
RISC OS 3 
Programmer"s Reference Manual 

Volume3 

Acorn~ 



RISC OS 3 
Programmer's Reference Manual 

Volume3 

Acornl 



3-ii 

Copyright© 1992 Acorn Computers Limited. All rights reserved . 

Published by Acorn Computers Technical Publications Department. 

No part of this publication may be reproduced or transmitted, in any form or by 
any means. electronic, mechanical. photocopying, recording or otherwise, or 
stored in any retrieval system of any nature, without the written permission of the 
copyright holder and the publisher, application for which shall be made to the 
publisher. / 

The product described in this manual is not intended for use as a critical 
component in life support devices or any system in which failure could be expected 
to result in personal injury. 

The product described in this manual is subject to continuous development and 
improvement. All information of a technical nature and particulars of the product 
and its use (including the information and particulars in this manual) are given by 
Acorn Computers Limited in good faith . However, Acorn Computers Limited 
cannot accept any liability for any loss or damage arising from the use of any 
information or particulars in this manual. 

If you have any comments on this manual, please complete the form at the back of 
the manual and send it to the address given there. 

Acorn supplies its products through an international distribution network. Your 
supplier is available to help resolve any queries you might have. 

Within this publication, the term 'BBC' is used as an abbreviation for 'British 
Broadcasting Corporation'. 

ACORN, ACORNSOIT, ACORN DESKTOP PUBLISHER, ARCHIMEDES, ARTHUR, 
ECONET, MASTER, MASTER COMPACT, THE TUBE, VIEW and VIEWSHEET are 
trademarks of Acorn Computers Limited. 

Adobe and PostScript are trademarks of Adobe Systems Inc 
ARM is a trademark of Advanced RISC Machines Ltd' 
TEX is a trademark of the American Mathematical Society 
lmageWriter. LaserWriter and Macintosh are trademarks of Apple Computer Inc 
DBase is a trademark of Ashton Tate Ltd 
UNIX is a trademark of AT&T 
Atari is a trademark of Atari Corporation 
AutoCAD is a trademark of AutoDesk Inc 
Amiga is a trademark of Commodore-Amiga Inc 
Commodore is a trademark of Commodore Electronics Limited 
SuperCalc is a trademark of Computer Associates 
CorelDraw is a trademark of Corel Corporation 
VT is a trademark of Digital Equipment Corporation 
I st Word Plus is a trademark of GST Holdings Ltd 



Deskjet. HP. HPGL, Laser)et and Paint)et are trademarks of Hewlett-Packard 
Corporation 
Colourjet is a trademark of lntegrex Ltd 
IBM is a trademark of International Business Machines Corporation 
lTC Zapf Dingbats is a trademark of International Typeface Corporation 
Helvetica and Times are trademarks of Linotype Corporation 
Lotus 123 is a trademark of The Lotus Corporation 
MS-DOS is a trademark of Microsoft Corporation 
MultiSync and NEC are trademarks of NEC Limited 
Epson, EX and FX are trademarks of Seiko Epson Corporation 
Sun is a trademark of Sun Microsystems Inc 
Ethernet is a trademark of Xerox Corporation 

All other trademarks are acknowledged. 

Published by Acorn Computers Limited 
ISBN for complete set of five volumes: I 85250 110 3 
ISBN for this volume: I 85250 113 8 
Edition I 
Part number 0470,293 
Issue I, December 1992 

3-iii 



3-iv 



Contents 

About this manual 1-ix 

Part 1 -Introduction 1-1 
An introduction to RISC OS 1-3 
ARM Hardware 1-9 
An introduction to SWis 1-23 
* Commands and the CLI 1-33 
Generating and handling errors 1-41 

OS_Byte 1-49 
OS_Word 1-59 
Software vectors 1-63 
Hardware vectors 1-111 
Interrupts and handling them 1-117 
Events I-I45 
Buffers I-I61 
Communications within RISC OS 1-175 

Part 2 - The kernel 1-195 
Modules 1-197 
Program Environment 1-283 
Memory Management 1-337 
Time and Date 1-399 
Conversions 1-441 
Extension ROMs 1-485 

Part 3- Kernel input/output 1-487 
Character Output 1-489 
VDU Drivers 1-527 
Sprites 1-745 
Character Input 1-835 
TheCLI 1-923 
The rest of the kernel 1-93 5 

3-v 



3-vi 

Part 4- Using filing systems 2-1 
Introduction to filing systems 2-3 
FileSwitch 2-9 

FileCore 2- I 95 

ADFS 2-26I 
RamFS 2-309 
DOSFS 2-3I 7 
NetFS 2-337 
NetPrint 2-385 
PipeFS 2-405 
ResourceFS 2-407 
DeskFS 2-419 
DeviceFS 2-421 

Serial device 2-439 
Parallel device 2-4 77 
System devices 2-485 
The Filer 2-489 
Filer_Action and FilerSWis 2-503 
Free 2-511 

Part 5- Writing filing systems 2-519 
Writing a filing system 2-521 
Writing a FileCore module 2-587 
Writing a device driver 2-597 

Part 6- Networking 2-607 
Econet 2-609 
File server protocol interface 2-693 
The Broadcast Loader 2-727 
BBC Econet 2-729 
Hourglass 2-733 
NetStatus 2-745 

Part 7 - The desktop 3-1 
The Window Manager 3-3 
Pinboard 3-293 
Drag A Sprite 3-299 

The Filter Manager 3-303 
The TaskManager module 3-313 
TaskWindow 3-321 
ShellCLI 3-329 



Part 8- Non-kernel input/output 3-333 
Colou(frans 3-335 

The Font Manager 3-403 

SuperSample module 3-519 
Draw module 3-523 

Part 9- Printing 3-553 
Printer Drivers 3-555 
Printer Dumpers 3-663 

PDumperSupport 3-679 
Printer definition files 3-697 
MakePSFont 3-733 

Part 10 -lnternationalisation 3-735 
MessageTrans 3-737 
International module 3-759 

The Territory Manager 3-785 

Part 11 -Sound 4-1 
The Sound system 4-3 
WaveSynth 4-77 

Part 12 - Utilities 4-81 
The Buffer Manager 4-83 

Squash 4- I 0 I 
Screen Blank 4-107 

Part 13- Hardware support 4-113 
Expansion Cards and Extension ROMs 4-115 
Floating point emulator 4-163 
ARM3 Support 4-185 
The Portable module 4-195 
Joystick module 4-207 

Part 14- Programmer's support 4-211 
Debugger 4-213 
The shared C library 4-231 
BASIC and BASJCTrans 4-337 

Command scripts 4-345 



Appendixes and tables 4-353 
Appendix A: ARM assembler 4-355 
Appendix B: Warnings on the use of ARM assembler 4-377 

Appendix C: ARM procedure call standard 4-393 
Appendix D: Code file formats 4-413 
Appendix E: File formats 4-453 
Appendix F: System variables 4-495 
Appendix G: The Acorn Terminal Interface Protocol 4-503 
Appendix H: Registering names 4-545 
Table A: VDU codes 4-551 
Table B: Modes 4-553 
Table C: File types 4-557 
TableD: Character sets 4-561 

Indexes lndex-1 
Index of • Commands lndex-3 
Index of OS_Bytes Index- II 
Index of OS_ Words Index-! 5 
Numeric index of Service Calls lndex-17 
Alphabetic index of Service Calls Index-21 
Numeric index of SW!s Index-25 
Alphabetic index of SW!s lndex-43 
Index by subject Index-61 



Part 7 - The desktop 

3-1 



~-2 



53 The Window Manager 

Introduction 
This chapter describes the Window Manager. It provides the facilities you need to 
write applications that work in the Desktop windowing environment that RISC OS 
provides . 

The Window Manager is an important part of RISC OS because: 

• it provides a simple to use graphical interface, that makes your applications 
more accessible to a wider range of users 

• it also provides the means for you to make your applications run in a 
multi-tasking environment, so they can interact with each other, and with 
other software. 

This chapter also gives guidelines on how your applications should behave so that 
they are consistent with other RISC OS applications. This should make it easier for 
users to learn how to use your software, as they will already be familiar with the 
necessary techniques. 

You will find it benefits both you and other programmers if you make all your 
applications run under the Window Manager (and in a consistent manner). since 
this will lead to a much richer RISC OS environment. 

3-3 



Overview 

Overview 

3-4 

The Window Manager is designed to simplify the task of producing programs to run 
under a WIMP (Windows, Icons, Menus and Pointer) environment. The manager 
itself is usually referred to as the Wimp. Programs that run under the Wimp are 
often called tasks, because they are operating under a multi-tasking environment. 
In this section, the words task, program and application should be treated as 
synonyms. 

An immediately recognisable feature of Wimp programs is their use of overlapping 
rectangular windows on the screen. These are used to implement a 'desktop' 
metaphor, where the windows represent documents on a desk. The responsibility 
of drawing and maintaining these windows is shared between the application(s) 
and the Window Manager. 

The Wimp co-operates with the task in keeping the screen display correct by telling 
the task when something needs to be redrawn. Thus, the task needs to make as few 
intelligent decisions as possible. It merely has to respond appropriately to the 
messages it receives from the Wimp, in addition to performing its own processing 
(using the routines supplied to perform window operations). 

Very often , much of the work of keeping a window's contents up to date can be 
delegated to the Wimp. This is especially true if a program takes advantage of 
icons. An icon is a rectangular area in a window whose contents can be text, a 
sprite, both, or user-drawn graphics. In the first three cases , the Wimp can 
maintain the icon automatically, even to the point of performing text input without 
the application's intervention. 

Menus also form an important part of WIMP-based programs. RISC OS Wimp 
menus are pop-up. That is, they can be made to appear when the user clicks on the 
appropriate mouse button- the middle Menu button. This is an alternative to the 
menu bar approach, where an area of the screen is dedicated to providing a fixed 
set of menu headers. In a multi-tasking environment. pop-up menus are much 
more useable. Further, they can be context-sensitive, i.e. the menu that pops up is 
appropriate to the mouse pointer position when the Menu button was pressed. 

The Wimp provides support for nested menus, where one menu entry can lead to 
another menu, to any desired depth. Moreover, the 'leaf' of a menu structure can be 
a general window, not just a fixed text item. This allows for very flexible selections 
to be made from menus. 

A very powerful feature of the RISC OS Wimp is its support for co-operative 
multi-tasking. Several programs can be active at once. They gain control on return 
from the Wimp's polling routine, which is described below. There is normally no 
pre-emption. Pre-emption means the removal of control from a task at arbitrary 
times, without its prior knowledge. With polling, a task only relinquishes control 



The Window Manager 

when it chooses, so for the system to work, tasks must be well behaved. This 
means they must not spend too much time between polling, otherwise other tasks 
will be prevented from running. However, it is possible to enforce pre-emption for 
non-Wimp tasks, by running them in for example, the edit application's task 
window. 

To allow several applications to run at once, the Wimp must also perform memory 
management. This allows each application to 'see' a standard address space 
starting at &8000 whenever it has control. As far as a task is concerned, it is the 
only user of the application workspace. The amount of workspace that a task has is 
settable before it starts up. A program does not therefore have to be written with 
multi-tasking in mind. A task that does everything correctly will work whether it is 
the only program running, or one of several. 

Communication between tasks is possible. In fact, it is often necessary, as the Task 
Manager sometimes needs to 'talk' to the programs it is controlling. The Wimp 
implements a general and very powerful message-passing scheme. Messages are 
used to inform tasks of such events as screen mode and palette changes, and to 
implement a general purpose file transfer facility. 

The next section gives an overview of the major components of the RISC OS 
Window Manager. 

3-5 



Technical details 

Technical details 

Polling 

~-fi 

Central to any program running under the Wimp environment is its polling loop. 
Wimp programs are event driven. This means that instead of the program directing 
the user through various steps, the program waits for the user to control it. It 
responds to events. An event is a message sent to a task by the Wimp, or by 
another task. Events are usually generated in response to the user performing 
some action, such as clicking a mouse button, moving the pointer, selecting a 
menu item, etc. Inter-task ('user') messages are also passed through the polling 
loop. 

An application calls the routine Wimp_Poll (page 3- I I 5) to find out which events, if 
any, are pending for it. This routine returns a number giving the event type, and 
some event-specific information in a parameter block supplied by the caller. One 
event is Nuii_Reason_Code (0). which means nothing in particular needs to be 
done. The program can use this event to perform any background processing. 

In very broad terms, Wimp applications have the following (simplified) structure: 

SYS"Wimp_Initialise" 
finished = FALSE : DIM blk 255 
REPEAT 

SYS"Wimp_Poll",O,blk TO eventCode 
CASE eventCode OF 

WHEN 0: .. . 
WHEN 1: .. . 

ENDCASE 
UNTIL finished 
SYS"Wimp_CloseDown" 

Tell the Wimp about the task 
Get block for Wimp_Poll 

Get the event code to process 

Do Null_Reason_Code 
Do Redraw_Window_Request 
etc. 

Tell Wimp we've finished 

Currently, event codes in the range 0 to 19 are returned, though not all of these are 
used. A fully specified Wimp program will have WHEN (or equivalent) routines to 
deal with most of them. 

Some of the event types are fairly esoteric and can be ignored by many programs. 
It is very important that tasks do not complain about unrecognised event codes; 
they should simply ignore them. 

Better still is to avoid receiving them in the first place. When calling Wimp_Poll, 
the program can mask out certain events if it does not want to hear about them at 
the moment. For example, if the program doesn't need to know about the pointer 
leaving or entering a window, it could mask out these events . This makes the whole 



The Window Manager 

system more efficient, as the Wimp will not bother to pass control to a task which 
will simply ignore the event. Some events are unmaskable; for example, an 
application must respond to Open_Window_Request. 

As noted above, events are usually generated internally by the Wimp. However, a 
user task may also send messages, which result in Wimp_Poll events being 
generated at the destination task. For example, the Madness application moves all 
of the windows around the screen by sending an Open_ Window_Request message 
to their owners. A more useful use of messages is the data transfer protocol. Most 
messages sent between tasks are of type User_Message_xxx (I 7, I8 and I 9). For 
details of these see the documentation of Wimp_SendMessage on page 3- I 96, and 
the section entitled Wimp messages on page 3-239. 

Null events 

If you don't really need Nuii_Reason_Code events, you should mask them out 
when you call Wimp_Poll. This avoids the Wimp passing control to your 
application , only for your application to immediately return control to the Wimp by 
calling Wimp_Poll again ; this of course would slow the system down. If you do 
need to take null events you should use Wimp_Pollldle rather than Wimp_Poll , 
unless the user is directly involved (e.g. when dragging an object) and 
responsiveness is important. 

All of the event types are described in the section entitled Wimp_Poll (SWI &400C7) 
on page 3- I I 5, along with descriptions of how the application should respond to 
them. 

General principles 

Much of what is said below is to do with consistency and standards. Providing the 
user with a consistent, reliable interface is the first step towards producing a 
powerful environment, and one that the user will want to work with instead of just 
being forced to. For a full description of the general principles you should adopt in 
writing an application to run under the Wimp see the chapter entitled General 
principles in the RISC OS St!Jle Guide. 

~-7 



General principles 

The following table outlines those sections in the chapter entitled General Principles, 
in the RISC OS Style Guide, which describe the basic principles you should follow: 

Section 
Ease of use 

Consistency 

Quality 

Different configurations 

File handling 

Naming fonts 

Supporting ! Help 

describes: 
how to make your application easy to use. 

how to make applications work together in a 
uniform way. 

what not to do to ensure an application will 
continue to work with future operating system 
upgrades. 

how to ensure your application works with any 
reasonable hardware configuration that runs 
RISC OS. 

the rules for specifying files. 

the syntax to use in naming fonts. 

what help you should provide in supporting the 
! Help application, and what you can assume the 
user knows. 

Other important factors that you must consider when writing an application 
include the following: 

Compatibility 

3-8 

The following points should be noted. to ensure that your application is 
compatible with future versions of the Wimp and behaves as well as it can with old 
versions of the Wimp. 

• Reserved fields must be set to 0, i.e. reserved words must be 0, and all reserved 
bits unset. 

• Unknown Wimp_Poll event codes, message actions etc must be ignored- do 
not generate errors. 

• Applications should check Wimp version number. and either adapt themselves 
if the Wimp is too old, or report an error to the current error handler (using 
OS_ Generate Error). 

• Beware of giving errors if window handles are unrecognised as they may 
belong to another task and it is sometimes legal for their window handles to 
be returned to you (e.g. by Wimp_GetPointerlnfo) . 



The Window Manager 

• Wimp tasks which are modules must obey certain rules (see the section 
entitled Relocatable module tasks on page 3-62). 

• Tasks that can receive Key_Pressed events must pass on all unrecognised keys 
to Wimp_ProcessKey. Failure to do so will result in the 'hot key· facilities not 
working. 

Responsiveness 

Colour 

RISC OS system software has been written to allow you to write fast. responsive 
applications. For a description of how best to optimise the responsiveness of your 
application see the section entitled Responsiveness in the Screen handling chapter of 
the RISC OS Style Guide. 

Covering a wide range of screen modes can seem troublesome when constructing 
an application , but it allows a wide price-range for the end user. who can choose 
between resolution and cost. Not relying on screen size allows your program to 
move easily to new better screens and modes when they become available . 

Terminology 

The Mouse 

Your application will be easier to understand if your prompts and documentation 
use the standard RISC OS terminology defined in the chapter entitled Terminology in 
the RISC OS Style Guide. 

For a description of mouse buttons and operations see the section entitled Mouse 
buttons in the Terminology chapter in the RISC OS Style Guide. 

Select and Adjust 

Always use Select as the 'primary' button of the mouse, used for pointing at things, 
dragging etc. Adjust is used for less common or less obvious functions, or for slight 
variations and speedups. If you have no useful separate operation in any particular 
context , then make Adjust do nothing rather than duplicating the functionality of 
Select: this is all part of training the user to use Select first. 

Another technique for speedups and variations on mouse operations is to look at 
the setting of the Sh ift key when the mouse event occurs. Such combinations 
should never be necessary to the operation of a program , for example, a user 
experimenting with your program should not be expected to try all such 
combinations. 

3-9 



Layout of windows 

Double clicks 

The Wimp automatically detects double clicks, typically used to mean 'open 
object' . It should be noted that a double click causes a single click event to be sent 
to the program first. Some other systems avoid this, which may appear to simplify 
the task of programming but leads to reduced responsiveness to mouse operations 
(because the application doesn't get to hear about the first click until the WIMP 
system is sure it's not a double click). A double click should in any case be thought 
of as a consolidation of a single click. 

Various parts of the Wimp enforce the interpretations given for the mouse buttons 
in the Style Guide. For example, icons may be programmed to respond in various 
ways to clicks with the Adjust and Select buttons, by setting their button type. On 
the other hand, a click on the Menu button is always reported in exactly the same 
way, regardless of where it occurs, as a Mouse_ Click event with the button state set 
to 2. This is to encourage all programs to interpret a click on the middle button in 
the same way- as a request to open a menu. 

Layout of windows 

~-10 

Coordinate system 

Windows consist of a visible area, in which the task can draw graphics. and a 
surrounding 'system' area, comprising a Title Bar, scroll bar indicators and so on. 
The task does not normally draw directly in this area, except the Title Bar. The 
visible area provides a window into a larger region, called the work area. You can 
imagine the work area to be the complete document you are working with, and the 
visible area a window into this. 

There are, therefore, two sets of coordinates to deal with when setting up a 
window. The visible area coordinates determine where the window will appear on 
the screen and its size. These are given in terms of OS graphics units, with the 
origin in its default position at the bottom left of the screen. 

Then there are the work area coordinates. These give the minimum and maximum 
x andy coordinate of the whole document. The limits of the work area are 
sometimes called its extent. The work area is specified when a window is created, 
but can be altered using the Wimp_SetExtent (page 3- I 64) call. 

Between the work area coordinates and the visible area coordinates is a final pair 
which join the two together. These are the scroll offsets. They indicate which part of 
the work area is shown by the visible area- this is called the visible work area. 



The Window Manager 

The scroll offsets give the coordinates of the pixel in the work area which is 
displayed at the top lefthand corner of the visible region . Suppose the visible 
region shows the very top left of the work area. Then the x scroll position would be 
'work area x min', and the y scroll position would be 'work area y max'. 

It is common to define the work area such that its origin (0,0) is at the top left of 
the document. This means that all x scroll offsets are positive (as you can only ever 
be on or to the right of the work area origin) , and ally offsets are zero or negative 
(as you can only ever be on or below the work area origin). 

To summarise, let's consider which part of the work area will be visible, and where 
it will appear on the screen, for a typical set of coordinates. 

Work area 

The following definitions give the total document size: 

work_area_x_min = 0 
work_area_y_min = -1500 
work_area_x_max = I 000 
work_area_y_max = 0 

(0, 0) 
Non est quod contemnas hoc studendi genus. M irum 

est ut animus agitatione motuque corporis excitetut . 

lam undique silvae et solitude ipsumque illud 

silentium quod venationi datur magna CO@:i tationis 
incitamenta sunt. 

Proinde cu m venabere,licebit , auctore me, ut 

panarium et laguncu lam sic etiam pugillares feras. 

Ipse ; non tamen ut om nino ab inert ia mea et quete 

discederem. Ridebis, et llcet rideas. Ego ille quem 

nost i apros et quidem pu lcherrimos cepi. Ipse: non 

tamen ut om nino ab inertia mea et quete d iscederem. 

Ad retia sedebam: erat in proxi mo non venabulum aut 

lancea , sed stilus et pugilares . 

Meditabar a liquid enotabamque, ut , si manus vacuas. 

plenas tamen ceras reportarem. Non est quod 

contemnas hoc studendi genus. Mirum est ut animus 

agitatione motuque corporis exdt etut. Non est quod 

contemnas hoc studendi genus. Mirum est ut animus 

agitatione motuque corporis excitetut. lam undique 

silvae et sol it udo ipsumque illud silent ium quod 

4 (1000,-1500) 

The document is therefore I 000 units wide by 1500 high, with the work area origin 
at the top left of the document. 

3-11 



Layout of windows 

3-12 

Window area 

The following definitions give the window's position on the screen and its size: 

visible_area_x_min = 200 
visible_area_y_min = 500 

visible_area_x_max = 500 
visible_area_y_max = 800 

.--------------,..- (1280, 1024) 
(200, 800) (500, 800) 

~ jl 

O w;ndow 
;f ' (200, 500) (500,500) 

(0, 0) ... L__ __________ _, 

This gives a window 300 units wide by 300 high . 

Work area displayed 

The following definitions determine which part of the work area is displayed: 

scroll_offset_x = 250 
scroll_offset_y = -400 

Thus the pixel at the top left of the window is shown on the screen at coordinates 
(200,800), but represents the point (250,-400) in the work area: 

(0, Q) _____. Non est quod contemnas hoc studendi genus. Mlrum I 
est ut animus agitatione motuque corporis excitetut . 

Ia 
si (250, -400) 
in ~ 

p 

~ 
d' 

t 

A 

Ia 

' na7 be- ,e--,. 1,.--lce""bl,--t, a- u--,ct 

unculam sic etlam 

nut om nino ab inert 

debts , et llcet rideas. 
uidem pulcherrimo 

no ab inertia mea et 

' • 
p 

(550, -700) 

0 

·~--~,--,--~--~,.---~--,.----.----~ 
contemnas hoc studendl genus. Mirum est ut animus I 
agitatione motuque corporis excitetut. lam undique 

silvae et solitude lpsumque illud silentium quod 

L.__ ________ __, ...... l--- (1000, -1500) 



The Window Manager 

Combining the above bits of information. we can work out what portion of the work 
area is visible. By definition. the minimum x coordinate and the maximum y 
coordinate of the visible work area are just the scroll offsets. The maximum x and 
minimum y can then be derived by adding the width and subtracting the height 
respectively of the displayed window: 

visible_work_area_min_x = scroll_offset_x = 250 
visible_work_area_max_y = scroll_offset_y = -400 

visible_work_area_max_x = scroll_offset_x +width= 550 
visible_work_area_min_y = scroll_offset_y- height= -700 

Thus on the screen at coordinates (200,500)- (500,800) would be a 300 
pixel-square window showing the visible work area (250.-400)- (550.-700): 

/ 'J 
(500, BOO) I 

~I(:) I .. 
(250, -400) --

work area coordinates ~ 
(200, 800} 

(200, 500) (500, 500) 

/ ~ ~ 
HE=3-~¢l]Jl!l 

Moreover. the Sliders drawn by the system have a length proportional to the area 
that the window displays. The horizontal Slider would therefore occupy about 
300/ 1000 = 0.3 of the horizontal scroll bar. and the vertical one would occupy 
300/ 1500 = 0.2 of the scroll bar. 

Finding the coordinates of a point in the work area of a window 

A commonly required calculation is one which gives the coordinates of a point in 
the work area of a window. given a screen position (for example. where a mouse 
button cl ick occurred). This mapping obviously depends on the window's screen 
position and its scroll offsets. The algorithm breaks down into two steps: 

Find the work area pixel that would be displayed at the screen origin . 

The work area pixel displayed at the screen origin can be calculated as follows : 

work_area_pixel_at_origin_x = scroll_offset_x- visible_area_min_x 
work_area_pixel_at_origin_y = scroll_offset_x- visible_area_max_y 

3-13 



Layout of windows 

3-14 

2 Add this to the given screen coordinates. 

If the screen position is given by screen_x and screen_y the formula below will 
return the coordinates of a point in the work area of a window: 

work area x = screen_x + work_area_pixel_at_origin_x 
work area y = screen_y + work_area_pixel_at_origin_y 

Thus the entire formula would be: 

work area x = screen_x + (scroll_offset_x- visible_area_min_x) 
work area y = screen_y + (scroll_offset_x- visible_area_max_y) 

Generally, when this calculation is needed, the scroll offsets and visible work area 
coordinates are available (e.g. having been returned from Wimp_Poll). Even if they 
are not. a call to Wimp_GetWindowState (page 3-135) will secure the information . 

In addition to the coordinates described above, several other attributes have to be 
set when a window is created. These are described in detail in the entry on 
Wimp_CreateWindow (page 3-89). 

Window stacks 

Windows can overlap on the screen. In order to determine which windows obscure 
which, the Wimp maintains 'depth' as well as positional information. We say that 
there is a window stack. The window at the top of the stack obscures all others that 
occupy the same space on the screen; the one on the bottom of the stack is 
obscured by any other at the same coordinates. 

