified 
number). 
Insert a copy of the specified file. 

Enter vi text editor within mail. 
Display a summary of tilde 
escape commands. 

Display usernames of all 
currently logged-in users. 
Display usemames and system 
information of all users currently 
logged in (less detail than w ). 

Display information about all 
users currently logged in to your 
system. 

158 Communicating with other systems and user~ 



from 

talk 

write 

wan 

Floppy disc commands 

Command 

from 

talk username[@machinename] 

write username [ttyname] 

wall 

ffd 

Use 

Display list of messages in your 
system mailbox, by sender. 

Start interactive communication 
session with specified user (on 
specified machine on local 
network). 

Send message to a user on a 

specified terminal. Type text of 
message beginning on the 
following line and end message 
with <CTRL-D> on a line by 
itself. 

Send broadcast message to all 
users of machine. Type text of 
message beginning on the 
following line and end essage 
with <CTRL- D> on a line by 
itself. 

Format floppy disc. 

tar c vf /dev/fd£1024 filename Copy filename to a formatted 
floppy disc. 

tar tvf /dev/fd£1024 List the contents of tar files on a 
floppy disc. 

tar xvf /dev/rfd£1024 Extract all the contents of a 
floppy disc and copy the contents 
to the current directory. 

msdosls List the contents of an MS-DOS 
floppy disc. 

Communicating with other systems and users 159 



Sources of further 
information 

Command 

msdoscp -v filename /tmp 

adfsls 

adfscp -v filename /tmp 

Use 

Copy filename from an MS­

DOS floppy disc to /tmp. 

List the contents of an ADFS 
floppy disc. 

Copy filename from an ADFS 
floppy disc to /tmp. 

For further information about mail, refer to the Mail Reference Manual by 

Kurt Shoens in the Berkeley 4.3BSD Unix User's Sut>t>lementary Documents, 
which contains a complete description of mai l. 

For more information about the other commands discussed in this chapter, 
refer to the appropriate manual page entry for each command. 

Error messages that you may receive while using these commands are outlined 
in the reference section Trouble-shooting, at the back of this guide. 

160 Communicating with other systems and user~ 



Using the X Window System 

Introduction This chapter describes the X Window System - the industry standard 
windowing environment available on your workstation, which runs under a 
wide variety of operating systems, including RISC iX. The X Window System 
supplied with your RISC iX workstation is the latest release of Version 11. 

Although not essential, a windowing system like this is often a very effective 
way for you to use all the features of your workstation, as the X Window 
System allows you to have multiple graphical and textual applications 
programs (referred to as client programs) running simultaneously. For 

example, at any one time you can be using a desktop, editing one or more 
files and sending electronic mail all within separate windows on one display. 

In the X Window System (X for short), a display comprises a mouse and a 
keyboard plus one or more workstations. This means that if your workstation 
is on a network, you can be running X client programs on your host 
workstation and also be running other client programs on a remote machine 
somewhere else on the network, but showing up on your screen. Like NFS, X 
is network transparent: the requests from the host workstation, including 
keyboard and mouse commands, are relayed across the network to the remote 
workstation. 

The program that acts as the intermediary between the client programs that 
are running in any one display and the workstation that is actually running X, 
is called the X server. The name of the X server on your RISC iX workstation 
is X arm (short for X Acorn RISC machine server). 

The X programming library, called Xlib, contains a range of C language 
programming tools that you can use to write client programs based on X. As 
X can also run under a variety of operating systems and workstations, it is 
said to be machine independent. This means that any well written client 
program you write using Xl ib may be portable to many other manufacturers' 

workstations that are also capable of running X. 

Using the X Window System 161 



Clients provided A set of client programs (clients for short) that have already heen written 
using X 1 i b are available on your workstation. One of the most important 
clients is a window manager thar you can usc to control the size and location 
of the windows you create on a display. 

Many such wimlow managers h;we been written for X and you arc supplied 
with several on your system. These are wm (a simple but pnmttive demo 
window manager), twm (a f<tirly advanced wmdow manager) and awm (a 
window manager very similar tot wm). 

The window manager described in this chapter is uwm (short for uni·versal 
window manager) which is probably the most widely used of the one~ that are 
currently available at this time. (As X is an emerging standard, this situation 
may change). 

Another important client is the terminal emulator xterm. As X is suitable 
only for hitmapped displays, you also need terminal windows to run existing 
text-based programs that h<wc been written for use on standard ASCII 
terminals. xterm provides you with this facility. It emulates a DEC VT102 
type of tem1mal. 

As you can bring up more than one xterm wmdow, you can have many such 
text-based programs running at any one time together with birmapped, 
graphics-ba~cd programs such ::~sa desktop. 

Some of the clients provided with X are listed below, together with a brief 
description of their use. Many of the clients arc for demonstration purposes, 
some have other uses: 

• awm- Ardent window manager 

• bitmap bitmap editor 

• ico- animate an icosahedron or other polyhedra 

• mkruler - make a function key ruler for output to a PostScript printer. 

Acorn ~rec1fic. 

• muncher draw interesting patterns 

• plaid- paint some plaid-like patterns 

• pu z z 1 e - IS-puzzle game 

• showsn f font examination tool 

162 Using the X Window System 



• twm- Tom's window manager 

• uwm- a 'universal' window manager 

• xbiff- US style mailbox icon, to notify u~er of nev. clectromc mail 

• xcalc- a calculator 

• xca lendar- calendar and mini-diary 

• xclock -a dock 

• xdpr- print a snapshot of an X window 

• xedi t- a simple screen-based text editor 

• xfd- font displayer 

• xhost- server access control program 

• xlsfonts- server font list displayer 

• xman- a manual page browser 

• xmodmap- keyboard configuration tool 

• xmore- file browser 

• xperfmon- performance monitor 

• xpr- print an X window dump 

• xprkbd- keyboard configuration tool 

• xprop- display window and font propertie:. 

• xset -user preference utility 

• xset root -root window parameter setttng utality 

• xwd -dump an image of an X window to a file 

• xwininfo- window information utility 

• xwud - show previously dumped window images. 

For a full list of the clients provided on your workstation, look in the 
directory /usr /bin/Xll. For more information about some of the clients 
listed above see the reference section RTSC iX manual pages, at the hack of 
this guide. The uwm window manager and the terminal emulator xterm are 

discussed in the rest of this chapter. 

Using the X Window System 163 



Starting X If your workstation has already been configured to start up in X, you should 
~ee something similar to the following display, which indicmes that X is 
running: 

Root window 

l login ....... window 
/ 

.l L Clnor 
~----~------------------~~~· 

Acorn RISC iX Version X.X 1 / 
login: 

I 
I 

/ 

' I 
/ 

The dark background is referred to as the root window and the small window 
that appears in the bottom lefthand comer of your screen is a terminal 
emulator window called the login xterm window, which is produceJ by the 
client xterm. The cursor is the object shaped like an '1'. 

Notice that by moving the mouse between the root window anJ the xterm 
window the cursor changes shape. Also notice rhar you cannm type into the 
xte rm window unless the cursor is positioned in that window. This is known 
;1s focusing. The section later on in this chapter, describing the window 
manager, shows how you can change the focus. 

164 Using the X Window System 



To stan using the feature~ of X, position the cu~or in the x term window and 

at the '1 o g i n : ' prompt, log in ns normal. 

If your workstation has not heen configured to start up in X, you can start X 
running on your workstation from the command line hy typing: 

xinit 

This command starts X by tnitialising the program Xarm, the X server for 

your workstation and produces 1 he following displny: 

$ who ami 

guest 
$ 

I 

An xlerm window is automatically created for the user who stnrtcd X. In the 
above exnmple, the user is gue>s L. 

Using the X Window System 165 



Starting the window 
manager 

For more information about Xa r m(l) and xterm(l) and the options that you 
can use with them, refer to the manual page for Xarm{l) in the reference 
section RISC iX manuaL pages, at the back of this guide. 

In order to be able to control and manipulate the applications that you have 
running in separate windows on your screen, you need to use a window 
manager. For example, resizing windows, closing windows to an icon and 
moving windows around on the screen can all be done using a window 
manager. 

To start uwm running on your workstation in background mode, type: 

uwm & .J 

in the terminal emulator window. Note the use of the ' & ' metacharacter to 

specify that the command is to be run in background mode. 

After a few seconds a beep will sound from your workstation. This confirms 
that uwm is now running. You can further verify that uwm is running by moving 
the mouse anywhere on the root window and clicking and holding down the 
middle mouse button. This shouiJ show the following menu, close to the 
cursor position: 

166 

WlndowOps <= 

New Window 

Refresh Screen 

Redraw 

Move 

Resize 

Lower 

Raise 

CircUp 

CircDown 

Autolconify 

Newlconify 

Focus 

Restart 

Using the X Window System 



Start-up files 

The WindowOps menu 

uwm, unlike most window managers that you may have met outside of the X 
environment, displays as little information as possible on the screen. For 
example, there arc no title bars with icons for closing and resizing windows. 
Most of the window operations are performed using menus. 

uwm 1s a fully configurahle window manager. When you issue the command 

to stan uwm it searche~ in various directories in the file system for a start-up 
file. 

The file should contain a list of settings to describe certain attributes of the 
window manager. For example, the functions of the mouse buttons, menu 
entries etc. 

When uwm is invoked 1t follows a predefined search path to locate any start­
up files, looking firstly in /usr /lib/Xll/system . uwmrc, anJ then in your 
home directory ($HOME) for your personalised start-up file . uwmrc. If none 
of these two files are found, then it uses its own built-in default file. 

If any of the two start-up files are found then each file is read and the 
seuings defined are incorporated into the characteristics of the window 
manager. If there are any conflicting settings, then the ~etttng in your fi le 1s 
used. 

This means that, within certain constraints, you have the ability to customise the 
window manager to suit your personal preferences. 

The following section assumes that none of the two start-up files are found 
and so only describes the characterist ics of the built-in default file. For 
information on setting up your own personalised file, refer to the section 
Running clients and applications from uwm, later in this chapter. 

This menu, as indicated by the banner at the top, is called the W indowOps 
menu (short for ,window operations). It provides you with all the facilities for 
controlling the windows on your screen: 

• New Window -create a new xterm window. 

• Refresh Screen redraw the entire contents of the screen. 

• Redraw- redraw an individual window. 

• Move- move windows and icons around. 

• Resize- resize a window. 

Using the X Window System 167 



Selecting options from 
the WindowOps menu 

Using 'New Window' 

• Lower- place a window behind another. 

• Ra i se - place a window in front of another. 

• CircUp - circulate the stacking of a group of windows by ratsmg the 
bottom window to the top (and lower the other windows by one level). 

• CircDown - circulate the stacking of a group of windows by moving the 
top one to the bottom (and raise the other windows by one level). 

• Auto i conify - iconify or de-iconify a window or icon and leave it in its 
present location on the screen. 

• Newiconify- iconify or de-iconify a window or icon and move it to a new 
location. 

• Focus- select window for keyboard input. 

• Restart - restart the window manager (usually used after altering 
$HOME/. uwmrc. 

To choose any of the above options: 

• Move the mouse anywhere on the root window and click the middle mouse 
button to bring up the WindowOps menu. 

• With the mouse button still held down, select the option you want from 
this menu by moving the pointer down the menu until the option is 
highlighted; then release the mouse button. 

The option New Window is used to create a new x t erm window: 

• Bring up the WindowOps menu and select the New Window option. 

• After a few seconds a message appears in the top lefthand corner of the 
screen - x t erm OxO. This represents the new window; your mouse pointer 
also changes to a right-angle pointer that allows you to position the size and 
location of the new window. 

• To make a default size window, move this angle pointer to where you want 
the top lefthand corner of your window to be and click the left mouse 
button. A default-size window (80x24) appears on your screen. 

• To make your own size window, move the angle pointer to where you want 
the top lefthand comer of your window to appear and click and hold down 
the middle mouse button. The cursor fixes to the position selected and a 
new angle pointer appears. 

168 Using the X Window Syster 



Using 'Refresh Screen' 

Using 'Redraw' 

Using 'Move' 

With the middle mouse button still held down, move this angle pointer to 
the desired position for the bottom right-hand corner of the window. Notice 
the window size changing in the upper left corner of your screen. When you 
arc satisfied with the position of this pointer, release the middle mouse 
hutton. The window is drawn to the size specified. 

• To make a window of maximum height, move the angle pointer to where 
you want the top lefthand corner of your window to be and click the right 
mouse button. A default width, but maximum height window b drawn. 

The above procedure is also used for loading many of the X clients, so take 
time to become familiar with all the above ways you can manipulate the size 
of the new window. 

The option Refresh Screen is used to redraw the enure contents of the 
screen; this is useful when a system message or c lient disrupts the screen. 

• Bring up the WindowOps menu and select the Refresh Screen option. 

• The screen is completely refreshed. 

The opt ion Redraw is used to redraw an individual window; this is useful 
when a system message or client disrupts one particular window. 

• Bring up the WindowOps menu and select the Redraw option. 

• T he cursor changes to a circle: position it over the window to be redrawn 
and click a mouse button 

• The window is completely refreshed. 

The option Move is used to move windows and icons around. 

• Bring up the WindowOps menu and select the Move option. 

• The pointer changes lO a circle, which enables you to specify the object 
(window or icon) on which you want to act - in this case to move the 
selected object around the screen. 

• Select the window or icon you want to move by positioning the circle over 
the object and clicking and holding down the middle mouse button. 

• The pointer now changes to a cross shape and an outline of the selected 
object appears. 

• With the middle mouse button still held down, move the object outline to 

I . 
its new position. 

Release the middle mouse button; the object moves to the new position. 

Using the X Window System 169 



Using 'Resize' 

Using 'Lower' and 
'Raise' 

The option Resize is used to resize a window: 

• Bring up the WindowOps menu and select the Resize option. 

• The pointer changes to a circle, position the circle near the corner or edge 
of the window you want to resize and click and hold down the middle 
mouse button. 

• The pointer changes to a cross shape and an outline of the window appears. 

• With the middle mouse button still held down, move the outline to its new 
size. Note the read-out opposite the cross, which displays the new size in 
pixels for graphics-based clients (or in characters for xterm clients). 

• Release the middle mouse hutton; the window resizes. 

Be careful when resizing windows that you are currently using for screen­
based editing. Some editors or screen-based applications may not know about 
the new size and may be unable to re-draw the screen correctly. 

Windows appearing on the screen typically overlap each other and are 
controlled in a stacking order by the window manager .,.. similar to the way 
pieces of paper are pinned to a notice-board. To change the order of the stack 
so that one window is below or above another window, usc the options Lower 
and Raise respectively. 

To use Lower: 

• Bring up the WindowOps menu and select the Lower option. 

• The pointer changes to a circle, position the circle over the window you 
want to lower and click the middle mouse button. 

• The window is placed behind all other windows, except the root window; ie 
placed at the bottom of the stack. 

To use Raise: 

• Bring up the WindowOps menu and select the Raise option. 

• The pointer changes to a circle, position the circle over the window you 
want to raise and click the middle mouse button. 

• The window is placed in front of all other windows; ie raised to the top of 
the stack. 

170 Using the X Window System 



Using 'CircUp' 

Using 'CircDown' 

Using 'Autolconify' 

Using 'Newlconify' 

ln a series of overlapping windows, the bottom window in a stack can be 
quickly placed at the top by using CircUp: 

• Bring up the WindowOps menu and select the CircUp option. 

• The window at the bottom of the stack is placed in front of all other 
windows, which are lowered by one level. 

In a series of overlapping windows, the top window in a stack can be quickly 
placed at the bottom by using CircDown: 

• Bring up the WindowOps menu and select the CircDown optton. 

• The window at the top of the stack is placed behind all the other windows, 
which are raised by one level. 

To create more space on your screen, you can iconify windows that you are not 
currently using, by using Auto! coni fy: 

• Bring up the WindowOps menu and select the Auto i conify option. 

• The pointer changes to a circle, position the circle over the window you 
want to iconify and click the middle mouse button. 

• The window is iconified to where it was originally iconified or if it wa~ 
never iconified before, to the current location of the pointer. 

To dc-iconify a window, follow the same procedure as above. The window 
will be displayed in it!> original location. 

Newiconify is similar to Autolconify but also allows you to select 
where on the screen you want the icon to appear: 

• Bring up the WindowOps menu and select the Newiconify option. 

• The pointer changes to a circle, position the circle over the window you 
want to iconify and click the middle mouse button. 

• The pointer changes to a cross shape and an outline of the window icon 
appears. 

• With the middle mouse button still held down, move the outline to its new 
location. 

• Release the middle mouse button; the window is iconified to the location 
specified. 

To de-iconify and relocate a window, follow the same procedure as above. 
The window will be displayed in its specified location. 

Using the X Window System 171 



Using Focus 

Using Restart 

Normally, keyboard input goes to whichever window the mouse pointer is in -
this is called follow pointer mode. Using Focus , you can select a window to 

input from the keyboard regardless of the position of the mouse pointer: 

• Bring up the WindowOps menu and select the Focus option. 

• The pointer changes to a circle. Position the circle over the window you 
want to focus on and click the middle mouse button. This window is now 
chosen as the focus window, as shown by a black border appearing around 
it. 

T o change the focus window back to follow pointer mode (the default), select 
the Focus option again and click the middle mouse button anywhere on the 

root window. 

You can use the option Restart, to restart the window manager if it is not 
behaving properly. For example, after editing your . uwmrc file. 

To use Res tart: 

• Bring up the WindowOps menu and select the Restart option. 

• The window manager is restarted. 

172 Using the X Window System 



The Preferences menu The Preferences menu is also available in uwm: you can use it to alter 
some of the characteristics of the window manager. For example, you can 
control the volume of the bell on your system and also the speed of the mouse. 

To display the Preferences menu, hold down the <meta> key (on your 
RISC iX workstation, this is the <Alt> key) and <Shift> key and press the 
middle mouse button. This reveals the Wi ndowOp s menu. Slowly slide the 
arrow across the Windo wOp s banner at the top of the menu, until it reaches 
the end. The Preferences menu will then appear. You can now let go of 
the <Alt> and <Shift> keys: 

Preferences <= 

Bell Loud 

Bell Normal 

Bell Quiet 

Bell Off 

Click Loud 

Click Soft 

Click Off 

Lock On 

Lock Off 

Mouse Fast 

Mouse Normal 

Mouse Slow 

To choose an option from this menu, bring up the menu in the way just 
described and while holding down the middle mouse button, choose the 
required option. Release the mouse button - the new setting will be used 
from now on by the window manager. 

Using the X Window System 173 



Keyboard short-cuts Some of the window management actions described above can also be 
performed using combinations of the keyboard and mouse. The following 
table summarises these short-cuts: 

Function Location of pointer Keyboard/Mouse shortcut 

Move window or icon <Alt> right and drag 
Resize window <Alt> middle and drag 

Raise window or icon <Alt> right click 

Lower window or icon <Alt> left click 

CircUp root <Alt> right click 
CircDown r(Xlt <Alt> left click 

Autolconify window or icon <Alt> left down 

Newiconify window or icon <Alt> left and drag 

De- iconify and icon <Alt> l eft and drag 
move 

WindowOps menu anywhere <Alt- Shift> mtddle 
down 

For example, to bring up the WindowOps menu from anywhere on the screen, 
press <Alt> and <Shift> simultaneously and hold down the middle mouse 
button. 

To place a window or icon at the bottom of the stack with the pointer either on 
the icon or window, press <Al t > and click the left mouse button. 

To move tl window or icon with the pointer either on the icon or window, press 
<Al t > and lhe right mouse button simultaneously and drag the object to its 
new location. Then release both buttons. 

174 Using the X Window System 



Using xterm to load X 
clients 

Using xterm to run 
non-X applications 

Some of the most useful X clients can be started from an xterm window by 
just simply typing their name in an xterm window. For example, to start 
Xman the manual page browser client, just type the name of the client in one 

of the xterm windows that you have created, followed by an ampersand to 
run the command in background mode: 

xman & 

After a few seconds a message appears in the top lefthand corner of the 
screen xman OxO - this represents the window for xman. Your mouse 
pointer also changes to a right-angle pointer that allows you to position the 
size and location of this new window. 

Move thts potnter to where you want the top-lefthand comer of your window 
to be and click the left mouse button. The xman client is now ready for u!>e. 

For more information, refer to the manual page for xman in the reference 
section RISC iX manual pages <1 t the back of this guide. 

As xterm is really just a terminal within a wmdow, you can use it as you 
would any normal terminal m run standard UNIX programs. For example, to 
run the screen editor vi just type the name of the program. For example: 

vi 

This loads vi into the window where you issued the command. 

As well as being able to run the above types of application, xterm windows 
can also provide you with extra window control facilities. For example, there 
are facilities for: 

• cutting and pasting text between windows 

• adding scroll-bars 

• setting up the terminal - by choosing options from two menus that can be 
displayed in any xterm window. 

For more information on any of the above facilities, refer to the mnnual page 
for xterm(l) in the reference section RISC iX manual pages, at the back of 

this guide. 

Using the X Window System 175 



Running clients and 
applications from uwm 

Running clients 

All of these applications can be included in the l>tart-up file of your window 
manager, to allow you to select them from a menu. 

As a starting point for creating your own customised version of uwm, copy the 
default start-up file /usr/lib/Xll/default . uwmrc to your home 
directory, using the command: 

cp /usr /lib/ Xll/ default.uwmrc $HOME/ . uwmrc ~ 

and change the access permissions on the file so that you can write to it, using 
the command chmod( I). For example: 

c hmod u+w . uwmrc 

As you become more familiar with the window manager, you will want to 
alter some of the settings and add new entries in this file to suit your 
preferences. 

The uwm start-up file consists of three sections: 

• a variables section 

• mouse buttons section 

• a menus section. 

The variables section comes first in the file, followed by the mouse buttons 
section and finally the menus sect ion. 

The menus section contains definitions of the functions that arc performed 
when a menu entry is selected. 

For example, to include xman (the manual page browser) in the start-up file, 

edit the menus section of the . uwmrc in your home directory to include the 
line: 

Manual browser: !"xman &" 

Save the file and restart the window manager by selecting Restart from the 

WindowOps menu. A new entry called Manual browser will appear on 
the WindowOps menu when you bring up this menu ag~1in. 

Select this new entry in the nonnal way and the client xman will be loaded. 

176 Using the X Window System 



Running applications 

Exiting from X 

A typical non-X application that you may like to run from within your window 
manager is the screen editor, vi. 

To run vi, enter the following line in your start-up file: 

vi : ! " xterm - e vi & " 

Restart the window manager as previously described. A new entry called vi 

will appear on the WindowOps menu when you bring up this menu again. 

Select this new entry in the normal way. A window will appear, which you can 
size in the normal way. Once the window is sized, the editor vi is loaded. 

There are a suite of opt ions you can usc with xterm to select the size of the 
window, name of the window and title of the window when iconified. For 
more information, refer ro the manual page for xterm( 1 ). 

For a full description of the options available for the window manager and 
the terminal emulator, refer to the manual page entry for uwm(l) and 
xterm( I) respectively. 

If you started X using the command xini t, to exit from X type your normal 
log out command in the login xLerm window. For example 

exit 

Following this, the program Xarm and all running clients will he stopped, the 
display will blank and you will receive the following message: 

waiting for server to terminate 

Your normal login prompt will then be displayed. You can then carry on 
using your workstation. 

If your workstation is configured to start up in X, just log out tn the normal 
way. The standard login prompt will be displayed ready for another user to 
log in to the workstation. 

Using the X Window System 177 



Sources of further 
information 

For more information about X and writing applications for X refer to the X 
Window System Manual Set produced by I'XI Limited, which comes in four 
volumes: 

• Volume 1: C Language Interface 

• Volume 2: Reference Manual 

• Volume 3: Standard Supplement 

• Volume 4: Server & Porting Guide. 

Also refer to the Definitive Guide to the X Window System, produced by 
O'Reilly & Associates Inc., which similarly comes in four volumes: 

• Volume I : Xlib Programming Manual 

• Volume 2: Xlib Reference Manual 

• Volume 3: 'X Window System User's Guide 

• Volume 4: X Toolkit Programmer's Guide. 