Certain mouse operations alter a window's depth in the stack. A click with Select 
on the Title Bar (see below) brings the window to the top. Similarly you can give a 
window a Back icon, which, when clicked on, will send the window to the bottom of 
the stack. On opening a window, you can determine its depth in the stack by 
specifying the window that it must appear behind. Alternatively you can give its 
depth absolutely as 'top' or 'bottom'. 

Window flags 

One 32-bit word of the window block contains flags. These control many of its 
attributes: which control icons it should have, whether it's movable, whether 
Scroii_Request events should be generated etc. Another word of flags control the 
appearance of the Title Bar, and yet another word set the button type of the work 
area . Both of these are actually icon attributes, the Title Bar being treated like an 
icon in many ways . 

Finally there are miscellaneous properties such as the sprite area address to use 
for icon sprites, the minimum size of the window, and the icon data for the Title 
Bar. 



The Window Manager 

Appended to the window definition are any initial icons that it owns. Further icons 
can be added using the call Wimp_Createlcon (page 3-96) on page 3-96. 

Window system areas 
For full details on how windows must behave on the RISC OS desktop see the 
chapters entitled Windows and Editors in the RISC OS Style Guide. 

The window illustrated below has a fully defined system area showing all of the 
available controls. The control areas. going clockwise from the top-left corner, are 
described below. Where the effects of using Select and Adjust on them are 
different. this is noted. 

Close icon Title bar Toggle size icon 

~ ~ ~ 
Back icon -

~~------------------~ -scroll up 

- slider 

- scroll bar 

- scroll down 

- Adjust size icon 

i i 
Scroll left Scroll right 

Back icon 

A click on this icon causes the window to be moved to the back of the window 
stack, making it the 'least visible' one. A Redraw_Window_Request event is issued 
to any applications which have windows that were obscured by it and are now 
visible . 

Close icon 

A click on this icon requests that a window be closed; the Wimp generates a 
Close_ Window_Request event. It is then up to the application whether it responds 
with a Wimp_CloseWindow (page 3-114) call, or ignores the event if it has good 

3-15 



Window system areas 

3-16 

reason not to, such as unsaved data. Using Adjust should open the 'parent 
window', if such a thing exists. For example, the Filer closes a directory display, but 
opens its parent directory; an editor opens the home directory for the loaded 
document. When a window is closed, the Wimp issues Redraw_Window_Requests 
to those windows which were obscured by it and are now visible. 

Title bar 

This contains the name of the window, which is set when the window is created . 
Dragging the Title Bar causes the whole window to be dragged. If Select is used for 
the drag, the window is also brought to the top; Adjust leaves it at the same depth. 
The Title Bar has many of the attributes of an icon (font type, indirection, centring 
etc) . If the whole window is being dragged (and not just its outline), each 
movement will generate an Open_ Window_Request for it, and 
Redraw_Window_Requests to windows that become unobscured. 

Toggle Size icon 

A click in this icon toggles the window between its maximum size and the last 
user-set size. An Open_Window_Request event is generated to ask the application 
to update the work region of the resized window. The maximum size of a window 
depends on its work area extent and the size of the screen. Again, using Select 
uncovers the window; Adjust leaves it at the same depth in the stack. As usual, if 
the change in window size renders previously obscured window visible, 
Redraw_Window_Requests will be generated for them. When the window is 
toggled back to its small size, it goes back to its previous depth in the stack. 

Vertical scroll bar 

Although this is one object as far as the window definition is concerned , there are 
five regions within it. They are: 

• the scroll up arrow 

• the page up area (above the Slider) 

• the Slider 

• the page down area (below the Slider) 

• the scroll down arrow. 

If the user clicks on one of the arrows with Select, the scroll offset for the window is 
adjusted by 32 units in the appropriate direction . Using Adjust scrolls in the 
reverse direction. Holding down either button causes the scrolling to auto-repeat. 
A click in the page up/down region adjusts the scroll offsets by the height of the 
window work area, with Adjust again giving the reverse effect from Select. An 
Open_Window_Request is generated to update the scrolled window. 



The Window Manager 

If the window had one of the Scroll_Request flags set when it was created, a click in 
one of the arrows or page up/down areas causes a Scroll_Request event to be 
generated instead. The application can decide how much to scroll and call 
Wimp_OpenWindow (page 3- 112) to update its contents. 

Finally, the Slider may be dragged to set the scroll offsets to any position in the 
work area . The Open_Window_Request events are returned either continuously or 
when the drag finishes , depending on the state of the Wimp drag configuration 
bits. 

All scroll operations leave the window's depth unaltered. 

Adjust Size icon 

Dragging on this icon causes the window to be resized . The limits of the new 
window size are determined by the work area extent and the minimum size given 
when the window was created . Depending on the state of the Wimp drag 
configuration flags the Wimp generates either continuous 
Open_Window_Requests (and possibly Redraw_Window_Requests for other 
windows) or a single one at the end of the drag. Select brings the window to the 
top; Adjust leaves it at the same depth. 

Horizontal scroll bar 

This is exactly equivalent to the vertical scroll bar described above. For 'up' read 
'right' and for 'down' read 'left', i.e. whereas scroll up increases they scroll offset. 
scroll right increases the x scroll offset The five regions within it are: 

• the scroll left arrow 

• the page left area (left of the Slider) 

• the Slider 

• the page right area (right of the Slider) 

• the scroll right arrow. 

When a window is created , its control regions can be defined in one of two ways. 
The 'old' way is to use certain flags which specify in a limited fashion which of the 
regions should be present and which are omitted. The 'new' method uses one flag 
per control. and is much easier to use. The old way was used in Arthur, while the 
new is only available in RISC OS. 

3-17 



Redrawing windows 

Redrawing windows 

::l-1 A 

The Wimp and the application must cooperate to ensure that the windows on the 
screen remain up to date. The Wimp can't do all of the work, as it does not always 
know what the contents of a window should be. 

When the task receives the event code Redraw_Window_Request from Wimp_Poll, 
it should enter a loop of the following form: 

REM blk is the Wimp_Poll block 
SYS"Wimp_RedrawWindow" , , blk TO flag 
WHILE flag 

Redraw contents of the appropriate window 
SYS"Wimp_GetRectangle",,blk TO flag 

ENDWHILE 
Return to polling loop 

When a window has to be redrawn, often only part of it needs to be updated The 
Wimp splits this area into a series of non-overlapping rectangles. The rectangles 
are returned as xO,yO,x l ,yl where (xO,yO) is inclusive and (xi ,yl) is exclusive. This 
applies to all boxes, e.g icons, work area, etc. The WHILE loop above is used to 
obtain all the rectangles so that they can be redrawn. The Wimp automatically sets 
the graphics clipping window to the rectangle to be redrawn. The task can take a 
simplistic view, and redraw its whole window contents each time round the loop, 
relying on the graphics window to clip the unwanted parts out. Alternatively, and 
much more efficiently, it can inspect the graphics window coordinates (which are 
returned by Wimp_RedrawWindow (page 3-129) and Wimp_GetRectangle 
(page 3-133)) and only draw the contents of that particular region. 

For a description of improving redrawing speed see the section entitled Redrawing 
speed in the Screen handling chapter in the RISC OS Style Guide. 

The areas to be redrawn are automatically cleared (to the window's background 
colour) by the Wimp. The task must determine what part of the workspace area is 
to be redrawn using the visible area coordinates and the current scroll offsets. 

When redrawing a window's contents, you should normally use the overwrite GCOL 
action. You should use EOR mode when redrawing any currently dragged object. 
EOR mode is also useful when updating the window contents, such as dragging 
lines in Draw. As a rule, the contents of the document should not use EOR mode. 

You should not use block operations such as Wimp_BlockCopy (page 3-204) within 
the redraw or update loop, only outside it to move an area of workspace. These 
restrictions allow you to use the same code to draw the window contents and to 
print the document. If you use, for example, exclusive-OR plotting or block moves 
during the redraw these won't work on, say, a PostScript printer driver. 



The Window Manager 

Updating windows 
When a task wants to update a window's contents, it must not simply update the 
appropriate area of the screen. This is because the task does not know which other 
windows overlap the one to be updated, so it could overwrite their contents. As 
with all window operations, it must be done with the Wimp's co-operation. There 
are two possible approaches. The program can: 

• call Wimp_ForceRedraw (page 3-150) so Wimp subsequently returns a 
Redraw_ Window_Request, or 

• call Wimp_UpdateWindow, and perform appropriate operations. 

In both cases, you provide the window handle and the coordinates of the 
rectangular area of the work area to be updated. The Wimp works out which areas 
of this rectangle are visible, and marks them as invalid. If you use the first method, 
the Wimp will subsequently return a Redraw_Window_Request from Wimp_Poll, 
which you should respond to as already described. In the second case, a list of 
rectangles to be redrawn is returned immediately. 

When Wimp_ForceRedraw is used, the Wimp clears the update area automatically. 
This should therefore be used when a permanent change has occurred in the 
window's contents, e.g. a paragraph has been reformatted in an editor. When you 
call Wimp_UpdateWindow (page 3- I 31). no such clearing takes place. This makes 
this call more suitable for temporary changes to the window, for example, when 
dragging objects or 'rubber-banding' in graphics programs. 

It is simpler to use Wimp_ForceRedraw since, once it has been called, the task just 
returns to the central loop, from where the Redraw_Window_Request will be 
received. The code to handle this must already be present for the program to work 
at all. On the other hand, the second method is much quicker as the redrawing is 
performed immediately. Also, you can keep the original contents, using EOR to 
update part of the rectangle; for example, when dragging a line. 

Taking over the screen 
If you feel that your application must be able to take over the whole screen you can 
do so by opening a window the size of the screen on top of all other windows. For a 
description of how best to do this see the section entitled Taking over the screen in the 
Screen handling chapter in the RISC OS Style Guide. 

3-19 



The icon bar 

The icon bar 
The Window Manager provides an icon bar facility to allow tasks to register icons in 
a central place. It appears as a thick bar at the bottom of the screen, containing 
filing system and device icons on the left, and application icons on the right. 

When an application is loaded, it registers an icon on the icon bar using 
Wimp_Createicon with window handle= -I (or-2 for devices). The icon is typically 
the same as the one used to represent the application directory within the Filer, i.e. 
!Appl 

If there are so many icons on the icon bar that it fills up, the Wimp will 
automatically scroll the bar whenever the mouse pointer is moved close to either 
end of the bar. 

When the mouse is clicked on one of the icons, the Wimp returns the Mouse_ Click 
event (with window handle= -2) to the task which created the icon originally. 
Similarly, Wimp_GetPointerinfo returns -2 for the window handle when the pointer 
is over (either part of) the icon bar. 

Icon bar dimensions 

When Wimp_Createicon is called to put an icon on the bar, the Wimp uses the x 
coordinates of the icon only to determine its width, and then horizontally positions 
the icon as it sees fit. However, for reasons of flexibility, it does not vertically centre 
the icon, but actually uses both they coordinates given to determine the icon's 
position . This means that applications must be aware of the 'standard' dimensions 
of the bar, in order to position their icons correctly. 

Icons that appear on the icon bar should have bounding boxes 68 OS units square 

Positioning icons on the Icon bar 

There are two main types of icon which are put onto the icon bar: those consisting 
simply of a sprite, and those consisting of a sprite with text written underneath 
(see Wimp_Createicon on page 3-96 for details) . 

See the section entitled Positioning icons on tfle icon bar in the Sprites and icons chapter 
in the RISC OS Style Guide for a summary of the rules governing the positioning of 
such icons. 

Icons and sprites 

3-20 

As mentioned earlier, an icon is a rectangular area of a window's workspace. Icons 
can be created at the same time as a window, by appending their definitions to a 
window block. Alternatively, you can create new icons as needed by calling 



The Window Manager 

Wimp_Createlcon. A third possibility is to plot 'virtual' icons during a redraw or 
update loop using Wimp_Plotlcon (page 3-186). The advantage of this last 
technique is that the icons plotted don't occupy permanent storage. 

Icons have handles that are unique within their parent window. Thus an icon is 
totally defined by a window/icon handle pair. User icon handles start from zero; the 
system areas of windows have negative icon numbers when returned by 
Wimp_GetPointerlnfo (page 3-143). 

The contents of an icon can be anything that the programmer desires. The Wimp 
provides a lot of help with this. It will perform automatic redrawing of icons whose 
contents are text strings, sprites. or both. Moreover, text icons can be writable, that 
is, the Wimp will deal with user input to the icon, and also handle certain editing 
functions such as Delete and left and right cursor movements. 

Below is an overview of the information supplied when the program defines an 
icon. For a detailed description, see Wimp_Createlcon (page 3-96). 

Bounding box 

Four coordinates define the rectangle that the icon occupies in the window's 
workspace. The Wimp uses this region when detecting mouse clicks or movements 
over the icon, when filling the icon background (if any) and drawing the icon border 
(if any). 

Icon flags 

This single word contains much of the information that make icon handling so 
flexible. It indicates: 

• whether the icon contains text. a sprite. or both 

• for text icons. the text colours, whether the font is anti-aliased or not (and the 
font handle). and the alignment of text within the font bounding box 

• for sprite icons. whether to draw the icon half size 

• whether the icon has a border and/or a filled background 

• whether the application has to help redraw the icon's contents 

• whether the icon is indirected 

• the button type of the icon 

• the exclusive selection group (ESG) of the icon. and how to handle Adjust-type 
select ions of this icon 

• whether to shade the icon so that it can't be selected. 

Indirected icons use the last twelve bytes of the icon definition in a different way 
from non-indirected ones; see below. 

3-21 



Icons and sprites 

The button type of an icon determines how the Wimp will deal with mouse 
movements and clicks over the icon. There are 16 possible types. Examples are: 
ignore all movements/clicks; report single clicks. double clicks and drags; select 
the icon on a single click: make the icon writable, and so on . 

When Select is used to select an icon, its selected bit is set regardless of its 
previous state, and it is highlighted. When Adjust is used. its selected bit is 
toggled, de-selecting it if it was previously highlighted, and vice versa . 

When an icon is selected, the Wimp indicates this visually by inverting the colours 
that are used to draw its text and/or sprite. Selecting an icon causes all other icons 
in its exclusive selection group to be de-selected. The ESG is in the range 0 to 31 . 
Zero is special ; this puts the icon in a group of its own, so selecting the icon will 
not affect any other icons. but each selection actually toggles its state. 

Imagine a window has three icons with ESG= I . Only one of these can be selected 
at once: the selection (or toggling by Adjust) of one automatically cancels the 
other two. However, if the icon has its adjust bit set, then using Adjust to toggle the 
icon's state will not have any affect on the other icons in the same ESG. 

When the icon's shaded bit is set, the Wimp draws the icon in a 'subdued' way, to 
indicate that it can't be selected . This also prevents selection by clicking. 

Icon flags occur in other contexts. A window definition uses the button type bits to 
determine its work area's button type. The rest of the bits (with some restrictions) 
are used to determine the appearance of a window's Title Bar. Finally menu items 
have icon flags to determine their appearance. 

Icon data 

~-?2 

The last I 2 bytes of an icon definition are used in two different ways . If the icon is 
not indirected. these are used to hold a 12 byte text string. This is the text to be 
displayed for a text icon, the name of the sprite for a sprite icon, and both of these 
things for a text and sprite icon. Clearly the last is not very useful ; it is unlikely that 
you will want to display an icon called sm! arc p a int along with the text 
sm! a r c p a int . 

If the icon button type is writable, clicking on the icon will position the caret at the 
nearest character and you can type into the icon, modifying the 12 byte text. 

Indirected icons overcome the limitations of standard icons. Text can be more than 
12 bytes long; the sprite in a text plus sprite icon can have a different name from 
the text displayed; sprite-only indirected icons can have a different sprite area 



The Window Manager 

pointer from their window; writable icons can have validation strings defining the 
acceptable characters, and anti-aliased text can have colours other than the 
default white foreground/black background. 

The twelve data bytes of an indirected icon are interpreted as three words: a 
pointer to the icon text or icon sprite, a pointer to the validation string or sprite 
control block, and the maximum length of the icon text. 

Update of writable icons 

If an application wishes to update the contents of a writable icon directly, while the 
caret is inside the icon, then it cannot in general simply write to the icon's 
indirected buffer and make sure it gets redrawn. 

The general routine goes as follows: 

REM In: 
REM 
REM 
REM 

window% 
icon% 
buffer% 
string$ 

window handle of icon to be updated 
icon handle of icon to be updated 
address of indirected icon text buffer 
new string to put into icon 

DEF PROCwrite_icon(window%,icon%,buffer%,string$) 
LOCAL cw% , ci% , cx%,cy% ,ch%,ci% 
$buffer% = string$ 
SYS "Wimp_GetCaretPosition" TO cw%,ci%,cx%,cy%,ch%,ci% 
IF cw%=window% AND ci%=icon% THEN 

IF ci% > LEN($buffer%) THEN ci% = LEN($buffer%) 
SYS "Wimp_SetCaretPosition",cw%,ci%,cx%,cy%,-l,ci% 

END IF 
PROCseticonstate(window%,icon%,0 , 0) :REM redraw the icon 
ENDPROC 

Basically if the length of the string changes, it is possible for the caret to be 
positioned off the end of the string, in which case nasty effects can occur 
(especially if you delete the string terminator!). 

3-23 



Icons and sprites 

3-24 

Deleting and creating icons 

Using Wimp_Createlcon and Wimp_Deletelcon to create and delete icons has 
certain disadvantages: the window is not redrawn, and the icon handles can 
change. 

An alternative is to use Wimp_SetlconState to set and clear the icon's 'deleted' bit 
(bit 23). 

However, it should be noted that when calling Wimp_SetlconState to set bit 23 of 
the icon flags (i.e. to delete it). the icon will not be 'undrawn' unless bit 7 of the 
icon flags ('needs help to be redrawn') is also set. This is because icons without 
this bit set are simply redrawn on top of their old selves without filling in the 
background, to avoid flicker. 

Thus to delete an icon. use: 

block%!0 window_handle% 
block%!4 = icon_handle% 
block%!8 = &00800080 
block%!12= &00800080 
SYS "Wimp_SeticonState", ,block% 

and to re-create it, use: 

block%!0 window_handle% 
block%!4 = icon_handle% 
block%!8 = &00000000 
block%!12= &00800080 
SYS "Wimp_SeticonState",,block% 

:REM set 
:REM bits 7 and 23 

:REM clear 
:REM bits 7 and 23 

Note that when re-creating the icon, bit 7 should normally be cleared, to avoid 
flicker when updating the icon. 

Icon sprites 

For the rules governing how you must define the appearance and size of sprites, 
see the chapter entitled Sprites and icons in the RISC OS St!Jie Guide. 

The sprites that are used in icons can come from any source: the system sprite 
pool, the Wimp sprite pool, or a totally independent user area. The use of the 
system sprites is not recommended as certain operations (such as scaling and 
colour translation) can't be performed on them (see the section entitled Use of sprite 
pools in the Sprites and icons chapter in the RISC OS St!Jie Guide for more details) . 
Wimp sprites are useful for obtaining standard shapes without duplicating them 
for each application . User sprites are used when private sprites are required that 
aren 't available in the Wimp sprite area. 



The Window Manager 

The Wimp sprite area is accessed by specifying a sprite area control block pointer 
of+ I in a window definition or indirected icon data word. There are actually two 
parts to the area. a permanent part held in ROM, and a transient. expandable area 
held in the RMA. The call Wimp_SpriteOp (page 3-201) allows automatic access to 
Wimp sprites by name. This is read-only access. The only operation allowed on 
Wimp sprites that changes them is the MergeSpriteFile reason code (II). or the 
equivalent* IconSpri tes command. These add further sprites to the Wimp area, 
expanding the RMA if necessary. 

Below is a BASIC program to save the ROM sprites to a file. You can then use Paint 
to examine the sprites it contains. 

SYS "Wimp_BaseOfSprites" TO rom 
SYS "OS_SpriteOp",&lOC,rom,"WSprites" 

Amongst the ROM-based sprites are standard file-type icons (and half size 
versions of most of them), standard icon bar devices (printers. disk drives etc). 
common button types (radio buttons. option buttons) and the default pointer 
shape. 

RISC OS System Icons 

RISC OS 3 provides the following facilities for icons in addition to those provided 
in RISC OS 2: 

• improved colour support 

• window toolkit icons 

• alternate resolution icons for applications. 

Colour support 

From RISC OS 3 onwards. the Wimp uses ColourTrans when preparing sprites for 
plotting (such as icons); so the palette associated with a sprite defines how its 
logical colours are mapped to the available physical colours. It also provides 
support for 8-bit-per-pixel sprites. 



RISC OS System Icons 

Window Icons 

RISC OS 3 draws the top, right and bottom bars of the window from icons to allow 
customisation in the future. A complete window icon set contains I 76 icons. which 
consists of 4 custom sets: 

• one for modes 12/I 5 

• one for mode 0 

• one for VGNSuperVGA 

• one for high-resolution monochrome 

(nx=2. ny=4, bpp=2.4.8) 

(nx=2. ny=4. bpp=l) 

(nx=2 . ny=2. bpp=2.4.8) 

(nx=2. ny=2. bpp= I) 

The sets have equivalent designs. rendered as well as possible given the 
limitations of the various modes. (Note that RISC OS 2 effectively draws different 
things for I. 2. 4/8 bpp, and for nx=2 or 4 and ny=2 or 4. and thus has 12 different 
behaviours; the 4 sets allow most of the main differences to be accommodated. but 
there will inevitably be slight differences for the 8 behaviours not directly 
supported.) 

The icons are called xx. xxO. xx22 and xx23 following the Alternate Resolution Icon 
methodology for names (see page 3-31 ). RISC OS 3 displays different icons for 
'pressed' icons on the window border. These icons are prefixed by 'p'. The 'p' form 
of an icon has to repaint over its unpressed form (and vice versa) . If a 'p' form is not 
present. the corresponding unpressed icon is used. 

There are 44 distinct designs ( 176/4) in the complete set. Many of the designs have 
defaults: all 'p' icons default to the unpressed icon . In addition, the title bar set. 
right scroll well and bottom scroll well will draw as RISC OS 2 if not present. The 
minimal set thus contains only the definitions of the corner icons: 10 designs (44 
icons). 

RISC OS 3 gets the sizes of the title bar. vertical scroll bar and horizontal scroll bar 
by reading the sizes of particular icons. All the other icons lying in the bar have to 
be of compatible size. There is no requirement that the icons for the different 
modes have compatible sizes; indeed, RISC OS 2 has bars that are I pixel different 
in size between 24 (e.g. mode 12) and 22 (e.g. mode 27) modes. Nor is there a 
requirement that the three bars in a mode have the same size. 

All icons lying over highlighted sections of the window border (cream when 
selected. grey when not) must have transparent sections so that the colour can be 
seen. In the case of the title bar, this is plotted as four sections (left. top, bottom 
and right) so that a large expanse of transparency is not required. 

The top, right and bottom window edge (black line) are drawn by the icons. We 
strongly recommend that you draw the outer edge of the top, right and bottom 
bars as a black line too. 



The icons are: 

Top Bar 

bicon 
pbicon cicon 

\I 
I It'll ro I 

I 
tbarlcap 
ptbarlcap 

bicon/pbicon: 
cicon: 
tbarlcap/ptbarlcap: 
tbarmidt/ptbarmidt: 
tbarmidb/ptbarmidb: 
tbarrcap/ptbarrcap: 
ticon , ticon I: 

tbarmidt 
ptbarmidt 

~ 

I 
tbarmidb 
ptbarmidb 

Back icon 
Close icon 
left hand end cap of title bar 

The Window Manager 

ticon 
ticon1 

~ 
1 .. 1 

I 
tbarrcap 
ptbarrcap 

title bar middle top (replicated as necessary) 
title bar middle bottom (replicated as necessary) 
right hand end cap of title bar 
the two states of the Toggle Size icon 
(there is no pushed state, since you don't get a 
chance to see it before the window resizes) 

tbarmidt and tbarmidb have to be the same width, but can be different heights. The 
Window Manager will paint tbarmidt below the top of the title bar and tbarmidb at 
the bottom, leaving the space between transparent to allow the cream or grey 
background it paints to show through. All other top bar icons have to be the same 
height. ticon has to be the same width as the vertical scroll bar. 

Icons are plotted in the order: 

bicon, cicon, 
tbarlcap, tbarmidb, tbarmidt, tbarrcap 

such that the left pixel of the icon being painted overlaps the right pixel of the 
previously painted icon. (Left edges can be made transparent if this overlaid 
information has to be different). ticon is painted as a part of the right bar. 

If tbarlcap is missing, the Window Manager paints the title section of the top bar 
using the RISC OS 2 style; otherwise it assumes that all necessary title bar icons 
are present. 

Note that the top bar of menus is drawn with the same style as the title bar section 
of windows. 

3-27 



RISC OS System Icons 

3-28 

Right Bar 

vwelltcap--.. 

vwellt-.. 
vbart pvbart 

vwellb-.. vbarb pvbarb 

vwellbcap--.. 
..0. ._______ dicon pdicon 

uicon/puicon: 
vwelltcap: 
vwellt: 

vba rt/pvba rt: 
vbarmid/pvbarmid: 

vba rb/pvba rb: 
vwellb: 

vwellbcap: 

dicon/pdicon: 
sicon/psicon: 
blicon: 

e:J 

up arrow 

~ sicon psicon 
blicon 

vertical scroll well top end cap 
vertical scroll well top section (replicated as 
necessary) 
vertical scroll bar top end cap 
vertical scroll bar middle section (replicated as 
necessary) 
vertical scroll bar bottom end cap 
vertical scroll well bottom section (replicated as 
necessary) 
vertical scroll well bottom end cap (note: if the 
vertical scroll well is to be transparent, this icon is 
the one checked for a mask) 
down arrow 
Adjust Size icon 
blank icon used to replace the Adjust Size icon 
when it is not present 

All these icons have to be the same width- as does ticon. sicon has to be the same 
height as the horizontal scroll bar. 



Icons are plotted in the order: 

uicon. dicon. 

The Window Manager 

vwellbcap, vwellb, vbarb. vbarmid. vbart, vwellt, vwelltcap, 
ticon. sicon 

such that the top pixel of the previous icon overlaps the bottom pixel of the current 
icon. (Top edges can be made transparent if this overlaid information has to be 
different) . 