178 Using the X Window System 



Further uses of RISC iX 

Introduction This chapter introduces some of the more advanced features of the RISC iX 
operating system. A full explanation is beyond the scope of this guide. 

Each feature is briefly described and u~cful sources of further information 
are referenced for each feature. 

The advanced feature:. arc categorised as follows: 

• general programming utilities 

• text preparation 

• data manipulation 

• miscellaneous utilitic~. 

Further uses of RISC iX 179 



General programming 
utilities 

Thi5 sect ion lists some of the utilities RISC iX provides to help you develop 
programs. For further details refer to the relevant manual page by looking in 
the Berkeley 4.3 UNIX User's Reference Manual or by using the man command. 
Additional references for further information are also given below. 

Command 

cb(l) 

lint{lY) 

cc(l) 

ld(l) 

make(l) 

a db( I) 

dbx( I) 

as(l) 

yacc(l) 

lex(!) 

180 

Use 

'C beautifier' - lay out a C program, adding spacing and 
indentation as appropriate. 

Verify a C program, performing stricter type-checking 

than the compiler, and look for features that are likely to 
be bugs, non-portable or wasteful. 

RISC iX C compiler. To find out the basics about C. try 
the C course in learn(l). For more advanced information, 
refer to the RISC iX Programmer's Reference Manual. 

link editor. 

Maintain a program group, using a list giving the inter­
dependence of its constituent files. 

Debugger for general purpose use. 

Source level symbolic debugger. 

RISC iX ARM assembler. See the RISC iX Programmer's 
Reference Manual. 

Parser generator. Can be used in conjunction with lex. 

Lexical analyser. Can be used in conjunction with yacc. 

Further uses of RISC i> 



Text preparation This section lists some of the utilities RISC iX provides to help you prepare 
and format text and documents. For further details refer to the relevant 
manual page by looking in the Berkeley 4.3 UNIX User's Reference Manual o r 

by using the man command. Additional references for further information are 
also given below. 

Command 

diction(l) 

explain(l) 

spell (I) 

style( I) 

we( I) 

nroff(l) 

troff(l) 

psroff(l) 

deroff (l) 

refer(l) 

tbl(l) 

eqn(l) 

Use 

Look for poor or verbose sentences in a document. 

Use with the output from diet ion as an interactive 
thesaurus. 

Find spelling errors in a document. 

Give indications of the style and readability of a document. 

Count lines, words and characters in a document. 

Format a document for output to a printer. For more 
information, try the macros course in learn( I ). 

Format a document for output to a photo-typesetter. 

Convert a t ro f f document for PostScript output. 

Remove nroff and troff formatting commands from a 
document. 

Find and format references for footnotes or endnotes. 
Used as a preprocessor for nroff or t rof f. 

Format tables. Used as a preprocessor for nroff or 
troff. 

Format mathematical equations. Used as a preprocessor 
for troff. For more information, try the eqn course in 
learn(l). 

Further uses of RISC iX 181 



neqn(l) 

checkeq(l) 

col(l) 

colcrt(l) 

182 

Format mathematical equations. Used as a preprocessor 
for nroff. 

Check the validity of equations prior to formatting. 

Filter reverse line feeds and other codes output by 
nroff, typically when it is used with tbl. 

Filter n rof f output for display to a terminal. 

Further uses of RISC i.X 



Data manipulation This section lists some of the utilities RISC iX provides to help you 
manipulate data. For further details refer to the relevant manual page by 
looking in the Berkeley 4.3 UNIX User's Reference Manual or by using the man 
command. Additional references for further information are also given below. 

Command 

he ad(l) 

tai l (l) 

split(!) 

expand(l) 

unexpand( I) 

pr(l) 

rev(l) 

sort(l) 

look(l) 

grep(I) 

awk(l) 

sed( I) 

tr(l) 

Use 

Output lines from the head (start) of a file. 

Output lines from the tail (end) of a file. 

Split a file into separate parts. 

Expand tabs to spaces. 

Convert spaces to tabs. 

Print text, optionally multi-columned or with a header. 

Reverse the order of lines of text 

Sort files. 

Find lines in a sorted file starting with a given string. 

Find lines in a file containing a given regular expression. 

Find lines of text matching a pattern and perform a 
corresponding action. Many pattern-action pairs can be 
specified and programs written. 

Stream editor, using commands similar to those used by 
ed. 

Translate all occurrences of a given string of characters to 
another given string. 

Further uses of RlSC iX 183 



Miscellaneous utilities This section lists some of the more useful of the many other utilities RISC iX 
provides. For further details refer to the relevant manual page by looking in 
the Berkeley 4.3 UNIX User's Reference Manual or by using the man command. 
Additional references for further information are also given below. 

Command 

find(l) 

cmp(l) 

diff(l) 

diff3(1) 

comm(l ) 

uniq(l) 

oct( I) 

sum(l) 

at(l) 

calendar(l) 

cal(l) 

bc(l) 

184 

Use 

Find files. 

Compare two files and find first differing byte. 

List differences between two text files. 

List differences between three text files. 

List lines common to two files and show which of the two 
files the remaining lines are in. 

Remove (or report on} repeated lines in a file. The lines 
must also be adjacent. 

Octal, decimal, hex or ASCII dump. 

Calculate a checksum for a file and its size in blocks. 

Execute commands at a later time. 

Display lines from a calendar file which contain today's 
or tomorrow's date. 

Display the calendar for a given month. 

Do sums interactively - useful both as a simple calculator 
and an arbitrary-precision arithmetic language. 

Further uses of RISC i> 



Bibliography 

This appendix lists the titles of all the manuals referenced throughout this 
guide, as pointers to further sources of information about the features of your 
system. 

1. RI40 Operations Guu.le- (Part No. 0483,710) 

2. RISC iX System Administrator's Manual - (Part No. 0483,747) 

3. RISC iX Programmer's Reference Manual- (Part No. 0483,748) 

4. Berkeley 4.3 BSD System Manual Set, which comprises seven volumes: 

• User's Reference Manual (URM) 

• User's Supplementary Documents (USD) 

• Programmer's Reference Manual (PRM) 

• Programmer's SupJJlementar)' Documents, Volume 1 (PS 1) 

• Programmer's Supplementary Documents, Volume 2 (PS2) 

• System Manager's Manual (SMM) 

• UNIX User's Manual Master Index 

5. X Window System Manual Set produced by lXI Limited, which comprises 
four volumes: 

• Volume I : C Language Interface 

• Volume 2: Reference Manual 

• Volume 3: Standard Supplement 

• Volume 4: Server & Porting Guide 

Bibliography 185 



6. The Definitive Guide to the X Window System, produced by O'Reilly & 
Associates Inc., which comprises four volumes: 

• Volume I : Xlib Programing Manual 

• Volume 2: Xlib Reference Manual 

• Volume 3: X Window System User's Guille 

• Volume 4: X Toolkit Programmer's Guide 

7. Fundamentals of Operating Systems- AM LisLer, Macmillan, (1981) 

186 Bibliography 



Reference Section A : Trouble.,shooting 

Introduction This reference section provides you with helpful information for you to refer 
to whenever you get into difficulty using your system. It is structured so that 
you can quickly access the help information on any given topic. 

• command errors- give~ gutdelines for typing RISC iX command~. 

• editing errors - the most likely error messages that you may receive when 
using the editors described in this guide. 

• networking problems - this section describes the typical problems that can 
occur if your machine is on a network. 

Reference Section A: Trouble-shooting 187 



RISC iX commands 

Typing errors 

Syntax and punctuation 

Special characters 

This section gives a few simple hints on how to tackle an error message you 
received when typing a RISC iX command. The vast majority of errors in 
RISC iX are the user's mistake, not the system's, and you must learn to 
recognise what has caused problems. The examples assume you are trying to 

use the command: 

l s - x 

The most common form of mistake is a simple typing error. For example: 

la -x 

you typed la instead of ls so RISC iX looks for the command la, but cannot 
find it. 

So, always check your typing. If you made a mistake, retype the line. 

Another very common mistake is poor syntax or punctuation. For example: 

ls-x 

a space is missing so RISC iX looks for but cannot find the command ls - x 

ls - x 

there are too many spaces, so RISC iX executes the command 1 s on the file 
x, with no options (nothing directly follows the - ). 

Next, you should check your punctuation. Refer to the appropriate manual 
page of the command if necessary. You may find the on-line version shows 
punctuation rather more clearly than the printed version, because the 
typesetting process can make any spaces appear very small. 

Another problem that commonly occurs is the incorrect use of characters that 
have a special meaning to the shell when used individually or in combination 
with other characters. These are: 

* 

? 

188 

matches any character(s), incuding none 

matches any single character 

Reference Section A: Trouble-shooting 



The manuals 

[ ... 1 

& 

\ 

'' 

> 

>> 

< 

. . . ) 

matches any of the characters enclosed by the square 

brackets 

executes commands in the background 

sequentially executes several commands typed in on one 
line, each separated by ; 

turns off the meaning of special characters in the shell 

used to quote a string of characten., some of which may 
be :.pccial 

redirect output 

append output 

redirect input 

redirect standard output to standard input 

used for command grouping . 

Look at your command and check for special characters. If you u~ed any in 
your command, you can see how they were interpreted by the command: 

echo yourcommand 

You may then need to etther quote the special character to stop it being 
interpreted, or type the command more specifically - ie without using any 
she ll abbreviations. 

If you can still see nothing wrong with what you typed, but the command is 
still not doing what you think it should, your next step is to read the 
appropriate :.cction of thb guide where the command is dt~cussed again. 

If you still arc having problems, remember that the manual pages for 
RISC iX commClnds arc available on-line using the man command. Carefully 
read all the pages for the command you arc trying to use. 

You may find that the command doesn't do what you thought it dtd, o r its 
syntax differs from what you used. Find out how the command really works. 
If it doesn't do what you want, start looking through the manual pages for the 
commands that are closely related - these are listed under the heading SEE 
ALSO. 

Reference Section A: Trouble-shooting 189 



Asking for help 

Getting information 

As you get more experienced at using RISC iX you will find that you sort out 
your own problems more quickly and easily. But if you're still stuck now, 
there's probably not a lot more you can do alone. You will need to ask for 
help - try either a more experienced RISC iX user or your system 
administrator. 

If they can only help you later, they will need to know exactly what the 
problem was so they can reproduce it. You can help them immensely if you 
use these commands. Either note down what is displayed, or redirect the 
output to files: 

ls -al 

pwd 

set 

whoami 

history 

ps 

list all files in long format, including permissions. 

print your current working directory. 

show your environment. 

show who you are currently logged on as. 

list your most recent commands (only if you arc in a 
C shell). 

display a list of the processes that you are running. 

You may also find that the output from one of these commands helps you to 

see what the problem is. 

190 Reference Section A: Trouble-shooting 



Editing errors 

The line editor - ed 

' Tht::. section describes the problems that can occur while you are using the 
editors ed and vi: 

Error messages 

There is only one error message that you can receive from ed: 

? 

It is left up to you to decide what you have done wrong. But here are a list of 
a few of the most likely actions that could have caused the error: 

• you tried to quit from ed without saving the changes you made to the file 

you were editing. Either ~ave the changes and then quit or issue the quit 
command (q) again. This time ed wtll let you qutt wtthout saving the 

changes. 

• you issued a command that ed does not understand. Check the syntax of the 
command and look in the guide to sec if you are using the command 
correctly. 

• you requested ed to search for a string in a file and ed did not find it. 

Check the syntax of the search command. 

You may also receive the error: 

?filename 

This means that you invoked ed with the file filename, but ed could not 
find this file. Quit from the editor and check that the file exists and that you 
~pellcd it correctly. 

Common mistakes 

You type a valid ed command, but nothing happens - check that ed is not in 

input mode by typing: 

. .J 

then retype the command again. 

Avoiding complete catastrophe 

Remember, if you do something in ed that ruins your file, you can retrieve the 
situation by typing u, with ed in command mode. This undoes the last 

command you issued. 

Reference Section A: Trouble-shooting 191 



The screen editor - vi Error messages 

Most of the error messages that you receive from vi are self-explanatory; for 
example: 

pattern not f ound 

no mo re fi les to edit 

pattern to search for not found. 

tried to read a new file into the buffer 
without specifying any more files. 

In some cases the error message is displayed along with a suggested remedy: 

No wr ite s i nce l a st cha nge (:quit! overrides ) 

tried to leave vi without saving the 
changes. 

No write s i nce last change (:ne xt! overrides ) 

tried to read in a new file without saving 
the changes to the existing file. 

File ex i sts - use "w! newfile" to overwri te 

tried to overwrite an existing file. 

The most common error message that you receive is a beep: this tells you that 
you are doing something incorrectly. Type <ESC> to put vi into command 
mode and try the operation again. 

Common mistakes 

You type a valid v i command, but nothing happens - check that vi is not in 
insert mode by typing <ESC>, then try the command again. 

A voiding complete catastrophe 

Remember, if you do something in vi that ruins your file, you can retrieve the 
situation by typing u, with vi in command mode. This undoes the last 
command you issued. 

192 Reference Section A: Trouble-shootin_ 



Networking problems This section describes the common errors that you will encounter when using 
the network. 

Error message 

Connection refused 

Connection timed out 

File not found 

Host name for your address 
unknown 

Login incorrect 

Meaning 

Remote workstation functioning, but 
its daemons are not ready to 

complete the connection . 

Either your workstation or the 

remote workstation is down, off or 
hung: there may be problems with 
ethernet, or the workstation is just 
heavily loaded. 

The file cannot be located on the 
remote workstation. 

Remote workstation has no record of 
your workstation's name in its 
/etc/hosts file. 

Your username needs to be added 

to the /etc/passwd file on the 
remote workstation, or you typed in 
your password incorrectly. 

Network is unreachable A gateway or other network 
connection is not working . 

. . . No such file or directory The file or directory on the remote 

workstation has been wrongly 
described, does not exist, or you do 
not have the necessary access rights 
to it. 

... not found 

Reference Section A: Trouble-shooting 

T he directory on the remote 
workstation has been wrongly 
described, or does not exist. 

193 



Permission denied 

RPC: Po rt map failure 

RPC : Time d out 

RPC : Unknown host 

unknown host 

There is no record of your 
workstation name on the 
/etc/hosts.equivor .rhosts 

file. Try logging in with a password. 

Daemon not functioning correctly. 

The remote workstation is not 

running or is very heavily loaded. 
Although this is a very common 
error, it can often be ignored. 

The name you have given for the 
remote workstation, rhost, is not 

known on the network. Make sure 
you entered the correct rhost name. 

The name of the remote workstation 
should be added to your 
/etc/ hosts file . 

For a more complete description of errors that you can encounter on the 
network, refer to the RISC i'X. System Administrator's Manual. 

194 Reference Section A: Trouble-shooting 



Reference Section B: Command summaries 

Introduction This reference section conta ins a summary of the commands that can be used 
from your RISC iX workstation, according to the following categories: 

• User commands 

• UNIX shell 

• UNIX editors: 

• the line editor - ed 

• the screen editor vi 

• ex 

• rna i 1 commands 

• floppy disc commands. 

Reference Section B: Command summaries 195 



User commands This section contains a list of the commands that you can use on your RISC iX 
workstation. The commands are listed in alphabetical order a long with a 
brief sentence describing their function. 

The commands in bold type are new commands specific to RISC iX. 
Commands in italics are specific to the X Window System. 

Command 

a db 

adfscat 

adfscp 

adfsls 

adfsrm 

alert 

apropos 

as 

at 

atq 

atrm 

awk 

awm 

be 

bitmap 

cal 

calendar 

cat 

196 

Description 

Debugger for general purpose use. 

Write files from an ADFS format floppy disc to 
standard output .. 

Copy files from an ADFS format floppy disc. 

List files on an ADFS format floppy disc. 

Remove files from an ADFS format floppy disc. 

Display an alert box. 

Locate commands by keyword look-up. 

RISC iX assembler for the ARM. 

Execute commands at a later time. 

Print the queue of jobs waiting to be run. 

Remove jobs spooled by at. 

Pattern scanning and processing language. 

Ardent window manager. 

Arbitrary-precision arithmetic language. 

Bitmap editor. 

Display the calendar for a given month. 

Display lines from a calendar file. 

Catenate and print 

Reference Section 8: Command summaries 



cb 

cc 

cd 

checkeq 

chgrp 

chmod 

clear 

cmp 

col 

col crt 

comm 

compress 

cp 

csh 

date 

dbx 

de 

deroff 

df 

diction 

diff 

diff3 

du 

echo 

'C beautifier' - lay out a C program. 

RISC iX C compiler. 

Change working directory. 

Check the validity of equations. 

Change file group. 

Change file mode. 

Clear terminal screen. 

Compare two files. 

Filter reverse line feeds. 

Filter nroff output. 

List lines common to two files. 

Compress and expand data. 

Copy files. 

A shell (command interpreter) with C-like syntax. 

Print and set the date. 

Source-level symbolic debugger. 

Desk calculator. 

Remove n ro f f and t ro f f formatting commands. 

Summarise the free space on a disc. 

Look for poor or verbose sentences . 

List differences between two text files. 

List differences between three text files. 

Summarise disc usage. 

Echo arguments 

Reference Section B: Command summaries 197 



e d 

eqn 

expand 

explain 

fc 

f ile 

fi nd 

ffd 

flpop 

g rep 

gs 

head 

hostid 

host na me 

ico 

inituser 

i nstall 

kill 

ld 

learn 

l ex 

l i n t 

ln 

login 

198 

Line-based editor. 

Format mathematical equations for troff. 

Expand tabs to spaces. 

Interactive thesaurus for diction . 

Font compiler. 

Determine file type. 

Find files. 

Format floppy discs. 

Specify parameters on variable floppy disc controller 
devices. 

Find lines in a file containing a given regular expression. 

Get string. 

Output lines from the head of a file. 

Set or print identifier of current host system. 

Set or print name of current system. 

Animate an icosahedron or other polyhedra. 

Set up a new user. 

Install binary files. 

Terminate a process with extreme prejudice. 

Link editor. 

Computer aided instruction about RISC iX. 

Lexical analyser. 

Verify a C program. 

Make links to files. 

Sign on 

Reference Section B: Command summaries 



look 

l pq 

l pr 

lprm 

ls 

mail 

make 

man 

mkdir 

mkruler 

more 

msdoscat 

msdoscp 

msdosls 

msdosrm 

muncher 

mv 

neqn 

nice 

nroff 

od 

passwd 

Find lines in a sorted file starting with a given string. 

Spool queue examination program. 

Send job to printer. 

Remove jobs from the line printer spool queue. 

List contents of directory. 

Send and receive mail. 

Maintain a program group. 

Find manual information by keywords; print out the 
manual. 

Make a directory. 

Make a function key ruler for output to a PostScript 
printer. 

File perusal filter for crt viewing. 

Write files from MS-DOS format floppy disc to 

standard output. 

Copy files from an MS-DOS format floppy disc. 

List files from an MS-DOS format floppy disc. 

Remove files from an MS-DOS format floppy disc. 

Draw interesting patterns. 

Move or rename files. 

Format mathematical equations for nroff. 

Run a command at low priority. 

Format a document for output to a printer. 

Octal, decimal, hex or ASCII dump. 

Change password file information 

Reference Section B: Command summaries 199 



200 

plaid 

pr 

printenv 

ps 

psroff 

puzzle 

pwd 

rep 

reborder 

refer 

rev 

rlogin 

rm 

rmdir 

rsh 

script 

sed 

sh 

showsnf 

sleep 

sort 

spell 

sp l it 

stty 

Paint some plaid-like patterns. 

Print text, optionally multi-columned or with a header. 

Print out the environment. 

Display process status. 

Convert at rof f document for PostScript output. 

15-puzzle game. 

Display working directory name. 

Remote file copy. 

Put borders around an X window. 

Find and format references. 

Reverse the order of lines of text. 

Remote login. 

Remove (unlink) files or directories. 

Remove (unlink) directories. 

Remote shell. 

Make typescript of terminal session. 

Stream editor. 

Command interpreter. 

Font examination tool. 

Suspend execution for an interval. 

Sort or merge files. 

Find spelling errors. 

Split a file into separate parts. 

Set terminal options 

Reference Section 8: Command summaries 



style 

su 

sum 

tail 

tbl 

tar 

tee 

tftp 

time 

touch 

tr 

troff 

tset 

twm 

uemacs 

unexpand 

uniq 

unit 

uucp 

uux 

vi 

we 

what is 

whereis 

Give indications of the style and readability of a 
document. 

Substitute user id temporarily. 

Calculate a checksum for a file, and its size in blocks. 

Output lines from the tail (end) of a file. 

Format tables. 

Tape archiver. 

Pipe fitting. 

Trivial file transfer program. 

Time a command. 

Update date last modified of a file. 

Translate characters. 

Format a document for output to a photo-typesetter. 

Terminal JepenJent initialisation. 

Tom's winJow manager. 

Display-based programmable editor. 

Convert spaces to tabs. 

Remove (or report on) repeated lines in a file. 

Conversion program. 

UNIX to UNIX copy. 

UNIX to UNIX command execution. 

Screen-oriented (visual) display editor based on ex. 

Ulunt lines, words and characters. 

Describe what a command is. 

Locate source, binary and or manual for a program 

Reference Section 8: Command summaries 201 



202 

which 

whoami 

wm 

wradfs 

wrmsdos 

xbiff 

xcalc 

xcalendar 

xclock 

xdpr 

xedit 

xfd 

xhost 

xload 

xmore 

xperfmon 

xpr 

xprkbd 

xprop 

xrdb 

xrefresh 

xset 

xsetroot 

xwd 

Locate a program file including aliases and paths. 

Print effective current user id. 

A simple window manager. 

Write files onto an ADFS format floppy disc. 

Write files onto an MS-DOS format floppy disc. 

Mailbox flag. 

A calculator. 

Calendar and mini-diary. 

A clock. 

Print a snapshot of an X window. 

A simple screen-based editor. 

Font displayer. 

Server access control program. 

Load average display. 

File browser. 

Performance monitor. 

Print an X window dump. 

Keyboard configuration tool. 

Display window and font properties. 

X server resource database utili ty. 

Refresh all or part of an X screen. 

User preference utility. 

Root window parameter setting utility 

Dump an image of an X window to a file. 

Reference Section B: Command summaries 



xwininfo 

xwud 

yorn 

yacc 

Window information utility. 

Show previously dumped window images. 

Alert box. 

Parser generator. 

Reference Section B: Command summaries 203 



The UNIX shell 

Special characters 

Redirecting input and 
output 

Shell variables 

This section contains a quick reference to the features of the UNIX shell that 
have been discussed in this guide. 

* 
? 

... l 

& 

\ 
, , 

> 

>> 

< 

HOME 

PATH 

204 

Matches any character(s), incuding none. 

Matches any single character. 

Matches any of the characters enclosed by the square 
brackets. 

Executes commands in the background. 

Sequentially executes several commands typed in on one 
line, each separated by ; . 

Turns off the meaning of special characters in the shell. 

Quote a string. 

Redirect output. 

Append output. 

Redirect input. 

Redirect standard output to standard input. 

The name of your home directory; also the default 
directory that is used when the cd command is issued 
with no arguments. 

The search path that is followed when the shell tries to 

execute a command that has been issued. 

Reference Section 8: Command summarie~ 



The line editor, ed The following ed comm:~nds are described in the chapter Text editing. Further 

commands are available: sec 

• A Tuwrial Introduction to the UNIX Text Editor by Brian W Kernighan in 
the Berkeley 4.3 UNIX User's Supplementary Documents Manual. 

• Advanced editing on UNIX by Brian W Kernighan in the Berkeley 4.3 UNIX 
User's Supplementary Documents Manual. 

I • ed( l) manual page. 

Command 

i 

a 

d 

p 

.J 

m 
s 
/ pattern/ 

?pattern? 

II 
?? 

g 
e filename 

w filename 

q 

u 

Use 

Insert text before the current line. 
Append text after the current line. 

Finish adding text. 
Delete the current line. 
Print the current line. 

Print the next line . 
Print the previous line. 
Move lines. 
Substitute text on the current line. 
Search forwards for pat tern . 