If vwellbcap is missing, the Window Manager paints the scroll bar section of the 
right bar using the RISC OS 2 style; otherwise it assumes that all necessary scroll 
bar icons are present. 

Bottom Bar 

hwelllcap hwelll hwellr hwellrcap 

/ 
Iicon plicon 

Iicon plicon: 
hwelllcap: 

hwelll : 

~ 

I 
hbarl 
phbarl 

hbarl phbarl: 
hbarmid phbarmid: 

hbarr phbarr: 
hwellr: 

hwellrcap: 
ricon pricon : 

t 
hbarmid 
phbarmid 

left arrow 

\ 
hbarr 
ph barr 

~ 

ricon pricon 

horizontal scroll well left end cap (note: if the 
horizontal scroll well is to be transparent. this icon 
is the one checked for a mask) 
horizontal scroll well left section (replicated as 
necessary) 
horizontal scroll bar left end cap 
horizontal scroll bar middle section (replicated as 
necessary) 
horizontal scroll bar right end cap 
horizontal scroll well right section (replicated as 
necessary) 
horizontal scroll well right end cap 
right arrow 

All these icons have to be the same height -as does sicon. 

3-29 



RISC OS System Icons 

Icons are plotted in the order: 

Iicon, ricon, 
hwelllcap, hwelll, hbarl, hbarmid, hbarr, hwellr, hwellrcap 

such that the right pixel of the previous icon overlaps the left pixel of the current 
icon. (Right edges can be made transparent if this overlaid information has to be 
different) . 

If hwelllcap is missing, the Window Manager paints the scroll bar section of the 
bottom bar using the RISC OS 2 style; otherwise it assumes that all necessary 
scroll bar icons are present. 

Standard RISC OS 2 sizes and colours 

A RISC OS 2 compatible set has these attributes: 

icons 
hwelllcap 
vwellbcap 

normal 
2Ixi I pixels 
no mask 
no mask 

0 
2Ixi I pixels 
mask 
mask 

22 
2 I x2 I pixels 
no mask 
no mask 

23 
2Ix2I pixels 
mask 
mask 

To be compatible with the RISC OS 2 scroll well colours requires some agility, since 
colours in icons do not get changed to dither patterns (as used in the one bit per 
pixel modes). Putting the dither pattern in the icon can be done in some cases­
such as the scroll bar itself- but there may be a difference in the patterns 
alignment where the ends of the scroll well meet the well around the scroll bubble. 
Therefore transparent wells are used in these modes, and the Window Manager 
displays the dithered grey for the well interior. With solid colours this problem 
does not arise, and transparency masks in the icon would slow the system down, 
so the well colours come from the icons: this also has the benefit of improving the 
appearance of the scroll bar while it is being drawn. 

Naturally, the minimal RISC OS 2 identical set would omit definition of the title bar 
and scroll wells entirely and rely on the Window Manager to draw these sections of 
the window outline . 

Separate Borders 

To get the edges of the icons not to touch (if, for example, they are 3D plinthed, and 
so left and right edges must be different) some pixel rows and columns need to be 
made transparent: 

bicon : 
cicon : 
tbarlcap: 
tbarrcap: 
ticon : 

right edge I pixel transparent 
right edge I pixel transparent 
solid 
solid 
left edge I pixel transparent 



sicon: 
dicon: 
vwellbcap: 
vwelltcap: 
uicon: 

top edge I pixel transparent 
top edge I pixel transparent 
solid 
solid 
top edge I pixel transparent 

The Window Manager 

Iicon: 
hwelllcap: 
hwellrcap: 

left edge includes black vertical pixel of left window edge 
solid 
solid 

Iicon: right edge I pixel transparent 

Speed Concerns 

In order to get the best possible speed for drawing window boundaries, we 
recommend that you draw all the icons with the same number of bits per pixel as 
the modes with which they are to be used. For example, the default set for mode I 2 
are all drawn in mode I 2; the xxx22 set are drawn in mode 20 or 27. The window 
manager can, like the filer. draw the icon correctly whatever source mode is used, 
but it will paint the borders more slowly. 

In order to avoid time consuming searches for names. the window manager caches 
the addresses of all the window icons. This cache is updated after a *TooiSprites 
command, and after mode changes. 

The icons which are replicated should be made appropriately wide and tall, but 
diminishing returns do set in. A special problem for the right and bottom bars is 
that some of the replicated icons are hardly displayed at all in some 
circumstances: for example, hwelll spends a lot of time just one pixel wide. Making 
hwelll very wide to speed the repainting in these situations is counter productive. 

We recommended you use the following sizes: 

tbarmidt. tbarmidb: 
vwellt, vwellb: 
vbarmid : 
hwelll, hwellr: 
hbarmid: 

Alternate Resolution Icons 

I 28 pixels wide 
I 6 to 32 pixels tall 
I 28 pixels tall 
I6 to 32 pixels wide 
I 28 pixels wide 

RISC OS 2 allows for one icon file per application, which can be loaded 
automatically or under your control. Typically this contains the icons that the 
application needs the system to display on its behalf (eg those icons displayed by 
the filer). RISC OS 2 has all these icons at one particular resolution and number of 
colours: nx=2, ny=4, bpp=4 (mode I 2). The appearance of these icons is often poor 
on other display modes. in particular high resolution monochrome and VGA or 
SuperVGA. 



RISC OS System Icons 

RISC OS 3 will load in different icon files automatically depending on the 
characteristics of the system's configured WimpMode. The nx and ny values are 
added to the end of any file , thus WimpMode 27 (VGA) will look for file22 by 
preference. If this fails file is used, which is expected to contain the mode 12 icons. 
No control over the number of bits per pixel is provided except for nx=2. ny=2. 
bpp= I which will look for file23 . Thus an application can be provided with icon files 
tailored to the various screens: 

!Sprites 
!Sprites22 
!Sprites23 

would be a standard configuration for the application providing icons optimised 
for normal TV standard monitor (AKAI7). a VGNSuperVGA monitor (or a Multisync 
monitor used as such) and a high resolution monochrome monitor. 

The machine ends up with only one set of icons for the application being loaded 
into memory, thus using equivalent amounts of memory to RISC OS 2 (contrast 
with the multiple sets for the window icons) . As standard, RISC OS 3 is provided 
with all its icons in the three above styles. though some are on disc. 

Icon set 

The provided icon set is subdivided into 7 sections: 

Filer icons 

directory 
small_app 

small_dir 
file_xxx 

application 
small_xxx 

These six icons are provided first: they are the most frequently used icons. so it 
makes sense to put them first on the search order. application and file_xxx are used 
in the event of searching for !foo or file_ded and not finding it. so limiting the time 
to find them is important. 

These are followed by file_fff, small_fff, file_ffe , small_ffe, etc ... 

Icons in !Sprites are 34xl7 and 9x9. The black outline is 2xl pixels wide. 

Icons in !Sprites22 and !Sprites23 are 34x34 and 18xl8. The black outline is I pixel 
wide. 

Icon bar icons 

network 
floppydisc 
palette 

fileserver 
harddisc 
romapps 

small_fs 
ramfs 
switcher 

These icons almost always appear on the icon bar. 



Dialog box icons 

yes 
radiooff 
opton 
down 
./(menu tick) 

no 
radioon 
tick 
left 
~ (right submenu) 

dontcare 
optoff 
up 
right 

The Window Manager 

¢::: (left submenu) 

These icons are provided for dialog boxes and menus. The last three are used by 
the Window Manager for menu pointers to submenus and 'ticked' items in menus. 

Pointer icons 

ptr_default 
ptr_write 
ptr_cross 

ptr_double 
ptr_hand 
ptr_confirm 

ptr_menu 
ptr_direct 

These icons are used to change the shape of the pointer (from ptr_default) when 
providing feedback to the user. The Window Manager automatically shows 
ptr_double during a double click. 

A transparency mask in the pointer icons defines the position of the active point. If 
the mask is present, it is scanned from the top down and the active point set to the 
position of the first transparent pixel in the mask, completely ignoring any program 
specified active point offset (e.g. from OS_SpriteOp 36). 

Pinboard icons 

ic_edit ic_filer 
ic_paint ic_? 

ic_draw 

These icons are displayed by the Pin board for iconised applications or documents. 

ic_? will be used if ic_app is not found. 
ic_app should consist of ic_? with small_app in it. Its size should be the same as 
file_xxx. 

Application icons 

!edit sm!edit etc.. 

These icons are used by the filer, and should have the same size as file_xxx and 
small_xxx icons. 

Mise icons 

error acorn 

These are used respectively in error dialogue boxes. and for the Task Manager. 

3-33 



Menus 

Menus 

Design 

Icons in the three sets must be as close to each other as possible. English text is 
not recommended in icons. Harmonisation of style with the provided icons is 
appreciated . 

Etiquette 

All the system provided icons, most particularly the Window Manager icons and 
the dialog box and menu icons, are used pervasively. Applications must not modify 
these icons for their own purposes (unless they are applications specifically 
provided to modify the look of the system as a whole). 

Using 30 

You may wish to give your application a 30 look and feel. To do so you should 
provide two sets of icons, one of which provides a standard RISC OS 2 appearance, 
and the other of which provides a 30 appearance. You should then use 
OS_Byte 161 (page 1-363) to read the value of the 30 bit in CMOS RAM, which is 
bit 0 of byte 140; if it is clear load the RISC OS 2 style set. and if it is set load the 30 
set. 

The Wimp enforces some of the behaviour of menus, the following table outlines 
those sections in the chapter entitled Menus and dialogue boxes, in the RISC OS St!Jle 
Guide, which describe the behaviour of menus under the Wimp: 

Section 

Basic menu operation 

Shading menu items 

Menu colours 

Menu size and position 

Other points 

Making menu choices 

describes: 

the different methods of providing menus. 

the rules for shading menu items. 

the standard colours you must use for a menu. 

the size and position of menus. 

a list of other rules for formatting a menu . For 
example; menu titles, splitting items, item ticks. 

the action to perform when a user presses 
Select, Menu, or Adjust . 

The Wimp provides a way in which a task can define multi-level menu structures. 
By multi-level we mean that a menu item may have a submenu. The user activates 
this by moving the pointer over the right-arrow that indicates a submenu. The new 
menu is opened automatically, the Wimp keeping track of the 'selection so far'. 



The Window Manager 

The application usually activates a menu by calling Wimp_CreateMenu 
(page 3- I 56) in response to a Mouse_ Click event of the appropriate type. It passes 
a pointer to a data structure that describes the list of menu items. Each of those 
items contains a pointer to its submenu, if required. 

The click of the Menu button while the pointer is over a window is always reported, 
regardless of button types . You can use the window and icon handles to create a 
menu which accords to the context of the click. For example, the Filer varies its 
menu according to the current file selection (or pointer position if there is none) . 

When the user makes his or her menu choice by clicking on any of the mouse 
buttons while over an item, another event, Menu_Selection, is generated. The 
application responds to this by decoding the selected menu item(s) and 
performing appropriate actions . 

Because menus can have a complex hierarchical structure (as opposed to the 
simple single level menus on some systems) a call Wimp_DecodeMenu 
(page 3- I 6 I) is provided to help translate the selection made into a textual form. 

just as icons can be made writable. menu items can have that property too. This 
makes it very easy to obtain input from the user while a menu is open . 

Menus are not restricted to text-only items. A leaf item (i.e. the last in a chain of 
selections) may be a window, which in turn contains a complete dialogue box. And 
of course. such windows can have as many icons as required, displaying sprites. 
text prompts, writable icon fields etc. 

It could be annoying that choosing an item from deep within a menu structure 
causes the whole menu to disappear. For example. the user might be 
experimenting with different selections from a colour menu, and he doesn't 
necessarily want to perform the whole menu operation again each time he clicks 
the mouse. To overcome this. selections made using the Adjust button do not 
cancel the menu. The Wimp supports this directly, but needs some co-operation 
from the application to make it work. See Wimp_CreateMenu for details on how to 
implement persistent menus. 

Finally, because the Wimp can inform a task when a submenu is being opened. the 
menu tree can be built dynamically, according to the selections that have gone 
before. 

3-35 



Dialogue boxes 

Dialogue boxes 

The Wimp enforces some of the behaviour of dialogue boxes, the following table 
outlines those sections in the chapter entitled Menus and dialogue boxes, in the 
RISC OS St!Jie Guide, which describe the behaviour of dialogue boxes under the 
Wimp: 

Section 

T!Jpes of dialogue box 

describes: 

the three basic types of dialogue box: 

ordinary dialogue boxes 
detached dialogue boxes 
static dialogue boxes. 

Dialogue box colours the standard colours you must use for a 
dialogue box. 

Dialogue boxes and ke!Jboard shortcuts the rules for consistency. 

Wording of dialogue boxes how best to construct the wording in a 
dialogue box. 

Default actions how to ensure the default actions are correct. 

Standard icons used in dialogue boxes the various forms of icon: 

writable icons 

Scrollable lists and pop-up menus 

action icons 
option icons 
radio icons 
arrow icons and sliders. 

how to use scrollable lists and pop-up menus 
to present a list of alternative choices within a 
dialogue box. 

Basic operation 

3-36 

There is no direct way of setting up dialogue boxes under the Wimp. However, 
because icons can be handled in very versatile ways, it is quite straightforward to 
set up windows which act as dialogue boxes. If the necessary windows are 
permanently created and linked to the menu data structure, then the Wimp will 
handle all opening and closing automatically. The Wimp can be made to deal with 
button clicks within the window, for example automatically highlighting icons. 

Also, because writable icons are available, it is a simple matter to input text 
supplied by the user, again with the Wimp doing most of the work. If required, the 
task can restrict the movement of the mouse to within the dialogue box, by 
defining a mouse rectangle (using OS_ Word 21, I -see page 1-685) which encloses 



The Window Manager 

the box. This ensures that the user can perform no other task until he or she 
responds to the dialogue box. The task should always reset the mouse rectangle to 
the whole screen once the dialogue is over. Also, open_window_requests for the 
dialogue box should cause the box to be reset. Note that usually the pointer is not 
restricted. The dialogue box is deleted if you click outside it. 

Alternatively, the menu tree can be arranged so that the application is informed (by 
a message from the Wimp) when the dialogue box is being opened; this allows any 
computed data to be delayed until the last minute. For a large program with many 
dialogue boxes this is preferable. 

This form of dialogue box can be visited by the user without clicking on mouse 
buttons, just like traversing other parts of the menu tree. This is possible because 
redraw is typically much faster than on previous systems, so popping up the 
dialogue box and then removing it does not cause a significant delay. 

Informational dialogue boxes 

The 'About this program' dialogue box is a useful convention. Provide an 'Info' item 
at the top of the application's menu, and make the dialogue box its submenu. You 
should also have the 'Info' item at the top of the menu that you produce when the 
user clicks with Menu on your icon bar icon. Use Edit's template file to obtain an 
exact copy of the standard layout used in the Applications Suite programs. 

Keyboard shortcuts 

If a menu operation leading to a dialogue box has a keyboard short-cut, 
Wimp_CreateMenu should be used to initially open the dialogue box, rather than 
Wimp_OpenWindow (although Wimp_OpenWindow should still be used in 
response to an Open_ Window_Request event). This will ensure that it has the 
same behaviour concerning cancellation of the operation etc as when accessed 
through the menu tree. 

Static dialogue boxes 

A static dialogue box is opened using Wimp_OpenWindow rather than 
Wimp_CreateMenu. A static dialogue box matches normal ones in colours, but has 
a Close icon . 

3-37 



Dialogue boxes 

Icons used in dialogue boxes 

There are various forms of icon that occur within dialogue boxes, the most 
common forms are described here to improve consistency between applications . 

Writable Icons 

Writable icons are used for various forms of textual fill-in field. They provide 
validation strings so that specific characters can be forbidden . Alternatively 
arbitrary filtering code can be added to the application to ensure that only legal 
strings (within this particular context) are entered. 

When moving to a new writable icon, place the caret at the end of the existing text 
of the icon. See Wimp_SetCaretPosition for details of how to do this. 

Action Icons 

This term refers to 'buttons' on which the user clicks on in order to cause some 
event to occur, typically the event for which the parameters have just been entered 
in the dialogue box. An example is the OK button in a 'Save as' dialogue box. 

The best button type to use is 7 (Menu), with non-zero ESG. This will cause the 
button to invert while the pointer is over it (like a menu item). and for a button 
press to be reported . 

It is sometimes appropriate to provide keyboard equivalents for action buttons. 
For instance. if the dialogue box is available via a function key as well as on the 
menu (see Keystrokes below) then adding key equivalents for action icons may 
mean that the entire dialogue box can be driven from the keyboard. A conventional 
use of keys is: 

• Return- in the last writable icon. 'Go'- perform the obvious action initiated by 
filling in this dialogue box. 

• Escape- cancel the operation; remove the dialogue box. Note that Escape is 
dealt with by the Wimp automatically in this case. as the dialogue box was 
opened using Wimp_CreateMenu . 

• F2, F3 etc to FI I -if the action icons are arranged positionally at the top or 
bottom of the dialogue box in a simple row, then define F2, F3 etc as positional 
equivalents of the action buttons, i.e. F2 activates the left-most one, F3 the 
next etc. Note that Fl is normally reserved by convention to 'get help', so it 
should be used to provide help, or do nothing. Similarly, FI 2 should remain a 
route to the CLI. 



The Window Manager 

Option icons 

This term refers to 'switches', which can either be on or off. 

The best icon to use is a text plus sprite one. The text has the validation string 
Soptoff, opton, where the sprites opt off and opton are defined in the Wimp 
ROM sprite area. The HVR bits of the icon flags (3, 4 and 9) are set to 0, I and 0 
respectively (see Wimp_Createlcon). This generates a box to the left of the text, 
with a star within it if the option is on (i.e. the icon is selected). The button type is 
II. 

The ESG can be zero to make Select and Adjust both toggle the icon state, or 
non-zero (and unique) to make Select select and Adjust toggle the icon state. 

The Filer's menu item Access dialogue box for a particular file, uses this type of 
control (with ESG=O). 

Radio icons 

This term refers to a set of options where one, and only one, of a set of icons can be 
selected. 

The text plus sprite form is again best, using the validation string 
Sradiooff, radioon from the Wimp sprite area, and a non-zero ESG shared by 
all the icons in the group, to force exclusive selection. If required, the icons can 
have their 'adjust' bit set to enable Adjust to toggle the state without deselecting 
the other icons. 

Tool windows and 'panes' 

A pane is a window which is 'fixed ' to another window, but has different properties 
from it. For example, consider a drawing program. You might have a scrollable, 
movable main window for the drawing area . This is called the tool window. On the 
left edge of this might be a fixed window which contains icons for the various 
drawing options. This lefthand window (the pane) always moves with the main 
window, but does not have scroll bars, or any other control areas. 

Dealing with panes is really entirely up to the task program . However, there are one 
or two things to bear in mind when using them. If a tool window is closed, all of its 
panes must be closed too. Similarly, when a tool window is opened (an 
Open_Window_Request is received). the task must inspect the coordinates of the 
main window returned by the Wimp, and use them to open the pane in the 
appropriate position . 

3-39 



Keyboard input and text handling 

One bit in a window's definition is used to tell the Wimp that this is a pane. This is 
used by the Wimp in two circumstances: 

• if the pane gets the input focus, the tool window is highlighted 

• when toggling the tool window size, the Wimp must treat panes as 
transparent. 

There are various optimisations that can be used. If you open the windows in the 
right order, unnecessary redraws can be avoided. 

Keyboard input and text handling 

::l-40 

The following table outlines those sections in the chapter entitled Handling input, in 
the RISC OS Style Guide, which describe how you shou ld implement input under the 
Wimp: 

Section 

Gaining the caret 

Unknown keystrokes 

Abbreviations 

Selections 

Keyboard shortcuts 

International support 

describes: 

the conditions under which you may gain the 
caret. 

what you should do if you receive a keystroke 
that you do not understand or use - hand it 
back using Wimp_ProcessKey. 

examples of abbreviations for menu 
operations useful to expert users. 

the rules to follow when a user selects text (or 
objects) within your application 

consistent shortcuts for common commands, 
including a table of shortcuts you should 
provide for particular functions (e.g. Help, 
Close window, Scroll window, Move etc). 

how to make an application more portable in 
the international market. 

A task running under the Wimp should perform all of its input using the Wimp_Poll 
routine, rather than calling OS_ReadC or OS_Byte &8 I directly. It is permissible for 
a program to scan the keyboard using the- ve inkey OS_Bytes. Further details are 
given in the chapter entitled Character Output on page I -489. 



The Window Manager 

The input focus 

One window has what is termed the 'input focus'. For example, the main text 
window of an editor might be the current input window, and its system area is 
highlighted by the Wimp to show this. (A flag can also be read by the program to 
see if it has the input focus.) The input window or icon also has a caret (vertical bar 
text cursor) to show the current input position. 

A window gains the input focus if it has a writable icon over which the user clicks 
with Select or Adjust The caret is positioned and sized automatically by the Wimp 
in this case. It uses a height of 40 OS units for the system font 

Alternatively, the program can gain the input focus explicitly by calling 
Wimp_SetCaretPosition (page 3- I 52). This displays a caret of a specified height 
and colour at the position specified in the given window and, optionally, icon. If 
the icon is a writable one, the Wimp can automatically calculate the position and 
height from the index into the text, if required. 

Generally Wimp_SetCaretPosition is called in response to a mouse click over a 
window's work area . The position within the window must be calculated using the 
pointer position, the window's screen position, and the current scroll offsets. 

Wimp_SetCaretPosition causes a couple of events to occur if the input window 
actually changes: Gain_ Caret and Lose_ Caret This enables tasks to respond to the 
change in caret position (and possibly the task that owns it) by updating their 
window contents appropriately. This is especially true if an application is drawing 
its own caret and not relying on the Wimp's vertical bar. Note that the Wimp's caret 
is automatically maintained by the Wimp in Wimp_RedrawWindow, so you don't 
have to redraw it yourself. 

Key presses 

If the insertion point is within a writable icon, then many key presses are handled 
by the Wimp. The icon text is updated, and for certain cursor keys, the caret 
position and index within the string are updated. Other key presses, and all keys 
when the input focus is not in a writable icon, must be dealt with by the application 
itself. 

A program gets to know about key presses through the Wimp_Poll Key_Pressed 
event The data returned gives the standard caret information plus the code of the 
key pressed. It is up to the application to determine how the key-press is handled. 
There are certain standard operations for use in dialogue boxes, e.g. cursor down 
means go to the next item, but generally it will very much depend on what the 
application is doing. 

3-41 



Keyboard input and text handling 

~-4? 

Function and 'hot' keys 

Among the keys that the Wimp cannot respond to automatically are the function 
keys Fl to Fl2. These are passed to the application as special codes with bit 8 set 
(i.e. in the range 256- 511 ). If the application can deal with function keys, it should 
process the key press appropriately. If not it should pass the key back to the Wimp 
with the call Wimp_ProcessKey (page 3-173) . 

If a function key is passed back to the Wimp in this way and the input focus belongs 
to a writable icon, the Wimp will expand the function key definition and insert (as 
much as possible of) the string into the icon. 

In general, a program should always pass back key presses it doesn't understand to 
the Wimp. This allows the writing of programs which are activated by 'hot keys', for 
example, a screen dump that occurs when Print (FO) is pressed. Keys passed to 
Wimp_ProcessKey are passed (through the Key_Pressed event) to tasks whose 
windows have the 'grab hot keys' bit set. They are called in the order they appear on 
the window stack, topmost first. 

If a program can act on a hot key, it should perform its magic task and return via 
Wimp_Poll. If it doesn't recognise that particular key, it should pass it to the next 
grab-hot-keys window in the stack by calling Wimp_ProcessKey before it next calls 
Wimp_Poll. 

Note that the caret may well not be in the window with the grab-hot-keys bit set, 
and of course the caret position returned by Wimp_Poll will correspond to the 
window with the caret. Also, note that all potential hot key grabbers take priority 
over icon soft key expansion, and that you should not process a key and hand it 
back to the Wimp. This could lead to user-confusion . 

If the only reason for a window is to allow its creator to grab hot keys, i.e. if it will 
never appear, it should be created and opened off the screen (with a large negative 
x position). To allow this, its window flags bit 6 should be set. 

An application should not change or use Fl2, or any of its shift variants, as it is 
used by RISC OS. 

Special characters 

Use Alt as a shifting key rather than as a function key. Different forms of 
international keyboards have standardised the use of Alt for entering accented 
characters. See the section entitled Keyboard shortcuts in the Handling input chapter in 
the RISC OS Style Guide for details of how you should implement modifiers. 

Do not forbid the use of top-bit-set characters in your program, as many standard 
accented characters are available in the ASC!l range &AO- &FF. The Wimp clearly 
distinguishes between these cha racters and the function keys, which are returned 
as codes with bit 8 set. 



The Window Manager 

The Escape key 

Due to their frequent polling, Wimp programs do not normally need to use escape 
conditions. The Wimp sets the Escape key to generate an ASCII ESC ( & I B) 
character. If you perform a long calculation without calling Wimp_PoiL you may set 
the escape action of the machine to generate escape conditions (using *FX 229,0), 
as long as you set it back again (using * FX 229, I and then * FX 124) before calling 
Wimp_Poll. 

One of the Wimp's start-up actions (the first time Wimp_Initialise (page 3-87) is 
called) is to make the Escape key return ASCII 27. It does this by issuing an 
OS_Byte with R0=229, Rl =I, R2=0. Thus no Escape conditions or (RISC OS) events 
are normally generated. The task that has the input focus can respond to ASCII 27 
in any way it wants. 

If you want to allow the user to interrupt the program by pressing Escape during a 
long operation, you can re-enable it using OS_Byte with R0=229, RI=O, R2=0. The 
following restrictions must be observed. Escapes must only be enabled between 
calls to Wimp_Poll, i.e. you must not call that routine with Escape enabled. This is 
very important. If you detect an Escape, you must disable it before calling the 
Wimp again and then clear it using OS_Byte with RO= 124. 

Even if no Escape occurs, you should still disable it before you next call 
Wimp_Poll; it is a good idea to call OS_Byte with RO= 124 just after disabling 
Escapes. 

It is also a good idea to display the Hourglass pointer during long-winded 
operations, preferably with the percentage of completion if this is possible. The 
user is less likely to try to interrupt if they can see that the operation is progressing. 
Note that you should not attempt to change the pointer while the hourglass is still 
showing. 

When Wimp_ Close Down (page 3-175) is called for the last time (i.e. when the last 
task finishes), the Wimp restores the Escape key to its previous state, along with all 
the other settings it changed (function keys, cursor keys etc.) 

Changing the pointer shape 

You should not use the standard OS_ Words and OS_Bytes to control the pointer 
shape under the Wimp. Instead, use the call Wimp_SpriteOp (page 3-201) with 
RO = 36 (SetPointerShape). This programs the pointer shape from a sprite 
definition, performing scaling and colour translation if required. Pointer sprites 
have names of the form ptr_xxxxx. The standard arrow shape is held in the 
Wimp ROM sprite area and is called ptr_default. 

The call Wimp_SetPointerShape (page 3-166) which was available before 
RISC OS 2 should no longer be used, although it is still provided for compatibility. 

3-43 



~ode independence 

Pointer shape I is used by the Wimp as its default arrow pointer. Any program 
wishing to use a different shape must use shape 2, and program the pixels 
appropriately using the above call. Do not use logical colour 2 in pointer sprites. as 
this is unavailable in very high resolution modes. Shapes 3 and 4 are used by 
utilities such as the Hourglass module which changes the pointer shape under 
interrupts. For information about the SWis supported by this module, re fer to the 
chapter entitled Hourglass on page 2-733 . 

Note that when changing the pointer shape, it is recommended that the pointer 
palette is also reset. This is held in the sprite. Also, each sprite should have its own 
palette. 

A task should only change the pointer when it is within the work area of one of its 
windows. The Wimp_Poll routine returns two event codes for detecting t his: 
Pointer_Entering_Window and Pointer_Leaving_Window (5 and 4 respectively). 
Whenever the first code is received , the task can change the pointer to shape 2 for 
as long the pointer stays within the window. On receiving the second code, the task 
should reset the pointer to shape I . The best way to achieve this is to use the 
• Pointer command. 

Tasks should trap Message_ModeChange, as a mode change resets the pointer to 
its default shape. If, on a mode change, the task thinks that it 'owns' the pointer, 
i.e. it is over one of the task's windows, it should re-program the pointer shape, if 
required . 

Mode independence 

~-44 

For a general description of providing mode independence see the sections 
entitled Modes and Screen size in the Screen handling chapter in the RISC OS Style Guide. 

Programs should work in all screen modes in which the Wimp works. Read the 
current screen mode rather than setting it when your program is loaded, and call 
OS_ReadVduVariables (page 1-703) to obtain resolution, aspect ratio, etc, instead 
of building these into the program. 

The Wimp broadcasts a message when the mode changes, so any mode-specific 
data can be changed at that point. 

Programs uninterested in colours must also check operation in 256-colour modes, 
e.g. some EOR (exclusive OR) tricks do not work quite the same. For instance, see 
Wimp_SetCaretPosition for a description of how the Wimp draws the caret using 
EOR plotting. Clock uses a similar trick for the second hand of the clock. As 
another example, Edit uses EO Ring with Wimp colour 7 (black) to indicate its 
selection, but redraws the text in 256-colour modes. 



Colour 

The Window Manager 

In two-colour modes the Wimp uses ECF patterns for Wimp colours I to 6 (grey 
levels). Note that certain EO R-ing tricks do not work on these, and that use of 
Wimp_CopyBlock can cause alignment problems for the patterns. 

An important aspect of Wimp-based applications is that they do not depend for 
their operation on a particular screen mode. A corollary of this is that they should 
not explicitly change display attributes such as mode or colours. The motivation 
for this rule is to ensure that many separate tasks can be active without mutual 
interference. 

To help programs operate in a consistent manner regardless of, say, the number of 
screen colours, the Wimp provides a variety of utility functions , such as colour 
translation and the scaling of sprites and text. In fact many of these features are 
provided by other parts of RISC OS, but are given Wimp calls to facilitate a more 
uniform interface. 

See the chapter entitled Colour and sound in the RISC OS Style Guide for: 

• a description of different colour models used to define colour; 

• the meanings that various colours instinctively convey to users; 

• guidelines for which colours to use in your application . 

For a general description of colours and the palette see the section entitled Colours 
and the palette in the Screen handling chapter in the RISC OS Style Guide. 

There are several colours used in drawing a window. For harmonious operation 
with other applications, several of these have been standardised: you should set 
the Title Bar colours, the scroll bar inner and outer colours and highlighted title 
colour to the values given in the table in the following section on colour handling, 
unless you have some good reason not to. On the other hand, the work area 
colours (which are set for you before an update or redraw) can be assigned any 
values required. 

Colour handling 

The Wimp's model of the display centres on the 16-colour modes. There are 16 
Wimp colours defined, listed below. In other modes, the Wimp performs a mapping 
between these standard colours and those which are actually available. When 
setting colours for graphics (including VDU 5 text), or anti-aliased fonts, the 
application specifies standard colours to the appropriate Wimp routine, which 
translates them and generates the necessary VDU calls. 

3-45 



Colour 

3-46 

Here are the standard colours, and their usages: 

standard colour 

0-7 

8 
9 
10 
II 
12 
13 
14 
15 

usage 

grey scale from white (0) to black (7) 
colour I is icon bar and scroll bar inner colour 
colour 2 is standard window title background colour 
colour 3 is the scroll bar outer colour 
colour 4 is the desktop background colour 
dark blue 
yellow 
green 
red 
cream, window title background for input focus owner 
army green 
orange 
light blue 

In non-16 colour modes, these standard colours are represented as follows: 

2-colour modes 

0 
I -6 
7 
8- 15 

4-colour modes 

0- 15 

256-colour modes 
0- 15 

logical colour 0 is set to Wimp colour 0, i.e. white 
logical colour I is set to Wimp colour 7, i.e. black 

logical colour 0 
decreasing brightness stippled patterns 
logical colour I 
logical colour 0 or I, whichever is closer to standard 
colour's brightness level 

logical colour 0 is set to Wimp colour 0, i.e. white 
logical colour I is set to Wimp colour 2, i.e. light grey 
logical colour 2 is set to Wimp colour 4, i.e. dark grey 
logical colour 3 is set to Wimp colour 7, i.e. black 

set to the logical colour closest in brightness to the 
standard one 

the default palette is used 

set to the closest colour to the standard one 
obtainable 

As an example of the use of colour translation, if you were to set the graphics 
colour to 2 in a two-colour mode, using Wimp_SetColour (page 3-194), then the 
Wimp would actually set up an ECF pattern (number 4 is used) to be a lightish 
stippled pattern, and issue a GCOL to make ECF 4 the current graphics colour. On 
the other hand, in a 256-colour mode it would calculate the GCOL and TINT which 
gives the closest match to the standard light grey, and issue the appropriate VDUs. 



The Window Manager 

In 256-colour modes, exact representations of the Wimp colours 0- 7 (the grey 
scale) are available, but only approximate (albeit pretty close) representations of 
Wimp colours 8- I 5 can be obtained. 

The Wimp utilises its colour translation mechanism in the following 
circumstances: 

• when using the colours given in a window's definition, unless bit I 0 of the 
window flags is set. In this case, the colour is used directly. NB in a 256-colour 
mode an untranslated colour is given as %cccccct t, i.e. bits 0- I give bits 
6- 7 of the TINT and bits 2 - 7 give bits 0- 5 of the GCOL. 

• when using the colours in an icon's definition. Text colours are translated, 
except that the stippled patterns can't be used in two-colour modes. Sprites 
are plotted using the OS_SpriteOp PutSpriteScaled reason code with an 
appropriate colour table and scaling factors. 

• when using the text caret colour, unless translation is overridden. 

The palette utility produces a broadcast message when the user changes the 
palette settings, allowing such programs to repaint for the new palette. A module 
called ColourTrans (used by Paint and Draw) gives the closest setting possible to a 
given RGB value. This module is provided in the RISC OS 3 ROM and is available as 
a RAM loaded module for RISC OS 2. 

If you want to override the Wimp's translation of colours, you can use the 
ColourTrans module and PutSpriteScaled to perform more sophisticated colour 
matching. The Draw and Paint applications do this. 

System font handling 

The system font is the standard 8 by 8 pixel character set. It is used by OS_ WriteC 
text printing codes. Under the Wimp, the system font is defined to be I 6 units wide 
by 32 OS units high. This is true regardless of the actual screen resolution. The 
consequence of this is that system font characters are the same physical size, 
independent of the screen mode. 

To obtain the appropriate sizing of characters, the Wimp uses the VDU driver's 
ability to scale characters printed in VDU 5 mode. Thus in mode 4, where a pixel is 
4 OS units wide, system font characters are only four pixels wide, to maintain their 
I 6OS unit width. Similarly in 5 I 2-line modes, characters are plotted double height 
to give them the same appearance as in mode I 2. 

3-47 



Dragging 

Dragging 

Dragging boxes 

One of the recognisable features of most window systems is the ability to 'drag· 
items around the screen. The RISC OS Wimp is no exception. and provides 
extensive facilities for dragging objects. 

Icons and window work areas can be given a button type which causes the Wimp to 
detect drag operations automatically. A 'drag· is defined as the Select or Adjust 
button being pressed for longer than about 0.2s. Alternatively. if the user clicks and 
then moves the mouse outside the icon rectangle before releasing, this also counts 
as a drag The result is that a Mouse_ Click event is returned by Wimp_Poll. Note 
that before a drag event is generated. the application will also be informed of the 
initial click. and the drag could in turn be followed by a double click event. 
depending on the button type. 

The call Wimp_DragBox (page 3-145) initiates a dragging operation . The user 
supplies the initial position and size of the box to be dragged. and a 'parent' 
rectangle within which the dragging must be confined Normally, the initial 
position of the box will be such that the mouse pointer is positioned somewhere 
within the box. However. this is not mandatory; the Wimp. while performing the 
dragging. ensures that the relative positions of the pointer and the box remain 
constant 

There are two main types of drag operation : system and user. System types work on 
a given window. and drag its size. position or scroll offsets. These drags are 
normally performed automatically if the window has the appropriate control icon 
(e.g. a Title Bar to drag its position) . However. you might want to allow a non-titled 
window to be moved. or a window without an Adjust Size icon to be resized ; the 
system drag types cater for this sort of operation . 

User drag boxes can be fixed size. where the whole of the box is moved along with 
the pointer. or variable sized . where the top left of the box is fixed. and the 
bottom-right moves with the pointer. (The fixed and movable corners can be varied 
by specifying the box's top left and bottom right coordinates in the reverse order.) 
The Wimp displays the drag box using dashed lines whose dash pattern changes 
cyclically. 

There is an 'invisible' type of drag box. In this case. the mouse is simply 
constrained to the parent rectangle. which must be a single window. and the initial 
box coordinates are ignored It is up to the task to draw the object being dragged. 
This usually involves setting a 'dragging' flag in the main poll loop. and the use of 
Wimp_UpdateWindow (page 3- I 3 I). The task must also ensure that the dragged 
object is redrawn if a Redraw_ Window_Request is issued. and enable Null event 
codes and use them to perform tracking. 



The Window Manager 

Finally, a program can arrange for the Wimp to call its own machine code routines 
during dragging, for the ultimate in flexibility. This enables the program to drag any 
object it likes. so long as it can draw it and then remove it without affecting the 
background. In this case, the object can go outside the window. The Wimp will ask 
for it to be removed at the appropriate times. 

In all cases, the task is notified when the drag operation ends (when the user 
releases all mouse buttons) by Wimp_Poll returning the event code 
User_Drag_Box. 

Drag operations within a window 

The Wimp's drag operations are specifically for drags that must occur outside all 
windows. As well as the cycling dashed box form. they allow the use of 
user-defined graphics, allowing arbitrary objects to be dragged between windows. 

If you build drag operations within your window. check that redraw works correctly 
when things move in the background (the Madness application is useful for testing 
this) . Also, it is important to note that such 'within-window' dragging must use 
Wimp_UpdateWindow to update the window, rather than drawing directly on the 
screen. 

If the drag works with the mouse button up then menu selection and scrolling can 
happen during the drag, which is often useful. Stop following the drag on a 
Pointer_Leaving_Window event, and start again on a Pointer_Entering_Window 
event. 

If the drag works with the button down. then it may continue to work if the pointer 
is moved out of the window with the button still down. Alternatively for 
button-down drags, you can restrict the pointer to the visible work area, and 
automatically scroll the window if the pointer gets close to the edge. 

3-49 



Editors 

Editors 

An editor presents files of a particular format (known as documents) as abstract 
objects which a user can load, edit, save, and print. Text editors, word processors, 
spreadsheets and draw programs are all editors in this context. 

The following table outlines those sections in the chapter entitled Editors, in the 
RISC OS Style Guide, which describe how you should implement editors under the 
Wimp: 

Section 

Editor windows 

Starting an editor 

Crea ting a new document 

Loading a document 

Inserting one document into another 

Saving a document 

Internal RAM based filing system 

Printing a document 

Closing documents 

Quitting editors 

describes: 

the title of an editor window and how to 
position it. 

the colours you should use for the editor 
window. 

when and how you should start your editor. 

when and how you should create a new 
document. 

when you must load a document. 

when you must try to insert a document into 
the one you are editing. 

how to save a document. 

how to provide an internal RAM based filing 
system for your editor. 

when to print a document. 

how and when to close a document. 

how to quit your editor. 

Providing information about your editor why you should include an 'About this 
program' dialogue box. 

Terminology 

Each document being edited is typically displayed in a window. Such windows are 
referred to as editor windows. 

Most editors record , for each document currently being edited, whether the user 
has made any adjustments yet to the document. This is known as an updated flag. 

Some editors are capable of editing several documents of the same type 
concurrently, while others can edit only one object at a time. Being able to edit 
several documents is frequently useful, and removes the need for multiple copies 



The Window Manager 

of the program to be loaded. Such programs are referred to here as 
multi-document editors. Edit. Draw and Paint are all multi-document editors, 
while Maestro and FormEd are not. 

File types 

Editors use RISC OS file types to distinguish which application belongs to which 
file. Application ! Boot files should define Alias$@RunType_ttt and 
File$Type_ttt variables, and !appl, sm!appl, file_ttt and small_ttt 
sprites (in the Wimp sprite area). as described earlier. File types are allocated as 
described in the section entitled Filet!Jpes on page 4-545. 

The user interface 

The user interface of RISC OS concerning loading and saving documents is rather 
different from that of other systems, because of the permanent availability of the 
Filer windows. This means that there is no need for a separate 'mini-Filer' which 
presents access to the filing system in a cut-down way. Although this may feel 
unusual at first to experienced users of other systems, it soon becomes natural and 
helps the feeling that applications are working together within the machine, rather 
than as separate entities. 

Editor icons 

Icons that appear on the icon bar should have bounding boxes 68 OS units square. 
Icons with a different height are strongly discouraged, as they will have their top 
edges aligned within the Filer Large icon display. A wider icon is permissible, but 
the size above should be thought of as standard. If the width is greater than 160 OS 
units then the edges will not be displayed in the Filer Large icon display. 

Icons are often displayed half size to save screen space. The Filer will use sm! appl 
and small_t t t if these are defined, or scaled versions of ! appl and file_t t t 
if not. 

Starting an editor 

The standard ways to start an editor are to: 

• double-click on the application icon within the directory display, or 

• double-click on a document icon within the directory display. 

The action taken in the first case is to load a new copy of the application (by 
running its !Run file). The only visible effect to the user is that the application icon 
appears on the icon bar. So when you start up with no command line arguments, 
use Wimp_Createlcon to put an ico~ containing your !app sprite onto the icon bar, 
then enter your polling loop quietly.j 

3-51 



Editors 

3-52 

In the second case. create the icon bar icon. load the specified document and open 
a window onto it. This typically occurs by the activation of the run -type of the 
document file. which in turn will invoke the application by name with the 
path name of the document file as its single argument. 

For example. the run -type for a Draw file (type &AFF) is: 

*Run <disc> . !Draw . !Run %*0 

where <d isc> is the name of the disc on which the Draw application resides. So 
when the user double-clicks on a type &AFF file. the Filer executes *Run 
pathnarne, which in turn executes <d isc> . ! Draw. ! Run pathnarne. 

Typically, the ! Boot file of the application sets up the run-type for its data files 
when the application is first seen by the filer. In the case of Draw. the boot file says: 

*Set Al ias$@RunTyp e _AFF *Ru n <0b ey$Di r> . !Run %% *0 

See the section entitled Application resource files on page 3-58 for details . 

When a document icon is double-clicked. and a multi-object editor of the 
appropriate type is already loaded. it is not necessary to reload the application . In 
this case. the active application will notice the broadcast message from the Filer 
announcing that a double click has occurred . and will open a window on the 
document itself. For details, see the section entitled Message_DataOpen (5) on 
page 3-265. 

A further way of opening an existing document is to drag its icon from the Filer 
onto the icon bar icon representing the editor. In this case. a Data Load message is 
sent by the Filer to the editor. which can edit the file . This form is important 
because it specifies the intended editor precisely. For instance if both Paint and 
FormEd are being used (both can edit sprite files) then double-clicking on a sprite 
file could load into either. 

Newly opened windows on documents should be horizontally centred in a mode 12 
screen. and should not occupy the entire screen. This emphasises that the 
application does not replace the existing desktop world. but is merely added to it. 
Subsequent windows should not totally obscure ones that this application has 
already opened. Use a -48 OS unity offset with each new window. 

Creating new documents 

The window created from the loading or creation of a document should be no 
larger than about 700 OS units wide by 500 high. The first window should be 
centred horizontally and vertically on the screen. Open subsequent windows 48 OS 
units lower than the previous one, but if this would overlap the icon bar then 
return to the original starting position . The initial size and position of windows 
should be user-configurable, by editing a template file. 



The Window Manager 

Editing existing documents 

To open an existing document, double-click on the document in the Filer. This will 
cause a broadcast Data Open message from the Filer, so if your editor can edit 
multiple documents it can intercept this and load the document into the existing 
editor. 

To insert one document into another, drag the icon for the file to be inserted into 
the open window of the target document. The Filer will then send a message to 
that window, giving the type and name of the file dragged. The target (if the file is 
of a type that can be inserted) can now read the file . If the file is not of a type that 
can be inserted in this document then the editor should do nothing, i.e. it should 
not give an error. 

More details of these operations can be found in the section entitled 
Wimp_SendMessage (SWI &400E7) on page 3-I96. 

Saving documents 

For a description of saving documents see the section entitled Saving a document in 
the Editors chapter in the RISC OS Style Guide. 

To remove the Save dialogue box after saving a file use Wimp_CreateMenu (-I) . 

Closing document windows 

If the user clicks on the Close icon of a document window, and there is unsaved 
data, then you should pop up a dialogue box asking: 

• Do you want to save your edited file? (if the document has no title) 

• Do you want to save edited file 'name'? 

You can copy this dialogue box from Edit's template file. If the answer is Yes then 
pop up a Save dialogue box, and if the result is saved then close the document 
window. If the answer is No, or any cancel-menu (e.g. Escape) occurs, then the 
operation is abandoned. 

If the user clicks Adjust on the Close icon, call Wimp_GetPointerinfo on receipt of 
the Close_ Window_Request. Also, you must open the file's home directory after 
closing it. This can be obtained by removing the leafname from the end of the file's 
name and sending a Message_FilerOpenDir broadcast to open the directory. 

Quitting editors 

You must supply a Quit option at the bottom of an editor's icon bar menu. For a 
description of how you should implement quitting editors see the section entitled 
Quitting editors in the Editors chapter in the RISC OS Style Guide. 

3-53 



Memory management 

See Message_PreOuit (8) on page 3-230 for details of what to do if your editor 
receives a PreOuit broadcast message. 

Memory management 

3-54 

For a general description of how to use memory efficiently see the section entitled 
Use of memory in the General Principles chapter in the RISC OS Style Guide. 

Part of the Wimp's job is to manage the system's memory resources. There are 
several areas: the screen, system sprites. fonts. the RMA, application space etc. 
Many of these are controllable through the Task Manager's bar display. The user 
can drag, say, the font cache bar to set the desired size. 

The remainder. when all of the other requirements have been met. is called the free 
pool. The Wimp can 'grab' memory from this to increase another area 's size. or to 
start a new application , and extend it when another area is made smaller, or an 
application terminates. Because the allocation of memory is always under the 
user's control. he or she can make most of the decisions concerned with effective 
utilisation . 

Two important bars in the Task Manager's display are the 'Free' and 'Next' ones. 
These give respectively the size of the free memory pool. and the amount of 
memory that will be given to the next application . They can be dragged to give the 
desired effect. For example, the user can decrease the RAM disc slot to increase the 
'Free' size. which will in turn allow another resource, e.g. the screen size. to be 
increased. This is only used if the task doesn't issue an explicit *WimpSlot 
command, though most will do so. 

Using the memory mapping capabilities of the MEMC chip, the Wimp can make all 
applications' memory appear to start at address &8000. This is called logical 
memory, and is all the application need worry about. Logical memory is mapped 
via the MEMC into the physical memory of the machine. The smallest unit of 
mapping is called a page, and its size is typically 8K or 32K bytes. Before giving 
control to a task through Wimp_Poll, the Wimp ensures that the correct pages of 
physical memory are mapped into the application workspace at address &8000. 

In general. then, the application need not concern itself with memory allocation . 
However. there are times when direct interaction between a task and the Wimp's 
allocation is desirable. For example, a program may need a certain minimum 
amount of memory to operate correctly. Conversely, when running an application 
might decide that it doesn't need all of the memory that was allocated to it. and 
give some back. 



The Window Manager 

The SWI Wimp_SlotSize (page 3-206) allows the size of the current task's memory 
and the 'Next' slot to be read or altered . See the description of that call for details 
of its entry and exit parameters and examples of its use. The command *WimpSlot 
uses the call. 

A program may need a large amount of memory for a temporary buffer. Just as it is 
possible to claim the screen memory using OS_ClaimScreenMemory, a program 
can call Wimp_ClaimFreeMemory (page 3-2 I 0) to obtain exclusive use of the 
Wimp's free pool. Only programs executing in SVC (supervisor) mode can make use 
of th is memory, as it is protected against user-mode access. Furthermore, while the 
memory is claimed, the Wimp cannot dynamically alter the size of other areas , so 
programs should not 'hog' it for extended periods (i.e. across calls to Wimp_Poll). 

Finally, just as built-in resources such as RMA size and sprite area size are alterable 
by dragging their respective bars, the Task Manager allows the user to perform the 
same operation on task bars. This is only possible with the task's cooperation. 
When a task starts up, the Task Manager asks it. by sending a message, if it will 
allow dynamic sizing of its memory allocation . If the program responds, the Task 
Manager will allow dragging of its bar, otherwise it won't. See the section entitled 
Message_SetSlot ( &400C5) on page 3-241 for details. 

Applications with complex requirements can arrange to call Wimp_SlotSize at 
run-time to take (and give back) memory. BASIC programs may use the 

, END=&xxxx construct to call Wimp_SlotSize. 

C programs should call Wimp_SlotSize directly or use 'flex' (available with Release 
3 or later of the Acorn C Compiler). which provides memory allocation for 
interactive programs requiring large chunks of store. 

IfWimp_SlotSize is used directly, the language run-time library (and malloc()) will 
be entirely unaware that this is happening and so you must organise the extra 
memory yourself. A common way of doing this is to provide a shifting heap in 
which only large blocks of variable size data live. By performing shifting on this 
memory, pages can be given back to the Wimp when documents are unloaded. 

Important: 

• Do not reconfigure the machine. 

• Do not kill off modules to get more workspace. 

Such sequences are quite likely to be hardware-dependent and OS 
version-dependent. 

3-55 



Template files 

Template files 
To facilitate the creation of windows, a 'template editor', called FormEd, has been 
written for the Wimp system. This allows you to use the mouse to design your own 
window layouts, and position icons as required . An extensive set of hierarchical 
menus provides a neat way of setting up all the relevant characteristics of the 
various windows and icons. 

Once a window 'template' has been designed, it can be given an identifier (not 
necessarily the same as the window title) and saved in a template file along with 
any other templates which have been set up and identified. The Wimp provides a 
Wimp_OpenTemplate (page 3-168) call, which makes it very simple for a task, on 
start up, to load a set of window definitions. The task can load a named template 
from the file, which can then be passed straight to Wimp_CreateWindow 
(page 3-89). or it can look for a wildcarded name, calling Wimp_LoadTemplate 
(page 3-170) repeatedly for each match found. 

Many of the templates used by the system are resident in ROM. They are held in 
Resources:$. Resources. •, where • is the name of the module. You can base your 
own templates on these by loading a ROM file into the template editor (FormEd­
available with Release 3 or later of the Acorn C Compiler). modifying it and 
re-saving it in your own file . For example, the palette utility template file contains 
the 'Save as' dialogue box, which all applications should use (with a change of 
sprite name) . 

It is also possible to override the system's use of the ROM template files by setting 
App$Path, where App is the application name. These variables contain a 
comma-separated list of prefixes, usually directory names, in which the Wimp will 
search for the directory Templates when opening template files. Their default value 
points to the ROM, but you could change it to, say, ADFS::MyDisc.<old values> to 
make it look for modified, disc-resident versions of the standard template files 
first. Note that directory names must end in a dot. 

There are two issues associated with the loading of window templates from a file. 
These concern the allocation of external resources: 

• resolving references to indirected icons 

• resolving references to anti-aliased font handles. 

In the first case, what happens is that the relevant indirected icon data is saved in 
the template file. When the template is loaded in, the task must provide a pointer 
to some free workspace where the Wimp can put the data, and redirect the relevant 
pointers to it. The workspace pointer will be updated on exit from the call to 
Wimp_LoadTemplate. If there is not enough room, an error is reported (the task 



The Window Manager 

must also provide a pointer to the end of the workspace) . Having loaded the 
template. the program can inspect the icon block to determine where the 
indirected data has been put. 

The issue concerning font handles is more difficult to solve. The template file 
provides the binding from its internal font handles to the appropriate font names 
and sizes . In addition , the Wimp must also have some way of telling the task which 
font handles it actually bound the font references to when the template was 
loaded. This is so the task can call Font_LoseFont as required when the window is 
deleted (or alternatively, when the task terminates) . 