Search backwards for pattern. 

Repeat a context search in the forward direction. 
Repeat a context search in the backward direction. 
Global modifier: make a command affect all lines. 

Edit filename. 

Write out the changes to filename . 

Quit; a second q bypasses checking. 
Undo the last change made. 

Reference Section B: Command summaries 205 



The screen editor, vi The following vi commands are described in the chapter Text editing. Further 
commands are available: see 

• An lnr.roduction to Display Editing with vi by William Joy & Mark Horton 
in the Berkeley 4.3 UNIX User's Supplementary Documents Manual. 

• vi (I) manual page. 

Command 
h 

j 

k 
1 

$ 
0 

w 
b 

e 
w 

B 

E 

H 

M 

L 

<CTRL- 0> 
<CTRL- U> 
<CTRL- F> 
<CTRL- B> 
<CTRL- E> 
<CTRL-Y > 
) 

( 

} 
{ 
/pattern 

206 

Use 
Move left by one character on the screen. 
Move down by one line on the screen. 

Move up by one line on the screen. 
Move right by one character on the screen. 
Move to the last character on the current line. 

Move to the first character on the current line. 
Move forward to the beginning of the next word. 

Move back to the beginning of the previous word. 
Move forward to the end of the current word. 
Move forward to beginning of next word, ignoring 
punctuation. 
Move back to beginning of previous word, ignoring 
punctuation. 
Move forward to end of current word, ignoring 
punctuation. 
Move to the home or top line on the screen. 
Move to the middle line on the screen. 
Move to the last line on the screen. 
Scroll down by half a screenful. 
Scroll up by half a screenful. 
Page forward by a screcnful. 
Page backward by a screenful. 

Expose one more line at the bottom of the screen. 
Yank another line onto the top of the screen. 
Move the cursor to the end of the current sentence. 
Move the cursor to the start of the current sentence. 

Move the cursor to the end of the current paragraph. 
Move the cursor to the start of the current paragraph. 
Search forwards for pattern. 

Reference Section 8: Command summaries 



?pattern 
n 

N 

a 
i 

0 

A 
0 
s 

c w 
cc 
X 

dd 
dw 
y 

p 

p 

u 
u 

J 

search backwards for pattern. 
repeat a context search in the same direction. 
repeat a context search in the opposite direction. 
append text after the current cursor position. 
insert text before the current cursor position. 
open file to append text after the current line. 
append text at the end of the current line. 
open file to insert text before the current line. 
substitute a string of characters for the cursor 
character. 
change a word. 
change an entire line. 
delete the current character. 
delete the current line. 
delete the current word. 
yank lines into a buffer. 
put back the deleted text after the current cursor 
position or current line. 
put back the deleted text before the current cursor 
position or current line. 
undo the last change made. 
undo the last set of changes made to the current line. 
repeat the last buffer change command. 
join together the current line with the line below. 

Reference Section B: Command summaries 207 



ex commands The following ex commands are described in the chapter Text editing. They 
may be used from both vi and ex. Further commands are available: see 

• An Introduction to Displa)' Editing with vi by William Joy & Mark Horton 
in the Berkeley 4.3 UNIX User's Supplementary Documents Manual. 

• The Ex Reference Manual - Version 3.7 by William Joy & Mark Horton in 
the Berkeley 4.3 UNIX User's Supplementary Documents Manual. 

• vi(l) and ex(l) manual pages. 

Command 

: w filename 

:q 
:e 
:g 
: s 
:! cmd 
:sh 
: n 
: set 
:map 

208 

Use 

Write out the changes to filename. 

Quit. : q! bypasses checking. 
Edit a new file. : e ! bypasses checking. 

Globally search for a string. 
Substitute one string for another. 
Execute the shell command, cmd and return to vi. 
Execute a shell. 
Edit next file in argument list. : n! bypasses checking. 
Print or set options. 
Define a macro command. 

Reference Section 8: Command summarie~ 



mail commands The following list summarises the mail commands discussed in this guide: 

Command Syntax 

mail mail username 

Commands given after the mail prompt ( &) 

headers 

messagenumber 

print [messagenumber] 

quit 
reply (messagenumber) 

Use 

start the mail program 

display numbered mail 
message list. 
display message with 

specified number. 
display current message (or 
message with specified 
number). 
exit mail program. 
reply to current message (or 
to message with specified 
number). 

save (messagenumber] filename 

? or help 
X 

Tilde escape commands 

-m [messagenumber] 

-r filename 

-v 

-? 

Reference Section 8 : Command summaries 

save current mail message 
(or message with specified 
number) into specified file. 
help information. 
exit the rna i 1 program 
without saving unread mail. 

insert a copy of the current 
mail message (or message 
with specified number). 
insert a copy of the 
specified file. 
enter vi text editor within 

mail. 

display a summary of tilde 
escape commands. 

209 



Floppy disc commands The following list summarises the floppy disc commands discussed in this 
guide: 

Command Use 

ffd format floppy disc. 

tar cvf /dev/fd£1024 filename copy filename to a formatted 
floppy disc. 

tar tv£ /dev/fd£1024 li:.r the contents of tar files on a 
floppy disc. 

tar xvf /dev/rfd£1024 extract all the contents of n 
floppy disc and copy the contents 
to the current directory. 

msdosls list the contents of an MS-DOS 
floppy disc. 

msdoscp -v filename /tmp copy filename from an MS­
DOS floppy disc to /tmp. 

adfsls list the contents of an ADFS 
floppy disc. 

adfscp -v filename /tmp copy filename from an ADFS 
floppy disc to /tmp. 

210 Reference Section B: Command summaries 



Reference Section C: RISC iX manual pages 

This reference section contains a selection of user reference manual pages for 
use with your RISC iX workstation. There arc manual pages for most of the 
commands covered in this guide along with manual pages that have been 
significantly changed from the Berkeley 4.3 BSD originals to suit RISC iX. 

Reference Section C: RISC iX manual pages 211 



212 Reference Section C: AISC iX manual pages 



ADFSCAT( 1) UNlX Programmer's Manual ADFSCAT( I) 

NAME 
adfscat - catenate and print from adfs micro diskettes. 

SYNOPSIS 
adfsca t file ... 

DESCRIPTION 
Ad/scat writes to standard output t.he named file or files on an adfs micro diskette. The character 
'.' should be used to delimit subdirectory names. 

FILES 
/dev/rfdfl024 

SEE ALSO 
adfsls(l), wradfs(l), adfsrm(l), adfscp(l), msdoscat(l), mSdosls(l), wrmSdos(l), mSdosnn(l), 
msdoscp(l), fd(4). 

7t.h Edition Revision 1.8 of ll/12/88 



ADFSCP( I) UNIX Programmer's Manual ADFSCP( 1) 

NAME 
adfscp- copy files from adfs micro diskettes. 

SY!I:OPSIS 
adfscp [ -RFV I ( -Dchar I file ... directory 

DESCRIPTION 

FILES 

Adfscp copies the specified file or files from the adfs d•skcne to the specified UNIX directory. 
The UNIX directory may be a"." to denote the current directory. 

A "." or a directory name may be substituted for an a drs file name to denote all the files in the 
root or the specified directory name. However subdirectories of the specified directory arc not 
copied unless the -R option is given. 

If an existing UNIX ftle would be overwrilten, confirmation is requested unless Lhe -F option is 
given. 

The -V option causes adfscp to give a blow-by-blow account of its activities. 

The-m option causes adfscp to set the modification and access dates on files created from ADFS 
files which have them. 

Slashes in the adfs file names arc replaced by fullstops in the resulting UNIX file names unless 
the -Dchar option is given, which causes adfscp to look for the given character in the adfs file 
names and replace those by fullstops. (I.e. if the same -D Option is given to ad[scp as was given 
to wradfs, the resulting UNIX file names should be the same as before apan from truncation to 10 
characters). 

/dev/rfdfl024 

SEE ALSO 
adfscat(I), adfsls(l), adfsnn, wradfs(l), msdoscat(l), msdosls(I), wrmsdos(l), msdosrm(l ), 
msdoscp(l), fd(4). 

7Lh Edition Revision 1.8 of 24/11/88 



ADFSLS ( 1) UNIX Programmer's Manual ADFSLS ( 1) 

SAME 
adfsls - list files on adfs micro diskettes. 

SYNOPSIS 
adfsls [ -CFRdl J [ file J 

DESCRIPTION 

FILES 

Adfsls produces output on the standard output relating to an adfs micro diskette in a similar 
fashion 10 the UNIX utility Ls(l). 

By default (with no arguments), the root level directory is examined and the entries therein printed 
in a single column, soned alphabetically. 

One or more ftlenames (as with adfscaJ) may be given. Files arc just printed, directories are listed 
out, all in the given order. 

The -C option causes the entries to be listed in multiple columns. 

The -F option causes a . to be appended to subdirectory names in the ou!put. 

The - R option causes subdircclories to be recursively examined. 

The -d option causes subdirectory names to be lisled instead of the contents being printed. 

The - 1 option causes infom1ation in addition to the file names to be output, in panicular the access 
bits, followed by either the load and execution addresses or the file lype and date/time, the sectors 
(which are reckoned as 256 bytes in length, although the disc blocksize is 1024 bytes) used by the 
file and the file size. 

The -l option causes the tiles to appear in date/time order, newest first, instead of alphabetic 
order. If files have a load and execution address ra1her than a dale and time, then they arc treated 
as very recent, i.e. they appear before all other files. 

The - r option causes the files to be displayed in reverse order, i.e. in reverse alphabetic order 
without and in newest-last order with the -t oplion, in which case files with a load and execution 
address will appear last. 

/dev/rfdfl 024 

SF.F. ALSO 
adfscat(l), adfscp(l ), wradfs(l), adfsrm(l), msdoscat(l), msdosls(l), wnnsdos(l), msdosrm(l), 
msdoscp(l), fd(4). 

7th Edition Revision 1.9 of 11/12/88 



ADFSRM( I) UNIX Programmer's Manual ADFSRM( I) 

NAME 
adfsrm - remove files from adfs micro diskettes. 

SYNOPSIS 
adfsrm [ -f ] [ -r ] file . .. 

DESCRIPTION 

FILES 

Adfsrm removes one or more named files or directories from an adfs diskette. File and directory 
names are used in the same fashion as with the other utilities, either fullstops or slashes being 
used as directory delimiters. 

Directories arc not removed unless the __,. option is given, whereupon all files and subdirectories 
of the directory are also removed. 

Confirmation is requested for the removal of read-only files unless the -f option is given. 

/dev/rfdf1024 

SEE ALSO 
adfscat(l), wradfs(l), adfsls(l), adfscp(l), msdoscat(l), msdosls(l), wrmsdos(l), msdosnn(l), 
msdoscp(l), fd(4). 

7th Edition Revision 1.7 of 24/11/88 



CAT( I) UNIX Programmer's Manual CAT (I) 

NAME 
cat - catenate and print 

SYNOPSIS 
cat ( -u ) ( -n ) ( 41 ) ( -v ) file ... 

DESCRIPTION 
Cat reads each file in sequence and displays it on the standard output. Thus 

cat file 

displays the file on the standard output, and 

cat file 1 file2 >file3 

concatenates the first two files and places the result on the third. 

If no input fl.le is given, or if the argument '- · is encountered, cat reads from the standard input 
file. Output is buffered in the block size recommended by stat(2) unless the standard output is a 
terminal, when it is line buffered. The -u option makes the output completely unbuffered. 

The -n option displays the output lines preceded by lines numbers, numbered sequentially from I. 
Specifying the -b option with the-n option omits the line numbers from blank lines. 

The 41 option crushes out multiple adjacent empty lines so that the output is displayed single 
spaced. 

The -v option displays non-printing characters so that they are visible. Control characters print 
like 11X for control-x; the delete character (octal 0177) prints as 11?. Non-ascii characters (with the 
hlgh bit set) are printed as M- (for meta) followed by the character of the low 7 bits. A ~ option 
may be given with the -v option, which displays a '$' character at the end of each line. Specify­
ing the -t option with the -v option displays tab characters as 111. 

SEE ALSO 
cp(l), ex(l), more( I), pr(l), tail( I) 

BUGS 
Beware of 'cat a b >a' and 'cat a b >b', which destroy the input files before reading them. 

4th Berkeley Distribution Revision 1.2 of 19/10/88 



CO (I) UNIX Programmer's Manual CD( I) 

NAME 
cd -change working directory 

SYI\OPSIS 
cd directory 

DESCRIPTION 
Directory becomes the new working directory. The process must have execute (search) permis­
sion in directory. 

Because a new process is created to execute each command, cd would be ineffective if il were 
written as a normal command. It is therefore recognized and executed by the shells. In csh(l) 
you may specify a list of directories in which directory is to be sought as a subdirectory if it is 
not a subdirectory of the current directory; sec the description of the cdpath variable in csh(l ). 

SEE ALSO 
esh(l), sh{l), pwd{l), chdir(2) 

41h Berkeley Distribution Revision 1.2 of 19/ I 0/88 



CHMOD (I) UN1X Programmer's Manual CHMOO (I) 

NAME 
cbmod - change mode 

SYNOPSIS 
chmod [ -Rf I mode file ... 

DF.SCRIPTION 
The mode of each named file is changed according 10 ~. which may be absolule or symbolic. 
An absolute mock is an octal number constructed from the OR of the following modes: 

4000 set user ID on execution 
2000 set group ID on execution 
1000 sticky bit, see chmod(2) 
0400 read by owner 
0200 write by owner 
0100 execute (search in directory) by owner 
0070 read, wrile, execute (search) by group 
0007 read, write, execute (search) by others 

A symbolic mode has the form: 

[who) op permission {op permission) ... 

The who part is a combination of the letters u (for user's permissions), g (group) and o (other). 
The leuer a stands for all, or ugo. If who is omitted, the default is a but the setting of the file 
creation mask (sec umask(2)) is taken into account. 

Op can be + to add permission to the file's mode, -to take away permission and = to assign per­
mission absolutely (all other bits will be reset). 

Permission is any combination of the letters r (read), w (wrile), x (execute), X (set execute only if 
file is a directory or some other execute bit is set), s (set owner or group id) and t (save text -
sticky). Letters u , g, or o indicale that permission is to be taken from the current mode. Omitting 
permission is only useful with = to take away all permissions. 

When the -R option is given, chmod recursively descends its directory arguments setting the 
mode for each file as described above. When symbolic linlcs are encounlered. their mode is not 
changed and they are not traversed. 

U the ~option is given, chmod will not complain if it faUs to change the mode oo a file. 

EXAMPLES 
The ftrst ell8mple denies write permission to others, the second makes a file executable by all if it 
is executable by anyone: 

chmodo-w file 
cbmod +X file 

Multiple symbolic modes separated by commas may be given. Operations are performed in the 
order specified. The letters is only useful with u or g. 

Only the owner of a file (or the super-user) may change its mode. 

SEE ALSO 
ls(l ). chmod(2). stat(2), umask(2), chown(8) 

7th Edition Revision 1.2 of 19/10/88 



CP (I) UNIX Programmer's Manual CP ( 1) 

NAt\1E 
cp, cp() - copy 

SYNOPSIS 
cp L -ip J file! file2 

cp I -ipr I file ... directory 

DESCRIPTION 
File I is copied onto file2. By default, the mode and owner of file2 are preserved if it already 
existed; otherwise the mode of the source file modified by the current umask(2) is used. The -p 
option causes cp to auempt to preserve (duplicate) in its copies the modification times and modes 
of the source files, ignoring the present umask. 

In the second form, one or more files are copied into the directory with their original file-names. 

Cp refuses to copy a file onto itself. 

If the --4 option is specified, cp will prompt the user with the name of the file whenever the copy 
will cause an old file to be overwritten. An answer of 'y' will cause cp to continue. Any other 
answer will prevent it from overwriting the file. 

If the -r option is specified and any of the source files are directories. cp copies each subtree 
rooted at that name; in this case the destination must be a directory. 

SEE ALSO 

DUGS 

cat(!), mv(l), rep(! C) 

Cp will create 'holes' in the output file for completely zero disc blocks, this saves considerable 
disc space on Rl40 systems. Some NFS fileservers (eg those running 4.2BSD) have a bug which 
cause them to add a zero byte to files copied in this manner. This can be avoided by using cp() 
which is identical to cp except that it copies the file byte for byte. 

4th Berkeley Distribution Revision 1.5 of 22/11/88 



LEARN (I) UNIX Programmer's Manual LEARN (I) 

NAME 
Jearn -computer aided instruction about UNIX 

SYNOPSIS 
learn l --<lirectory ) [ subject [ lesson ll 

DESCRIPfiON 

FILES 

Learn gives Computer Aided Instruction courses and practice in the use of UNIX, the C Shell, 
and the Berkeley text editors. To get started simply type learn. If you had used learn before and 
left your last session without completing a subject, the program will usc information in 
$HOME/.leamrc to start you up in the same place you left off. Your first time through, learn will 
ask questions to find out what you want to do. Some questions may be bypassed by naming a 
subject, and more yet by naming a lesson. You may enter the lesson as a number that learn gave 
you in a previous session. If you do not know the lesson number, you may enter the lesson as a 
word, and learn will look for the first lesson containing it. If the lesson is '-', learn prompts for 
each lesson; Ws is useful for debugging. 

The subject 's presently handled are 

files 
editor 
vi 
more files 
macros 
eqn 
c 

There are a few special commands. The command 'bye' tcrmjnates a learn session and 'where' 
tells you of your progress, with 'where m' telling you more. The command 'again' rc-displays 
the text of the lesson and 'again lesson' lets you review lesson. There is no way for learn to tell 
you the answers it expects in English, however, the command 'hint' prints the last part of the les­
son script used to evaluate a response. while 'hint m • prints the whole lesson script This is use­
ful for debugging lessons and might possibly give you an idea about what it expects. 

The -directory option allows one to exercise a script in a nonstandard place. 

/usr/lib/leam subtree for all dependem directories and ftlcs 
/usr/tmp/pl • playpen directories 
$HOME/.lcamrc startup information 

SEE ALSO 

BUGS 

csh(l), ex(!) 
B. W. Kernighan and M. E. Lesk, LEARN - Computer-Aided Instruction on UNIX 

The main st.rength of learn. that it asks the student to use the real UNIX. also makes possible 
baffling mistakes. It is helpful, especially for nonprogrammers, to have a UNIX initiate near at 
hand during the first sessions. 

Occasionally lessons are incorrect, sometimes because the local version of a command operates in 
a non-standard way. Occasionally a lesson script does not recognize all the different correct 
responses, in which case the 'hint' command may be useful. Such lessons may be skipped with 
the 'skip' command, but it takes some sophistication to recognize the situation. 

To fmd a lesson given as a word, learn does a simple fgrep(!) through the lessons. It is unclear 
whether this sort of subject indexing is bcucr than none. 

Spawning a new shell is required for each of many user and internal functions. 

7th Edition Revision 1.2 of 19/10/88 



LEARN ( 1) UNIX Programmer's Manual LEARN ( I ) 

The 'vi' lessons arc provided separately from the others. To use them sec your system adminis· 
trator. 

7th Edition Revision 1.2 of 19/10/88 2 



LPQ (I) UNIX Programmer's Manual LPQ ( 1) 

"(AME 
lpq - spool queue examinauon program 

SYNOPSIS 
lpq [ +[ n ] ] l -I ] [ -Pprinter I I job # ... ] [ user ... l 

O£SCRJJYfiON 

FILES 

lpq examines the spooling area used by lpd(8) for printing files on the line printer, and repons the 
status of the specified jobs or all jobs associated with a user. lpq invoked without any arguments 
repons on any JObs currently an the queue. A -P Rag may be used to specify a particular printer, 
otherwise the default line printer is used (or the value of the PRINTER variable tn the environ­
ment). If a + argument is supplied, /pq displays the spool queue until it empties. Supplying a 
number immediately after the + sign indicates that /pq should sleep n seconds in between scans of 
the queue. All other arguments supplied are interpreted as user names or job numbers to filter out 
only those jobs of interesL 

For each job submitted (i.e. invocation of /pr( I)) lpq repons the user's name, current rank in the 
queue, the names of files comprising the job. the job identifier (a number which may be supplied 
to lprm(l) for removing a specifiC job), and the tOtal size in bytes. The -1 option causes informa­
tion about each of the files comprising the job to be printed. Normally, only as much information 
as will fit on one line is displayed. Job ordering is dependent on the algorithm used to scan the 
spooling directory and is supposed to be FIFO (First in First Out). File names comprising a job 
may be unavailable (when lpr( I) is used as a sink in a pipeline) in which case the file is indicated 
as "(standard input)". 

If lpq warns that there is no daemon present (i.e. due to some malfunction), the lpc(8) command 
can be used to restan the printer daemon. 

/etc/termcap 
/etc/printcap 
/USr/spool/• 
/usr/spool/•/cf• 
/usr/spool/• /lock 

for manipulating the screen for repeated display 
to determine printer characteristics 
the spooling directory. as determined from printcap 
control files specifying jobs 
the lock file to obtain the currently aetive job 

SEE ALSO 

IIUGS 

lpr(l), lprm(l),lpc(8), lpd(8) 

Due to the dynamic nature of the information in the spooling directory lpq may repon unreliably. 
Output formatting is sensitive to the line length of the terminal; this can results in widely spaced 
columns. 

DIAGNOSTICS 
Unable to open various files. The lock file being malformed. Garbage files when there is no dae­
mon active, but files in the spooling directory. 

4.2 Berkeley Distribution Revision 1.2 of 19/10/88 



LPR (I) UNIX Programmer's Manual LPR( I) 

NAME 
lpr - off line print 

SYNOPSIS 
lpr [ -Pprinter 1 [ -#num J [ -C class 1 [ -J job I [ -T title I [ -i [ numcols ll I -1234 font I [ 
-wnum 1 [ -pltndgvcfrmhs I [ name ... I 

DESCRIPTION 
Lpr uses a spooling daemon to print the named files when facilities become available. If no 
names appear, the standard input is assumed. The -P option may be used to force output to a 
specific printer. Normally, the default printer is used (site dependent), or the value of the environ­
ment variable PRINTER is used. 

The following single letter options arc used to notify the line printer spooler that the files arc not 
standard text files. The spooling daemon will use the appropriate filters to print the data accord­
ingly. 

-p Use pr(l) to format the files (equivalent to print). 

-1 Usc a filter which allows control characters to be printed and suppresses page breaks. 

-t The files are assumed to contain data from troff{l) (cat phototypesetter commands). 

-n The flies arc assumed to contain data from dilroff (device independent troff). 

-d The files are assumed to contain data from tex(l) (DVI format from Stanford). 

-g The files are assumed to contain standard plot data as produced by the ploi(3X) routines (see 
also plot( I G) for the filters used by the printer spooler). 

-v The flies are assumed to contain a raster image for devices like the Benson Varian. 

-c The files are assumed to contain data produced by cifplol(l). 

- f Use a filter which interprets the first character of each line as a standard FORTRAN carriage 
control character. 

The remaining single letter options have the following meaning. 

-r Remove the flle upon completion of spooling or upon completion of printing (with the -s 
option). 

- m Send mail upon completion. 

- h Suppress the printing of the burst page. 

~ Usc symbolic links. Usually files are copied to the spool directory. 

The -C option takes the following argument as a job classification for use on the burst page. For 
example, 

Jpr -C EECS foo.c 

causes the system name (the name returned by hostname(l)) to be replaced on the burst page by 
EECS, and the file foo.c to be printed. 

The -J option takes the following argument as the job name to print on the burst page. Normally, 
the frrst file's name is used. 

The - T option uses the next argument as the title used by pr( I) instead of the file name. 

To get multiple copies of output, use the -#num option, where 111m1 is the number of copies 
dc.~ircd of each file named. For example, 

lpr -#3 foo.c bar.c more.c 

would result in 3 copies of the file foo.c, followed by 3 copies of the file bar.c, etc. On the other 
hand, 

4th Berkeley Distribution Revision 1.2 of 19/10/88 



LPR (I) UNIX Programmer's Manual LPR (I) 

FiLES 

cat foo.c bar.c morc.c I lpr -113 

will give three copies of the concatenation of the files. 

The _.. option causes the output to be indented. If the next argument is numeric, it is used as lhe 
number of blanks to be print.cd before each line; otherwise, 8 characters are printed. 

The -w option takes the immediately following number to be the page width for pr. 

The , option will use symlink(2) to link data files rather than trying to copy them so large files 
can be print.cd. This means the files should not be modified or removed Witil they have been 
printed. 

The option -1234 Specifies a font to be mOWited on font position i. The daemon will construct a 
.rai/mag tile referencing lusrlliblvfomlname.size. 

/ctc/passwd 
/etc/print cap 
/usr/lib/lpd• 
/usr/spool/• 
/usr/spool/•/cf• 
/u.<;r/spool/•/df• 
/usr/spool/•/tf• 

personal identification 
printer capabilities data base 
line printer daemons 
directories used for spooling 
daemon contrOl files 
data files specified in "cf' files 
temporary copies of "cf' files 

SEE ALSO 
lpq(l), lprrn(l). pr(J), symlink(2), primcap(5). lpc(8), lpd(8) 

DIAGNOSTICS 

DUGS 

If you uy to spool too large a file, it will be trunCated. Lpr will object to printing binary files. If 
a user other than root prints a file and spooling is disabled, lpr will print a message saying so and 
will not put jobs in the queue. If a connection to /pd on the local machine cannot be made, lpr 
will say that the daemon cannot be started. Diagnostics may be printed in the daemon's log file 
regarding missing spool files by /pd. 

Foots for troff and tex reside on the host with the printer. It is currently not possible to usc local 
font libraries. 

4th Berkeley Distribution Revision 1.2 of 19/10/88 2 



LPRM ( 1) UNIX Programmer's Manual U'RM(l) 

NAME 
lprm - remove jobs from !.he line printer spooling queue 

SYNOPSIS 
lprm l -Pprinter I [ - I [ job # .. . I [ user . .. 1 

DESCRIPTION 

FILES 

Lprm will remove a job, or jobs, from a printer's spool queue. Since the spooling directory is 
protected from users, using lprm is normally !.he only method by which a user may remove a job. 

Lprm without any arguments will delete !.he cWTently active job if it is owned by !.he user who 
invoked lprm. 

If the- flag is specified, lprm will remove all jobs which a user owns. If !.he super-user employs 
!.his flag, !.he spool queue will be emptied entirely. The owner is determined by the user's lob>in 
name and host name on the machine where the /pr command was invoked. 

Specifying a user's name, or list of user names, will cause /prm to attempt to remove any jobs 
queued belonging to !.hat user (or users). This form of invoking /prm is useful only to !.he super­
user. 

A user may dequeue an individual job by specifying its job number. This number may be 
obtained from the /pq(l) program, e.g. 

%1pq - 1 

1st: ken 
(standard input) 

% lprm 13 

[job #013ucbarpa] 
100 bytes 

Lprm will announce the names of any flies it removes and is silent if there arc no jobs in the 
queue which match the request list. 

Lprm will kill off an active daemon, if necessary, before removing any spooling files. If a dae­
mon is killed, a new one is automatically restarted upon completion of file removals. 

The -P option may be usd to specify the queue associated with a specific printer (otherwise the 
default primer, or !.he value of the PRINTER variable in the environment is used). 

/etc/printcap 
/usr/spooV• 
/usr/spool/•/lock 

printer characteristics file 
spooling directories 
lock file used to obtain the pid of the current 
daemon and the job number of the currently active job 

SEE ALSO 
lpr(J ), lpq(l), lpd(8) 

DIAGNOSTICS 

BUGS 

"Permission denied" if the user tries to remove files other than his own. 

Since there are race conditions possible in the update of !.he lock file, the currently active job may 
be incorrectly identified. 

4.2 Berkeley Distribution Revision 1.2 of 19/10/88 



LS (I) UNIX Programmer's Manual LS (I) 

NAME 
Is list contents of directory 

SYI\OI'SIS 
Is [ -acdfgilqrstul ACLF'R I name ... 

DF-'iCRTPTION 
For each directory argument, Is lists the contents of the directory; for each file argument, Is 
repeats its name and any other information requested. By default. the output is sorted alphabeti­
cally. When no argument is given, the current directory is listed. When several arguments are 
given, the arguments arc first sorted appropriately, but file arguments arc processed before direc­
tOries and their contents. 

There are a large number of options: 

-1 List in long format, giving mode, number of links, owner, size m bytes, and time of last 
modification for each file. (See below.) If the file is a special file the size field will 
instead contain the major and minor device numbers. If lbe file IS a symbolic link the 
pathname of the linked-to file is printed preceded by "-> ". 

-g Include the group ownership of the file in a long output. 

-t Sort by time modified {latest first) instead of by name. 

-a List all entries: in the absence of this option, entries whose names begin with a period (.) 
are not listed. 

""" Give size in kilobytes of each file. 

-d If argument IS a d1rectory. list only its name: often used with -1 to get the statuS of a 
directory. 

-L If argument is a symbolic link, list the Ale or directory the link references rather than the 
link itself. 

-r Reverse the order of sort to get reverse alphabetic or oldest first as appropriate. 

-u Use time of last access instead of last modification for sorting (with the -t option) and/or 
printing (with the -1 option). 

~ Use time of file creation for sorting or printing. 

-i For each file, print the i-number in the first column of the report. 

-f Force each argument to be interpreted as a directory and list the name found in each slot. 
This option tums off - 1, -t, """• and -r, and turns on -a; the order is the order in which 
entries appear in the directory. 

-F causes names to be marked with one of the following trailing characters: directories - 'I', 
sockets-'=', symbolic links-'@', and executable files- '•'. 

-R recursively list subdirectories encountered. 

-I force one ent.ry per line output format: this IS the default when output IS not to a terminal. 

-C force multi-column output; this is the default when output is to a terminal. 

-q force printing of non-graphic characters in file names as the character '?'; this is the 
default when output is to a terminal. 

The mode printed under the - 1 option contains II characters which are interpreted as follows: the 
first character is 

d if the cotty is a directory: 
b if the ent.ry is a block-type special file; 
c if the ent.ry is a character-type special file; 

3rd Berkeley Distribution Revision 1.3 of 21/11/88 



LS (I) 

FILES 

BUGS 

UNIX Programmer's Manual 

if the entry is a symbolic link; 
s if the entry is a socket, or 
- if the entry is a plain file. 

LS (I) 

The next 9 characters are interpreted as three sets of three bits each. The first set refers to owner 
permissions; the next refers to permissions to others in the same user-group; and the last to all 
others. Within each set the three characters indicate permission respectively to read, to write, or 
to execute the file as a program. For a directory, 'execute' permission is interpreted to mean per­
mission to search the directory. The permissions arc indicated as follows: 

r if the file is readable; 
w if the file is writable; 
x if the file is executable; 
- if the indicated permission is not granted. 

The group-execute permission character is given as s if the file bas the set-group-id bit set; like­
wise the user-execute permission character is given as s if the file has the set-uscr-id bit set. 

The last character of the mode (normally 'x' or '-') is t if the 1000 bit of the mode is on. See 
chmod(l) for the mearting of this mode. 

When the sizes of the files in a directory are listed, a total count of blocks, including indirect 
blocks is printed. 

/etc/passwd to get user id's for 'Is -1'. 
/etc/group to get group id's for 'Is -g'. 

Newline and tab are considered printing characters in file names. 

The output device is assumed to be 80 columns wide. 

The option setting based on whether the output is a teletype is undesirable- as "Is -s" is much 
different than "Is -s I lpr". On the other hand, not doing this setting would make old shell 
scripts which used Is almost certain losers. 

3rd Berkeley Distribution Revision 1.3 of 21/1 1/88 2 



MAN ( 1) UNlX Programmer's Manual MAN( I) 

NAME 
man - find manual information by keywords; print out the manual 

SYNOPSIS 
man I - I I -M path I I section I title ... 
man -k keyword ... 
man -f ftle ... 

DESCRIJYflON 

FILES 

Man is a program which gives information from the programmers manual. II can be asked for 
one line descriptions of commands specified by name, or for all commands whose description con­
tains any of a set of keywords. It can also provide on-line access to the sections of the printed 
manual. 

When given the option -k and a set of keywords, man prints out a one hne synopsis of each 
manual sections whose listing in the table of contents contains one of those keywords. 

When given the option -f and a list of file names, man attempts to locate manual sections related 
to those files, printing out the table of contents lines for those sections. 

When neither - k nor -1' is specified, man formats a specified set of manual pages. If a section 
specifier is given man looks in that section of the manual for the given titles. Section is either an 
Arabic section number (3 for instance), or one of the words "new," "local," "old," or "pub­
lic." A section number may be followed by a single letter classifier (for instance, lg, indicating a 
graphics program in section 1). If section is omitted, man searches all sections of the manual, 
giving preference to commands over subroutines in system libraries, and printing the first section 
it finds, if any. 

If the standard output is a teletype man pipes its output through more( I) with the option 1 to 
crush out useless blank lines and to stop after each page on the screen. Hit a space to continue, a 
control-0 to scroll I I more lines when the output stops. 

If the standard output is not a teletype, or the - flag is given, man pipes its output through cat( I). 
If- is specified the -s option is used to remove consecutive blank lines. 

Normally man checks in a standard location for manual information (!usrlman). This can be 
changed by supplying a search path (like the sh( I) command search path) with the -M flag. The 
search path is a colon (": ") separated list of directories in which manual subdirectories may be 
found; e.g. "/uSr/locai:Jusrtman." lf the environment variable "MANPATH" is set, its value is 
used for the default path. If a search path is supplied with the -k or -f options, it must be 
specified first. 

Man will look for the manual page in one of three forms, the nroff source, preformatted pages or 
the manpages archive found in lusrlmanlmanpages. •. If any version is available, the manual page 
will be displayed. If the preformatted version is available, and it has a more recent modify time 
than the nroff source, it will be promptly displayed. Otherwise, the manual page will be format­
ted with nroff and displayed. If neither preformatted nor nroff source versions are available and 
there is an entry in the archive this will be used. If the user has permission, the formatted manual 
page will be deposited in the proper place, so that later invocations of man will not need to format 
the page again. 

Normally each manual page should have either an nroff source version or an archive entry - there 
is no point having both, the archive entry will simply be ignored. 

/usr/man standnrd manual area 
/usr/man/man?/• directories containing source for manuals 
/usr/man/cat?/• directories containing prcformaued pages 
/uSr/man/manpagcs.• mllll page archive and contents list 
/usr/man/whatis keyword database 

4th Berkeley Distribution Revision 1.5 of 21 I I 1/88 



MAl':( I) UNIX Programmer's Manual MAN( I) 

Slit; ALSO 

Jll.(;S 

apropos(!), morc(l), whereis(l), caunan(8), arcat(8) 

The manual is supposed 10 be reproducible either on the photOiypcsctter or on a typewriter. How­
ever, on a typewriter some information is necessarily lost. 

The man pages archive and the preformaued versions of the man pages may conuun escape 
sequences appropriate to the terminal for which they were formaued - if they are displayed on a 
terminal (or by a program) which expects different escapes the rcsull, are unpredictable. 

4th Aerkeley Distribution Revision 1.5 of 21/11/88 2 



MKDTR ( 1) 

NAME 
mkdir - malc:e a directory 

SYNOPSI S 
mkdir dimame ... 

DESCRIPTION 

UNlX Programmer's Manual MKDTR ( 1) 

Mlcdir creates specified directories in mode TI7. Standard entries, ' .', for the directory itself, and 
' . .' for its parent, are made automatically. 

M/cdir requires write permission in the parent directory. 

SEE ALSO 
rmdir(1) 

7lh Edition Revision 1.2 of 19/10/88 



MORE( I) UNIX Programmer's Manual 

more. page - file perusal filter for en viewing 

SYNOPSIS 
more l -<dftpslu I l -n I l +linenwnbu I l +lpallun I l name ... 

page more options 

J>ESCRIPTJON 

MORE( I) 

More is a filler which allows examination of a continuous text one screenful at a time on a soft· 
copy terminal. I! normally pauses after each screenful, primmg ··More-- at !he bouom of !he 
screen. If !he user !hen types a carriage return, one more line is displayed. If the user hiL~ a 
space. another scrcenful is displayed. Other possibilities are enumerated later. 

The command line options arc: 
n An integer which is the size (in lines) of the window which more will use instead of !he 

default. 

-< More will draw each page by beginning at the top of !he screen and erasing each line just 
before it draws on it. This avoids scrolling !he screen, making it easier to read while 
more is writing. This option will be ignored if the terminal docs not have the ability to 
clear to !he end of a line. 

-d More will prompt the user with the message "Press space to continue, 'q' to quit." at !he 
end of each screenful, and will respond to subsequent illegal user input by printing "Press 
'h' for instructions." instead of ringing !he bell. This is useful if more is being used as a 
filter in some setting, such as a class, where many users may be unsophisticated. 

-f This causes more to count logical, rather !han screen lines. That is, long lines are not 
folded. This option is recommended if nroff output is being piped through u/, since !he 
Iauer may generate escape sequences. These escape sequences contain characters which 
would ordinarily occupy screen positions, but which do not print when !hey are sent to 
the terminal as pan of an escape sequence. Thus more may think !hat line..~ are longer 
than they actually are, and fold tines erroneously. This option also stops more from try­
ing to interpret !he escape sequences it sees in the input. 

-1 Do not treat "L (form feed) specially. If this option is not given, more will pause after 
any line that contains a "L. as if the end of a screenful had been reached. Also, if a file 
begins with a form feed, the screen will be cleared before the file is printed. 

- p CalL<;e more to use page mode -effectively equivalent to -< or 10 usmg page. 

-s Squeeze multiple blank lines from the output, producing only one blank line. Especially 
helpful when viewing nroff output, this option maxim ires the useful information pre<;ent 
on !he screen. 

-u Normally, mort will handle underlining such as produced by nroff in a manner appropri­
ate to !he panicular terminal: if the terminal can perform underlining or has a stand-out 
mode, more will output appropriate escape sequences to enable underlining or stand-out 
mode for underlined information in Lhe source file. The - u option suppresses !his pro­
cessing. It also prevents more trying to intcrpret the escape sequences in lhe input unless 
the -t option is also given. 

- t Attempt to translate vt100 escape sequences in !he input lo the appropriate control 
sequences for !he tenninal. This option also causes WlfCCOgnlscd escape sequences to be 
removed from the input, thus it is suitable ror usc witJt the output of man( I) on a terminal 
which docs not support the standard vtlOO e~cape sequences. 

+linemunber 
Stan up at linenWflber. 

4th Berkeley Dtstribution Revision 1.3 of 06/12/88 



MORE( I) UNIX Programmer's Manual MORE( I) 

+I pattern 
Start up two lines before ll'le line containing the regular expression pattern. 

If the program is invoked as page. then the screen is cleared before each screenful is printed (but 
only if a full screcnful is being printed). and k - I rather than k - 2 lines are printed in each 
screenful, where k is the number of lines ll'le terminal can display. 

More looks in the file /etcltermcap to determine terminal characteristics. and to determine the 
default window size. On a terminal capable of displaying 24 lines, the default window size is 22 
lines. 

More looks in the environment variable MORE to pre-set any nags desired. For example, if you 
prefer to view files using the -<: mode of operation, the csh command setenv MORE -c or the sh 
command sequence MORE=' -c' ; export MORE would cause all invocations of more , including 
invocations by programs such as man and msgs, to usc this mode. Normally, the user will place 
ll'le command sequence which sets up the MORE environment variable in the .cshrc or .profile file. 

If more is reading from a file, rather than a pipe, then a percentage is displayed along with the -
More-- prompt. This gives the fraction of the file (in characters, not lines) that has been read so 
far. 

Other sequences which may be typed when more pauses, and their effects, are as follows (i is an 
optional integer argument, defaulting to I) : 

i <space> 
display i more lines, (or another scrccnful if no argument is given) 

"D display 11 more lines (a "scroll"). If i is given, then ll'le scroll size is set to i. 

d same as "D (control-D) 

i 2 same as typing a space except that i , if present, becomes the new window size. 

is skip i lines and print a scrccnful of lines 

if skip i screenfuls and print a screenful of lines 

i b skip back i screenfuls and print a screenful of lines 

i "B same as b 

q or Q Exit from more. 

Display ll'le current line number. 

v Start up ll'le editor vi at the current line. 

h Help command; give a description of all the more commands. 

i /expr search for ll'le i -th occurrence of the regular expression expr. If there are less than i 
occurrences of expr , and the input is a file (rather than a pipe), then the position in the 
file remains unchanged. Otherwise, a screenful is displayed, starting two lines before the 
place where the expression was found. The user's erase and kill characters may be used 
to edit the regular expression. Erasing back past the first column cancels the search com­
mand. 

in search for the i -th occurrence of the last regular expression entered. 

(single quote) Go to the point from which the last search started. If no search has been 
performed in the current file, Ill is command goes back to the beginning of the file. 

!command 
invoke a shell will'l command. The characters '%' and '!' in "command" arc replaced 
with the current file name and the previous shell command respectively. If there is no 
current file name. '%'is not expanded. The sequences'\%" and '\J" arc replaced by"%" 
and "!" respectively. 

4 th Berkeley Distribution Revision 1.3 of 06/12/88 2 



MORE( I) UNIX Programmer's Manual MORE( I ) 

FILES 

i :n skip to the i -th next file given an the command line (skips to last file if o doesn't make 
sense) 

i :p skip to the i -th previous file given in the command line. If !his command is given in the 
middle of printing out a file, then !7Wre goes back to the beginning of the file. If i doesn't 
make sense, 17Wre skips back to the ftrSt file. If !7Wre is not reading from a file, the bell is 
nmg and nothing else happens. 

:f display the current file name and line number. 

:q or :Q 
exit from !7Wre (same as q or Q). 

(dot) repeat the previous command. 

The commands take effect iiiUDediately, i.e., it is not necessary 10 type a carriage retwn. Up to 
the time when the command character itself is given, the user may hit the line kill character to 
cancel the numerical argument being formed. In addition, the user may hit the erase character to 
redisplay the --More--(xx%) message. 

At any time when output is being sent to the terminal, the user can hit the quit key (normally con­
trol-\). More will stop sending output, and will display the usual --More-- prompt. The user may 
then enter one of the above commands in the normal manner. Unfonunatcly, some output is lost 
when this is done, due to the fact that any characters waiting in the terminal's output queue are 
flushed when the quit signal occurs. 

The terminal is set to ooecho mode by this program so that the output can be continuous. What 
you type will thus not show on your terminal, except for the I and ! commands. 

If the standard output is not a teletype, then !7Wre acts just like cat, except that a header is printed 
before each file (if there is more than one). 

A sample usage of 17Wre in previewing nroffoutput would be 

nroff -ms +2 doc.n I more -s 

/etc/term cap 
/usr/liblmore.help 

T crminal data base 
Help file 

SEE ALSO 

DUGS 

csh(l), man(!), msgs(l), script(!), sh(l), environ(7) 

Skipping backwards is too slow on large files. 

The -t option deals with an unrecognised escape sequence by deleting the escape and the follow­
ing character - in the manner of col( I). It should understand more escape sequences and be able 
to use more of the output terminals facilities. 

4th Berkeley Distribution Revision I .3 of 06/12/88 3 



MSDOSCA T ( I ) UNIX Programmer's Manual MSDOSCAT (I) 

NAME 
msdoscat catenate files from msdos 3.2 micro diskettes. 

SY:-IOPSIS 
msdoscat I -b ) [ -t J file ... 

OESCRIPTION 

FILES 

msdoscat writes to standard output the named file(s) on an msdos (version 3.2) micro diskette. 

Eoch file name may be preceded by - b or by -t to indicate that that file and any subsequent files 
up to the next -b or -t indicator are to be regarded as binary or text. This is because text files 
under msdos have lines terminated by caniage-retw-n and line feed rather than just line feed as 
under UNIX, and with the -t option, caniage-retum characters arc stripped. 

If no-b or -t options arc specified, text mode is everywhere asswned. 

lf a member of a subdirectory is required, UNIX-style I notation is used to search down the direc­
tory tree on the diskette. The characters of the arguments may be in upper or lower case, and the 
filename extension and its initial dot may be omitted if blank. 

/dev /rfdf5 12 

SEE ALSO 
msdosrm(l), wrmsdos(l), msdosls(l), msdoscp(l). adfscat(l), adfsls(l), wradfs(J), adfsnn(l), 
adfscp{l), fd(4). 

7th Edition Revision 1.8 of 11/12/88 



MSDOSCP (I) UNIX Programmer's Manual MSDOSCP( 1) 

msdoscp - copy files from msdos 3.2 micro diskelles. 

SYNOPSIS 
msdoscp [ -FVRbtm I file ... directory 

DESCRIPTION 

FILRS 

Msdoscp copies the specified file or files from the msdos (version 3.2) diskette to the specified 
UNIX directory. The UNIX directory may be a "." to denote the current directory. 

A " ... or a directory name may be substituted for an msdos file name to denote all the files in the 
root or the specified directory name. However subdirectories of the specified directory are not 
copied unless the -R option is given. 

If an existing UNIX file would be overwritten, confirmation is requested unless the -F option is 
given. 

The -b and -t options may be specified to denote that the files should be copied in binary or text 
mode. Alternatively the list of msdos files and directories may be interspersed with -b and -t 
options to change mode between each group of files. 

The -V option causes msdoscp to give a blow-by-blow account of its activities. 

The - m option causes the times and dates on the msdos files to be translated to UNIX-style times 
and dates and the access and modification times of the resulting flies set accordingly. 

/dev /rfdfS I 2 

SEE ALSO 
msdoscat(J), msdosrm(l). wrmsdos(l ), msdosls(l), adfscat(l), adfsls(J ), wradfs(l), adfsrm(l), 
adfscp(l), fd(4). 

7th Edition Revision 1.8 of 11/12/88 



MSDOSLS (I) UNIX Programmer's Manual MSDOSLS ( 1) 

NAMII 
msdosls - list files on msdos 3.2 micro diskettes. 

SYNOPSIS 
msdosls [ -CFLRdfltr ] [ file J 

DESCRIYrlON 

FILES 

msdosls produces output on the standard output relating to an msdos (version 3.2) micro diskette. 

By default (with no arguments), the root level directory is examined and the entries therein printed 
in a single column, sorted alphabetically. 

One or more filenames (as with msdoscar) may be given. Files are just printed, directories are 
listed out, all in the given order. 

The -C option causes the entries to be listed in multiple columns. 

The -F' option causes a / to be appended to subdirectory names in the outpuL 

The -R option causes subdirectories to be recursively examined. 

The - f option suppresses the sorting of directory entries. 

The -d option causes subdirectory names to be listed instead or the contents being printed. 

The -1 option causes information in addition to the file names tO be output, in particular the attri­
bute bits, the time and date, the clusters used by the file and the file size. 

The -1 option causes the files to be sorted into increasing order of age rather than alphabetically. 

The ...- option reverses the order of sorting of the directory entries. 

/dcv/rfdf512 

SEE ALSO 
msdoscat(l), msdosnn(l), wrmsdos(l), msdoscp(l), adfscnt(l), adfsls(l), wradfs(l), adfsrm(l), 
adfscp(l), fd(4). 

7th Edition Revision 1.8 of 11/12/88 



MSDOSRM( I) UNIX Programmer's Manual MSDOSRM( I) 

NAI\-1E 
msdosnn - remove files from msdos (3.2) micro diskcucs. 

SY:-IOPSIS 
msdosrm [ -f'rl ]file 

DESCRIPTION 
Msdosrm deletes one or more files from an msdos (version 3.2) diskeue. 

Confirmation is requested for the deletion of read-only and/or system files unless the -( option is 
given. 

FILES 

Directories are not deleted unless the ~ option is given, whereupon the directory and all its con­
tents arc deleted. 

/dev /rfdf512 

SEE ALSO 
msdoscat(l), wrmsdos(l), msdosls(l), msdoscp(l), adrscat(l). adfsls(l), wradfs(l), adfsrm(l), 
adfscp(t), fd(4). 