To resolve this, the task must provide a pointer to a 256 byte array of font 'reference 
counts' when calling Wimp_LoadTemplate. Each element must be initialised to 
zero before the first call. Font handles received by the Wimp when calling 
Font_FindFont are used as indices into the array. Element i is incremented each 
time font handle i is returned . 

So, when Load_ Template returns, the array contains a count of how many times 
each font handle was allocated. On closing the window or terminating, the 
program must scan the array and call Font_LoseFont the given number of times for 
non-zero entries. As with icon pointers, the program can find out the actual font 
handles used by examining the window block returned by Wimp_LoadTemplate. 

It is up to the programmer to decide whether it is sufficient to provide just one 
array of font reference counts, so that the fonts can be closed only when all the 
windows are deleted (or the task terminates). or whether a separate array is needed 
for each window. Of course, considerable space optimisations could be made in 
the latter case if the array were scanned on exit from Wimp_LoadTemplate and 
converted to a more compact form. 

If a task is confident that its templates do not contain references to anti-aliased 
fonts. then the array pointer can be null, in which case the Wimp reports an error if 
any font references are encountered. 

Note that if anti-aliased fonts are used, the program must also rescan its fonts 
when Message_ModeChange is received. This involves calling Font_ReadDefn for 
each relevant font handle, changing to the correct xy resolution, and calling 
Font_FindFont again . The new font handle can be put back in the window using 
Wimp_SetlconState. 



Application resource files 

Application resource files 

For a general description of resource files see the section entitled Application resource 
files in the Application directories chapter in the RISC OS Style Guide. 

The following table outlines those sections in the Application directories chapter in the 
RISC OS Style Guide which describe the standard resource files available under the 
Wimp: 

Section 
The !Appl.! Boot file 

The !Appl.!Sprites file 

The !Appl.! Run file 

The !Appl.!Messages file 

The !Appl.! Help file 

The !Appl.! Choices file 

Shared resources 

Large applications 

describes: 
the file which is *Run when the application is 
first 'seen' by the Filer. 

the sprite file that provides sprites for the Filer 
to use to represent your application 's 
directory. 

the file which is *Run when the application 
directory is double-clicked. 

the file used to store all of an application 's 
textual messages. 

the file used to store plain text that provides 
brief help about your application . 

the file used to store user-settable options so 
they are preserved from one invocation of the 
application to the next 

those resources of general interest to more 
than one program; for example, fonts. 

how to cope with very large applications. 

If an application is intended for international use then all textual messages within 
the program should be placed in a separate text file , so that they can be replaced 
with those of a different language. It may be unhelpful for the application to read 
such messages one by one, however. as this forces the user of a floppy disc-based 
system to have the disc containing the application permanently in the drive. Error 
messages should all be read in when the. application starts up, so that producing 
an error message does not cause a Please insert disc disc title 
message to appear first 

Note that Obey$Dir and obey files are important here. Applications must always be 
invoked with their full path names. so that Obey$Dir is set correctly. For example, if 
a resource file is accessed later when the current directory has changed, using a full 
pathname means it will work OK. 



The Window Manager 

Resources may also be updated by the program during the course of execution . For 
instance, if an application has user-settable options which should be preserved 
from one invocation of the program to the next, then saving them within the 
application directory means that the user does not have to worry about separate 
files containing such data. As a source of user-settable options this technique is 
preferable to reading an environment string, since with the latter system the user 
has to understand how to set up a boot file . 

The !Appi.!Sprites file 

For rules about the size and appearance of sprites you use to represent an 
application see the section entitled Appearance of sprites in the chapter entitled Sprites 
and icons in the RISC OS Style Guide. 

This file must be of type 'Sprite'. 

The !Appi.!Run file 

For a general description of the ! Appl . ! Run file see the section entitled The 
!Appl.! Run file in the Application directories chapter in the RISC OS Style Guide. 

Example 

Here is an example !Run file: 

WimpSlot -min 260K -max 260K 
RMEnsure FPEmulator 2.60 RMLoad System:Modules.FPEmulator 
RMEnsure FPEmulator 2.60 Error You need FPEmulator 2.60 
or later 

also RMEnsure SharedCLibrary and Colour'I'rans modules 

Set Draw$Dir <0bey$Di r> 
Set Draw$PrintFile printer : 
Run " <Draw$Dir> . !Runimage" %*0 

The action of these commands is to respectively 

• call *WimpSlot to ensure that there is enough free memory to start the 
application. 

Draw, like many applications, knows exactly how much memory it should be 
loaded with . It acquires more memory once executing (without the knowledge 
of the language system underneath) by calling SWI Wimp_SlotSize. Paint, 

3-59 



Application resource files 

3-60 

Draw and Edit all maintain shifting heaps above the initial start-up limit, 
ensuring that extra memory is always given back to the central system when it 
is not needed. 

Applications can also arrange to have the user control dynamically how much 
memory they should have, by dragging the relevant bar in the Task Manager 
display. See the section entitled Message_SetSlot (&400C5) on page 3-241 for 
details. 

• ensure that any soft-loaded modules that the application requires are present. 
using • RMEnsure . If your call to • RMEnsure can load a module from outside 
your application directory then you should call it twice, to ensure that the 
newly loaded module is indeed recent enough . If the *RMLoaded module 
comes from your application directory, one *RMEnsure is sufficient. 

• set an environment variable called DrawSDir from ObeySDir. (Note that you 
should not use the variable Obey$Di r as another macro could quite likely 
change the setting of Ob ey$Dir, so it is safer to make a copy.) This allows 
Draw to access its application directory once the program itself is running, 
enabling it to access, for example, template files by passing the pathname 
<Draw$Di r> . Temp l ates to Wimp_OpenTemplate. In general you should 
use the variable Appl$ Dir if the application is called ! Appl. 

• set another environment variable. Different applications will have their own 
requirements . 

• run the executable image file . !Runimage is the conventional name of the 
actual program. It is also used by the Filer to provide the date-stamp of an 
application in the Full info display. Note that this time there is only a single % 
to mark the parameter, as the parameters passed to the •obey command must 
be substituted immediately. If this line is at the end of the ! Run file it must not 
have a terminating CRILF, otherwise the !Run file will remain open until the 
application (and hence the !Runimage file) is quit. 

Other possible actions that may occur within !Run files are 

• execute !Boot. This will usually have been done already, but in the presence of 
multiple applications with the same name the ! Boot file of a different one may 
have been seen first. This can be done explicitly using a command such as 
*Run <0bey $Dir> . ! Boot, or you could just edit the !Boot file into the 
!Run file. 

• if shared system resources are used then ensure that SystemSPath is defined, 
and produce a clean error message if it is not. For example: 

*If "<SystemSPath>" =""Then Error 0 System resources cannot be found 



The Window Manager 

• loading a module can take memory from the current slot size, so the 
*WimpSlot call must be called after loading modules. If you do it both before 
and after, you avoid loading modules in the case where the application 
definitely won't fit anyway 

However, some applications wish to ensure that there is also some free 
memory after they have loaded, for example if they use the shifting heap 
strategy outlined above. Such applications may call *WimpSlot again just 
before executing !Runlmage, with a slightly smaller slot setting, to leave just 
the right amount in the current slot while at the same time ensuring that there 
is some memory free. 

It should be emphasised that the presence of multiple applications with the same 
name should be thought of as an unusual case, but should not cause anything to 
crash . Also, complain 'cleanly' if your resources can no longer be found after 
program start-up. 

One point to note here is that when an application is starting up from its *Run file , 
if a screen mode change is to take place, you must call *WimpS l o t o o before 
the change and reset the slot size afterwards. 

Shared resources 

The recommended approach is to create an application directory whose !Boot file 
sets up an environment variable which other applications use to access the shared 
resources (within the shared resource directory). 

!System is an example of such a shared resource, which provides shared resources 
for the RISC OS welcome disc applications. Note that other applications may rely 
on using !System resources, but further resources must not be put into !System. 
These should instead go into their own shared resource directories, with names 
obtained by applying to Acorn . (See the section entitled Shared resources on 
page 4-549.) 

This approach ensures that users can view shared resources as fixed objects that 
must be present for other applications to work, and not have to worry about what 
is inside them. 

Where upgrades of a particular shared resource are concerned, the old copy should 
be archived and deleted from view, to avoid the possibility of accidental access to 
the old information. Note that if this does occur, the resulting error messages 
should make it clear to the user what to do next 

3-61 



Relocatable module tasks 

Relocatable module tasks 

3-62 

A program using the Wimp can be loaded from disc into the application memory 
(&8000), or may be a relocatable module resident in the RMA (relocatable module 
area) In the main , Wimp tasks of both varieties work in the same way and have 
similar structures. However, module tasks must additionally cope with service calls 
generated at various times by the Wimp. They must also be able to terminate when 
asked to, e.g. during an *RMTidy operation. 

In this section we describe the special requirements of module tasks, but not how 
to write modules from scratch. See the chapter entitled Modules on page 1-197 for 
details. You may also like to read the sections on Wimp_Initialise (SWI &400CO) on 
page 3-87 and Wimp_CloseOown (SWI &40000) on page 3-175 before going over the 
listings below. 

Much of the following is concerned with service call handling. A general. and very 
important, aspect of this is register usage. A module service handler can modify 
registers RO - R6 that have been explicitly stated to be return parameters for each 
individual service call. However, these registers should not be modified, except to 
produce a particular effect as defined below. Badly behaved service code which 
does not adhere to this can produce bugs which are very difficult to track down and 
cause the system to fail in unpredictable ways. 



The Window Manager 

Task initialisation 

Tasks are started using a • Command. This is decoded by the module's command 
table and the appropriate code to handle the command is called automatically. 
This is standard module code, and looks like this : 

;This is pointed to by the entry for the module ' s * Command 
myCommandCode 

STMFD 
MOV 
ADR 
MOV 
SWI 
LDMFD 

WIMP_ VER * 200 
titleStr 

DCB 
ALIGN 

TASK DCB "TASK " 

SP!, {LR} 
R2, RO 
Rl, titleStr 
RO, #2 
XOS_Module 
SP!, {PC} 

"MyModule " ,O 

;Save the link register 
; R2 points at command tail 
;Rl points at title string of module 
;Module ' Enter ' reason code 
; Enter the module as a language 
;Return (in case that failed) 

;as returned by *Modules 

;This is the module's language entry point 
startCode 

LDR Rl2, [R12] ; Get workspace pointer claimed in Init entry 
LDR 
TEQ 
LDRGT 
SWIGT 
MOVGT 
STRGT 

RO , taskHandle 
RO , #0 
Rl , TASK 
XWimp_ CloseDown 
RO , #0 
RO , taskHandle 

;Are we already running? 
; Yes, so close down first 

; Mark as i nactive 

;Now claim any workspace etc . required before initing t h e Wimp 

;If all goes well, we end up here 
MOV RO , #WIMP_ VER ; (re)start the task 
LDR Rl , TASK 
ADR R2 , titleStr 
SWI XWimp_ Initialise 
BVS startupFailed ; Tidy up and exit if something went wron g 
STR Rl , taskHandl e ;Save the non-zero handle 

Thus when the user enters the appropriate • Command, the module is started as a 
language and the start code is called using the word at offset 0 in the module 
header. It is entered in user mode with interrupts enabled, and Rl2 pointing at its 
private word. 

On entry, the task checks to see if it is already active. If it is, it closes down (to avoid 
running as two tasks at once). It also resets its taskHandle variable to indicate 
that it is inactive. It then performs any necessary pre-Wimp_lnitialise code, such as 
claiming workspace from the RMA. If this succeeds, it calls Wimp_lnitialise and 
saves the returned task handle. 

3-63 



Errors 

Errors 

~-n4 

Always check error returns from Wimp calls. Beware errors in redraw code; they are 
a common form of infinite loops (because the redraw fails, the Wimp asks you 
again to redraw, and so on) . A suddenly missing font. for instance. should not lead 
to infinite looping. Check that the failure of Wimp_CreateWindow or 
Wimp_Createicon does not lead you to crash or lose data. 

Check cases concerning running out of space . 

If the user is asked to insert a floppy disc and selects Can ce l , you get an error 
Di sc n ot p r esent (&I08D5) or Di sc n o t f ound (&I08D4) from ADFS. If 
you get either of these errors from an operation you need not call 
Wimp_ReportError, just cancel the operation. This avoids the user getting two 
error boxes in a row. 

Do not have phrases like 'at line 1230' in error messages from BASIC 
programs; ' ( internal e rror c o de 12 3 0 ) ' is preferable. 



The Window Manager 

Error messages 
&280 Wimp unable to claim work area 

The RMA area is full 

&281 Invalid Wimp operation in this context 
Some operations are only allowed after a call to Wimp_lnitialise 

&282 Rectangle area full 
Screen display is too complex 
(this error message only appears under RISC OS 2) 

&283 Too many windows 
Maximum 64 windows allowed 
(this error message only appears under RISC OS 2) 

&284 Window definition won't fit 
No room in RMA for window 

&286 Wimp_GetRectangle called incorrectly 

&287 Input focus window not found 

&288 Illegal window handle 

&289 Bad work area extent 
Visible window is set to display a non-existent part of the work area 

&29F Bad parameter passed to Wimp in Rl 
The address in Rl was less than &8000, i.e. outside of application space 

Most of the above errors are provided as debugging aids to development 
programmers, and should not occur when the system is working properly, except 
for Too many windows, which can happen if a task program allows the user to 
bring up more and more windows. The error is not serious, as long as the task 
program's error trapping is written properly- when creating a window, you should 
only update any data structures relating to it once the window has been 
successfully created. 

3-65 



Time 

Time 

There are two clocks that keep track of real time in the system, the hardware clock 
and a software centi-second timer. The two can diverge by a few seconds a day, but 
are resynchronised at machine reset. For consistency, always use the centi-second 
timer. 

When using Wimp_Poiiidle, remember that monotonic times can go negative (i.e. 
wrap round in a 32-bit representation) after around six weeks. So when comparing 
two times the expression 

(newtime- oldtime) > 100 

is a better comparison than 

newtime > oldtime + I 00. 

Wimp behaviour under RISC OS 3 

As the Wimp is developed, it is often necessary to make alterations or additions to 
the application interface. Sometimes this can be done in such a way that the new 
behaviour is 'back-compatible' with the old (i.e. it will not confuse applications 
which do not know about the extension), for example, where a reserved field can be 
set non-zero to enable the new feature. 

However, it is occasionally necessary to make changes that could potentially 
confuse an application which was not aware of them. In order to cope with this, the 
Wimp allows an application to inform it of how much it knows when it calls 
Wimp_Initialise, by supplying in ROthe version number of the latest release of the 
Wimp which the programmers have taken into account. 

This allows the Wimp to provide 'incompatible' new facilities only to those 
applications which it knows are aware of them, thereby avoiding compatibility 
problems with the others. 

In many cases a 'compatible' extension can be made, where it is clear to the Wimp 
whether or not the application is trying to use the new facility, so not all extensions 
require the application to 'know' about the later version of the Wimp. 

Applications written for RISC OS 2 should all have RO set to 200 when calling 
Wimp_Initialise. 

Under RISC OS 3 an application can only pass 200, 300, or 3 I 0 to Wimp_lnitialise. 
The Wimp will give an error if any other value is passed in . 



Service Calls 

The Window Manager 

The next section describes those service calls that are of particular relevance to you 
when you are writing modules to run under the Window Manager. The remaining 
service calls that RISC OS provides are documented in the chapter entitled Modules 
on page 1-197. 

3-67 



Service Calls 

Service Calls 

Memory controller about to be remapped 

Service_Memory 
(Service Call & 11) 

On entry 

RO =amount application space will change by 
Rl =&II (reason code) 
R2 =current active object pointer (CAO) 

On exit 

Use 

Rl = 0 to prevent re-mapping taking place 

This is issued when the contents-addressable memory in the memory controller is 
about to be remapped, which alters the memory map of the machine. You should 
claim this call if you don't want the remapping to take place. 

A module will initially be given the current slot size for its application workspace 
starting at &8000. However, modules do not generally need this area, as they use 
the RMA for workspace. Therefore, when a task calls Wimp_lnitialise, the Wimp 
inspects the CAO. If this is within application workspace, the Wimp does nothing. 
However, if the CAO is outside of application space (a module's CAO is its base 
address in the RMA or ROM). the Wimp will reduce the current slot size to zero 
automatically, except as described below. 

Some modules, notably BASIC, do require application workspace. Therefore the 
Wimp makes this service call just before returning the application space to its free 
pool. A task can object to the remapping taking place by claiming the call. The 
Wimp will then leave the application space as it is. 



Post-Reset 

The Window Manager 

Service Reset 
(Service Call &27) 

On entry 

Rl = &27 (reason code) 

On exit 

Use 

Rl preserved to pass on (do not claim) 

This is issued at the end of a machine reset. It must never be claimed. 

Since MessageTrans does not close message files on a soft reset, applications that 
do not wish their message files to be open once they leave the desktop should call 
MessageTrans_CloseFile for all their open files at this point. However, it is perfectly 
legal for message files to be left open over soft reset. 

See also page 2-492 and page 3-72. 

3-69 



Service_StartWimp (Service Call &49) 

Service_StartWimp 
(Service Call &49) 

Start up any resident module tasks using Wimp_StartTask 

On entry 

Rl = &49 (reason code) 

On exit 

Use 

RO =pointer to • Command to start module 
R I = 0 to claim call 

The Desktop will try to start up any resident module tasks when it is called (using 
*Desktop or by making the task the start-up language) . It does this by issuing a 
service call Service_StartWimp (&49). If this call is claimed, the Desktop starts the 
task by passing the • Command returned by the module to Wimp_StartTask. It then 
issues the service again , and repeats this until no-one claims it. 

A module's service call handler should deal with this reason code as follows: 

serviceCode 
LDR R12, [R12] ; Load workspace pointer 
STMFD SP! , {LR} ; Save link and make R14 available 
TEQ Rl, #Service_ StartWimp ;Is it service &49? 
BEQ startWimp ; Yes 

LDMFD SP!, {PC} 

startWimp 
LDR Rl4 , taskHandle 
TEQ Rl4, #0 
MOVEQ Rl4 , #- 1 
STREQ Rl4, taskHandle 
ADREQ RO, myCommand 
MOVEQ Rl , #0 
LDMFD SP!, {PC} 

;Otherwise trY other services 
; Return 

; Get task handle from workspace 
; Am I already active? 
;No, so init handle to -1 
;Rl2 relative 
;Point RO at command to start task 
; (see earlier) and claim the service 
; Return 

Note that the taskHandle word of the module's workspace must be zero before 
the task has been started. This word should therefore be cleared in the module's 
initialisation code. If the task is not already running, the start Wimp code should 
set the handle to -I, load the address of a command that can be used to start the 
module, and claim the call . Otherwise (if taskHandle is non-zero) it should 
ignore the call. 



The Window Manager 

The automatic start-up process is made slightly more complex by the necessity to 
deal elegantly with errors that occur while a module is trying to start up. If the 
appropriate code is not executed, the Desktop can get into an infinite loop of trying 
to initialise unsuccessful modules. 

This is avoided by the task setting its handle to -I when it claims the StartWimp 
service. If the task fails to start , this will still be -I the next time the Wimp issues a 
Service_StartWimp, and so it will not claim the service. 

3-71 



Service_StartedWimp (Service Call &4A) 

Service_StartedWimp 
(Service Call &4A) 

Service Reset 
(Service Call &27) 

Request to task modules to set taskHandle variable to zero 

On entry 

Rl = &4A or &27 (reason codes) 

On exit 

Use 

Module's taskHandle variable set to zero 

A task which failed to initialise would have its taskHandle variable stuck at the 
value -I , which would prevent it from ever starting again (as Service_StartWimp 
would never be claimed) . In order to avoid this , the two service calls above should 
be recognised by task modules. On either of them, the task handle should be set to 
zero: 

serviceCode 
STMFD sp !, {Rl4) 
LDR Rl2, [Rl2] 

TEQ Rl, #Service_ StartedWimp 
BEQ Service_ StartedWimp 

tryServiceReset 
TEQ Rl , #Service_ Reset 
MOVEQ Rl4, #0 
STREQ Rl4, taskHandle 
LDMFD SP! , {PC) 

LDR Rl4 , taskHandle 
CMN Rl4, #1 
MOVEQ Rl4 , #0 
STREQ Rl4 , taskHandle 
LDMFD SP!, {PC) 

;Get workspace pointer 

; Service &4A? 

; Reset reason code? 
; Yes, so zero handle 

;Return 

;taskHandle = -1? 

;Yes , so zero it 

;Return 

Service_StartedWimp is issued when the last of the resident modules has been 
started , and Service_Reset is issued whenever the computer is soft reset. 



The Window Manager 

Closing down 

Generally a module task will terminate itself in the usual fashion by calling 
Wimp_CloseDown just before it calls OS_Exit. This might be in response to a Quit 
selection from a menu, or after a Message_Ouit has been received. Modules also 
have finalisation entry point, and Wimp_CloseDown should be called from within 
this: 

finalCode 
STMFD sp!, {R14} 
LDR Rl2, [Rl2] 
LDR RO, taskHandle 
TEQ RO, #0 
LDRGT Rl , TASK 
SWIGT XWimp_CloseDown 
MOV Rl, #0 
STR Rl, taskHandle 

; Get workspace pointer 
; Check task is active 

;If so , close it down 

;always mark it as inactive 

; perform general finalisation code , possibly according to the value of RlO 
; (fatality indicator}. 

LDMFD sp!, {PC} ;Return with V and RO intact in case 
;an error occurred 

It is important that when Wimp_CloseDown is called from the finalise code, the 
task handle is quoted, as the module may not necessarily be the currently active 
Wimp task. Additionally, whenever Wimp_ Close Down is called, even outside of the 
finalisation code, the taskHandle variable should be cleared to zero. 

3-73 



Service_MouseTrap (Service Call &52) 

~-74 

Service_MouseTrap 
(Service Call &52) 

The Wimp has detected a significant mouse movement 

On entry 

RO = mouse x coordinate 
Rl =&52 (reason code) 
R2 =button state (from OS_Mouse) 
R3 =time of mouse event (from OS_ReadMonotonicTime) 
R4 = mousey coordinate (NB Rl is already being used!) 

On exit 

Use 

All registers preserved 

It is possible to write programs which record changes in the mouse button state 
and pointer position . The recording can be played back later to simulate the effect 
of a human manipulating the mouse. This is very useful for setting up unattended 
demonstrations. 

To save memory or disc space, such programs usually only record the mouse 
position when the button state changes , or after a certain time interval, e.g. ten 
times a second. Some Wimp events are dependent on a change of mouse position , 
not button state. It is therefore possible for a mouse recorder program to miss a 
critical mouse movement if it doesn't happen to choose the correct time to make 
its recording. The replay will then give different results from the original. 

Service_MouseTrap is designed to overcome the problem. Whenever the Wimp 
detects a significant mouse movement, e.g. the pointer moving over a submenu 
right arrow, it issues this call. A mouse recorder should include the data in its 
output, in addition to any other mouse movements and button events that it 
would ordinarily log. 

Programs which react to particular mouse movements (e.g. certain types of 
dragging) should themselves generate this event. where there is no mouse button 
transition. 

A mouse recorder program should also trap IN KEY of positive and negative 
numbers. 



The Window Manager 

Service_WimpCioseDown 
(Service Call &53) 

Notification that the Window Manager is about to close down a task 

On entry 

RO = 0 if Wimp_CloseDown called (i) or 
RO > 0 if Wimp_Initialise called in task's domain (ii) 
Rl =&53 (reason code) 
R2 =handle of task being closed down, (i) and (ii) 

On exit 

Use 

RO preserved (i) or (ii). or set to error pointer (ii) 

The Wimp passes this service around when someone calls Wimp_CloseDown. 
Usually a task knows that it has called Wimp_CloseDown, so this might not appear 
to be particularly informative. However, there are a couple of situations where the 
Wimp actually makes the call on a task's behalf. It is on these occasions that the 
service is useful. 

• If a task calls OS_Exit without having called Wimp_ Close Down first , the Wimp 
does so on the task's behalf. This can arise when an error is generated that is 
not trapped by the task's error handler. The Wimp will report the error, then call 
OS_Exit for the task. The task should perform the operations it would have 
performed if it had called Wimp_CloseDown itself, and return preserving all 
registers. It must not call Wimp_CloseDown. 

• A task might call Wimp_Initialise from within the same domain as the 
currently active task. For example, if a program allows the user to issue a 
* Command, the user might use it to try to start another Wimp task. The Wimp 
will try to close down the original task before starting the new one by issuing 
this service with RO>O. 

If the original task does not want to be closed down, it should alter RO so that it 
conta ins the pointer to a standard error block. The text 'Wimp is currently active' is 
regarded as a suitable message. (The task should compare the handle in R2 to its 
own to ensure that it is the task that is being asked to die.) The call should not be 
claimed, in order to allow others to receive the service, and RO should not be 
altered except to point to an error. 

3-75 



Service_ WimpC/oseDown (Service Call &53) 

If, on return from the service, RO points to an error, the Wimp will return this to the 
new task trying to start up (it will also set the V flag) . Thus , if the task is detecting 
errors correctly, it will abort its attempt to start up and call OS_Exit. This will 
happen if, for example, you try to start the Draw application from within a task 
window. 



The Window Manager 

Service_ WimpReportError 
(Service Call &57) 

Request to suspend trapping of VDU output so an error can be displayed 

On entry 

RO = 0 (window closing) or I (window opening) 
Rl =&57 (reason code) 

On exit 

Use 

All registers preserved 

This service is provided so that certain tasks which usually trap VDU output (e.g. 
the VDU module) can be asked to suspend their activities temporarily while an 
error window is displayed. 

If the state of the trapping module is 'active' and the service call is received with 
RO= I , the module should stop trapping and set its state to 'suspended'. Similarly, 
if the state is suspended and the service is received with RO=O, the error window 
has disappeared and the module should re-enter the active state. 

By taking note of this call, tasks running in an Edit window allow the standard filing 
system 'up-call' mechanism to continue operating, whereby users are asked to 
insert discs which the Filer cannot find in a drive. 

3-77 



Service_WimpSaveDesktop (Service Call &5C) 

~-7R 

Service_ WimpSaveDesktop 
(Service Call &SC) 

Save some state to a desktop boot file 

On entry 

RO =flag word (as in Message_SaveDesktop) 
Rl = &5C (reason code) 
R2 = file handle of file to write *commands to 

On exit 

Use 

RO = pointer to Error, if necessary, else preserved 
Rl = 0 for error (i.e. claim). else preserved 
All other registers preserved 

This call is provided for modules which need to save some state to a desktop boot 
file, e.g. ColourTrans saves its calibration . 