7th Edition Revision 1.8 of 11/12/88 



MV (I) UNIX Programmer's Manual MV (I) 

mv, mvO- move or rename files 

SYNOPSIS 
mv I_; 1 I-f 1 [- 1 file! file2 

mv I _; 1 [ -f 1 [ - ] file ... directory 

DESCRIPTION 
Mv moves (changes the name of) filel to file2. 

If file2 already exists, it is removed before file/ is moved. If file2 has a mode which forbids writ­
ing, mv prints the mode (see chmod(2)) and reads the standard input to obtain a line; if the line 
begins with y, the move takes place; if not, mv exits. 

In the second form, one or more files (plain files or directories) arc moved to the directory with 
their original file-names. 

Mv refuses to move a file onto itselr. 

Options: 

-i stands for interactive mode. Whenever a move is to supercede an existing file, the user is 
prompted by the name of the file followed by a question mark. If he answers with a line 
starting with 'y', the move continues. Any other reply prevents the move from occurring. 

-f stands for force. This option overrides any mode rcst.rierions or the - i switch. 

means imerpret all the following arguments to mv as tile names. This allows file names 
starting wilh minus. 

SEE ALSO 

BUGS 

cp(l), ln(l) 

If filel andfile2 lie on different file systems, mv must copy the tile and delete the original. In this 
case the owner name becomes that of the copying process and any linking relationship with other 
files is IosL 

When copying to an outpul file mv will create 'holes' in lhe output file for completely zero disc 
blocks, this saves considerable disc space on RI40 systems. Some NFS fileservers (eg those run­
ning 4.2BSD) have a bug which cause them to add a zero byte to files copied in this manner. 
This can be avoided by using mvO which is identical to mv except thai it copies the file byte for 
byte. 

4th Berkeley Distribution Revision 1.4 of 22/11/88 



PSROFF( 1) UNIX Programmer's Manual PSROFF( 1) 

NAME 
psroff- troff text formatting with PostScript output. 

SYNOPSIS 
psroff [ option ] .. . [ file I ... 

DESCRIPTION 

FILES 

Psroff formats text in the named files for printing on a printer supporting postscript. Its capabili­
ties arc described in the NrofflTroff user's manual. 

If no file argument is present, the standard input is read. An argument consisting of a single 
minus (-) is taken to be a file name corresponding to the standard input. 

By default psroff will spool its output using lpr -PPostScript. This action may be overridden by 
the use of the - 1 option, which causes the output to be directed to standard output. 

The options accepted by psroff are exactly the save as those for troff. 

/tmplta• 
/usr/lib/tmac/tmac. • 
/usr/lib/fontl• 
/usr/adm/tracct 

temporary fLle 
standard macro files 
font width tables for psroff 
accounting statistics for /dev/cat 

SEE ALSO 

BUGS 

troff(l), cqn(l). tbl(l). ms(7), me(7). man(7), col(l) 

The fp command is not supported - there is no way to access fonts other than the built in ones 
(Times-Roman, Times-Italic, Times-Bold and Symbol). 

701 Edition Revision 1.5 of 12/12/88 



PWD( I ) UNIX Programmer's Manual 

NAME 
pwd - working directory name 

SYNOPSIS 
pwd 

DESCRil'TION 
Pwd prints the pathname of the working (current) directory. 

SEE ALSO 
cd(l), csh(l), getwd(3) 

BUGS 

PWD (I) 

In csh(l) the command dirs is always faster (although it can give a different answer in the rare 
case that the current directory or a containing directory was moved after the shell descended into 
it). 

4th Berkeley Distribution Revision 1.2 of 19/10/88 



RCP( IC) UNIX Programmer's Manual RCP( lC) 

NAME 
rep. rep() - remote file copy 

SYNOPSIS 
rep fllel ftle2 
rep [-r) [-p) me ... directory 

DESCRIPTION 
rep copies files between machines. Each file or dlreetory argument is either a remote file name of 
the form "rhost:path", or a local file name (containing no':' characters, or a'/' before any ':'s.) 

U the -r is specified and any of the sou.rce files are directories, rep copies each subtree rooted at 
that name; in this case the destination must be a directory. 

The -p option causes rep to attempt to preserve (duplicate) in its copies the modified and accessed 
times of the source files. 

U path is not a full path name, it is interpreted relative to your login directory on rhost. A path 
on a remote host may be quoted (using \ ", or 1 so that the metacharacters are interpreted 
remotely. 

rep docs not prompt for passwords; your current local user name must exist on rhost and allow 
remote command execution via rsh(IC). 

rep handles third party copies, where neither source nor target files are on the current machine. 
Hostnames may also take the form "mamc@rhost" to use rnmne rather than the current user 
name on the remote host. 

Please note: rep is meant to copy from one host to another. if by some chance you try to copy a 
file on top of itself, you will end up with a severely corrupted file (for example, if you executed 
the following command from host george: 'george% rep tcstfile george:/usr/me/lestfile'). 
Remember where you are at all times (pulling your hostname in your prompt helps with this)! 

SEE ALSO 

BUGS 

ftp(l C), rsh(l C), rlogin( I C) 

Doesn't detect all cases where the Wget of a copy might be a file in cases where only a directory 
should be legal. 

Is confused by any output generated by commands in a .login, .profile. or .cshrc file on the remote 
hOSL 

rep doesn't copy ownership, mode, and timestamps to the new files. 

rep requires that the source host have permission to execute commands on the remote host when 
doing third-party copies. 

If you forget to quote metacharacters intended for the remote host you get an incomprehesiblc 
error message. 

rep will create 'holes' in the output file for completely zero disc blocks, this saves considerable 
disc space on Rl40 systems. Some NFS filcscrvcrs (eg those running 4.2BSD) have a bug which 
cause them to add a zero byte to files copied in this manner. This can be avoided by using rcpO 
which is identical to rep cxcepl thai il copies lhc file byte for byte. 

rep does not support the host.user symax for dcstinmion addressing. 

7th Edition Revision 1.9 of 03/12/88 



RLOGIN ( JC) UNIX Programmer's Manual RLOGIN( IC} 

NAMF. 
rlogin - remote login 

SYNOPSIS 
rlogin rhost [ -e c I [ -8 I l -L I l -1 usemame I 
rhost [ -ec I [ --8 I [ -L I [ -1 usemame I 

DESCRIPTION 
Rlcgin connects your terminal on the current local host system /host to the remote host system 
rhosr. 

Bach host has a file /etclhosts.equiv which contains a list of rhosr's with which it shares account 
names. (The host names must be the standard names as described in rsh(lC).) When you rlogin 
as the same user on an equivalent host, you don't need to give a password. Each user may also 
have a private equivalence list in a tile .rhosts in his login directory. Each line in this tile should 
contain an rhost and a user~ separated by a space, giving additional cases where logins 
without passwor-ds arc to be permitted. If the originating user is not equivalent to the remote user, 
then a login and passWot-d will be prompted for on the remote machine as in login( I). To avoid 
some security problems, the .rhosts tile must be owned by either the remote user or root. 

The remote terminal type is the same as your local terminal type (as given in your environment 
TERM variable). The terminal or window siz.e is also copied to the remote system if the server 
supports the option, and changes in size are renected as well. All echoing takes place at the 
remote site, so that (except for delays) the rlogin is transparent. Aow control via "S and "Q and 
Oushing of input and output on interrupts are handled properly. The optional argument --8 allows 
an eight-bit input data path at all times; otherwise parity bits are stripped except when the remote 
side's stop and start characters are other than "S/"Q. The argument -L allows the rlogin session 
to be run in litout mode. A line of the form "-." disconnects from the remote host, where "-" 
is the escape character. Similarly, the line "-"Z" (where "Z, eontrol-Z, is the suspend character) 
will suspend the rlogin session. Substitution of the delayed-suspend character (normally "Y) for 
the suspend character suspends the send portion of the rlogin, but allows output from the remote 
system. A different escape character may be specified by the -e option. There is no space 
separating this option flag and the argument character. 

SEE ALSO 
rsh(lC) 

FILES 
for rhost version of the command 

RUGS 
More of the environment should be propagated. 

4.2 Berkeley Distribution Revision 1.2 of 19/10/88 



RM ( 1) UNIX Programmer's Manual RM( I) 

NAME 
rm, rmdir - remove (Wllink) files or directories 

SYNOPSIS 
rm ! -f I ! ...- I ! -i I [ - I file ... 

rmdir dir ... 

DESCRIPTION 
Rm removes the entries for one or more files from a directory. If an entry was the last link to the 
file, the file is destroyed. Removal of a file requires write permission in its directory, but neither 
read nor write permission on the file itself. 

If a file has no write permission and the standard input is a terminal, its permissions are printed 
and a Line is read from the standard input. If that line begins with 'y' the file is deleted, otherwise 
the file remains. No questions are asked and no errors arc reported when the -f (force) option is 
given. 

If a designated file is a directory. an error comment is printed Wlless the optional argument -r has 
been used. In that case, rm recursively deletes the entire contents of the specified directory, and 
the directory itself. 

If the -i (interactive) option is in effect, rm asks whether to delete each file, and, under -r. 
whether to examine each directory. 

The null option - indicates that all the arguments following it are to be treated as file names. This 
allows the specification of file names starting with a minus. 

Rmdir removes entries for the named directories, which must be empty. 

SEE ALSO 
rm( 1). unlink(2), rmdir(2) 

4th Berkeley Distribution Revision 1.2 of I 9/10/88 



RMDfR (I) UNIX Programmer's Manual RMDIR ( 1) 

NAMF. 
rmdir, rm - remove (unlink) directories or Iiies 

SYNOJ>SJS 
rmdir djr oo• 

rm [ -1 J l -<' 1 [ -< ] [ - ] file 000 

DESCRIPTION 
Rmdir removes entries for the named directories, which must he empty. 

Rm removes the entries for one or more files from a directory. If an entry was the last hnk to the 
tile, the file is deSIIOyed. Removal of a file requires write permission in 1ts directory, but neither 
read nor write permission on the tile itself. 

If a file has no write permission and the standard input is a terminal, its permissions arc printed 
and a line is read from the standard input. If that line hegins with 'y' the file is deleted, otherwise 
the file remains. No questions are asked and no errors are reponed when the -f (force) option is 
given. 

If a designated file is a directory, an error comment is printed unless the optional argument -r has 
hcen used. In that case, rm recursively deletes the entire contents of the specified directory, and 
the runctory itself. 

If the -i (interactive) option is in effect, rm asks whether to delete each file, and. under -r, 
whether to examine each ill rectory. 

The null option - inrucates that all the arguments following it arc to be treated as flle names. This 
allows the specification of file names starting with a minus. 

SEt.; ALSO 
rm( I), unlink(2), rmrur(2) 

4.2 Ocrkcley Distribution Revision 1.2 of I 9/10/88 



RSH( !C) UNIX Programmer's Manual RSH(lC) 

NAME 
rsh - remote shell 

SYNOPSIS 
rsh host [ -1 usemame I [ -n 1 command 
host [ -1 username 1 [ -n 1 command 

DESCRIPTION 

FU.ES 

Rsh connects to the specified host, and executes the specified command. Rsh copies its standard 
input to the remote command, the standard outpUt of the remote command to its standard output. 
and the standard error of the remote command to its standard error. Interrupt, quit and tenninate 
signals are propagated to the remote command; rsh nonnally tenninates when the remote com­
mand does. 

The remote usemarne used is the same as your local usemame, unless you specify a different 
remote name with the -1 option. lltis remote name must be equivalent (in the sense of 
rlogin(!C)) to the originating account; no provision is made for specifying a password with a 
command. 

If you omit command, then instead of executing a single command, you will be logged in on the 
remote host using r/ogin(!C). 

Shell metacharacters which are not quoted are interpreted on local machine, while quoted meta­
characters are interpreted on the remote machine. Thus the command 

rsh otherhost cat remotefile >> local file 

appends the remote file remotefi/e to the local file localfile, while 

rsh otherhost cat remotefile ">>" othcrrcmotcfile 

appends renwtefile to otherremotefile. 

Host names are given in the file /etc/hosts. Each host has one standard name (the first name given 
in the file), which is rather tong and unambiguous, and optionally one or more nicknames. The 
host names for local machines arc also commands in the directory /usr/hosts; if you put this direc­
tory in your search path then the rsh can be omitted. 

/etc/hosts 
/usr/bosts/• 

SEE ALSO 
rlogin(tC) 

BUGS 
If you are using csh(l) and put a rsh(!C) in the background without redirecting its input away 
from the tenninal, it will block even if no reads arc posted by the remote command. If no input 
is desired you should redirect the input of rsh to /dev/null using the-n option. 

You cannot run an interactive command {like rogue(6) or vl(l)); usc r/ogin(IC). 

Stop signals stop the local rsh process only; this is arguably wrong, but currently hard to fix for 
reasons too complicated to explain here. 

4.2 Berkeley Distribution Revision 1.2 of 19/10/88 



UWM( I) UNIX Programmer's Manual UWM (I) 

NAME 
uwm - a window manager for X 

SYNTAX 
uwm [-display display] [-f filename] 

DESCRIPTION 
uwm is a window manager for the XII window server. 

When uwm is invoked, it searches a predefined search path to locate any uwm startup files. If no 
slartup files exist, uwm uses its buill-in default file. 

If startup files exist in any of the following locations, it adds the infonnation contained in them to 
the defaults. In the case of contention, the variables in the last file found override previous 
specifications. Files in the uwm search path are: 

/usrllib!Xl 1 /uwmlsystem.uwmrc 
$1/0MEI.uwmrc 

To use only the settings defmed in a single startup file, include the variables, resetbindings, 
reset menus, reset variables at the top of that specific startup tile. 

OPTIONS 
-f filename 

Names an alternate file as a uwm startup file. 

STARTUP FILE VARIABLES 
Variables arc typicaJJy entered first, at the top of the startup file. By convention, resetblndings, 
resetmenus, and reset variables head the list. 

uutoselect/noautOilelect 
places menu cursor m first menu item. If unspcctficd, menu cursor is placed in 
the menu header when the menu is displayed. 

della=pixels indicates the number of pixels the cursor is moved before the action is inter­
preted by the window manager as a command. (Also refer to the delta mouse 
action.) 

freeze/nofreeze locks all other client applications out of the server during certain window 
manager tasks, such as move and resize. 

grid/nogrid displays a finely-ruled grid to help you position an icon or window during rcsi~ 
or move operations. 

hieonpad=n indicates the number of pixels to pad an icon horizontally. The default is five 
pixels. 

hmenupudsn indicates the amount of space in pixels, that each menu item is padded to the left 
and right of the text. 

ironfont=fonrname 
names the font that is displayed within icons. Font names for a given server can 
be obtained using xlsfonts( 1 ). 

maxcolors=n limits the number of colors the wmdow manager can use in a given invocation. 
If set to 1.cro, or not specified, uwm assumes no limit to the number of colors it 
can take from the color map. maxrolors counts colors as they are included in the 
file. 

normali/nonormali 

X Version II 

places icons created with f.ne.,iconify withtn the root wmdow, even tf it is 
placed parually off the screen. With nonormali the icon is placed exactly where 
the cursor leaves iL. 

I March 1988 



UWM(l) UNIX Programmer's Manual UWM( I) 

normalw/nonormalw 

push=n 

places window created with f.newiconify within the root window, even if it is 
placed partially off the screen. With nonormalw the window is placed exactly 
where the cursor leaves it 

moves a window n number of pixels or a relative amount of space, depending on 
whether pushabsolute or pushrelative is specified. Use this variable in con­
junction with f.pushup, f.pushdown, f.pushright, or f.pushleft. 

pushabsolute/pushrelative 
pushabsolute indicates that the number entered with push is equivalent to pixels. 
Wben an f.push (left, right, up, or down) function is called. the window is 
moved exactly that number of pixels. 

pushrelative indicates that the number entered with the push variable represents 
a relative number. When an f.push function is called, the window is invisibly 
divided into the number of parts you entered with the push variable, and the win­
dow is moved one part. 

resetbindings, resetmenus, and resetvariables 
resets all previous function bindings, menus, and variables entries, specified in 
any startup file in the uwm search path, including those in the default environ­
ment By convention, these variables are entered frrst in the startup file. 

resizefont=fontname 
identifies the font of the indicator that displays in the corner of the window as 
you resize windows. See xlsfoms( 1) for obtaining font names. 

resizerelative/noresizerelative 
indicates whether or not resize operations should be done relative to moving edge 
or edges. By default, the dynamic rectangle uses the actual pointer location to 
define the new siz.e. 

reverse/no reverse 
defwes the display as black characters on a white background for the window 
manager windows and icons. 

viconpad=n indicates the number of pixels to pad an icon vertically. Default is five pixels. 

vmenupad=n indicates the amount of space in pixels that the menu is padded above and below 
the text. 

volume=n increases or decreases the base level volume set by the xset(l) command. Enter 
an integer from 0 to 7. 7 being the loudest. 

zap/nozap causes ghost lines to follow the window or icon from its previous default loca­
tion to its new location during a move or resize operation. 

BINDING SYNTAX 
''funcrion=[comrol key(s)]:[context]:mouse evenr.s:" menu ru:une" 

Function and mouse events arc required input. Menu name is required with the f.menu function 
defmition only. 

Function 
f. beep 

f.circledown 

f.cirdeup 

X Version II 

emits a beep from the keyboard. Loudness is determined by the volume vari­
able. 

causes the top window that is obscuring another window to drop to the boltom of 
the stack of windows. 

exposes the lowest window that is obscured by other windows. 

1 March 1988 2 



UWM( I) 

f.continue 

f. focus 

f.iconify 

f.lower 

f. menu 

f. move 

UNIX Programmer's Manual UWM(I) 

releases lhe window server display action after you stop action wilh lhe f.pause 
function. 

directs all keyboard input to lhe selected window. To reset lhe focus to all win· 
dows, invokeffocus from the root window. 

when implemented from a window. this function converts lhe window to its 
respective icon. When implemented from an icon, f.iconify converts the icon to 
its respective window. 

lowers a window that is obstructing a window below it. 

invokes a menu. Enclose 'menu name' in quotes if it contains blank characters 
or parentheses. 

f.menu=Lcontrol key(s)]:[context ]:mouse events:" menu name" 

moves a window or icon to a new location, which becomes the default location. 

f.moveopaque moves a window or icon 10 a new screen location. When using this function, the 
entire window or icon is moved 10 the new screen location. The grid effect is 
not used with this function. 

f.newlconify 

f. pause 

f. pushdown 

f.pushlef't 

f. push right 

f.pushup 

f. raise 

f. refresh 

f. resize 

f.res!Brt 

Control Keys 

allows you to create a window or icon and then position the window or icon in a 
new default location on the screen. 

temporarily stops all display action. To release the screen and immediately 
update all windows, use the f.contlnue function. 

moves a window down. The distance of the push is determined by the push vari­
ables. 

moves a window to the left. The distance of the push is determined by lhe push 
variables. 

moves a window 10 the right. The distance of the push is determined by the push 
variables. 

moves a window up. The distance of the push is determined by the push vari­
ables. 

raises a window that is being obstructed by a window above it. 

results in exposure events being sent to the window server clients for all unob­
scured or panially obscured windows. The windows will not refresh correctly if 
the exposure events are not handled properly. 

resizes an existing window. Note that some clients, notably ed1tors, react 
unpredictably if you resize the window while the client is running. 

causes the window manager application to rcstan, retracing the uwm search palh 
and initialiting the variables it finds. 

By default, lhe window manager uses meta as its control key. It can also use ctrl, shift, lock, or 
null (no control key). ContrOl keys mUSI be entered in tower case, and can be abbreviated as: e, I, 
m, s for ctrl, lock, meta, and shift, respectively. 

You can bind one, two, or no control keys 10 a function. Use the bar (I) character to combine con­
trol keys. 

Note that client applications other than the window manager usc lhe shift as a contrOl key. If you 
bind the shift key to a window manager function, you can not use other client applications that 
require this key. 

X Version Jl 1 March 1988 3 



UWM(l) UNIX Programmer's Manual UWM(l) 

Context 
The context refers to the screen location of the cursor when a command is initiated. When you 
include a context entry in a binding, the cursor must be in that context or the function will not be 
activated. The window manager recognizes the following four contexts: icon, window, root. 
(null). 

The root context refers to the root, or background window, A (null) context is indicated when the 
context field is left blank, and allows a function to be invoked from any screen location. Com­
bine contexts using the bar (I) character. 

Mouse Duttoos 
Any of the following mouse buttons are accepted in lower case and can be abbreviated as I, m, or 
r, respectively: left, middle, right. 

With the specific button, you must identify the action of that button. Mouse actions can be: 

down function occurs when the specified button is pressed down. 

up function occurs when the specified button is released. 

delta indicates that the mouse must be moved the number of pixels specified with the delta 
variable before the specified function is invoked. The mouse can be moved in any 
direction to satisfy the delta requirement. 

MENU DEFINITION 
After binding a set of function keys and a menu name to f. menu, you must define the menu to be 
invoked, using the following ~-yntax: 

menu = " menu name " { 
"item nam.e" : "action" 

Enter the menu name exactly the way it is entered with the f.menu function or the window 
manager will not recognize the link. If the menu name contains blank strings, tabs or parentheses, 
it must be quoted here and in the f.menu function entry. You can enter as many menu items as 
your screen is long. You cannot scroll within menus. 

Any menu entry that contains quotes, special characters, parentheses, tabs, or strings of blanks 
must be enclosed in double quotes. Follow the item name by a colon (:). 

Menu Action 
Window manager functions 

Any function previously described. E.g., f.move or t.iconify. 

Shell commands 
Begin with an exclamation point (!) and set to run in background. You cannot include 
a new line character within a shell command. 

Text strings 

Color Menus 

X Version It 

Text strings are placed in the window server's cut buffer. 

Strings starting with an up arrow (") will have a new line character appended to the 
string after the up arrow (")has been stripped from it. 

Strings staning with a bar character (I) will be copied as is after the bar character (I) 
has been stripped. 

I March 1988 4 



UWM(l) UNIX Programmer's Manual 

Usc the following syntax to add color to menus: 

menu= "menu name" (color/ :color2:color3:color4) { 
"item name" : (color5 :color6) : "ac11on" 

Foreground color of the header. 

Background color of the header. 

UWM(l) 

color! 

color2 

color3 Foreground color of the highlighter, the hori:rontal band of color that moves with the 
cursor within the menu. 

color4 

colorS 

color6 

Color Ocrou Us 

Background color of the highlightcr. 

Foreground color for the individual menu item. 

Background color for the individual menu item. 

Colors default to the colors of the root window under any of the following conditions: 

1) If you run out of color map entries, either before or during an invocation of uwm. 

2) I f you specifY a foreground or background color that does not exist an the RGB color database 
of the server (see lusrllibiXI /lrgb.w for a sample) both the foreground and background colors 
default to the root window colors. 

3) If you omit a foreground or background color, both the foreground and background colors 
default to the root window colors. 

4) If the total number of colors specified io the startup file exceeds the number specified in the 
maxcolors variable. 

5) If you specifY no colors in the startup file. 

EXAJ1.1Pl,F-<; 
The following is a very simple uwm setup file: 

X Version II 

# Global variables 
# 
resetbindings;rcsetvariablcs:resetmenus 
autoselcct 
delta=25 
freeze 
grid 
hiconpad=5 
hmenupada6 
iconfont=oldeng 
menufont=timmm 12b 
rcsizcfont=9x 15 
viconpad=5 
vmcnupad=3 
volume=? 
I# 
II Mouse button/key maps 

I March 1988 5 



UWM (I) UNIX Programmer's Manual UWM ( 1) 

# 
# FUNCfiON KEYS CONTEXT BUTTON MENU(if any) 
#===== ======= ====== ============ 
f.menu = meta :left down :"WINDOW OPS" 
f.menu = meta : :middle down :''EXTENDED WINDOW OPS" 
f.move = meta :wli :right down 
f.circleup = meta :root :right down 
# 
# Menu specifications 
# 
menu = "WINDOW OPS" ( 
"(De)Iconify'': f.iconify 
Move: f.movc 
Resize: f.resize 
Lower: f.lower 
Raise: f.raise 
l 

menu = "EXTENDED WINDOW OPS" { 
Create Window: !"xterm &" 
Iconify at New Position:f.newiconify 
Focus Keyboard on Window: f.focus 
Freeze All Windows: f.pause 
Unfreeze All Windows: f.continue 
Circulate Windows Up: f.eircleup 
Circulate Windows Down: f.circledown 
) 

RESTRICTIONS 

FILES 

The color specifications have no effect on a monochrome system. 

/usr/lib/Xll/uwrn/system.uwmrc 
$HOME/.uwmrc 

SEE ALSO 
X(l), Xserver(I), xset(l), xlsfoms(l) 

COPYRIGHT 
COPYRIGHT 1985, 1986, 1987, 1988 

DIGITAL EQUIPMENT CORPORATION 
MAYNARD, MASSACHUSETTS 

ALL RIGHTS RESERVED. 

THE 1NFORMA TION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE 
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT 
CORPORATION. DIGITAL MAKES NO REPRESENTATIONS ABOUT THE SUITIBILITY 
OF THIS SOFTWARE FOR ANY PURPOSE. IT IS SUPPLIED "AS IS" WITHOUT 
EXPRESS OR IMPLIED WARRANTY. 

IF THE SOFTWARE IS MODIFIED IN A MANNER CREATING DERIVATIVE COPY­
RIGHT RIGHTS, APPROPRIATE LEGENDS MAY BE PLACED ON THE DERIVATIVE 
WORK IN ADDITION TO THAT SET FORTH ABOVE. 

X Version 11 1 March 1988 6 



UWM( 1) UNIX Programmer's Manual UWM( I) 

Permission to use, copy, modify, and distribute this software and its documentation for any pur· 
pose and without fee is hereby granted, provided that the above copyright notice appear in all 
copies and that both that copyright notice and this permission notice appear in supponing docu­
memation, and that the name of Digital Equipment Corporation not be used in advertising or pub­
licity penaining to distribution of the software withoul specific, wrincn prior permission. 

AUTHOR 
M. Gancarz, DEC Ultrix Engineering Group, Merrimack, New Hampshire, using some algorithms 
originally by Bob Scheiner, MIT Laboratory for Computer Science. 

X Version II I March 1988 7 



WM(l) UNIX Programmer's Manual WM(l) 

NAME 
wm - a simple real-estate-driven window manager 

SYNOPSIS 
wm [-display display) 

DF..SCRJPTION 
Wm is a very primitive overlapping window manager for XJJ. It was developed to help with the 
debugging of the XI 1 server; we do not suggest that the user interface. presented here is a desired 
one, and we do not suggest that you try to use this program on a regular basis. 

Wm decorates each mapped appliction window with a banner. The banner consists of four fields. 
Left-to-right, they are: 

Circulate button - A command button which causes the window to change its position in the 
stacking order. 

Title region - An area in which an applications name or other specified information is displayed. 
It is also used by the user to move the window. 

lconize button - A command button which causes the window to be replaced by an icon. 

Resize buuon - A command button which allows the user to change the size of the window. 

Wm supports the following user actions: 

Raising or lowering a window in the stack of windows 
Locating the pointer cursor in the Circulate box of a partially obscured window and clicking 
with any pointer button will raise this window to the top of the stack of windows so that it 
is no longer obscured. Locating a pointer cursor in the Circulat'! box of a window which is 
currently on top of the window stack will send the window to the bottom of the stack. 

lconizing a window 
Locating the pointer cursor in the lconize box and clicking any pointer button will cause the 
window to be unmapped, and the associated icon to become mapped. The icon will appear 
at its last location, or. if this window has never been iconized, under the cursor. However, if 
the client program initially set an icon position in the WM_HINTS property, then that icon 
position will be used instead as the initial icon position. To position an icon while iconizing 
the window, locate the cursor in the lconize box and press down any pointer button. A 
rubber-band outline of the icon will appear under the cursor. While holding down the 
pointer button, drag the cursor to the desired location for the icon. The outline will follow 
the cursor on the screen. When the outline moves to the desired location for the icon, 
release the pointer button. The client window will be unmapped, and its icon will appear at 
the desired location. To cancel this operation while the pointer button is down, click another 
pointer button. 

Dciconizing an icon 
Locating the pointer cursor in an icon and clicking any pointer button will cause the icon to 
be unmapped, and the associated window to become mapped. To cancel this operation while 
the pointer button is down, click another pointer button. 

Moving a window on the screen 

X Version II 

Locating pointer cursor in the area of the title region and pressing any pointer button causes 
a "rubber-band" outline of the window to appear. As the user moves ("drags") the cursor 
(while holding down the pointer button), the outline moves accordingly. When the button is 
released, the window is repainted in the last location of the rubber-band outline. If the user 
presses another poimer button during the drag, the operation is cancelled, the rubber-band 
outline disappears, and the window is not moved. Note that a portion of the title region is 
constrained to remain on the screen. 

I March 1988 



WM(I) UNIX Programmer's Manual WM( I) 

Resizing a window. 
Locating the pointer cursor in the resize box and pressing any pointer button initiates the 
spring-loaded resi:te mode. Then as soon a the cursor touches a border (while the pointer 
button is down), that border becomes a rubber-band line which follows the cursor until the 
button is released. If the cursor then touches an adjacent border, that border also becomes a 
rubber-band line, and the window can be resized in two dimensions at once. If the cursor 
touches a border after having touched the opposite border, the first border touched reverts to 
its original location, and tlte otlter one becomes a rubber-band line which follows tlte cursor. 
If tlte user presses anotlter pointer button during the drag, tlte operation is cancelled, the 
rubber-band outline disappears, and the window does not change size. Note that tlte pointer 
cursor has to touch a border to initiate tlt resi:te action. As in the move operation, a protion 
of the title region is constrained to remain on the screen. 

Moving an icon on the screen 
To move an icon, press the Shift key and hold it, then position the pointer cursor in the icon, 
press any pointer button, and proceed dragging an outline of the icon around by moving the 
pointer cursor (with the pointer button down). When the outline moves to the desired posi­
tion, release the pointer button and the Shift key. To cancel, click anotlter pointer button 
during the drag; the icon will not move. 

NOTES FOR CLIENT PROGRAMS 
Wm uses the WM_!CON_NAME, WM_NAME, and WM_HINTS properties. It keeps the name 
in the Title region updated as the WM_NAME property changes. It keeps the name in the icon 
updated as the WM,_ICON_NAME property changes; if a client does not set the 
WM_JCON_NAME property, wm will use the WM_NAME property for the icon name. Wm 
allows only text icons, and sets the icon sizes to accommodate the icon name. The maximum 
name length for both the icon name and the Title region name is 100 characters. 

Of the WMHints, wm ignores all but icon_x and icon_y, which it uses for initial icon placement. 
These need to be set by the client before its window is mapped, because wm reads tltcm only 
once, when it flrst encounters the window. 

SEE ALSO 
X(l), lnter-Ciitnt Communication Conventions ManWJI 

BUGS 
This program does not necessarily implement the current window manager pt'OlCOis. 

DIAGNOSTICS 
If you try to run wm while you are already running a window manager, wm will let you know. 

COI'YRIGHT 
Copyright 1988, Massachusetts Institute of Technology. 
See X( I) for a full statement of rights and permissions. 

AUTHOR 
Hania Gajewska, DEC WSL Dave Rosenthal , Sun Microsystems 

X Version II 1 March 1988 2 



WRADFS ( 1) UNIX Programmer's Manual WRADFS (I) 

NAME 
wradfs - write adfs micro diskettes. 

SYNOPSIS 
wradfs l -fiFaR 1 l -Dchar 1 l -ttitle 1 l -nname 1 [ -bn 1 I --ildirectory 1 [ -F 1 [ files 1 

DESCRJJYfiON 

FILES 

Wradfs writes a set of files to an adfs diskette. 

By default the files are written to the root directOry, and the diskette is assumed to be already for­
matted and initialised to an adfs file structure. Files of the same name are overwritten unless they 
are marked read-only, in which case confim1ation is requested. 

The argument -R causes UNIX directory names in the list of arguments to be recursively copied 
with their contents and subdirectories to the adfs flle structure. Without this option directOry 
nan1es are assumed to be errors and cause diagnostics to be printed. 

The argument -a causes the an1ount of free space left on the disc to be displayed after the files 
have been copied. 

The argument -i causes the information already on the diskette to be discarded and a new adfs 
structure to be created. 

The argument -f causes the diskette to be formatted before anything is written. This option 
implies the -i option. Confirmation is requested before proceeding. 

The -F option suppresses confirmation messages and implies an affirmative answer in every case. 

The argument -nnan1e causes the disc nan1e to be set to that specified. If this argument is not 
present a disc name is created from the time and day of initialisation (e.g. 20_54_Fri). 

The argument -uitle causes the title field in the root directOry to be set to or replaced by the 
specified title. If no title is specified the title "Initialised by Unix" is used. 

The argument -bnumbcr causes t11e boot option to be set or reset to the specified number. 

The --il option specifies a directory other than the root directory which is created if necessary to 
which the fdes (and subdirectories created by the -R option) are written. The san1e notation as 
with adfsls is used to specify directories. 

The -Tddd option, with up to 3 hexadecimal digits may be used to specify an ADFS file type 
otller than the default of FFF. 

Each file nan1e may be preceded by -!number and/or by ~number. These tlags cause the follow­
ing fllc and each subsequent file up to the next such nag to have the load or execution address set 
to the specified hexadecimal number. If no such flags are given tile load and execution addresses 
arc set from the modification date of each file and the ADFS file type. If only one of these nags is 
given, then the otller one is taken to be zero. 

Fullstops in file or directory names are replaced by minus signs, unless the -Dchar option is 
specified, which causes the fullstops to be replaced by the specified character instead. 

The write bit is not set on files copied from read-only UNIX files. 

/dcv/rfdf1024 

SEE ALSO 
adfscat(l), adfsls(l). adfsep(l). adfsrm(l), msdoscat(l). msdosls(l), wrmsdos(l), msdosrrn(l). 
msdoscp(l), fd(4). 

7tl• Edition Revision 1.9 of I 1/12/88 



WRMSDOS( I) UNIX Programmer's Manual WRMSDOS (I) 

NAME 
wrmsdos - write files onto msdos (3.2) micro diskeues. 

SYNOPSIS 
wrmsdos I -fiFiaR I I -d directory I! -t I! -b I file ... 

DESCRIPTION 

FILES 

Wrmsdos writes a set of files to an msdos (version 3.2) di~kette. 

By default the files are wriuen to the root directory, and the diskette is assumed to be already for­
matted and initialised to an msdos structure. Files of the same name are overwritten unle.~s they 
arc marked read-only. in which case confirmation is requested. 

The argument -R causes UNIX directory names in the list of arguments to be recursively copied 
with their contents and subdm:clorics to the msdos file SlnlCture. Without this option directory 
names arc assumed to be errors and cause diagnostics to be printed. 

The argument -a causes the amount of free space left on the diskene to be displayed after the files 
have been copied. 

The argument -i causes the mformation already on the di;kettc to be discarded and a new msdos 
structure created. 

The argument -f causes the diskette to be formatted before anything is wriucn. TI1is option 
implies the - i option. Confirmation is requested before proceeding. 

The -F option suppresses confirmation messages and implies an affirmative answer 1n every case. 

The -d opuon specifies a directory other than tbe root d1rectory which is created if necessary to 
which the files (and subdirectories created by the -R option) are wriuen. The same notation as 
with msdosls is used to specify ~ubdirectorics. 

As with msdoscat, each file name may be preceded by -b or by -t to indicate that the file and 
subsequent files up to the next such nag are to be treated as binary or text respectively. Text files 
are output with a carriage-return character prepended to each lincfeed character and a control-Z 
character at the end, and non-printing characters arc stripped. If a file contains more than a small 
number of non-printing characters. the user is asked to confirm his intentions. 

If no-b or -t options are specified. text mode is everywhere assumed. 

The read~n.ly attribute is set on files copied from read-only UNIX files and the ume and date 
fields arc <>Ct from the modification times of the UNIX files. 

/dev/rfdf5 12 

SEE ALSO 
msdoscnt(I ). msdoscp( I), msdosls(l ). msdosrm(l ). adfscat(l ). adfsls( 1). wradfs(l ). adfsrm(l), 
adfscp(l), fd(4). 

7th Edition Revision 1.8 of 11/12/88 



X (I) UNIX Programmer's Manual X (I) 

NA:\1E 
X - a portable, network transparent window system 

SYNOPSIS 
X is a network transparent window system developed at MIT which runs undec a wide variety of 
operating systems. The standard distribution from MIT works on Ultrix-32 Version 1.2 (and 
higher), 4.3BSD Unix, SWlOS 3.2 (and higher), HP-UX 6.01, and DOMAIN/IX 9.7. In addition, 
many vendors suppon the X Window System Wider Olher operating systems. 

THE OFFICIAL NAMES 
The official names of the software described herein are: 

X 
X Window System 

X Version II 
X Window System, Version II 

XII 

Note that the phrases X. II, X-II, X Windows or any permutation thereof, arc explieity excluded 
from this list and should not be used to describe the X Window System (window system should 
be thought of as one word). 

X Window System is a trademark of the Massachuseus Institute of Technology. 

DESCRIPTION 
X window system servers run on computers with bitmap displays. The server distributes user 
input to, and accepts output requests from various client programs through a variety of different 
interprocess commWlication channels. Although the most common case is for the client programs 
to be running on the same machine as the server, clients can be run transparently from other 
machines (including machines with different architectures and operating systems) as well. 

X suppons overlapping hierarchical subwindows and text and graphics operations, on both mono­
chrome and color displays. For a full explanation of functions. see the Xlib - C Language X 
Jnurfau manual, the X Window Systtm Protocol SpeCification, and various toolkit documents. 

When you first log in on a display fWl.Ding X, you are usually using the xurm( I ) terminal emula­
tor program. You need not learn anything extra to use a display CWl.Ding X as a terminal beyond 
moving the mouse cursor into the login window to log m normally. 

The core X protocol provides mechatti<;m, not policy. Windows are manipulated (including mov­
ing. resizing and iconifying) not by the server itself, but by a separate program called a "window 
manager" of your choosing. This program is simply another client and requires no special 
privileges. If you don't like the ones that are supplied (sec uwm( I ) and wm( I ) ), you can write 
your own. 

The number of programs that usc X is growing rapidly. Of panicular interest are: a terminal emu­
lator (xterm(I )), window managers (wm( I) and uwm( I)), a mailer reader (xmh(I )), a bitmap editor 
(bitmap(/)), an access control program (xlwst( /)), user preference Selling programs (xset( 1), 
xsetroot(l ), and :xmodmap(l )), a load monitor (xload(l )), clock (xclockl I)), a font displayer 
(xfd(l )), a protocol translator for running X 10 programs (x/Otox/1 (I)), and various demos (ico( I). 
muncher(/), puzzle(l ). etc.). 

DISPLAY SPRCIFICATION 
When you first log in, the environment variable DISPLAY will be set to a string specifying the 
name of the machine on which the server is running, a number indicating which of possibly 
several servers to usc, and possibly a number indicating lhe default screen of the server (usually 
this is omitted and defaults to 0). By convention, servers on a panicular machine are numbered 
starting with zero. The format of the DJSPLA Y string depends on the type of communications 

X Version II 1 March 1988 



X (I) UNIX Programmer's Manual X (I) 

channel used to contact the server. 

The following connection protocols are supponed: 

TCP/IP 
DISPLAY should be set to "hcsr:dpy.scrun" where hosr is the symbohc name of lhc 
machine (e.g. expo), dpy is the number of the display (usually 0), and scrttn is lhe 
number of the screen. The screen and preceding period are optional, with lhe default 
value being zero (0). Full Internet domain names (e.g. expo.lcs.mit.edu) are allowed for 
the host name. 

Unix domain 

OECnel 

DISPLAY should be SCI to "unix:dpy.scrun", where dpy is the display number and 
screen is the screen number; screen and the preceding period are optional, with the 
default value being 7.ero (0). 

DISPLAY should be set to "node=::dpy.screen" where node name is the symbolic 
name of the machine, dpy is the display number, and screen is the screen number; scrun 
IUld the preceding period arc optional, wilh the default value being zero (0). 

Most programs accept a command line argument of the form "-display display" that can be used 
to override the DISPLAY environment variable. 

GEOMETRY SPECmCATION 
One of the advantages of using window systems over hardwired terminals •s that applications 
don't have to be restricted to a panicular siz.e ~ location on the screen. Although the layout of 
windows on a display is conuotled by the window manager that the user is runmng, most applica­
tions accept a command line argument that is treated as the prefercd siz.e and location for lhis par­
ticular application's window. 

This argument, usually specified as "-geometry WxH+X+Y," indicates that the window should 
have a width of W and height of H (usually measured in pixels or characters, depending on the 
application), and the upper left comer X pixels to the right and Y pixels below the upper left 
comer of the screen (origin (0,0)). ' WxH" can be omitted to obtain the default application size, 
or "+X+Y" can be omitted to obtain the default application position (which is usually then left 
up to the window manager ~ user to choose). The X and Y values may be negative to position 
the window off the serccn. In addition, if minus signs are used instead of plus signs (e.g. WxH­
X-Y), then (X,Y) representS the location of the lower right hand comer of the window relative to 
the lower right hand comer of the screen. 

By combining plus and minus signs, the window may be place relative to any of the four comers 
of the screen. For example: 

555x333+JI+22 
This will request a window 555 pixels wide and 333 pixels tall, with the upper left 
comer located at (11.22). 

300x200-0+0 
This will request a window measuring 300 by 200 pixels in the upper right hand corner 
of the screen. 

48x48--5--10 
This will request a window measuring 48 by 48 pixels whose lower right hand comer is 
5 pixel off the right edge and the screen and 10 pixels off the bottom edge. 

COMMAND L I NE ARGUMENTS 
Most X programs attempt to use a common set of names for their command line argumenl~. The 
X Toolkit automatically handle~ the following argumenL~: 

X Version 11 1 March 1988 2 



X (I) UNIX Programmer's Manual X( I) 

- bg color, -background color 
Either option specifies the color to use for the window background. 

-bd color, -bordercolor color 
Either option specifies the color to use for the window border. 

-bw number, -borderwidth number 
Either option specifies the width in pixels of the window border. 

--{!isplay display 
This option specifies the name of the X server to use. 

- fg color, -foreground color 
Either option specifics the color to usc for text or graphics. 

-fn font, -font font 
Either option specifies the font to use for displaying text. 

-geometry geometry 

-iconic 

-name 

This option specifies the initial size and location of the window. 

This option indicates that application should start out in an iconic state. Note that how 
this state is represented is controlled by the window manager that the user is running. 

This option specifics the name under which resources for the application should be 
found. This option is useful in shell aliases to distinguish between invocations of an 
application, without resorting to creating links to alter the executable file name. 

-rv, --reverse 

+rv 

Either option indicates that the program should simulate reverse video if possible, often 
by swapping the foreground and background colors. Not all programs honor this or 
implement it correctly. It is usually only used on monochrome displays. 

This option indicates that the program should not simulate reverse video. This is used to 
override any defaults since reverse video doesn't always work properly. 

--1>ynchronous 
This option indicates that requests to the X server should be sent synchronously, instead 
of asynchronously. Sinee X lib normally buffers requests to the server, errors do not 
necessarily get reported immediately after they occur. This option turns off the buffering 
so that the application can be debugged. It should never be used with a working pro­
gram. 

- title string 
This option specifies the title to be used for this window. This information is sometimes 
used by a window manager to provide some sort of header identifying the window. 

-xrm resourcestring 
This option specifics a resource name and value to override any defaults. It is also very 
useful for setting resources that don't have explicitly command line arguments. 

RESOURCES 
To make the tailoring of applications to personal preferences easier, X supports several mechan­
isms for storing default values for program resources (e.g. background color, window title, etc.) 
Resources are specified as strings of the form "name•subname•subsubname ... : value" (see the 
Xlib manual section Using the Resource Manager for more details) that are loaded into a client 
when it starts up. The Xlib routine XGetDefault(3X) and the resource utilities within the X 
Toolkit obtain resources from the following sources: 

X Version II I March 1988 3 



X (I) UNlX Programmer's Manual X (I) 

RESOURCE MANAGER root window property 
Any "'&Iobal resources that should be available to clients on all machines should be stored 
in the RESOURCE_MANAGER property on the root window using the xrdb( I) pro­
gram. 

application-specific directory 
Any application- or machine-specific rcsouroes can be stored in the class resouroe files 
located in the XAPPLOADDIR directory (this is a configuration parameter that is 
/usr/lib/XII/app-defaults in the standard distribution). 

XENVIRONMENT 
Any user- and machine-specific resources may be specified by setting the XENVlRON­
MENT envirorunent variable to the name of a resource file to be loaded by all applica­
tions. If this variable is not defined, the X Toolkit looks for a file named .Xdefaults· 
hostname, where hostnamt i~ the name of the host where the application is executing. 

-xrm resourcutring 
Applications that use the X Toolkit can have resources specified from the command line. 
The resources/ring is a single resouroe name and value as shown above. Note that if the 
string contains characters interpreted by the shell (e.g., asterisk), they must be quoted. 
Any number of -xrm urguments may be given on the command line. 

Program resources are organiu:d into groups called "classes," so that collections of individual 
"instance" resources can be set all at once. By convention, the instance name of a resource 
begins with a lowercase letter and class name with an upper case letter. Multiple word resources 
are concatcntated with the first letter of the succeeding WOI"ds capitaliu:d. Apphcaoon~ written 
with the X Toolkit will have at least the following resources: 

background (class Background) 
This resource specifics the color to use for the window background. 

borderWidth (class BorderWidth) 
This resource specifics the width in pixels of the window border. 

borderColor (etas.~ BorderColor ) 
This resource specifics the color to use for the window border. 

Most X Toolkit applications also have the resource foreground (class Foreground), specifying 
the color to use for text and graphics within the window. 

By combining class and instance specifications. application preferences can be set quickly and 
easily. Users of color displays will frequently want to set Background and Foreground classes to 
particular defaults. Specific color instances such as text cursors can then be overridden without 
having to define all of the related resources. 

When a named resource is unavailable (for example, a color named chartrussc or a font named 
tccncywecncy), normally no error message will be printed; whether or not useful resultS ensue is 
dependent on the particular application. If you wish to see error messages (for example, if an 
application is failing for an unknown reason). you may specify the value "on" for the resource 
named "StringConversionWarnings." If you want such warnings for all applications, specify 
"•StringConversionWamings:on" to the rcsouroe manager. If you want warnings only for a sin­
gle application named "wwie", specify "wwie•StringConversionWamings:on" to the resource 
manager. 

DIAGNOSTICS 
The defnult error handler uses the Resource Manager to build diagnostic messages when error 
conditions arise. The default error database is stored in the file XErrorDB in the directory 
specified by the LIBDIR configuration parameter (/usr/lib/Xll in the standard distribution). If 
th1s file is not installed, error messages will tend to be somewhat cryptic. 

X Version II I March 1988 4 



X (I} UNIX Programmer's Manual X( 1) 

SEE ALSO 
xtcrm(l), bionap(l), ico(J), muncher(!), plaid(J), puzzle(!), resize(!), uwm(J), wm(J), 
x!Otoxll(l), xbiff(l), xcalc(l), xclock(l), xedit(l), xfd(l), xhost(l), xinit(l), xload(J), xlogo(l), 
xlsfonts(1), xmh(l). xmodmap(l), xpr(1), xprkbd(J), xprop(l), xrdb(l), xrefresh(l), xset(l), 
xsetroot(J), xwd(l), xwininfo(l), xwud(J), Xserver(l), Xapollo(l), Xqdss(l), Xqvss(l}, Xsun(l), 
kbd_mode(l), todm(l), tox(l), biff(l). init(8), ttys(5), Xlib - C Language X Interface, X Toolkit 
Intrinsics • C Language X Interface 

COPYRIGHT 
The following copyright and permission notice outlines the rights and restrictions covering most 
pans of the standard distribution of the X Window System from MIT. Other pans have addi­
tional or different copyrights and permissions; see the individual source files. 