When a module receives this service code it should write out any • Commands, to 
the specified file handle, which should be performed by a Desktop Boot file on 
entry to the Desktop. 

If an error occurs (Disc full , Can't extend, or even a module specific error 
like Can't save desktop now because ... ) then the service should be 
claimed, and RO should point to the error block. 

This service call is performed before the task manager issues the Wimp broadcast 
message Message_SaveDesktop. 

This call is not available under RISC OS 2. 



Palette change 

On entry 

Rl =&50 (reason code) 

On exit 

All register preserved 

Use 

The Window Manager 

Service_ Wimp Palette 
(Service Call &50) 

This call is issued by the Window Manager when SWI Wimp_SetPalette is called to 
set the WIMP's palette. It can be used to tell when the palette has changed. 

This service call should not be claimed. 

This call is not available under RISC OS 2. 

3-79 



Service_DesktopWelcome (Service Call &7C) 

Desktop starting 

Service_DesktopWelcome 
(Service Call &7C) 

On entry 

Rl = &7C (reason code) 

On exit 

Use 

R I= 0 to claim and stop startup screen from appearing. 

This service call is issued just before the RISC OS 3 startup screen is drawn. It 
should be claimed if you want to replace the startup screen, or to prevent it from 
appearing. 

This call is not available under RISC OS 2. 



Switcher shutting down 

The Window Manager 

Service ShutDown 
(Service Call & 7E) 

On entry 
Rl = &7E (reason code) 

On exit 

Use 

Rl= 0 to claim and stop shutdown. 

This service call is issued by the Task manager when it is asked to perform a 
shutdown; it should be claimed to stop the shutdown from happening. 

For example this is used by RamFS to warn the user that there are unsaved files in 
the RAM disc. 

This call is not available under RISC OS 2. 

3-81 



Service_ShutdownComplete (Service Call &80) 

~-R? 

Shutdown completed 

Service_ShutdownComplete 
(Service Call &80) 

On entry 

Rl = &80 (reason code) 

On exit 

Use 

This service call should not be claimed. 

This service call is issued when the machine has been brought to the state where it 
can be safely turned off and the shutdown message is on the screen. 

This service call is not issued by RISC OS 2. 



I' 

The Window Manager 

Service_ WimpSpritesMoved 
(Service Call &85) 

Wimp sprite pools have moved 

On entry 

Rl = &85 (reason code) 
R2 = pointer to ROM area 
R3 = pointer to RAM area 

On exit 

Use 

All registers preserved 

This service is provided if the sprite pools have to move. You must not claim it. 

This service call is not issued by RISC OS 2. 

3-83 



Service_WimpRegisterFilters (Service Call &86) 

~-R4 

Service_ WimpRegisterFilters 
(Service Call &86) 

Allows the Filter Manager to install filters with the Window Manager 

On entry 
Rl = &86 (reason code) 

On exit 

Use 
When the Window Manager is reset this service call is issued to allow tasks to 
install filters with it. This is used by the Filter Manager to register itself. 

This is issued when the Wimp resets the filter table back to its default state. 

This service should not be used unless you are providing a replacement for the 
Filter Manager. 

See the chapter entitled The Filter Manager on page 3-303 for more information on 
how to register filters for tasks. 

This service call is not issued by RISC OS 2. 



SWI Calls 

The Window Manager 

In the following section, we list all of the SWI calls provided by the Window 
Manager module. It is possible to make some generalisations about the routines, 
though there are inevitably exceptions: 

• RO is often used to hold or return a handle, be it task, window or icon. 

• All Wimp calls do not preserve RO. 

• Other registers are preserved unless used to return results. 

• Flags are preserved unless overflow is set on exit. 

• RI is used as a pointer to information blocks, e.g. window definitions, icon 
definitions, Wimp_Poll blocks. 

• The contents of a Wimp_Poll block are usually correctly set up for the most 
obvious routine to call for the returned event code. For example, for an 
Open_Window_Request, the block will contain the information that 
Wimp_OpenWindow requires. 

• All Wimp routines should not be executed with IROs enabled due to the 
re-entrancy problems which may occur. 

• Wimp routines may be called in User or SVC mode, except for Wimp_Poll, 
Wimp_Poiiidle and Wimp_StartTask. These may only be called in User mode, 
as they rely on call-backs for their operation. 

• As the Wimp uses the CallBack handler to do task swaps, it is not possible for 
a task to change the CallBack handler under interrupts. However language 
libraries can use the CallBack handler by setting it up when they start and 
using OS_SetCaiiBack (page 1-308) 

The following SWis can only operate on windows owned by the task that is active 
when the call is made, and will report the error Access to window denied if 
an attempt is made to access another task's window: 

Wimp_Createlcon 
Wimp_DeleteWindow 
Wimp_Deletelcon 
Wimp_OpenWindow 
Wimp_CioseWindow 
Wimp_RedrawWindow 
Wimp_SetlconState 
Wimp_UpdateWindow 
Wimp_GetRectangle 
Wimp_SetExtent 
Wimp_BiockCopy 

except in the icon bar 

except in the icon bar 
send Open_Window_Request instead 
send Close_Window_Request instead 

except in the icon bar 



SWI Calls 

This also means that a task cannot access its own windows unless it is a 
'foreground' process , i.e. it has not gained control by means of an interrupt routine, 
or is inside its module Terminate entry. 



Registers a task with the Wimp 

The Window Manager 

Wimp_lnitialise 
(SWI &400CO) 

On entry 

RO =last Wimp version number known to taskx 100 (310 for RISC OS 3 
applications) 

Rl ='TASK' (low byte= 'T', high byte= 'K', i .e. &48534154) 
R2 = pointer to short description of task, for use in Task Manager display 
R3 =pointer to a list of message numbers terminated by a 0 word (not if RO is less 

than 300). If Wimp version number is 310 then specifying 0 indicates that 
all messages are important to this task 

On exit 

RO =current Wimp version number x 100 
Rl =task handle 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call registers a task with the Wimp, and must be called once only when the 
ta~k starts up. The following is done when the first task starts up and when a 
'grLbby' task exits (i.e. a task that starts from and returns to the Desktop but does 
not use it) and there are more tasks running. 

• I redefines some soft characters in the raanges &80 to &85 and &88 to &88 for 
the window system (dependent on the version of RISC OS) 

• programs function, cursor, Tab and Escape key statuses , remembering their 
previous settings 

3-87 



Wimp_lnitia/ise (SWI &400CO) 

• issues •Pointer to initialise the mouse and pointer system 

• uses Wimp_SetMode to set the mode to the configured WimpMode, or to the 
last mode the Wimp used if this is different 

• sets up the palette. 

The task will only receive messages which are included in the list pointed to by R3 . 
The list should not (and cannot) include Message_Ouit (0) as this message will 
always be delivered to all tasks. 

The messages list is not required if the value passed in RO is 200. 

Note that an application may still get a message that is not in the list if it is run 
under an older Wimp, you should not give an error in this case. 

Related SWis 

Wimp_CloseDown (page 3-175) 

Related vectors 

None 



The Window Manager 

Wimp_CreateWindow 
(SWI &400C1) 

Tells the Wimp what the characteristics of a window are 

On entry 

Rl =pointer to window block 

On exit 

RO =window handle 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call tells the Wimp what the characteristics of a window are. You should 
subsequently call Wimp_OpenWindow (page 3-112) to add it to the list of active 
windows (ones that are to be displayed). The format of a window block is as 
follows: 

RI+O 
Rl+4 
Rl+8 
Rl+l2 
Rl+l6 
Rl+20 
Rl+24 
R1+28 
Rl+32 

Rl+33 
Rl+34 

visible area minimum x coordinate (inclusive) 
visible area minimum y coordinate (inclusive) 
visible area maximum ~ coordinate (exclusive) 
visible area maximum y coordinate (exclusive) 
scroll x offset relative to work area origin 
scroll y offset relative to work area origin 
handle to open window behind (-1 means top, -2 means bottom) 
window flags- see below 
title foreground and window frame colour- &FF means that the 
window has no control area or frame 
title background colour 
work area foreground colour 

3-89 



Wimp_CreateWindow (SWI &400C1) 

Rl+35 

Rl+36 
Rl+37 
Rl+38 
Rl+39 
Rl+40 
Rl+44 
Rl+48 
Rl+52 
Rl+56 
Rl+60 
Rl+64 
Rl+68 
Rl+70 
Rl+72 
Rl+84 
Rl+88 

work area background colour- &FF means 'transparent' , so the 
Wimp won 't clear the rectangles during a redraw operation 
scroll bar outer colour 
scroll bar inner (Slider) colour 
title background colour when highlighted for input focus 
reserved- must be 0 
work area minimum x coordinate 
work area minimum y coordinate 
work area maximum x coordinate 
work area maximum y coordinate 
Title Bar icon flags- see below 
work area flags giving button type - see below 
sprite area control block pointer (+I for Wimp sprite area) 
minimum width of window NB two-byte quantities 
minimum height of window 0,0 means use title width instead 
title data - see below 
number of icons in initial definition (can be 0) 
icon blocks , 32 bytes each- see Wimp_Createlcon (page 3-96) 

Note that the entries from Rl+O to Rl+24 are not used unless 
Wimp_GetWindowState is called. 

From RISC OS 3 onwards the Window extent is automatically rounded to be a 
whole number of pixels (and is re-rounded on a mode change) . 

Note: this call does not affect the screen unless the window handle is -2 (i.e. the 
icon bar). You must make a call to Wimp_ForceRedraw (page 3- 150) to remove the 
icon(s) deleted, passing a bounding box containing the icons. 

Fields requiring further explanation are: 

Window flags 

Window flags and status information are held in the word at offsets +28 to+ 31 . 

Bit Meaning when set 
0 • window has a Title Bar 
I window is moveable, i.e. it can be dragged by the user 
2 • window has a vertical scroll bar 
3 • window has a horizontal scroll bar 
4 window can be redrawn entirely by the Wimp, i.e. there are no user 

graphics in the work area. Redraw window requests won 't be 
generated if this bit is set 

5 window is a pane, i.e. it is on top of a tool window 
6 window can be opened (or dragged) outside the screen area (see also 

•configure WimpFlags) 



The Window Manager 

7 * window has no Back icons or Close icons 
8 a Scroll_Request event is returned when a mouse button is clicked on 

one of the arrow icons (with auto-repeat) or in the outer scroll bar 
region (no auto-repeat) 

9 as above but no auto-repeat on the arrow icons 
I 0 treat the window colours given as GCOL numbers instead of standard 

Wimp colours. This allows access to colours 0- 254 in 256-colour 
modes (255 always has a special meaning) 

II don't allow any other windows to be opened below this one (used by 
the icon bar, and the backdrop for pre-RISC OS style applications) 

12 generate events for 'hot keys' passed back through Wimp_ProcessKey 
if the window is open 

13 forces window to stay on screen (not in RISC OS 2) 
14 ignore right-hand extent if the size box of the window is dragged (not 

in RISC OS 2) 
15 ignore lower extent if the size box of the window is dragged (not in 

RISC OS 2) 

Flags marked * are old-style control icon flags. You should use bits 24 to 31 in 
preference. 

The five bits below are set by the Wimp and may be read using 
Wimp_GetWindowState (page 3-135). 

Bit Meaning when set 
16 window is open 
17 window is fully visible, i.e. not covered at all 
18 window has been toggled to full size 
19 the current Open_ Window _Request was caused by a click on the 

Toggle Size icon 
20 window has the input focus 

21 force window to screen once on the next Open_ Window 

If any of the following circumstances occur, the Wimp sets bit 21 of the window 
flags, which causes the window to be restricted to the screen area for one call 
to Wimp_OpenWindow only (this causes the bit to be cleared) : 

• a toggle-to-full-size occurs 

• while you are dragging the size box 

• immediately after a mode change 

• on the next call to Wimp_OpenWindow afterWimp_SetExtent is called for 
a window which is fully on-screen at the time. 

When a window is first opened it will be forced onto the screen, but can 
subsequently be dragged off by the user. 

3-91 



Wimp_CreateWindow (SWI &400C1) 

If you are dragging the size box of a window, and you move the pointer off the 
bottom-right of the screen, the Wimp will try to make the window bigger. If it 
succeeds. the window will be forced onto the screen, so it will appear to grow 
upwards and left. The speed of growing can be controlled by how far the 
pointer is off-screen . 

Window flags bit 2I is also set automatically by the Wimp when a menu or a 
dialogue window is opened as a result of the pointer moving over the relevant 
submenu icon, or as a result of a call to Wimp_CreateMenu or 
Wimp_CreateSubMenu. This forces the menus onto the screen normally, but 
allows them to be dragged off-screen if desired. 

This bit is not supported in RISC OS 2. 

Bit Meaning when set 
22 - 23 reserved ; must be 0 

The eight bits below provide an alternative way of determining which control icons 
a window has when it is created. If bit 3I is set, bits 24 to 30 determine the 
presence of one system icon, otherwise the 'old style' control icon flags noted 
above are used. 

Bit Meaning when set 

24 window has a Back icon 
25 window has a Close icon 
26 window has a Title Bar 
27 window has a Toggle Size icon 
28 window has a vertical scroll bar 
29 window has a Adjust Size icon 
30 window has a horizontal scroll bar 
3I use bits 24 - 30 to determine the control icons. otherwise use bits 0, 2, 

3 and 7 

A window may only have a quit and/or Back icon if it has a Title Bar, and a Size icon 
if it has one or two scroll bars . A Toggle Size icon needs a vertical scroll bar or a 
Title Bar. We recommend that new applications use the bit 31 set method of 
determining the control icons. 

Bits 24 to 30 are also returned by Wimp_GetWindowState , updated to reflect what 
actually happened, so you can use this to ensure that the control icons used by the 
Wimp are as specified when the window was created, i.e. it was a valid 
specification. 



The Window Manager 

Title bar flags 

Title bar flags are held in the four bytes +56 to +59 of a window block. They 
correspond to the icon flags used in an icon block, described under 
Wimp_Createicon below. They determine how the contents of the Title Bar are 
derived and displayed. Note the following differences from proper icon flags 
though: 

• The Title Bar always has a border, i.e. bit 2 is ignored. 

• The title background is filled , i.e. bit 5 is ignored. 

• The Wimp redraws the title. i.e. bit 7 is ignored. 

• Any flags to do with button types, ESGs and selections are ignored. Dragging 
on the Title Bar always drags the window. 

• If an anti-aliased font. or sprite. is used, you should bear in mind that the 
height of the Title Bar is fixed at 44 OS units. or 36 if you subtract the top and 
bottom frame lines. Thus only font sizes of about I 0 to I2 points can be 
accommodated, and fairly small sprites. Also remember that lines will vary in 
width according to the screen mode used 

• Bits 24- 31 (when used as text colours) are ignored; the Title Bar colours are 
given in other window definition bytes. 

So, the title may be text or a sprite, may be indirected (but not writable). use 
normal or anti-aliased text , and may be positioned within the Title Bar as required. 

Title data 

Title data is held in the twelve bytes at + 72 to +83 of a window block. It has the 
same interpretation as the icon data bytes described under Wimp_Createicon . In 
summary: 

• if text, then up to 12 bytes of text including a terminating control code 

• if a sprite, then the name of the sprite ( 12 bytes) 

• if the Title Bar is indirected, then the following three words: a pointer to a 
buffer containing the text , a pointer to a validation string (-1 if none). and the 
length of the buffer. 

See the section on icon data under Wimp_Createicon (SWI &400C2) on page 3-96 for 
more details. 

3-93 



Wimp_ Create Window (SWI &400C1) 

Window button types 

Icons 

The word at offset +26 in a window block is used to determine the 'button type' of 
the work area. Only bits 12 to 15 of this word are used. The 16 possible button 
types are much as described in the section on icon creation below. Note though 
that there is no concept of a window's work area being 'selected' by the Wimp; the 
user is simply informed of button clicks through the Mouse_ Click event. 

Note that as stated previously, the button type only determines how Select and 
Adjust are handled; Menu is always reported. The interpretations of the button 
types for windows then are: 

Bits 12 ~ 15 

0 

2 
3 
4 
5 
6 
7 
8 
9 
10 

II 

12- 14 
15 

Meaning 

ignore all clicks 
notify task continually while pointer is over the work area 
click notifies task (auto-repeat) 
click notifies task (once only) 
release over the work area notifies task 
double click notifies task 
as 3. but can also drag (returns button state * 16) 
as 4, but can also drag (returns button state* 16) 
as 5. but can also drag (returns button state* 16) 
as 3 
click returns button state* 256 
drag returns button state* 16 
double click returns button state* I 
click returns button state 
drag returns button state* 16 
reserved 
mouse clicks cause the window to gain the input focus. 

The handles of any icons defined in this call are numbered from zero upwards, in 
the same order that they appear in the block. For details of the 32-byte definitions, 
see the next section. 

Note: the Wimp_CreateWindow call may produce a Bad work area extent 
error if the visible area and scroll offsets combine to give a visible work area that 
does not lie totally within the work area extent. 

Related SWis 

Wimp_DeleteWindow (page 3-108) Wimp_OpenWindow (page 3-112) 



Related vectors 

None 

The Window Manager 

3-95 



Wimp_ Create/con (SWI &400C2) 

Wimp_Createlcon 
(SWI &400C2) 

Tells the Wimp what the characteristics of an icon are 

On entry 

RO = icon handle or priority 
Rl =pointer to block 

On exit 

RO = icon handle 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

This call tells the Wimp what the characteristics of an icon are. 

The block contains the following: 

Rl+O window handle or: 
-I for right of icon bar 
-2 left of icon bar 
The following are not available in RISC_OS 2: 
-3 => create icon on icon bar to left of icon handle RO 
-4 => create icon on icon bar to right of icon handle RO 
-5 =>create icon on left side, scanning from the left 
-6 =>create icon on left side, scanning from the right 
-7 =>create icon on right side, scanning from the left 
-8 =>create icon on right side, scanning from the right 

Rl+4 icon block 



The Window Manager 

where an icon block is defined as: 

+0 minimum x coordinate of icon bounding box 
+4 minimum y coordinate of icon bounding box 
+8 maximum x coordinate of icon bounding box 
+ 12 maximum y coordinate of icon bounding box 
+ 16 icon flags 
+20 12 bytes of icon data 

This call does not affect the screen, except when creating an icon on the icon bar. 
Use Wimp_ForceRedraw to do this. 

Icon blocks are also used in the Wimp_CreateWindow block and returned by 
Wimp_GetWindowlnfo (page 3-137). 

Once you have defined the icon, you can only make these changes to it: 

• you can change its flags using the call Wimp_SetlconState (page 3-139). 

• you can change indirected text. The icon must then be redrawn using the call 
Wimp_SetlconState, leaving the flags unchanged if necessary. 

• you can change its text if its button type is 15 (writable). The Wimp does this 
for you automatically, handling the caret positioning and text updating. For 
further details, see the following sections: 

Wimp_SetCaretPosition (SWI &40002) on page 3-152 

Wimp_GetCaretPosition (SWI &40003) on page 3-154 

Wimp_Poll Ke~cPressed 8 event on page 3-122. 

The window handle at RI+O may be an application window, or: 

-I for the right half of the icon bar (applications) 
-2 for the left half of the icon bar (devices) 

Note that creating an icon on the icon bar may cause other icons to 'shuffle', 
changing their x coordinates. 

The following features are not available In RISC_OS 2: 

The window handle at RI+O can also be: 

-3 to create an icon on the icon bar to the left of icon handle RO, or 
-4 to create an icon on the icon bar to the right of icon handle RO 

where RO = handle of icon to open next to, if 1 R I +0 1 = -3 or -4 
=-I ~create icon at the extreme left (-3) or right (-4) 

This allows icons' to be recreated and deleted (in order to change their width, for 
example) such that they stay in the same relative position on the icon bar. It also 
allows applications to keep groups of icon bar icons together. 

3-97 



Wimp_ Create/con (SWI &400C2) 

Icon bar icons can also be prioritised, so that, for example, the RAM disc icon can 
be positioned immediately to the right of the Apps icon. Instead of using window 
handle values -l , -2, -3 or -4 you are advised to prioritise icon bar icons using the 
following values: 

-5 ~ create icon on left side, scanning from the left 
-6 ~create icon on left side, scanning from the right 
-7 ~create icon on right side, scanning from the left 
-8 ~create icon on right side, scanning from the right 
where RO =signed 32-bit priority (higher priority~ towards outside) 

The Wimp positions the icons so that they are sorted, with those of higher priority 
nearer the extreme ends of the icon bar. Where icons are of equal priority, the 
position of the new icon is determined by the scan direction . 

The priorities assumed for the other possible window handle values are: 

Window handle values 

handle= -l 
handle= -2 
handle= -3, RO =icon handle 
handle= -3, RO = - l 
handle= -4, RO = icon handle 
handle= -4, RO = -l 

Priority 

0 
0 
same as matched icon 
&78000000 
same as matched icon 
&78000000 

The various Desktop modules create icons with the following priorities: 

Module Priority 

Task Manager &60000000 
!Help &40000000 
Palette Utility &20000000 
Applications 0 

ADFS hard discs &70000000 
ADFS floppy discs &60000000 
'Apps' icon &50000000 
RAM disc &40000000 
Ethernet &30000000 
Econet &20000000 
Other filing systems &10000000 
Printer drivers &OFOOOOOO 
TinyDir &OEOOOOOO 



The Window Manager 

The icon block 

The bounding box coordinates at Rl +4 are given relative to the window's work area 
origin, except that the horizontal offset may be applied to an icon created on the 
icon bar Note that if an icon is writable, the icon bounding box determines how 
much of the string is displayed at once. Typing into the icon or moving the caret 
left or right can cause the string to scroll within this box. The buffer length entry in 
the icon data determines the maximum number of characters that can be entered 
into a writable icon. One character is used for the terminator 

Note that icon strings can be terminated by any character from 0 to 31, and are 
preserved during editing operations by the Wimp. However, in template files , the 
terminator must be 13 (Return). 

Icon flags 
As noted earlier, subsets of these flags are used in Wimp_CreateWindow blocks to 
control how the contents of a window's Title Bar is defined, and the button type 
bits are used to determine how clicks within a window's work area are processed. 

The full list of flags for a proper icon is: 

Bit Meaning when set 

0 icon contains text 
icon is a sprite 

2 icon has a border 
3 contents centred horizontally within the box 
4 contents centred vertically within the box 
5 icon has a filled background 
6 text is an anti-aliased font (affects meaning of bits 24- 31) 
7 icon requires task's help to be redrawn 
8 icon data is indirected 
9 text is right-justified within the box 
10 if selected with Adjust don't cancel others in the same ESG 
II display the sprite (if any) at half size 
12 - 15 icon button type 
16- 20 exclusive selection group (ESG, 0- 31) 
21 icon is selected by the user and is inverted 
22 icon cannot be selected by the mouse pointer; it is shaded 
23 icon has been deleted 

24- 27 foreground colour of icon (if bit 6 is cleared) 
28- 31 background colour of icon (if bit 6 is cleared) 

or 

24- 31 font handle (if bit 6 is set). Font colours may be passed in an 
indirected icon's validation string. 

3-99 



Wimp_ Create/con (SWI &400C2) 

~-1nn 

Icon button types 
These are much the same as window button types . However. icons can be 'selected' 
(inverted) by the Wimp automatically, so there are some additional effects to those 
already described for windows: 

0 ignore mouse clicks or movements over the icon (except Menu) 
notify task continuously while pointer is over this icon 

2 click notifies task (auto-repeat) 
3 click notifies task (once only) 
4 click selects the icon; release over the icon notifies task; moving the 

pointer away deselects the icon 
5 click selects ; double click notifies task 
6 as 3, but can also drag (returns button state* 16) 
7 as 4, but can also drag (returns button state* 16) and moving away 

from the icon doesn't deselect it 
8 as 5, but can also drag (returns button state* 16) 
9 pointer over icon selects; moving away from icon deselects; click over 

icon notifies task ('menu' icon) 
I 0 click returns button state* 256 

drag returns button state* 16 
double click returns button state* I 

II click selects icon and returns button state 
drag returns button state* 16 

12 - 13 reserved 
14 clicks cause the icon to gain the caret and its parent window to 

become the input focus and can also drag (writable icon) . For 
example, this is used by the FormEd application 

15 clicks cause the icon to gain the caret and its parent window to 
become the input focus (writable icon) 

All the above return Mouse_Clic~ events (6) , where the button state is : 

Bit Meaning when set 

0 Adjust pressed 
Menu pressed 

2 Select pressed, or combination of above 

A drag is initiated by the button being held down for more than about a fifth of a 
second. A double click is reported if the button is clicked twice in one second and 
the second click is within 16 OS units of the first. Note that button types which 
report double clicks will also report the initial click first. 



The Window Manager 

Icon data 

The icon data at +20 to +31 is interpreted according to the settings of three of the 
icon flags. The three bits are Indirected (bit 8), Sprite (bit I) and Text (bit 0). The 
eight possible combinations and the eight interpretations of the icon data are: 

1ST Meaning of 12 bytes/3 words 

000 non-indirected, non-sprite, non-text icon 
+20 icon data not used in this case 

001 non-indirected, text-only icon 
+20 the text string to be used for the icon, control-terminated 

0 I 0 non-indirected, sprite-only icon 
+20 the sprite name to be used for the icon, control-terminated 

0 II non-indirected, text plus sprite icon 
+20 the text and sprite name to be used- not especially useful 

I 00 indirected, non-sprite, non-text icon 
+20 icon data not used in this case 

I 0 I indirected, text-only icon 
+20 pointer to text buffer 
+24 pointer to validation string- see below 
+28 buffer length 

II 0 indirected, sprite-only icon 
+20 pointer to sprite or to sprite name; see +28 
+24 pointer to sprite area control block, +I for Wimp sprite area 
+28 0 if [ +20] is a sprite pointer, length if it's a sprite name pointer 

Ill indirected, text plus sprite icon 
+20 pointer to text buffer 
+24 pointer to validation string, which can contain sprite name 
+28 buffer length 

Note that the icon bar's sprite area pointer is set to +I, so icons there use Wimp 
sprites. If you want to put an icon on the icon bar that isn't from the Wimp area , 
you must use an indirected sprite-only icon, type II 0 above. 