Copyright 1984, 1985, 1986, 1987, 1988, Massachusetts Institute of Technology. 

Permission to use. copy, modify, and distribute this software and its documentation for any pur­
pose and without fee is hereby granted, provided that the above copyright notice appear in all 
copies and that both that copyright notice and this permission notice appear in supporting docu­
mentation, and that the name of M.I.T. not be used in advertising or publicity pertaining to distri­
bution of the software without specific, written prior permission. M.I.T. makes no representations 
about the suitability of this software for any purpose. It is provided •·as is" without express or 
implied warranty. 

This software is not subject to any license of the American Telephone and Telegraph Company or 
of the Regents of the University of California. 

AUTHORS 
It is no longer feasible to list all people who have contributed something to X, but see 
doc/contributors in the standard sources. 

X Version II 1 March 1988 5 



XARM( I) UNIX Programmer's Manual XARM(I) 

NAME 
Xann - Ann server for X Version II 

SYNOJ>SIS 
Xarm [display) [ -dev framebuffer I [ -kbd lceyboard I [ -bw2 I ·c4 I l -lowres I -mediumn!S I • 
high res I ·py # I [ -px If I [ -widt.h[:O) size ) [ -height[:O) size ] [ -bp[:O) colour ] [ -wp[ :0) 
colour] [ -frame[:O) colour I [ -ri time II -rd time I [ -cd time I [-hard I -sort I [+flog I -flog) 
[ -sched #] .. . 

DESCRIPTION 
X arm is the server for Version II of the X window system on Acorn ARM hardware. It will nor­
mally be started by init(8), as a resull of an entry in /etc/ttys file - see ttys(5). It may also be 
started using xinil(1) or directly from a shell. 

CO:-wiCURATIONS 
Xarm operateS under all ARM BSD4.3 UNIX versions later than the Beta release. It may be used 
on A500, A440 and A680 ARM hardware. It auto-configures to use a 1 bit per pixel black and 
white display, finding the display from the device ldevljb (see fb(4)) and the monitor type from 
the current CMOS ram settings. It uses the standard keyboard and mouse · see kbd(4). 

The monitor type used by the X server, determined by the setting of the 'monitortype' CMOS ram 
variable, will normally cause the X server to start up with the correct display mode. The follow­
ing default modes are used with the three different monitor types:-

0 - low resolution 
Low resolution monitors usc a 640x240x I screen mode. Because this mode gives rec­
tangular pixels it is normally unsuitable for graphics applications which will display dis­
torted images. It is suitable for text based applications so long as the reStricted number of 
lines available on the screen is acceptable. Suitable monitors are the standard A440 low 
resolution monochrome and colour monitors and multi-sync monitors. 

The·~· option may be used to give a colour mode (640x240x4) - the colour map is a 
normal X pseudo colour map with 16 colours. 

1 - medium resolution, multi-sync 
Medium resolution modes may be used with a multi-sync monitor or a reasonable quality 
VGA type monitor. The default mode is 640x480xl. The '-c4 ' option may be used to 
give a 640x480x4 mode. The latter mode has a very detrimental effect on overall system 
performance. hence the default to the monochrome mode. Both modes have square pox­
cis. Low resolution modes may also be selected with monitor type I . 

2 - high resolutJon 
High resolution modes only support 1152x900xl- the '-c4' option will be faulted. The 
mode requires a particular model of high resolution monitor; consult your dealer for more 
information. 

3- medium resolution, VGA 
T.hese modes work with most reasonable quality 'VGA' type monitors. Only the 
640x480x 1 and 640x480x4 modes may be selected - the monitors will not work with the 
low resolution modes. Consult your dealer for details of suitable VGA monitors. or usc 
an Acorn recommended monitor - not all available monitors work. 

The command line options allow a particular mode to be specified. Since the required mode may 
require a particular monitor type it may be necessary to change the CMOS ram scuings. This 
requires superuscr privilege - either use the cmos(8) programme and reboot unix or use the 
configure command from Arthur before starting w1ix up. The server will not attempt to change 
the monitor type itself this is almost invariably the wrong thing to do. 

X Version 11 $Date: 88/10/13 II :48:49 $ 



XARM( I) UNIX Programmer's Manual XARM( I) 

The server suppons compressed fonts. To save disc space the fonts are supplied in compressed 
form in the font directory and uncompresscd on demand. For this to work the uncompress pro­
gram must either be on the path of the X server or must be located at lusrlucbluncompress - the 
X server tries the latter name first. Since uncompressing files takes some time it can be advanta­
geous to uncompress frequently used fonts, such as the fixed font. What you should do depends 
on the precise configuration of your system, use the +flog option to log the fonts which arc used, 
then uncompress those which are opened most often. Notice that fonts which are used continu­
ously, such as the cursor font or the fixed font (used by the xterm terminal emulator) are normally 
only actually loaded once - so uncompressing these fonts is unlikely to be worthwhile. 

OPTIONS 
The options may appear in any order. Only the ARM specific options are described here. All 
other options work except that the bell pitch cannot be changed. The bell volume has only four 
settings (apart from off) as does the key click loudness. Normally if repeated or conflicting 
options are given only the last is used, the exception are the monitor type options - -lowres, -
mediumres and -highres - which cause the number of lines and the screen dimensions to be 
defaulted correctly. These options only alter values which have not yet been set, thus only the 
frrst such option is used. To avoid confusion you should avoid conflicting requests. 

-dev device 
Overrides the default frame buffer device ldevljb. 

-kbd device 
Overrides the default keyboard/mouse device !devlkbd. 

The following options allow control of the screen mode. Normally only the first option will be 
used (to force a colour display on a low resolution or multi -sync mortitor.) The -lowres option 
can be useful with multi-sync monitors (monitor type 1) as these will also support low resolution 
video modes. The other options are provided for completeness. 

-c4 Forces the server to use colour 4 bit per pixel mode if possible - this is only supported on 
medium and low resolution monitors. 

-bwl Forces the server to use a monochrome mode - this is the default mode, it gives 
significantly better performance than the colour mode. 

-lowres 
Forces the server to switch to a low resolution display mode. This is normally only use­
ful with a multi-sync monitor, where it is possible to use either a low resolution or 
medium resolution mode. Equivalent to 240 lines on the display. This mode is the 
default with mortitor type 0. 

-mediumres 
Forces the server to switch to a medium resolution display mode. This is the default for 
monitor types I and 3. Equivalent to 480 lines on the display. 

-highres 
Forces the server to switch to select a high resolution mode - this is only possible with 
monitor type 2, and is the default. Equivalent to 900 lines on the display. 

-py # Specifies the number of lines on the display. The server treats the value as a hint, it will 
select the mode with the nearest number of lines, subject to the number of lines being 
approximately right (it would not, for example, use a high resolution mode if -py 512 had 
been requested.) 

-px # Specifies the width of the display in pixels - again this is only a hinL 

The width and height of the screen in millimetres are defaulted to suitable values according to the 
CMOS ram monitor type setting or to -lowres, -mediumres or -highres if given. The defaults 
are intended to match the monitors which Acorn either recommends or supplies. They can be 
overridden using the following options:-

X Version II $Date: 88/10/13 I 1:48:49 $ 2 



XARM (I) UNIX Programmer's Manual XARM(I) 

-wldth[:O] size 
Specifies the width of the displayed image on the screen, excluding borders. 

-height[:O] siz~ 
Specifies the height of the displayed image on the screen, excludmg borders. 

The following options allow cont.rol over the colours used in the selected video mode. Since 
colour X servers select the colour palette themselves the black and white pixel selection facility 
only ha~ an effect on black and white (-bw2) modes. The display border colour can be selected in 
any mode. In all cases the colour can be specified in one of three ways:-

0// If '0' is given it is interpreted as 'black', 'I' is interpreted as 'wh.ite'. 

rgb Three hex digits of red, green and blue values making a particular colour. 

colour-name 
The name of a colour from the rgb colour data base (as specified by the -co option - see 
Xs~rv~r(l.)) 

The options are:-

·bp[ :0) colour 
Specifies the colour of the black pixel (pixel 1.) 

-wp[:O] colour 
Specifics the colour of the white pixel. In both these cases, although the option only 
affects a lbpp display, the colours may be other than black or white. This allows (for 
example) a colour monitor to be used to produce a green monochrome display as well as 
allowing simple reversal of black and white on the display. In htgh resolution display 
modes the video output is strictly monochrome - if a colour is specified for either the 
black or the white pixel the device driver will choose black or white according to the 
intensity of the colour. 

-frame[:O] colour 
This specifics tlte colour of the border round the display. Again, colour borders may be 
used on I bpp displays (and the colour need not be the same as the black or white pixel 
colour.) On high resolution displays the effect of changing the border colour is to pro­
duce black and white bands round the display. This can be used to produce a grey border 
(try '555') but that is about all. 

Some additional options are provided to cont.rol the keyboard autorepeat and click - these options 
allow the delay and duration to be set on the command line. 

-rimilliseconds 
This sets the delay in milliseconds before keyboard autorepeat starts - the key must be 
held down for the given time before the first repeat depression is delivered. See below 
for more details of which keys autorepeat by default. A value of 0 will restore the default 
(300 mmiseconds.) 

-rdmilliseconds 
This sets the delay in milliseconds between the delivery of success•ve autorepeat depres­
sions. A value of 1.cro restores the default (50 milliseconds.) 

-cdmilliseconds 
This sets the duration of the keyclick "beep". A value of zero restores the default (8 
milliseconds.) 

It is possible to control whether the server uses a software or hardware cursor:-

·hard Use the hardware cursor. The cursor is automatically used in low and medium resolution 
modes, and a software cursor used in high resolution mode. Using the hardware cursor in 
high resolution mode may increase performance slightly, but the cursor looks awful. 

X Version II $Date: 88/10/13 11:48:49 $ 3 



XAR\1 (I) UNIX Programmer's Manual XARM( I) 

-soft Use the software cursor. If you have applications which use panicularly large cursors 
(more than 32 bits wide) you will need to select a software cursor or they will be trun· 
cated • if you have not changed the cursor fonts you certainly do not need to worry about 
this. 

The remaining options are intended for use when debuggmg the server, although the +flog option 
can be used to find out about font, utmsation as suggested above. 

+flog Twn on font Jogging. Each time a font is read from the disc a message is wrinen to the 
server log file . 

• flog Twn off font logging (the default.) 

-sched # 
This option allows the roWld robin scheduler timeout to be set. The timeout governs the 
number of requests from a single client which arc executed before input is read from 
another client. Normally this should not be specified. There is no guarantee that it will 
have any particular effect. However it can be useful to set the number to ·I' when using 
applications which submit expensive graphics requests without waiting for input from the 
server. 

Other options arc described under Xserver(J ). 

KEYUOARD 
Two varieties of ARM keyboard arc supported - the A440/A680 (Archimedes) keyboard and the 
A500 keyboard. The Archimedes keyboard is mechanically similar 10 the IBM tOt keyboard, the 
A500 keyboard is significantly different. Both keyboards have the standard typewriter keys, cur­
sor keys, a numeric keypad and at least 10 function keys (the Archimedes has 12.) The keys arc 
mapped onto the standard XI 1 keycodes in an appropriate way. 

Both keyboards generate up and down transitions for all keys but only have 2 key rollover for 
most keys. Certain keys arc handled individually and, because these do not interfere with the 2 
key rollover of the remainder, it is strongly recommended that these be used as modifier keys. 
The default modifier map uses these keys, as follows:-

A500 Archimedes XII key X II modifier 
Left Shift Left Shift XK_Sbift_L Shift 
Right Shift XK_Shift_L Shift 

Right Shift XK_Sbift_R Shift 
CMD XK_Control_L Control 

Left Control XK_Control_L Control 
Right Control XK_Cootrol_R Control 

LOOKS XK_Ah_L Modl 
Left Alt XK_Alt_L Modi 
Right Alt XK_Ait_R Modi 
Print XK_Print Mod2 
Home XK_Home Mod3 

CAPS LOCK CapsLock XK_Caps_Lock LockMask 
Num Lock XK_Nurn_Lock Mod4 
Scroll Lock XK_Pause ModS 

Although the A500 keyboard has both left and right shift keys these are connected electrically 
thus only a left shift is generated. 

When the keyboard click is switched on (this is probably not a good idea) it only sounds on down 
transitions of non-modifier keys. All keys auto-repeat, the keyboard click docs not sound on 
auto-repeats. 

X Vcr~10n II $Date: 88/10/13 11 :48:49 $ 4 



XARM( I) UNIX Programmer's Manual XARM( I) 

Notice that all the keys which have LEOs are in the above list Xann does not allow control of 
the keyboard LEOs, instead up and down transilions are transmiued on each alternate key 
presS/release and the LED is always kept in step - ie the LED is on after a key down. off after a 
key up. 

The Home and Print keys on the Archimedes keyboard are both modifiec keys - this is simply 
because they are shifting keys in the hardware, there is no need to treat them specially. 

Both keyboards have a keypad. These are treated as would be expected. The keys generate 
XK_ KP _ ••• key codes. except that the % key (on the A500) and the# key have no corresponding 
keypad code. These generate '%' and 'II'. In addition the four keys on top on the top row of the 
keypad generate XK_KP _Fx codes when shifted, except for the Num Lock key on the 
Archimedes keyboard which just generates XK_Num_Lock (and thus XK_KP _Ft is not avail­
able from the Archimedes keyboard.) 

The /devlkbd driver on both keyboards takes one key for use in switching virtual terminals - this 
is the Break key on the Archimedes keyboard and the Help key on the A500 keyboard. Applica­
tion programs never see these keys. 

Both keyboards have cursor keys and function keys. Normal special control keys (TAB, Return, 
etc.) are also present. The remaining keys generate codes as follows:-

Keyboard Key Code Notes 
A440 International CUrrency Symbol XK_currency 
Both Pound Steeling XK __ stecling 
A500 Copyright XK_copyright 
Both Leftwards Delete XK_BackSpace 
A440 Delete XK_ Delete 
A500 Rightwards Delete XK_ Delete 
A440 In.~rt XK_Insert 
A440 Copy XK_Select ( • ) 
A440 Page Up XK_J>rior ( • ) 
A440 Page Down XK_Next (•) 
A500 MENU XK_Menu 
A500 AGAIN XK.Redo (•) 

Encodings marked '(• )' arc arbitrary decisions- if a subsequent version of XII supplies better 
codes these will probably be used unless the existing eneodings become established in ARM 
applications. The srune applies to the 'II' and'%' keys on the keypad. 

ENVI RONMENT 
XDEVICE 

FILES 

If present, and if no explicit -dev options are given. specifies the display device to use 
instead of ldev/fb. 

XKBDDEV 
If present, and if no explicil ·kbd options are given, specifics the keyboar<Vmouse device 
to use instead of ldevlkbd. 

/dev/fb 
/dcv/kbd 
/usr/lldm/X•rnsgs 
/usr/lib/X II/• 
/usr/lib/Xll/fonts 

default frame buffer device 
default keyboar<Vmouse device 
error and warning messages from the X server 
database files -
default font files 

SEE ALSO 

X Version II $Date: 88/10/13 II :48:49 $ 5 



XARM( 1) UNIX Programmer's Manual XARM(I ) 

IIUGS 

Xserver(l), xinil(1), X(1) 

Bugs in the Xarm server or the Acorn XII system should be reported to unixbugs@acorn.co.uk­
bugs are more likely lO be fixed if submiued with a concise example which shows the problem on 
a system consisting solely of Acorn hardware and software. The XII system should work 
correctly with any other XII software which obeys the XII protocol and uses TCP/IP or unix 
domain sueams for communication (the server does not suppon DecNet connections.) 

Current features of the server arc as follows:-

The colour modes are significantly slower than the monochrome modes - even laking inlo 
accoum the fact that they have lO write as much as 4 times as much data per pixel. As a 
consequence cenain graphics demos (in particular the 'plaid' demo) can render lhe system 
almost unusable while they are running. To do lhls the demo musl be continuously pro­
ducing oulput • it is therefore almost cenainly not interacting with the user and is there­
fore unlikely to be doing anything useful. Avoid running such demos on the medium 
resolution colour system! 

2 The hardware cursor is not used in any mode a1 present, despite the fact that the options 
exist 10 select it. 

AUTHORS 
Acom Computers Ltd 

JB, SH 

X Version II $Dale: 88/10/13 11:48:49 $ 6 



XTERM( I) UNIX Programmer's Manual XTERM( I) 

xterm - terminal emulator for X 

SYNOPSIS 
xterm 1-wo/Jcitoprion ... ) [-<>ption ... ) 

DESCRIPTION 
The Xlum program is a terminal emulator for the X Window System. It provides DEC VT102 
and Tektronix 4014 compatible terminals for programs that can't use the window system directly. 
If the underlying operating system suppons terminal resizing capabilit.ies (for example, the 
SIGWINCH signal in systems derived from 4.3bsd), xurm will use the facilities to notify pro­
grams running in the window whenever it is resi1.ed. 

The VTI02 and Tektronix 4014 terminals each have their own window so that you can edit text in 
one and look at graphics in the other at llle same time. To maintain lhe correct aspect ratio 
(heighl/width), Tektronix graphics will be restricted to the largest box with a 4014 's aspect ratio 
that will fit in the window. This box is located in llle upper len area of llle window. 

Although both windows may be displayed at llle same time, one of them is considered the 
"active" window for receiving keyboard input and terminal output. This is the window that con­
tains the text cursor and whose border highlights whenever lhe pointer is in either window. The 
active window can be choosen through escape sequences, the "Modes" menu in the VTI02 win­
dow, ar d the "Tektronix" menu in lhe 4014 window. 

OPTIONS 
The xterm terminal emulator accepts all of the standard X Toolkit command line options along 
with the additional options listed below (if lhe option begins willl a '+' instead of a '-', lhe option 
is restored to its default value): 

- 132 Normally, the VT102 DECCOLM escape sequence lllat switches between 80 and 132 
column mode is ignored. This option causes the DECCOLM escape sequence 10 be 
recognized, and llle xterm window will resia appropriately. 

-b number 
This option specifics the size of the inner border (the distance between llle outer edge of 
the characters and the window border) in pixels. The default is 2. 

-cr color 
This option specifics the color to use for text cursor. The default is to usc the same fore­
ground color that is used for text. 

-<U This option indicates that xurm should work around a bug in the curses(3x) cursor 
motion package that causes the more(!) program to display lines that are exactly llle 
width of the window and are followed by line beginning with a tab to be displayed 
incorrectly (the leading tabs are not drsplayed). 

+cu This option indicates that that xterm should not work around the curses(3x) bug men­
tioned above. 

~ program [arguments ... / 
This option specifies the program (and its command line arguments) to be run in the 
xterm window. The default is to start the user's shell. This must be the last option on 
the command line. 

- tb font This option specifics a font to be used when displaying bold text. This font must be the 
same height and width as the normal font. If only one of the normal or bold fonts is 
specified, it will be used as the nom1al font and the bold font will be produced by over­
striking this font. The defaull bold font is "vtbold." 

-j This option indicates that xterm should do jump scrolling. Normally, text is scrolled one 
line at a time; this option allows xterm to move multiple lines at a time so lllat it doesn't 
fall as far behind. Its use is strongly recommended since it make xterm much faster 

X Vcrsron 11 I March 1988 



XTERM ( 1) UNIX Programmer's Manual XTERM ( 1) 

when scanning through large amounts of text. The VTlOO escape sequences for enabling 
and disabling smooth scroll as well as the "Modes" menu can be used to tum thi~ 
feature on or off. 

+j This option indicates that xterm should not do jump scrolling. 

-1 This option indicateS that xttrm should send all terminal output to a log file as well as to 
the screen. This option can be enabled or disabled using the '' xterm X II'' menu. 

+I This option indicates that xterm should not do logging. 

-tr fileruJ~m 
This option specifies the name of the file to which the output log described above is writ· 
ten. If file begins with a pipe symbol (1), the rest of the string is assumed to be a com­
mand to be used as the endpoint of a pipe. The default filename is 
"XtermLog.XXXXX" (where XXXXX is the process id of xurm) and is created in the 
directory from which xterm was started (or the user's home directory in the case of a 
login window. 

-Is This option indicates that shell that is started in the xterm window be a login shell (i.e. 
the ftrSt character of argv[O) will be a dash, indicating to the shell that it should read the 
user's .login or .profile). 

+Is This option indicates that the shell that is started should not be a login shell (i.e. it will 
be normal "subshell"). 

-mb This option indicates that xurm should ring a margin bell when the user types near the 
right end of a line. This option can be turned on and off from the "Modes" menu. 

+mb This option indicates that margin bell should not be rung. 

-ms color 
This option specifies the color to be used for the pointer cursor. The default is to usc the 
foreground color. 

-nb number 
This option specifies the number of characters from the right end of a line at wb1ch the 
margin bell, if enabled, will ring. The default is 10. 

-rw This option indicates that rcverse-wraparow1d should be allowed. This allows the cursor 
to back up from the lefimost column of one I inc to the rightmost column of the previous 
line. This is very useful for editing long shell command lines and is encouraged. Thos 
option can be turned on and off fTom the "Modes" menu. 

+rw This option indicateS that reverse-wraparound should not be allowed. 

-s This option indicates that xtum may scroll asynchronously, meanmg that the screen does 
not have to be kept completely up to date while scrolling. This allows xterm to run fas­
t.cr when network latencies are very high and is typically useful when running across a 
very large internet or many gateways. 

+S This option indicates that xterm should scroll synchronously. 

-sb This op1ion indicates that some number of lines that are scrolled off the top of the win­
dow should be saved and that a scrollbar should be displayed so that those lines can be 
viewed. This option may be turned on and off from the "Mndes" menu. 

+Sb This option indicat.cs that a scroll bar should not be displayed. 

-si This option indicates that output to a window should not automatically reposition the 
screen to the bottom of the scrolling region. This option can be turned on and orr rrom 
the "Modes" menu. 

+Si This option indicates that output to a window should cause it to scroll to the bottom. 

X Version II 1 March 1988 2 



XTFRM( I) UNIX Programmer's Manual XTERM( I) 

-sk This option indicates mat pressing a key whllc using me scrollbar to review previous 
lines of text should cause the window to be repositioned automatically in the normal pos­
tion at me bottom of the scroll region. 

+Sk Th1s option indicates mat pressmg a key while usmg the scrollbar should not cause the 
window to be repositioned. 

-sl number 
This option specifics the number of lines to save that have been scrolled off the top of 
the screen. The default is 64. 

-t This option indicates that xterm should start m Tektronix mode, rather man m VT102 
mode. Switching between me two windows is done using the "Modes" menus. 

+I This option indicates that xterm should start in VTI 02 mode. 

-vb This option indicates that a visual bell is prefered over an audible one. Instead of ring­
ing the terminal bell whenever a Control-G is received, the window will be flashed 

+vb This option indicates that a visual bell should not be used. 

--C This option indicates that lhls wmdow should be receive console output. This is not sup­
ported on all systems. 

-L This option indicates that xterm was started by init. In this mode, xterm does not try to 
allocate a new pseudotenninal as init has already done so. In addition, the system pro­
gram getty is run instead of the user's shell. This option should never be used by 
users when starling terminal windows. 

-Seen This oplion specifies the last two leuers of the name of a pseudotcrminal to usc in slave 
mode. This allows xterm to be used as an input and output channel for an existing pro­
gram and is sometimes used in specialized applications. 

The following command hne arguments are provided for compatibility with older versions. They 
may not be supported in the next release as me X Toolk1t provides standard options that accom­
plish the same task. 

%geom This option specifics the prefcrcd si7.e and position of the Tektronix window. It is short­
hand for specifying the "•tek.Geometry" resource. 

#geom This option specifies the prefered position of the 1con window. It IS shorthand for speci­
fymg the "•ieonGeomerry" resource. 

-T string 
This option specifics the title for xterm's windows. It is equivalent to -title. 

-nstring Th1s option specifics the icon name for xterm's windows. It is shorthand for specifying 
the "•iconName" resource. 

-r This option indicates that reverse video should be simulated by swapping the foregrotmd 
and background colors. It is equivalent to -reverse video or -rv. 

-w nwnbtr 
This option specifies the width in pixels of the border surrounding the window. It is 
equivalent to -borderwidth or -bw. 

The followmg standard X Toolkit command line arguments are commonly userl with xtum: 

-bg color 
This option specifics the color to usc for the background of the window. The default is 
"white." 

-bd color 

X Version II 

Th1s option specifics the color to usc for the border of the window. The default is 
"black." 

I March 1988 3 



XTERM( 1) UNIX Programmer's Manual XTERM (I) 

-bw numbu 
This option specifies lhe width in pixels of lhe border surrounding lhe window. 

-fg color 
This option specifies the color to use for displaying text. Tile default is "black". 

-fn fonJ This option specifies the font to be used for displaying normal text. The default is 
"vtSingle." 

-name nam~ 
This option specifies the application name under which resow-ce are to be obtained, 
rather than the default executable file name. 

-rv This option indicates that reverse video should be simulated by swapping the foreground 
and background colors. 

-geometry geo~try 
This option specifies the prefered size and position of the Vfl02 window; see X (I); 

-display display 
This option specifics the X server to contact; sec X( 1 ). 

-xrm resources/ring 
This option ~-pecifies a resource string to be used. This is especially useful for seuing 
resources that do not have separate command line options. 

X DEFAULTS 
The program understands all of the core X Toolkit resource names and classes as well as: 

name (class Name) 
Specifies the name of this instance of the program. The default is "xterm." 

iconGeometry (class IconGeometry) 
Specifies the prefcrcd size and position of the application when iconified. It is not neces­
sarily obeyed by all window managers. 

title (class Title) 
Specifies a string that may be used by the window manager when displaying this applica­
tion. 

Tbe following resow-ces are specified as pan of the "vtlOO" widget (class "VTlOO"): 

font (class Font) 
Specifies the name of the normal font. The default is "vtsingle." 

boldFont (class Font) 
Specifies the name of the bold font. The default is "vtbold. '' 

ct 32 (class Ct32) 
Specifies whether or not the Vfl 02 DECCOLM escape sequence should be honored. 
The default is "false." 

curses (class Curses) 
Specifies whether or not the last column bug in cursor should be worked around. The 
default is "false." 

background (class Background) 
Specifies the color to use for the backgrowtd of the window. The default is ··white.·· 

foreground (class Foreground) 

X Version II 

Specifies the color to use for displaying text in the window. Setting the class name 
instead of the instance name is an easy way to have everything that would normally 
appear in the "text" color change color. The default is "black." 

I March 1988 4 



XTERM( I) UNIX Programmer's Manual XTERM( I) 

cursorColor (class Foreground) 
Specifies the color to use for the text cursor. The default is ''black.'' 

geometry (class Geometry) 
Specifies the prcfercd size and position of the VTI02 window. 

tekGeometry (class Geometry) 
Specifies the prefered size and position of the Tektronix window. 

internaiDorder (class BorderWidth) 
Specifies the number of pixels between the characters and the window border. The 
default is 2. 

jumpScroll (class JumpScroll) 
Specifies whether or not jump scroll should be used. The default is " false". 

logFile (class Logfile) 
Specifies the name of the ftle to which a terminal session is logged. The default is 
" XtermLog.XXXXX" (where XXXXX is the process id of xrerm). 

logging (class Logging) 
Specifies whether or not a terminal session should be logged. The default is "false." 

loglnhibil (class Loglnhibit) 
Specifies whether or not terminal session logging should be inhibited. The default is 
"false." 

loginShell (class LoginShell) 
Specifies whether or not the shell to be run in the window should be started as a login 
shell. The default is "false." 

marginBell (class MarginBell) 
Specifics whether or not the bell should be run when the user types near me right mar­
gin. The default is "false." 

muiiiScroll (class MulliScroll) 
Specifies whelller or not asynchronous scrolling is allowed. The default is "false." 

nMarginBell (class Column) 
Specifies the number of characters from the right margin at which the margin bell should 
be run, when enabled. 

pointerColor (class Foreground) 
Specifies the color of the pointer. The default is "black." 

pointerShape (class Cursor) 
Specifies the name of the shape of the pointer. The default is "xterm." 

reverse Video (class Reverse Video) 
Specifies whether or not reverse video should be simulated. The default is "false." 

reverseWrap (class ReverseWrap) 
Specifies wbelller or not reverse-wraparound should be enabled. The default is "false." 

save Lines (class SaveLines) 
Specifies the number of lines to save beyond the top of the screen when a scrollbar is 
turned on. The default is 64. 

scrollllar (class ScroiiBar) 
Specifics whether or not the scroll bar should be displayed. The default is ''false." 

scrolllnput (class ScroiiCond) 

X Version 11 

Specifies whether or not output to the terminal should automatically cause the scrollbar 
to go to the bottom of the scrolling region. The default is "true." 

I March 1988 s 



XTERM( 1) UNIX Programmer's Manual XTERM( I) 

scrollKey (class ScrollCond) 
Specifics whether or not pressing a key should automatically cause the scrollbar to go to 
the bottom of the scrolling region. The default is "false." 

signallnhibit (class Signallnhibit) 
Specifies whether or not the entries in the "xterm XII" menu for sending signals to 
xterm should be disallowed. The default is "false." 

tekl nhibit (class Tekl nhibit) 
Specifics whether or not Tektronix mode should be disallowed. The default is "false." 

tekStartup (class TekStartup) 
Specifies whether or not xterm should start up in Tektronix mode. TI>e default is 
''false.·· 

visualBell (class VisualBell) 
Specifics whether or not a visible bell (i.e. flashing) should be used instead of an audible 
bell when Control-G is received. The default is "false." 

The following resources are specified as part of the "tek4014" widget (class " Tek4014"): 

width (class Width) 
Specifics the width of the Tektronix window in pixels. 

height (class Height ) 
Specifics the height of the Tektronix window in pixels. 

The following resources are specified as part of the "menu" widget: 

menuBorder (class MenuBor der) 
Specifies the size in pixels of the border surrounding menus. The default is 2. 

menuFont (class Font) 
Specifies the name of the font to use for displaying menu items. 

menuPad (class MenuPad) 
Specifics the number of pixels between menu items and the menu border. The default is 
3. 

EMULATIONS 
The VT102 emulation is fairly complete, but does not support the blinking character attribute nor 
the double-wide and double-size character sets. Termcap(S) entries that work with xterm include 
"xterm", "vtl02", "vtlOO" and "ansi", and xterm automatically searches the termcap file in 
this order for these entries and then sets the "TERM" and the "TERMCAP" environment vari­
ables. 

Many of the special xterm features Oike logging) may be modified under program control through 
a set of escape sequences different from the standard VT102 escape sequences. (See the "Xterm 
Control Sequences" document) 

The Tektrortix 4014 emulation is also fairly good. Four different font sizes and five different 
Jines types are supported. The Tektronix text and graphics commands are recorded internally by 
xterm and may be written to a file by sending the COPY escape sequence (or through the Tek­
tronix menu; see below). The name of the file will be "COPYyy-MM-dd.hh:mm:ss", where yy, 
MM. dd, hh, mm and ss are the year, month, day, hour, minute and second when the COPY was 
performed (the file is created in the directory xterm is started in, or the home directory for a login 
xterm). 

POINTER USAGE 

X Version 11 1 March 1988 6 



XTERM( I) UNlX Programmer's Manual XTERM( I) 

ME!\ 'US 

Once the VT102 window is created, xurm allows you to select text and copy it within the same or 
other windows. 

The selection fWJCtions are invoked when the pointer buttons are used with no modifiers, and 
when they are used with the "shift" key. 

Pointer button one (usually left) is used to save text into the cut buffer. Move the cursor to 
beginning of the text, and then hold the button down while moving the cw-sor to the end of the 
region and releasing the button. The selected text is highlighted and is saved in the global cut 
buffer when the button is released. Double·dicking selectS by words. Triple-clicking selects by 
lines. Quadruple-clicking goes back to characters, etc. Multiple-click is determined by the time 
from button up to button down, so you can change the selection unit in the middle of a selection. 

Pointer button two (usually middle) 'types' (pastes) the text from the cut buffer, inserting it as 
keyboard inpuL 

Pointer buuon three (usually ri&ht) extends the current selection. (Without loss of generality, that 
is you can swap "right" and "left" everywhere in the rest of this paragraph ... ) If pressed while 
closer to the right edge of the selection than the left, it extends/contracts the right edge of the 
selection. If you contract the selection past tlte left edge of the selection, xtum assumes you 
really meant the left edge, restores the original selection, then extends/contracts the left edge of 
the selection. Extension starts in the selection unit mode that the last selection or extension was 
performed in; you can multiple-click to cycle through them. 

By cutting and pasting pieces of text without trailing new lines, you can take text from several 
places in different windows and form a command to the shell, for example, or take output from a 
program and insert it into your favorite editor. Since the cut buffer is globally shared among 
different applications, you should regard it as a 'file' whose contents you know. The terminal 
emulator and other text programs should be treating it as if it were a text tile, i.e. the text is del­
imited by new lines. 

The scroll region displays the posiuon and amount of text currently showing in the window 
(highlighted) relative to the amount of text actually saved. As more text is saved (up to the max­
imum), the size of the highlighted area decreases. 

Qicking button one with the pointer in the scroll region moves the adjacent line to the top of the 
display window. 

Qiclting buuon three moves the top line of the dtsplay window down to the pointer position. 

Qicking button two moves the display to a position in the saved text that corresponds to the 
pointer's position in the scroll bar. 

Unlike the VT102 window. the Tektronix window dows not allow the copying of text. It does 
allow Tektronix GIN mode, and in this mode the cursor will change from an arrow to a cross. 
Pressing any key will send that key and the current coordinate of the cross cursor. Pressing but­
ton one, two, or three will return the letters '1', 'm', and 'r', respectively. If the 'shift' key is 
pressed when a pointer buton is pressed, the corresponding upper case letter is sent. To distinqu· 
ish a pointer button from a key, the high bit of the character is set (but this is bit is normally 
stripped unless the terminal mode is RAW; see tty(4) for details). 

Xtum has three different menus, named xterm, Modes, and Tektronix. Each menu pops up 
under the correct combinations of key and button presses. Most menus are divided into two sec­
tion, separated by a horizontal line. The top portion conwins various modes that can be altered. 
A check mark appears next to a mode that is currently active. Selecting one of these modes tog­
gles its state. The bottom portion of the menu are command entries; selecting one of these per­
forms the indicated function. 

X Version II I March 1988 7 



XTERM( I) UNIX Programmer's Manual XTERM( I) 

The xterm menu pops up when the "control" key and pointer button one are pressed in a win­
dow. The modes section contains items that apply to both the VT102 and Tektronix windows. 
Notable entries in the command section of the menu are the Continue, Suspend, Interrupt, 
Hangup, Terminate and Kill which sends the SIGCONT, SIGTSTP, SIGINT, SIGHUP, 
SIGTERM and SIGKU.L signals, respectively, to the process group of the process running under 
xterm (usually the shell). The Continue function is especially useful if the user has accidentally 
typed CTRL-Z, suspending the process. 

The Modes menu sets various modes in the VT102 emulation, and is popped up when the "con­
trol" key and pointer button two are pressed in the VT102 window. In the command section of 
this menu, the soft reset entry will reset scroll regions. This can be convenient when some pro­
gram has left the scroll regions set incorrectly (often a problem when using VMS or TOPS-20). 
The full reset entry will clear the screen, reset tabs to every eight columns, and reset the terminal 
modes (such as wrap and smooth scroll) to there initial states just after Xlerm has finish processing 
the command line options. The Tektronix menu sets various modes in the Tektronix emulation, 
and is popped up when the "control" key and pointer buuon two are pressed in the Tektronix 
window. The current font size is checked in the modes section of the menu. The PAGE entry in 
the command section clears the Tektronix window. 

OTHER FEATURES 
Xterm automatically highlights the window border and text cursor when the pointer enters the 
window (selected) and unhighlights them when the pointer leaves the window (unselected). If the 
window is the focus window, then the window is highlighted no matter where the pointer is. 

In VTl02 mode, there are escape sequences to activate and deactivate an alternate screen buffer, 
which is the same size as the display area of the window. When activated, the current screen is 
saved and replace with the alternate screen. Saving of lines scrolled off the top of the window is 
disabled until the normal screen is restored. The termcap(5) entry for xterm allows the visual edi­
tor vi(J) to switch to the alternate screen for editing, and restore the screen on exit. 

In either VT102 or Tektronix mode, there are escape sequences to change the name of the win­
dows and to specify a new log file name. 

ENVIRONMENT 
Xterm sets the environment variables "TERM" and "TERMCAP" properly for the size window 
you have created. It also uses and sets the environment variable "DISPLAY" to specify which 
bit map display terminal to use. The environment variable "WINDOWID" is set to the X win­
dow id number of the xterm window. 

SEE ALSO 

DUGS 

resize(!), X(l), pty(4), tty(4) 
"Xterm Control Sequences" 

Xterm will hang forever If you try to paste too much text at one time. It is both producer 
and consumer for the pty and can deadlock. 

Variable-width fonts are not handled reasonably. 

This program still needs to be rewritten. It should be split into very modular sections, with the 
various emulatprs being completely separate widgets that don't know about each other. Ideally, 
you'd like to be able to pick and choose emulator widgets and stick them into a single control 
widget. 

The focus is considered lost if some other client (e.g., the window manager) grabs the pointer; it 
is difficult to do better without an addition to the protocol. 

There needs to be a dialog box to allow entry of log file name and the COPY file name. 

X Version 11 1 March 1988 8 



XTERM( 1) UNIX Programmer's Manual XTERM( 1) 

Many of the options are not resenable after xttrm startS. 

This manual page is too long. There should be a separale users manual defining all of the non­
standard escape sequences. 

All programs should be written to use X directly; then we could eliminate this program. 

COPYRIGHT 
Copyright 1988. Massachusetts Institute of Technology. 
See X( 1) for a full statement of rigbts and permissions. 

AUTHORS 
Far too many people, including: 

Lorena Guarino Reid (DEC-UEG-WSL), Joel McCormack (DEC-UEG-WSL), Terry Weissman 
(DEC-UEG-WSL), Edward Moy (Berkeley). Ralph R. Swick (MIT-Athena), Mark Vandevoorde 
(MIT-Athena), Bob McNamara (DEC-MAD), Jim Gcuys (MIT-Athena). Bob Scheifter (MIT X 
Consortium). Doug Mink (SAO), Steve Pitsch.ke (Stellar), Ron Newman (MIT-Athena). Jim Ful­
ton {MIT X Consortium) 

X Version II I March 1988 9 





Index 

A 

access 12-1 4, 33-35 
displaying 33- 34 
execute 14, 34 
group 12-13, 33 
network 117- 120 
read 14,34 
user 13,33 
write 14,34 

adb 180 
adfscat 155 
adfscp 155, 156 
adfsls 155 
adfsrm 155 
alert 196 
apropos 196 
as 180 
at 184 
atq 196 
atrm 196 
awl< 183 
awm 196 

B 

be 184 
Berkeley networking comm:mds 

117-125 
bitmap 196 

Index 

c 
cal 184 
calendar 184 
cat 27 
cb 180 
cc 180 
cd 23 
cheapemet II 0 
checkeq 182 
chgrp 197 
chmod 34 35, 57 
clear 197 
CLI see command line interpreter 
client programs see X Window 

System 
cmp 184 
col 182 
colcrt 182 
comm 184 
command 4-5 

arguments 20-21, 36 
executing sequence 49 
fonnat 20 
options 20-21 
summaries 38-39, 59-60, 74, 80, 

106-107, 107, 126- 127, 
157- 159, 180-184,208 

UNIX 16 
command line interpreter 16 



communication 
interactive 147-150 

communications 
serialline 134-135 

compress 197 
connect 132 
cp 29 
est- 197 
CWO see directory, current workmg 

D 

date 197 
dbx 180 
de 197 
deroff 181 
df 197 
diction 181 
diff 184 
di ff3 184 
directory 7 

/bir 7 
/dev 8 
/etc 8,118 
/lib 8 
/tmp 8 
/usr 8 

/bin 8 
/lib 8 
/man 36 
/users 8-9 

changing 23 
creating 27 
current working 9, 23-24 
deleting 30 
home 9, 23 
listing 28 
moving 29 
parent 24 

renaming 29 
disc 

formatting floppy 152 
du 197 

E 

echo 42, 49-SO 
Econer 110 
ed 64 -80 

adding text 71 
appending text 64-65 
command summaries 74, 80, 205 
commands 67 
current line 69-70 
deleting text 71 
editing text 70-72 
entering 64 
error message 6 7, 191 
leaving 66 67 
moving text 71 
printing selected lines 67-70 
replacing text 71 72, 76-77 
saving text 66 
searching for text 74-75 
speetal character~ 7 7-79 
undmng changes 72 

edit 108 
eqn 181 
errors 

editing 191-192 
in RISC iX commands 188-190 
networking 193-194 

ethernet 110 
ex 

commnnd summaries 1 07, 208 
exit 121 
expand 183 
explain 18 1 

lnde> 



export 42, 43 

F 

fc 198 
ffd 152 
file 

ADFS to RISC iX 155- 156 
command 198 
copying 29 
copying to remote workstation 

129, 132 
creating 25-26, 64, 81 
deleting 30 
displaying 27 
hidden 26, 42,44 
moving 28 
MS-DOS to RISC iX 154-155 
printing 31-33 
protection see access 
renaming 28 
special 7 
transferring between 

workstations 131, 132-
133, 152- 156 

file system 6-11 
file types in 7 
structure 6, 22 

filename 26 
characters 26 
generation 4 5-48 

filter 56 
find 184 
floppy disc 

commands 210 
floppy discs 

file transfer 152 
formatting 152 

flpop 198 
from 159 

Index 

ftp 129, 130-131 
command summary 157 

G 

gateway 113 
get 131, 132 
grep 56, 183 
gs 198 

H 

head 183 
help 

on-line 37 
host files 118 
hostid 198 
hostname 118 

I 

ico 198 
inituser 198 
input/output 15 

redirecting 51-55 
standard 51-53 

install 198 
internet 110 

K 

kermit 134 
kernel 4-5 
ki ll 198 

L 
LAN 110- 111 
ld 180 



learn 37, 108 
lex 180 
lint 180 
ln 198 
. login 43, 104, 105 
look 183 
lpq 32 
lpr 31 
lprm 32 
ls 16,28,43,45-47,55 

M 

mail 53, 136-160 
aborting send 138 
carbon copies 146 
command summary 158 
commands 209 
customising 145- 146 
deleting messages 142 
help 140 
inserting file into message 144 
looking at messages from 

outside mail 145 
message header 139 
on WAN 146 
quitting 144-145 
reading 138-140, 141 
replying to 142- 144 
saving 141 
security 138 
sending 136-13 7 
sorting 141- 142 
subject header 145 
system mailbox 136 
tilde escape commands 137, 

140, 158 
to unknown user 138 
unread 145 

using vi 137-138 
make 180 
man 36,55 
manual pages 35-37, 189 
message 

system 151 
metacharacters 44-48 

quoting 49- 50 
mkdir 27 
mkruler 199 
modem 135 
more 27 
msdoscat 154 
msdoscp 154 
msdosls 154 
msdosrm 154 
muncher 199 
mv 24, 28-29, 47 

N 

neqn 182 
network 109 

access 117-120 
Berkeley networking commands 

117-125 
client 115- 116 
command summary 126-127 
copying between workstations 

124- 125 
file system see NFS 
id 117 
information 122 
log in to remote workstation 

120-121 
log out from remote 

workstation 121 
remote commands 123 
sending messages 123 

Index 



server 115-116 
setting up environment 117-120 
transparency 115 
wide area see WAN 

newline 
hidden 50 

NFS 114-127 
nice 199 
nroff 181 

0 

od 184 
open 130 

output see input/output 

p 

parameter 
in shell script 58 

passwd 199 
password 118, 120 
path 

search 43 
pathname 10--11, 23 

abbreviating 24 
absolute 23 
relative 25 

permission see access 
pipes 54-55 
plaid 200 
pr 183 
printer 

queue 32 
spooling queue 32 

process 
id number 48 
status 48 

. profile 42-43, 104, 105 
protocol 

Index 

communications 113 
internet 110 

ps 48 
psroff 181 
put 131, 132 
puzzle 200 
pwd 23 

R 

rep 117, 124-125 
reborder 200 
refe r 181 
rev 183 
. rhosts 119 
RISC iX 1 
rlogin 117, 120--121 
rm 30--31,47 

options 31 
rmdir 30 
root 11- 12 
rsh 117, 123 
rup 117, 122 
rusers 117, 122 
rwall 117,123 

s 
script 200 
security 11- 12 
sed 183 
sh 57 
shell 4- 5, 15-16 

as programming language 56-58 
Bourne 41-4 2 
c 41-42 
login 42-44 
script 57 



UNIX 204 
showsnf 200 
sleep 200 
sort 56, 183 
spell 53, 181 
split 183 
stty 200 
style 181 
su 201 
sum 184 
super-user see root 

T 

tail 183 
talk 148- 149, 159 

blocking messages 150 
quitting 149 
replying to call 149 

tar 152, 153 
tbl 181 
tee 201 
telnet 129, 133- 134 

command summary 157 
tftp 129, 130, 132-133 

command summary 157 
time 201 
tip 134 
touch 201 
tr 183 
troff 181 
tset 201 
twrn 163 

u · 
uemacs 108 
unexpand 183 

uniq 184 
unit 201 
UNIX 3-4 

components 4-5 
user 

crusted 119-120 
users 147 
utilities 

data manipulation 183 
floppy disc 152- 156 
miscellaneous 184 
programming 180 
text preparation 181-182 

uucp 113, 134 
uux 201 
uwm see X Window Manager 

v 
variable 

shell 43 
vi 81-107 

adding text 88-90 
command summaries 96, 106-

107, 206-207 
editing text 88-95 
entering 82 
error messages 192 
executing shell commands I 02 
global changes 100-101 
high-level objects 97 
inserting text 83-84 
joining lines 98 
leaving 85 
line editing with ex 100-101 
macro commands 105 
moving around in 86-88 
moving text 93 
multiple buffers 99-100 

Index 



w 

multiple files 102 
options 103-104 
repeating last command 98 
replacing text 90-93, 93 
saving text 84 
searching for text 97- 98 
splitting lines 98 
undoing changes 95 

w 147 
wall 151, 159 
WAN 112- 113 
we 54 55, 181 
whati s 201 
wherei s 201 
which 202 
who 56, 147 
whoami 202 
wildcards 44 
wm 202 
workstation 

local 109 
remote 109 

wradfs 155 
write 149-150, 159 

blocking messages 150 
replying to message 149- 150 

wrmsdo s 154 

X 

X Window Manager 

Index 

changing stacking order 170 
focus window 172 
keyboard short-cuts 174 
moving window 169 
opening new window 168 

Preferences menu 173 
redrawing screen I 69 
redrawing window 169 
reducing window to icon 171 
resizing window 170 
restarting 172 
running applications 177 
running clients 176 
start-up file 167 
starting 166 
WindowOps menu 167- 172 

X Window System 
client programs 161, 162- 163 
display 161 
focusing 164 
loading clients 175 
login xterm window 164 
root window 164 
running non-X applications 175 
server 161 
starting 164-166 
stopping 177 
terminal emulator 162 

Xarm 161 
xbiff 163 
xcalc 163 
xcalendar 163 
xclock 163 
xdpr 163 
xedit 163 
xfd 163 
xhost 163 
xinit 165 
Xlib 161 
xload 202 
xls fonts 163 
xman 37, 163 
xmodmap 163 
xmore 163 



xperfmon 163 
xpr 163, 202 
xprkbd 163 
xprop 163 
xrdb 202 
xrefresh 202 
xset 163 
xsetroot 163 
xterm 162, 164 
xwd 163 
xwininfo 163 
xwud 163 

y 

yacc 180 
yellow pages 116 
yorn 203 

Index 







Acorn6 
1be choice of expt>rience 