It is not possible to set the caret in the icon bar, so writable icons should not be 
used. 

~-1 ()1 



Wimp_ Create/con (SWI &400C2) 

Validation Strings 

An indirected text icon can have a validation string which is used to pass further 
information to the Wimp, such as what characters can be inserted directly into the 
string and which should be passed to the user via the Key_Pressed event for 
processing by the application. The syntax of a validation string is: 

• validation-string: := command {;command)* 

• command ::= a allow-spec I d char I f hex-digit hex-digit II {decimal-number} I 
s text-string {.text-string} I r decimal-number {.decimal-number} I K 
(RIAITIDIN)IP 

• allow-spec : := { char-spec } • { - { char-spec } • } • 

• char-spec ::= char I char-char 

• char ::=\-I\; I\\ I\- I any character other than- ; 

The spaces in the above definition are for clarity only, and a validation string will 
normally have no spaces in it. 

In simple terms, a validation string consists of a series of 'commands', each 
starting with a single letter and separated from the following command by a 
semicolon. { )* means zero or more ofthe thing inside the {} . The following 
commands are available: 

A command 

The (A)llow command tells the Wimp which characters are to be allowed in the 
icon. Characters are inserted into the string if: 

• a key is typed by the user 

• the key returns a character code in the range 32 - 255 

• the input focus is inside the icon 

• the validation string allows the character within the string. 

Otherwise: 

• control keys such as the arrow keys and Delete are automatically dealt with by 
the Wimp 

• other keys are returned to the task via the Key_Pressed event. 

Each char-spec in the 'allow' string specifies a character or range of characters; the 
-character toggles whether they are included or excluded from the icon text string: 

A0-9a-z-dpu allows the digits 0 - 9 and the lower-case letters a - z, 
except for 'd', 'p' and 'u' 



The Window Manager 

If the first character following the A command is a - all normal characters are 
initially included: 

A-0-9 allows all characters except for the digits 0 - 9 

If you use any of the four special characters- ; -\in a char-spec you must precede 
them with a backslash \: 

A-\- \ ; \ - \\ 

D command 

allows all characters except the four special ones 
-;- \ 

The (D)isplay command is used for password icons to avoid onlookers seeing what 
is typed It is followed by a character that is used to echo all allowed characters: 

D* displays the password as a row of asterisks 

Note that if the character is any of the four 'special' characters above. you must 
precede it by a\: 

D\ - displays the password as a row of dashes 

F command 
The (F)ont colours command is used to specify the foreground and background 
colours used in text icons with an anti-aliased font. The F is followed by two 
hexadecimal digits, which specify the background and foreground Wimp colours 
respectively: 

Fa3 sets background to I 0 (&a hex). and foreground to 3. 

This command w;es the call Wimp_SetFontColours (page 3-220). If you do not use 
this command, the colours 0 and 7 (black on white) are used by default. 

::l-10::l 



Wimp_ Create/con (SWI &400C2) 

~-1n4 

Kcommand 

The (K)eys command is used to assign specific functionalities to various keys. You 
should follow the K with any or all of R. A, T, D, or N: 

Option 

R 

Action 
If the icon is not the last icon in the window, pressing Return in the 
icon will move the caret to the beginning of the next writable icon in 
the window. 

If the icon is the last writable icon in the window then Return (code 
I 3) will be passed to the application . 

A Pressing the up or down arrow keys will move the caret to the end of 
the next writable icon in the window. Pressing the up arrow key in the 
first writable icon in a window will move the caret to the last writable 
icon. Pressing the down arrow key in the last icon will move the caret 
to the first icon. 

T Pressing Tab in the icon will move the caret to the beginning of the 
next writable icon in the window. Pressing Shift-Tab will move the 
caret to the beginning of the previous writable icon in the window. The 
caret wraps around from last to first in the same way as in the A 
option. 

D Pressing any of Copy, Delete, Shift-Copy, Ctri-U, or Ctrl-Copy will 
notify the application with the appropriate key codes as well as doing 
its defined action as specified in the section entitled Key_Pressed 8 on 
page 3- I 22. 

N The application will be notified about all key presses in the icon, even 
if they are handled by the Wimp. 

Options can be combined by including more than one option letter after the K 
command. For example: 

KA will give the arrow keys functionality 
KAR will give the arrow keys and the Return functionalities 

The (K)eys command is not available in RISC OS 2. In future releases of RISC OS 
this command will restrict the caret to icons in the same ESG group, rather than 
cycling through all icons. 



The Window Manager 

L command 

The (L)ine spacing command is used to tell the Wimp that a text icon may be 
formatted. If the text is too wide for the icon it is split over several lines. You 
should follow the L with a decimal number giving the vertical spacing between 
lines of text in OS units- if omitted, the default used is 40 units. (A system font 
character is 32 OS units high.) 

The current version of RISC OS ignores the number following the L, so no number 
can be specified However, this option may be implemented in future versions of 
RISC OS. 

This option can only be used with icons which are horizontally and vertically 
centred, and do not contain an anti-aliased font. The icon must not be writable, 
since the caret would not be positioned correctly inside it. 

P command 

The (P)ointer Shape command changes the pointer shape while over the icon. 

Pspritename,active_x,active_y or 

Pspri tename; coordinates default to (0, 0) 

The sprites must be 4-colour sprites in the Wimp sprite area. 

The (P)ointer command is not available in RISC OS 2 

~-1 ()~ 



Wimp_ Create/con (SWI &400C2) 

'l_1 n~ 

R command 

The Bo(R)der command sets the border type for the icon. The border will only be 
drawn if the border bit for the icon is also set. This command will override the 
Wimp's default border for the icon. 

R Type Slab_in_colour 

Type 0 :::::> normal single pixel border 
I:::::> slab out 
2 :::::>slab in 
3 :::::>ridge 
4 :::::>channel 
5 :::::>action button (highlights when icon selected) 
6 :::::>default action button (highlights when icon selected) 
7 :::::> editable field 
:;::8 :::::> normal single pixel border 

Slab_in_colour relates to the highlight colour applied to border types 5 & 6. 
By default this is 14, but the validation string can over-ride 
this , when the icon is selected the foreground colour is 
retained and the background changes to the highlight 
colour. 

The Bo(R)der command is not available in RISC OS 2, and does not correctly 
highlight fancy font icons under RISC OS 3. 

Scommand 

The (S)prite name command is used to give a text and sprite icon a different sprite 
name from the text it contains, for example, Sfile_abc. No space should follow 
the S, and the sprite name should be no more than 12 characters long. 

If a second name is given, separated from the first by a comma, this is used when 
the icon is highlighted. If it is omitted, the sprite is highlighted by plotting it with 
its original colours exclusive-OR'ed with the icon foreground colour. 

Text plus sprite icons 

If an icon has both its text and sprite bits (0 and I) set, then it will contain both 
objects. The text must be indirected, so that the validation string can be used to 
give the sprite name(s) to use (see the S command above) . 



The Window Manager 

Three flags in the icon flags are used to determine the relative positions of the text 
and sprite. These are the Horizontal. Vertical and Right justified bits (3 , 4, and 9 
respectively) . The eight possible combinations of these bits , and how they position 
the sprite and text within the icon bounding box, are as follows: 

HVR Horizontal Vertical 

000 text and sprite left justified text at bottom, sprite at top 
001 text and sprite right justified text at bottom, sprite at top 
010 sprite at left, text + 12 units right of it text and sprite centred 
011 text at left, sprite at right text and sprite centred 
100 text and sprite centred text at bottom, sprite at top 
101 text and sprite centred text at top, sprite at bottom 
110 text and sprite centred (text on top) text and sprite centred 
Ill text at right. sprite at left text and sprite centred 

The following points should be noted about text plus sprite icons: 

• the text part can be writable, but every time a key is pressed the sprite will be 
redrawn and so can flicker 

• the text part of the icon always has its background filled 

• if the text uses an anti-aliased font, the icon should not have a filled 
background. as the drawing of the text's background will obscure the sprite 

• as usual. the whole of the icon area is used to delimit mouse clicks or 
movements over the icon, so clicks cannot be associated separately with the 
text and sprite (so clicking over the sprite would still cause the text of a 
writable icon to gain the caret) 

An important use of this type of icon is displaying a text plus sprite pair in the icon 
bar. 

Related SWis 

Wimp_Deletelcon (page 3-11 0) 

Related vectors 

None 

'l _1 f\7 



Wimp_DeleteWindow (SWI &400C3) 

Wimp_DeleteWindow 
(SWI &400C3) 

Closes a specified window if it is still open, and then removes its definition 

On entry 

Rl =pointer to block 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re~entrancy 

Use 

SWI is not re-entrant 

This call closes the specified window if it is still open, and then removes the 
definition of the window and of all the icons within it. The memory used is 
re-allocated, except for the indirected data, which is in the task's own workspace. 

The block contains the following: 

Rl+ 0 window handle 

Errors 

If a window is deleted while being dragged, an error is reported by the Wimp, 
except in the case of a menu, where pressing Escape causes the drag to terminate 
and the menu tree to be deleted. 

This error is not returned under RISC OS 2. 

Related SWis 

Wimp_CreateWindow (page 3-89) 



Related vectors 

None 

The Window Manager 

I) of"" 



Wimp_Deletelcon (SWI &400C4) 

Removes the definition of a specified icon 

Wimp_Deletelcon 
(SWI &400C4) 

On entry 

Rl =pointer to block 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call removes the definition of the specified icon. If the icon is not the last one 
in its window's list it is marked as deleted, so that the handles of the other icons 
within the window are not altered. If the icon is the last one in the list, the memory 
is reallocated. 

The block contains the following: 

Rl+ 0 window handle (-2 for icon bar) 
Rl + 4 icon handle 

Note: this call does not affect the screen unless the window handle is -2 (i.e. the 
icon bar) . You must make a call to Wimp_ForceRedraw (page 3-150) to remove the 
icon(s) deleted, passing a bounding box containing the icons. 

Related SWis 

Wimp_Createlcon (page 3-96) 



Related vectors 

None 

The Window Manager 



Wimp_OpenWindow (SWI &400C5) 

Wimp_ Open Window 
(SWI &400C5) 

Updates the list of active windows (ones that are to be displayed) 

On entry 

Rl =pointer to block 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call updates the list of active windows (ones that are to be displayed). The 
window may either be a new one being displayed for the first time. or an already 
open one that has had its parameters altered. 



The block contains the following: 

Rl+ 0 window handle 
Rl+4 
Rl +8 
Rl+l2 
Rl+l6 
Rl+20 
Rl+24 
Rl+28 

visible area minimum x coordinate 
visible area minimum y coordinate 
visible area maximum x coordinate 
visible area maximum y coordinate 
scroll x offset relative to work area origin 
scroll y offset relative to work area origin 
handle to open window behind 
- I means top of window stack 
-2 means bottom 

The Window Manager 

-3 means the window behind the Wimp's backwindow. hiding 
it from sight (-3 not available in RJSC OS 2) 

Note that coordinates (xO,yO ,xl ,yl ,scroll x,scroll y) are all rounded down to whole 
numbers of pixels. This also happens on a mode change automatically. 

If a window that has the input focus is opened behind the backdrop (behind 
window -3) the input focus will be taken away from it before it is opened. 

Related SWis 

Wimp_CioseWindow (page 3-114) 

Related vectors 

None 

~-11~ 



Wimp_CioseWindow (SWI &400C6) 

~-114. 

Wimp_CioseWindow 
(SWI &400C6) 

Removes the specified window from the active list 

On entry 

Rl =pointer to block 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call removes the specified window from the active list; it is no longer marked 
as one to be displayed. The Wimp will issue redraw requests to other windows that 
were previously obscured by the closed one. 

The block contains the following: 

Rl+ 0 window handle 

Related SWis 

Wimp_OpenWindow (page 3-112) 

Related vectors 

None 



The Window Manager 

Wimp_Poll 
(SWI &400C7) 

Polls the Wimp to see whether certain events have occurred 

On entry 

RO =mask 
Rl =pointer to 256 byte block (used for return data) 
R3 =pointer to poll word if RO bit 22 set (not in R!SC OS 2) 

On exit 

RO = event code 
Rl =pointer to block (data depends on event code returned) 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call polls the Wimp to see whether certain events have occurred. and oversees 
such things as screen updating. keyboard and mouse handling. and menu 
selections. You must call it in the main loop of any program you write to run under 
the Wimp, and provide handlers for each event code it can return . 

Errors 

If any error occurs inside Wimp_Poll (apart from an error in the parameters to the 
call) . it is reported by the Wimp itself. and is not passed back to any of the 
applications. 

If an escape condition is pending when Wimp_Poll is called. or if escape conditions 
are enabled. the Wimp will report an error. and will cancel the escape condition 
and disable escape condition generation. 

q-11 /:\ 



Wimp_Po/1 (SWI &400C7) 

These errors are not returned under RISC OS 2. 

The following event codes may be returned: 

Code Reason 

0 Null_Reason_Code 
Redraw_Window_Request 

2 Open_ Window_Request 
3 Close_ Window _Request 
4 Pointer_Leaving_ Window 
5 Pointer_Entering_ Window 
6 Mouse_ Click 
7 User_Drag_Box 
8 Key _Pressed 
9 Menu_Selection 
IO Scroll_Request 
I I Lose_Caret 
12 Gain_ Caret 
13 Poll word non-zero 
14- 16 reserved 
17 User_Message 
18 User_Message_Recorded 
19 User_Message_Acknowledge 

The highest priority are types I 7- 19, however, any event sent using 
Wimp_SendMessage has the same priority as a type 17, 18 or 19. In particular. this 
means that types II and 12 are higher in priority than type I (because the Wimp 
sends them using Wimp_SendMessage) . 

The remaining event codes are next and the lowest priority type is 0. 

You can disable some of the event codes ; they are neither checked for nor returned, 
and need not have handlers provided. You must do this for as many codes as 
possible, especially the Null_Reason_Code, if your task is to run efficiently under 
the Wimp. Some of the remaining event codes can be temporarily queued to 
prevent their return at times when they would otherwise interfere with the task 
running. 



The Window Manager 

Both the above are done by setting bits in the mask passed in RO: 

Bit 
0 

Meaning when set 
do not return Null_Reason_Code 

I do not return Redraw_Window_Request; queue for later 
handling 

2- 3 
4 
5 
6 
7 
8 
9 - 10 

must be 0 
do not return Pointer_Leaving_Window 
do not return Pointer_Entering_Window 
do not return Mouse_ Click: queue for later handling 
must be 0 
do not return Key_Pressed; queue for later handling 
must be 0 

II do not return Lose_Caret 
12 do not return Gain_Caret 
13 do not return PollWord_NonZero (not in RISC OS 2) 
14-16 mustbeO 
17 do not return User_Message 
18 do not return User_Message_Recorded 
19 do not return User_Message_Acknowledge 
20 - 21 mustbeO 
22 R3 on entry is pointer to poll word (not in RISC OS 2) 
23 scan poll word at high priority (not in RISC OS 2) 
24 save or restore floating point registers (not in RISC OS 2) 

I 25 - 31 must be 0 

Note that the bits above which are marked 'queue for later handling' stop the 
Wi1mp from proceeding, i.e. it stops all other tasks too. 

S, ving floating point registers 

If RO bit 24 is set (not available in RISC OS 2) the floating point registers will be 
preserved over calls to Wimp_Poll. 

Th~ floating point registers should only be saved if one or more of the following is 
trJe: 

• The task is controlling arbitrary applications 'underneath' it, which may use 
floating point instructions. An example of such a controlling task is the 
TaskWindow module. 

~-117 



Wimp_Po/1 (SWI &400C7) 

~-11A 

• The task requires to set up a floating point status register value that is different 
from that used by the C run-time system (which happens to be & 70000) . 

This is because in general other C programs running under the Wimp that use 
floating point will not save their floating point registers , but will assume that 
the status register is still correct for the C run-time environment. 

To enable this to work, the Wimp resets the floating point status register to the 
correct value for the C run-time environment immediately after saving the 
floating point registers for a task that requests it. 

There is one complication with this: when the Wimp comes to save the floating 
point registers for a task, it is possible (when using the actual floating point 
hardware. as opposed to the emulator) for an asynchronous exception to be 
generated (for example, after a divide by 0, the next floating point instruction is the 
one that actually generates the error) . 

In this case OS_GenerateError is called by the floating point support code. once it 
has determined the cause of the exception. The important point here is that the 
error is passed to the task whose floating point registers were being saved. When 
OS_GenerateError is called, the supervisor stack is cleared out, so it is as though 
the Wimp_Poll call never happened. Note that the error number here has the top 
bit set, which indicates to the error handler that execution cannot be resumed after 
the PC address where the error occurred. 

Event codes 

As you can see. certain events cannot be masked out and the task must always be 
prepared to handle them. Each event code has one Wimp SWI that is most likely to 
be called in response. The block returned by Wimp_Poll is formatted ready to be 
passed directly to this call. 

The event codes are as follows: 

Nuii_Reason_Code 0 

This event code is returned when none of the others are applicable. It should be 
masked out whenever possible to minimise the overheads incurred by the Wimp, 
so it doesn't have to set-up the task's memory and return control to it, only to find 
the task isn't interested anyway. 



Redraw_Window_Request 1 

The returned block contains: 

Rl+O window handle 

The Window Manager 

This event code indicates that some of the window is out of date and needs 
redrawing. You should call Wimp_RedrawWindow (page 3-129) using the returned 
block, and then call Wimp_GetRectangle (page 3-133) as necessary. See their 
entries for further details and a scheme of the code required. 

Open_Window_Request 2 

The returned block contains: 

R I +0 window handle 
visible area minimum x coordinate 
visible area minimum y coordinate 
visible area maximum x coordinate 
visible area maximum y coordinate 
scroll x offset relative to work area origin 
scroll y offset relative to work area origin 

Rl+4 
Rl+8 
Rl+l2 
Rl+l6 
Rl+20 
Rl+24 
Rl+28 handle to open window behind (-1 means top of window 

stack, -2 means bottom) 

This event code is returned as a result of the Adjust Size icon or the Title Bar of a 
window being selected, or as a result of the scroll bars being dragged to a new 
position . The dragging process is performed by the Wimp itself before it returns 
this event code to the task. 

Following detection, the Wimp sets five bits that determine the action on the 
window. These bits can be read using Wimp_GetWindowState (page 3-135)- refer 
to Wimp_CreateWindow (page 3-89) for more information. 

You should call Wimp_ Open Window (page 3-112) using the returned block and 
also call it for any pane windows that are attached to this one. using the 
coordinates in the block to determine the pane's position. 

Close_Window_Request 3 

The returned block contains: 

Rl+O window handle 

This event code is returned when you click with the mouse on the Close icon of a 
window. 

~-11~ 



Wimp_Po/1 (SWI &400C7) 

You should normally call Wimp_CloseWindow (page 3-114) using the returned 
block. You may also need to issue further calls of Wimp_CloseWindow to close any 
dependent windows, e.g. panes. However, if you do not want to close the window 
immediately, you could open an error box. or ask the user for confirmation. 

Programs such as Edit conventionally open the directory which holds the edited 
file if its window is closed using the Adjust button . This is done by calling 
Wimp_GetPointerlnfo when the Close_Window_Request is received, and 
performing the appropriate action. 

Pointer_Leaving_Window 4 

The returned block contains: 

R I +0 window handle 

This event code is returned when the pointer has left a window's visible work area. 
You might use it to make the pointer revert to its default shape when it is no longer 
over your window's work area. However. it is not recommended that you use it to 
make dialogue boxes disappear as soon as the mouse pointer leaves them . 

Note that this event doesn't only occur when the pointer leaves the window's 
visible work area. but whenever the window stops being the most visible thing 
under the pointer. So, for example, popping up a menu at the pointer position 
would cause this event. 

Pointer_Entering_Window 5 

The returned block contains: 

Rl+O window handle 

This event code is returned when the pointer has moved onto a window. You might 
use it to bring a window to the top as soon as the pointer enters its work area. or to 
change the pointer shape when it over the visible work area. 

As with the previous event type. Pointer_Entering_Window doesn't just happen 
when the pointer is physically moved into a window's visible work area. It could 
occur because a menu is removed or a window is closed, revealing a new 
uppermost window. 



The Window Manager 

Mouse_Ciick 6 

The returned block contains: 

Rl+O mouse x (screen coordinates- not window relative) 
Rl+4 
Rl+8 
Rl+l2 
Rl+l6 

mousey 
buttons (depending on window/icon button type) 
window handle (-1 for background, -2 for icon bar) 
icon handle (-1 for work area background) 

This event code is returned when: 

• the state of the mouse buttons has changed, and 

• the conditions of the button type have been met. and 

• the Wimp does not automatically deal with the change in some other way. 

For example: 

• if an icon has button type 6, a click with Select will generate this event with 
buttons= 4, whereas a drag with Adjust will give buttons= I followed by 
another event with buttons = 16 

• if the change took place over a window's Close icon, this event code will not be 
returned as Close_Window_Request is used instead 

• a click on the Menu button is always reported with buttons = 2. 

The window and icon handles indicate which window and icon the mouse pointer 
was over when the button change took place. Operations such as highlighting an 
icon when it is selected and the cancellation of the other selections in the same 
ESG are all done automatically by the Wimp. See the section on Icon button types on 
page 3-100 for details of the various icon button modes and mouse return codes. 

User_Drag_Box 7 

The returned block contains: 

Rl+O 
Rl+4 
Rl+8 
Rl+l2 

drag box minimum x coordinate (inclusive) 
drag box minimum y coordinate (inclusive) 
drag box maximum x coordinate (exclusive) 
drag box maximum y coordinate (exclusive) 

This event code is returned when you release all the mouse buttons to finish a 
User_Drag operation The block contains the final position of the drag box. 

A user drag operation starts when the task calls Wimp_DragBox with a drag type of 
5 to II, usually in response to a drag code returned in a Mouse_ Click event. 

3-121 



Wimp_Po/1 (SWI &400C7) 

3-122 

During the user drag operation (particularly with drag type 7), you may wish to 
keep track of the pointer position To do this , call Wimp_GetPointerlnfo 
(page 3-143) each time you receive a null event from Wimp_Poll You can use the 
coordinates returned to redraw the dragged object (use Wimp_UpdateWindow 
(page 3-131) to do this) . 

When this event code is returned the drag is over; you should then stop reading the 
pointer information and, if appropriate, redraw the dragged object in its final 
position . 

Key_Pressed 8 

The returned block c 

R1+0 
R1+4 
R1+8 
R1+12 
R1+16 
R1+20 
Rl+24 

ntains: 

window handle with input focus 
icon handle (-1 if none) 
x offset of caret (relative to window origin) 
y offset of caret (relative to window origin) 
caret height and flags (see Wimp_SetCaretPosition) 
index of caret into string (undefined if not in an icon) 
character code of key pressed (NB this is a word , not a byte) 

This event code is returned to tell a task that a key has been pressed while the 
input focus belonged to one of its windows. The task should process the key if 
possible. Otherwise the task should pass it to Wimp_ProcessKey (page 3-173) so 
that other tasks can then intercept 'hot key' codes . 

If the caret is inside a writable icon, the Wimp automatically processes the keys 
listed below, and does not generate an event: 

Printable characters 

Delete, <-1 
Copy 
<-
-> 
Shift Copy 
Shift<­
Shift-> 
Ctrl Copy 
Ctrl <­
Ctrl-> 

are inserted into the text , if there is room, and the 
icon is redrawn 
delete character to left of caret 
delete character to right of caret 
move left one character 
move right one character 
delete word (forwards) 
move left one word (returns & 19C if at left of line) 
move right one word (returns & 19D if at right of line) 
delete forwards to end of line 
move to left end of line 
move to right end of line 

'Printed characters' are those printable ones whose codes are in the ranges 
&20 - & 7E and &80 - &FF 

See the K command on page 3-104 for further information. 



The Window Manager 

Clashes could occur between top-bit-set characters (obtained by pressing Alt plus 
ASCII code on the keypad) and special key codes . The Wimp avoids any such 
ambiguities by mapping the special keys to these values: 

Key Alone +Shift +Ctrl +Ctrl Shift 

Esc &IB &IB &IB &IB 
Print (FO) &180 &190 &lAO &lBO 
Fl - F9 &181 - 189 &191 - 199 &!AI- IA9 &I Bl- IB9 
Tab &18A &19A &IM &IBA 
Copy &18B &19B &lAB &IBB 
left arrow &18C &19C &lAC &IBC 
right arrow &18D &19D &lAD &IBD 
down arrow &18E &19E &IAE &!BE 
up arrow &18F &19F &IAF &IBF 
Page Down &19E &18E &!BE &IAE 
Page Up &19F &18F &IBF &IAF 
FIO-Fl2 &ICA- ICC &IDA- !DC &lEA- IEC &!FA- &IFC 
Insert &lCD &IDD &lED &IFD 

These are set up by Wimp_lnitialise. Tasks running under the Wimp are not allowed 
to change any of these settings. Soft key expansions (outside of writable icons) 
must be performed by the task accessing the key's expansion string using the 
Key$n variables. 

Menu_Selection 9 

The returned block contains: 

R I +0 item in main menu which was selected (starting from 0) 
Rl +4 item in first submenu which was selected 
Rl+8 item in second submenu which was selected 

terminated by -I 

This event code is returned when the user selects an item from a menu . Selections 
can be made by the user clicking on an item with any of the mouse buttons. Select 
and Menu are synonymous; Adjust has a slightly different effect, as discussed 
below. A press of Return inside a writable menu item also generates this event 
(though not if it is pressed inside a writable icon inside a menu dialogue box). 

The values in the block indicate which item at each menu level was chosen, the first 
item in each menu being numbered 0. An entry of-1 terminates the list. No handle 
is used for menus, so the task must remember which menu it last opened 
Wimp_CreateMenu (page 3-156) with . 

3-123 



Wimp_Po/1 (SWI &400C7) 

If the last item specified has submenus (i.e. was not a 'leaf' of the menu tree) then 
the command may be ambiguous. in which case the task should ignore it. If the 
command is clear. but not its parameters. then the task may ignore the command, 
use default parameters. or use the last parameters set, as is most appropriate. 

There is a difference, from the user's point of view. between choosing an item with 
Select and Adjust. In the former case, the selection will also cancel the menu. 
causing it to be removed from the screen. In the latter case, the menu shou ld stay 
on the screen (a persistent menu). The application achieves this as follows . Call 
Wimp_GetPointerlnfo (page 3-143) to read the mouse button state, and save it. 
After decoding the menu selection and taking the appropriate action, examine the 
stored button state. If Select was pressed , just return to the polling loop. 

If Adjust was down, however, re-encode the menu tree (reflecting any changes that 
the previous menu selection effected) and call Wimp_CreateMenu with the same 
menu tree pointer that was used to create the menu in the first place. The next time 
you call Wimp_Poll. the Wimp will spot the re-opened menu, and recreate it on the 
screen. It goes down the tree until the end of the tree is reached, or the tree fails to 
correspond to the previous one. or until a shaded item is reached . 

Scroii_Request 10 

The returned block contains: 

RI+O window handle 
Rl+4 
Rl+8 
Rl+l2 
Rl+l6 
Rl+20 
Rl+24 
Rl+28 

Rl+32 
Rl+36 

visible area minimum x coordinate 
visible area minimum y coordinate 
visible area maximum x coordinate 
visible area maximum y coordinate 
scroll x offset relative to work area origin 
scroll y offset relative to work area origin 
handle to open window behind (-1 means top of the window 
stack. -2 means bottom) 
scroll x direction 
scroll y direction 

The scroll directions have the following meanings: 

Value 

-2 
-I 
0 
+I 
+2 

Meaning 

Page left/down (click in scroll bar outer area) 
Left/down (click on scroll arrow) 
No change 
Right/up (click on scroll arrow) 
Page right/up (click in scroll bar outer area) 



The Window Manager 

This event code is returned if the user clicks in a scroll area of a window which has 
one of the 'Scroll_Request returned' bits set in its window flags. It returns the old 
scroll bar offsets and the direction of scrolling requested. The task should work out 
the new scroll offsets, store them in the scroll offsets (R I +20 and R I +24) of the 
returned block, and then call Wimp_ Open Window (page 3- I 12) . 

Remember that the coordinates used for scroll offsets are in OS units . Therefore. if 
you want to make a click on one of the arrows scroll by, say, one pixel. you must 
scale the -I or I returned in the event block by the appropriate factor for the 
current mode. For example, in !Edit the text is aligned with the bottom of the 
window when scrolling down, and subsequently moves down by one text line 
exactly. When scrolling up, the text is aligned with the top of the window. 

Lose_ Caret 11 
This is returned when the window which owns the input focus has changed. That 
happens when Wimp_SetCaretPosition (page 3- I 52) is called, either explicitly, or 
implicitly by the user clicking on a button type I4 or I 5 object. The event isn't 
generated if the input focus only changes position within the same window. 

The event warns the task which had the caret (and which may well be retaining it) 
that something has changed . It can be used to remove a specialised text-position 
indicator which does not use the Wimp's caret, or its appearance could be altered 
to show this is where the caret would be if the window still had the input focus. 

RI points to a standard caret block: 

Rl+O window handle that had the input focus (-I if none) 
Rl+4 icon handle (-I if none) 
Rl +8 x offset of caret (relative to window origin) 
R I+ 12 y offset of caret (relative to window origin) 
Rl + 16 caret height and flags (see Wimp_SetCaretPosition) 
Rl+20 index of caret into string (or-1 if not in a writable icon) 

Gain_Caret 12 
This event is returned to the task which now has the caret. subsequent to a 
Wimp_SetCaretPosition. The block pointed to by Rl is the same as above, except 
that the window/icon handle is the caret's new owner. 

3-125 



Wimp_Po/1 (SWI &400C7) 

3-126 

PoiiWord_NonZero 13 

This facility is not available under RISC OS 2. 

If RO bit 23 was set. the poll word will be scanned before the messages or the 
Redraw_Window_Requests are delivered. Note that this means that the screen 
may not yet be up-to-date, and certain messages may not have been delivered (in 
particular Message_ModeChange). 

If the Wimp discovers that the word has become non-zero. it will return the 
following event from Wimp_Poll : 

RO = I 3 ( PollWord_NonZero) 
IRI+O] =address of poll word 
1 R I +4] = contents of poll word 

This facility is used to transfer control to a task's foreground process, where control 
is currently in an interrupt routine, service call handler or the like. 

For example, the NetFiler module intercepts a special service call which is issued 
by NetFS whenever a *Logon, *Bye or *SDisc is executed. This tells NetFiler that it 
should re-scan its list of fileservers and update the icon bar as appropriate, but it 
cannot do this directly because it needs to get control in the foreground in order to 
call the Wimp. 

It therefore sets a flag in its workspace, which tells it that it should rescan the list 
the next time the Wimp returns to it from Wimp_Poll. Using the new facility, it can 
use a 'fast poll' to get the Wimp to tell it before the screen is up-to-date, which 
means that if the user issues a *Logon from within ShellCLI, the NetFiler can 
update the icon bar before the screen is redrawn when ShellCLI returns, and so the 
icon bar does not have to be redrawn twice. 

A more normal application for this would be for a background process to buffer 
incoming data in the RMA, and to signal to its foreground process when there was 
enough data to use. It would normally use the 'slow' form of polling, so that it 
could update its window with the new data. 

Note that there is no guarantee about how long it will take before the application 
regains control, since other applications can take control away from the Wimp for 
arbitrarily long periods of time (e.g. ShellCLI). 

Events 14 -16: not used 



The Window Manager 

Messages 

The next three event codes ( 17- 19) are concerned with the receipt of user 
messages. Events of type 0 to 12 are normally sent directly from the Wimp to a task 
in response to some user action. The User_Message event codes are more general 
purpose, and are sent from Wimp to task, or from task to task. See the description 
of Wimp_SendMessage (page 3-196) and the section entitled Messages on 
page 3-230 for more details about the sending of messages and of the various 
types of User_Message actions which are defined. 

One message action that all tasks should act on is Message_Ouit, which is 
broadcast by the Desktop when the user selects the Exit item from the Task 
manager's Task display. 

User_Message 17 
The returned block contains: 

Rl +0 size of block in bytes (20- 256 in a multiple of four (i.e. 
words)) 

R I +4 task handle of message sender 
Rl +8 my_ref- the sender's reference for this message 
Rl + 12 your_ref- a previous message's my_ref, or 0 if this isn't a 

reply 
R I+ 16 message action code 
Rl+20 message data (dependent on message action) 

This event is returned when another task has sent a message to the current task, to 
one of its windows, or to all tasks using a broadcast message. The action code field 
defines the meaning of the message, i.e. how the message data should be 
processed by the receiver. 

If the message is not acknowledged (because the receiving task is no longer active, 
or just ignores it) then no further action is taken by the Wimp. 

User _Message _Recorded 18 
The block has the same format as that described above under User_Message. The 
interpretation of the message action is the same, so the way in which the receiving 
task handles these two types should be identical. However, the way the Wimp 
responds differs if the message is not acknowledged. 

The receiving task can a~knowledge the message by calling Wimp_SendMessage 
with the event code User_Message_Acknowledge ( 19) and the your_ref field set to 
the my_ref of the original. This will prevent the sender from receiving its original 
message back from the Wimp with the event type 19. 

3-127 



Wimp_Po/1 (SWI &400C7) 

Another way to acknowledge a message (and prevent the Wimp returning it to the 
sender) is to send a reply message using event code User_Message or 
User_Message_Acknowledge, again with the your_ref field set to the original 
message's my_ref. 

Both types of acknowledgement must take place before the next call to Wimp_Poll. 

User _Message _Acknowledge 19 
The format of the block is as above. This event type is generated by the Wimp when 
a message sent with event code User_Message_Recorded was not acknowledged 
or replied to by the receiver. The message in the block is identical to the one sent 
by the task in the first place. 

Note that in User_Messages 17, 18 and 19 a task should ignore any messages it 
does not understand: it must not acknowledge messages as a matter of course. See 
Wimp_SendMessage (page 3-196) for details. 

Related SWis 
Wimp_Pollldle (page 3-184) 

Related vectors 

None 



The Window Manager 

Wimp_RedrawWindow 
(SWI &400C8) 

Starts a redraw of the parts of a window that are not up to date 

On entry 

Rl =pointer to block 

On exit 

RO = 0 for no more to do, non-zero for update according to returned block 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

The block contains the following: 

Rl+O window handle 
Rl+4 
Rl+8 
Rl+l2 
Rl+l6 
Rl+20 
Rl+24 
Rl+28 
Rl+32 
Rl+36 
Rl+40 

visible area minimum x coordinate 
visible area minimum y coordinate 
visible area maximum x coordinate 
visible area maximum y coordinate 
scroll x offset relative to work area origin 
scroll y offset relative to work area origin 
current graphics window minimum x coordinate 
current graphics window minimum y coordinate 
current graphics window maximum x coordinate 
current graphics window maximum y coordinate 

The window handle at +0 is set on entry, usually from the last call to Wimp_Poll; 
the rest of the block is filled in by Wimp_RedrawWindow. 

3-129 



Wimp_RedrawWindow (SWI &400GB) 

~-1~f"' 

Note that this SWI must be called as the first Wimp operation after the Wimp_Poll 
which returned a Redraw_Window_Request. This means that you cannot, for 
example, delete or create any other windows between the Wimp_Poll and the 
Wimp_RedrawWindow. If you need to do any special extra operations in your 
Wimp_Pollloop, do them just before calling Wimp_Poll , not afterwards. 

This call is used to start a redraw of the parts of a window that are not up to date. 
These consist of a series of non-overlapping rectangles. Wimp_RedrawWindow 
draws the window outline. issues VDU 5, and then exits via Wimp_GetRectangle, 
which returns the coordinates of the first invalid rectangle (if any) of the work area , 
and clears it to the window's background colour, unless it's transparent. It also 
returns a flag saying whether there is anything to redraw. 

The first four words are the position of the window's work area on the screen, i.e. 
they have the same meaning as those words in the Wimp_CreateWindow 
(page 3-89) and Wimp_ Open Window (page 3- I I 2) blocks. 

The last four words describe an area within the visible work area in screen 
coordinates, not wo;rk area relative. possibly the whole thing if the window is not 
covered . The graph it s clip window is set to the returned rectangle. A task could just 
redraw its entire wo k area each time a rectangle is returned. However, it is much 
more efficient if the task takes note of the graphics clip window coordinates and 
works out what it n eds to draw. 

By using these two • ets of coordinates in conjunction with the scroll offsets . you 
can find the work ar a coordinates to be updated: 

work x =screen x- (screen xO-scroll x) 
work y = screen y- (screen y I -scroll y) 

where: 

screen xO = 
screen yi = 
scroll x = 
scroll y = 

[RI+4] 
[RI+I6] 
[RI+20] 
[Rl+24] 

The code used to re raw the window was outlined in the section entitled Redrawing 
windows on page 3- I . The expressions above in parenthesis are the screen 
coordinates of the ork area origin. 

Related SWis 

Wimp_UpdateWind w (page 3-I3I), Wimp_GetRectangle (page 3-I33) 

Related vectors 

None 



The Window Manager 

Wimp_UpdateWindow 
(SWI &400C9) 

Starts a redraw of the parts of a window that are not up to date 

On entry 

Rl =pointer to block- see below 

On exit 

RO and block as for Wimp_RedrawWindow (page 3-129) 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

The block contains the following on entry: 

Rl+O window handle 
Rl +4 work area minimum x coordinate (inclusive) 
Rl +8 work area minimum y coordinate (inclusive) 

1+16 work area maximum y coordinate (exclusive) ,

1+ 12 work area maximum x coordinate (exclusive) 

This all is similar to Wimp_RedrawWindow. The differences are: 

• n~t all of the window has to be updated; you specify the rectangle of interest in 
work area coordinates 

• the rectangles to be updated are not cleared by the Wimp first 

• this can be called at any time, not just in response to a 
Redraw_Window_Request event. 

3-131 



Wimp_UpdateWindow (SWI &400C9) 

~-132 

The routine exits via Wimp_GetRectangle (page 3-133). which returns the 
coordinates of the first visible rectangle (if any) within the work area specified on 
entry. 

The code for the task to update the window should follow this scheme: 

SYS"Wimp_UpdateWindow", ,blk TO more 
WHILE more 

update the contents of the returned rectangle 
SYS"Wimp_GetRectangle", ,blk TO more 

ENDWHILE 

A common reason for calling this is to drag an item across a window. Another is to 
draw a user-defined text cursor instead of using the system one. 

Related SWis 

Wimp_RedrawWindow (page 3-129), Wimp_GetRectangle (page 3-133). 
Wimp_ForceRedraw (page 3-150) 

Related vectors 

None 



The Window Manager 

Wimp_GetRectangle 
(SWI &400CA) 

Returns the details of the next rectangle of the work area to be drawn 

On entry 

Rl =pointer to block 

On exit 

RO and block as for Wimp_RedrawWind.)W (page 3-129) 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call is used repeatedly following a call of either Wimp_RedrawWindow or 
Wimp_UpdateWindow. It returns the details of the next rectangle of the work area 
to be drawn (if any) . If the call follows an earlier call to Wimp_RedrawWindow, then 
the rectangle is also cleared to the background colour of the window. If however it 
follows a call to Wimp_UpdateWindow then the rectangle's contents are preserved. 

The block contains the following on entry: 

Rl +0 window handle 

VDU 5 is asserted at a mode change and in Wimp_RedrawWindow. If you use VDU 
4 text in a window (which can only be done when you are sure that the character 
does not need to be clipped) you should reset to VDU 5 mode before calling 
Wimp_SetRectangle or Wimp_Poll 

3-133 



Wimp_GetRectangle (SWI &400CA) 

~-1~4 

Note that the window handle will be faulted by the Wimp if it differs from the one 
last used when Wimp_RedrawWindow or Wimp_UpdateWindow was called . This 
means that a task must draw the whole of a window before performing any other 
operations. 

Related SWis 

Wimp_RedrawWindow (page 3-129) , Wimp_UpdateWindow (page 3-131) 

Related vectors 

None 



The Window Manager 

Wimp_ GetWindowState 
(SWI &400GB) 

Returns a summary of the given window's state 

On entry 

Rl =pointer to block 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call returns a summary of the given window's state. 

The block contains the window handle on entry, and the following on exit: 

RI+O window handle (or-2 to indicate the icon bar) 
Rl+4 visible area minimum x coordinate 
Rl+8 visible area minimum y coordinate 
Rl+l2 visible area maximum x coordinate 
Rl+l6 
Rl+20 
Rl+24 
Rl+28 
R1+32 

visible area maximum y coordinate 
scroll x offset relative to work area origin 
scroll y offset relative to work area origin 
handle of window in front of this one (or -I if none) 
window flags- see Wimp_CreateWindow (page 3-89) 

A window handle va1ue of -2 is not available in RISC OS 2. 



Wimp_GetWindowState (SWI &400GB) 

You can usually find out the window's coordinates without using this call , since 
Wimp_GetRectangle returns the window coordinates anyway. This call is most 
useful for reading the window flags, for example to find out if a window is 
uncovered. 

Related SWis 

Wimp_GetWindowlnfo (page 3- 137) 

Related vectors 

None 



The Window Manager 

Wimp_ GetWindowlnfo 
(SWI &400CC) 

Returns complete details of the given window's state 

On entry 

Rl =pointer to block (in RISC OS 2), else in RISC OS 3: 
bit 0 set::::) just return window header (without icons) 
bit I reserved (must be 0) 
bits 2 - 31 pointer to buffer to receive data 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

This call returns complete details of the given window's state, including any icons 
that were created after the window, using Wimp_Createlcon. 

The block contains the following on entry: 

R I +0 window handle (or -2 to indicate the icon bar) 

A window handle value of -2 is not available in RISC OS 2. 

The block contains the following on exit: 

RI+O window handle 
Rl +4 window block- see Wimp_CreateWindow (page 3-89) and 

Wimp_Createlcon (page 3-96) 

3-137 



Wimp_GetWindowlnfo (SW/ &400CC) 

Related SWis 

Wimp_GetWindowState (page 3-135) 

Related vectors 

None 

~-1~8 



The Window Manager 

Wimp_SetlconState 
(SWI &400CD) 

Sets a given icon's state held in its flags word 

On entry 

R I = pointer to block 

On exit 

RO corrupted 
The icon's flags are updated 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call sets the given icon's state held in its flag word as follows: 

new-state = (old-state AND NOT clear-word) EOR EOR-word 

The block contains the following: 

Rl+O window handle (-1 or -2 for icon bar) 
Rl+4 icon handle 
Rl+8 EOR word 
Rl+l2 clearword 



Wimp_SetlconState (SWI &400CD) 

The way each bit of the icon flags is affected is controlled by the state of the 
corresponding bits in the EOR word and the Clear word : 

Value of CE 

00 
01 
10 
II 

Effect 

preserve the bit's status 
toggle the bit's state 
clear the bit 
set the bit 

For example, say you wanted to change an icon's button type (bits 12 - 15) to I 0 
("'o iO 10 binary). You would set the clear-bits to I and the EOR bits to the new value: 

Clear = "'o 1111000000000000 
EO R = "'o I 0 I 0000000000000 

The screen is automatically updated if necessary, so the call can be used to reflect 
a change in a text icon's contents. If you change the justification of a text icon using 
this call. and the icon owns the caret , you should also call Wimp_SetCaretPosition 
(page 3- 152) to make sure that it remains positioned in the text correctly. 

Related SWis 

Wimp_GetlconState (page 3-141) 

Related vectors 

None 



The Window Manager 

Wimp_GetlconState 
(SWI &400CE) 

Returns a given icon's state from its flags word 

On entry 

Rl =pointer to block 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call returns the given icon's state from its flags word. 

On entry the block contains the following: 

Rl+ 0 window handle 
Rl+4 icon handle 

On exit the block contains the following: 

Rl +0 window handle 
Rl+4 
Rl+8 

icon handle 
32 byte icon !:>lock- see Wimp_Createlcon (page 3-96) 

If you want to search for an icon with particular flag settings (for example to find 
out which icon in a group has been selected), you should use Wimp_Whichlcon 
(page 3-162). 

Related SWis 

Wimp_SetlconState (page 3-139) 

~-141 



Wimp_GetlconState (SWI &400CE) 

Related vectors 
None 



The Window Manager 

Wimp_GetPointerlnfo 
(SWI &400CF) 

Returns the position of the pointer and the state of the mouse buttons 

On entry 

Rl =pointer to block 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call returns information about the position of the pointer and the 
instantaneous state of the mouse buttons. It enables the task to find out where the 
mouse pointer is independently of the buttons being pressed or released, for 
example for dragging purposes. 

On exit the block contains the following: 

RI+O mouse x 
Rl+4 mousey 
R I +8 button state 
Rl+l2 window handle (-I for background, -2 for icon bar) 
Rl+l6 icon handle (see below) 



Wimp_GetPointerlnfo (SWI &400CF) 

The mouse button state (returned in R I +8 to R I+ II) can only have bits 0, I and 2 
set: 

Bit Meaning If set 

0 Right-hand button pressed (Adjust) 
I Middle button pressed (Menu) 
2 Lefthand button pressed (Select) 

If the mouse is over a user window (window handle ~0) then the icon handle will be 
either a valid non-negative value for a user icon, or one of the following system 
values: 

Value Icon 

-I work area 
-2 Back icon 
-3 Close icon 
-4 Title Bar 
-5 Toggle Size icon 
-6 scroll up arrow 
-7 vertical scroll bar 
-8 scroll down arrow 
- 9 Adjust Size icon 

-10 scroll left arrow 
-11 horizontal scroll bar 
-12 scroll right arrow 
-13 the outer window frame 

From RISC OS 3 onwards shaded icons in menus are treated differently from 
normal shaded icons, in that the latter are treated as being 'invisible' to the Wimp, 
i.e. Wimp_GetPointerlnfo will never return them. In menus, however, the icons are 
not invisible, but are not allowed to be selected. This allows the interactive help 
program to see the icons and to ask for help on them. 

If the mouse is over a greyed out icon an icon handle of -I will be returned , unless 
it is in a menu , where the icon handle is returned . 

Related SWis 

None 

Related vectors 

None 



Initiates a dragging operation 

The Window Manager 

Wimp_DragBox 
(SWI &40000) 

On entry 

RI <= 0 to cancel drag operation, otherwise 
R I = pointer to block 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call initiates a dragging operation . It is typically called as a result of a 
Mouse_ Click event which has reported a drag-type click (i.e. Select or Adjust held 
down for longer than about !15th of a second). A drag spans calls to Wimp_Poll. so 
the task must maintain information about what is being dragged, etc. Usually the 
coordinates are not required until the final drag event occurs, at which point the 
Wimp returns them. Sometimes Wimp_GetPointerinfo should be called in 
Wimp_Poll null events to track the pointer (especially for type 7 below). A drag is 
terminated (and reported) when the user releases all of the mouse buttons. 



Wimp_DragBox (SWI &40000) 

On entry the block contains the following: 

Rl+ 0 window handle (or-2 to indicate the icon bar) 

Rl+4 
Rl+ 8 
Rl+l2 
Rl+l6 
Rl+20 
Rl+24 
Rl+28 
Rl+32 
Rl+36 
Rl+40 
Rl+44 
Rl+48 
Rl+52 

for drag types I - 4 only 
drag type 
minimum x coordinate of initial position of drag box 
minimum y coordinate of initial position of drag box 
maximum x coordinate of initial position of drag box 
maximum y coordinate of initial position of drag box 
minimum x coordinate of parent box (for types 5 - II only) 
minimum y coordinate of parent box (for types 5 - II only) 
maximum x coordinate of parent box (for types 5 - II only) 
maximum y coordinate of parent box (for types 5 - II only) 
Rl2 value for user routine (for types 8 - II only) 
address of draw box routine (for types 8 - II only) 
address of remove box routine (for types 8 - II only) 
address of move box routine, or<= 0 if there isn't one (for 
types 8 - II only) 

A window handle value of -2 is not available in RISC OS 2. 

The coordinates are passed as screen coordinates , i.e. bottom-left inclusive and 
top-right exclusive. 

The drag is confined to the 'parent box' specified. or to an area computed by the 
Wimp for types I - 4 and 12. The action depends on the drag type: 

Drag type 

I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
II 
12 

Meaning 

drag window position 
drag window size 
drag horizontal scroll bar 
drag vertical scroll bar 
drag fixed size 'rotating dash' box 
drag rubber 'rotating dash' box 
drag point (no Wimp-drawn dragged object) 
drag fixed size user-drawn box 
drag rubber user-drawn box 
as 8 but don't cancel when buttons are released 
as 9 but don't cancel when butto~s are released 
drag horizontal and vertical scroll bars (not in RISC OS 2) 



The Window Manager 

Types 1-4 

These are the 'system' types since they relate to picking up a window, changing its 
size and scrolling it respectively. In these cases, the bounding box for pointer 
movement is worked out automatically by the Wimp. For example, type 2 drags are 
confined to the defined maximum and minimum sizes of the window. 

Bits in the WimpFlags CMOS configuration parameter determine the way in 
which these drags update the screen. There are four bits, 0- 3, corresponding to 
drag types I - 4. If the bit is clear, then dragging is indicated by a dashed outline 
box, similar to that used in types 5 and 6 below. An Open_Window_Request event 
is generated when the mouse button is released to allow the task to update 
appropriate parts of the dragged window. If the WimpFlags bit is set, continuous 
update is required, and Open_Window_Requests are generated for every mouse 
move. 

These drag types are useful if you want to allow the user to, for example, pick up a 
window which does not have a Title Bar (and so is usually unmovable) . You could 
detect clicks in a region of within , say, 32 OS units from the top of the visible work 
area and instigate a drag type I when these occur. 

Types 5-7 

These are 'user' types, where the task decides what the significance of the dragging 
will be. In these cases you supply the coordinates of the parent box. The box being 
dragged is constrained to this area. For types 5 and 6 the initial box position is 
used to draw a box with a dashed border which cycles round. 

For type 5 boxes, the relative positions of the mouse pointer and the box are kept 
constant, so moving the mouse moves the box too. 

For type 6, the relative positions of the bottom right corner of the box and the 
pointer are kept constant, so moving the mouse will increase or decrease the size 
of the box. Generally you would arrange the initial box coordinates such that this 
corner is at or near the pointer position reported in the drag-click event. You can 
alter the moveable corner to the left by reversing the initial x coordinates, and to 
the top by reversing the initial y coordinates. 

In the case of type 7, where there is no dashed box to be dragged, the initial drag 
box position is ignored and the mouse coordinates are constrained to the 
bounding box. 



Wimp_DragBox (SWI &40000) 

Types 8-11 
These types give the maximum flexibility for dragging objects around the whole 
screen. Use drag type 7 and Wimp_UpdateWindow to drag an object within a 
window. They are. though , somewhat more complex to use than the previously 
described types. 

First the application must provide the addresses of three routines which draw. 
remove and move the user's drag item (it doesn't have to be a box) . If no move 
routine is supplied ([Rl +52]~ 0). the Wimp will use the remove and draw routines 
to perform the operation . 

Note that the user code must not be in application space. but in the RMA. This is 
because the Wimp doesn't know to page the task in when this code is required . 

The user code is called under the following conditions : 

On entry 

SVC mode (so use X-type SW!s and save Rl4_SVC before hand) 
RO = new minimum x coordinate 
Rl =new minimum y coordinate 
R2 = new maximum x coordinate 
R3 = new maximum y coordinate 
R4 =old minimum x coordinate (for move routine only) 
R5 = old minimum y coordinate (for move routine only) 
R6 = old maximum x coordinate (for move routine only) 
R7 = old maximum y coordinate (for move routine only) 
Rl2 =value supplied in Wimp_DragBox call 

On exit 

RO - R3 actual box coordinates (normally preserved from entry) 

The user routines would draw. remove or just move (i.e. remove and redraw) their 
drag object according to the coordinates passed. These coordinates are derived by 
the Wimp from mouse movements. 

The graphics window is also set up by the Wimp. The user routines must not 
change this. or draw outside it. 

While these drags are taking place. the Wimp still performs its rotating dashed box 
code. so the routines can take advantage of this. Programming of the VDU dot-dash 
pattern is performed by the Wimp. so all the user routines have to do is call the 
appropriate dot-dash line PLOT codes. 



The Window Manager 

The move routine has to deal with two cases: whether the box has moved or not. If 
the box has moved (ie RO- R3 are not identical to R4- R7). then the move routine 
must exclusive-OR once using the old coordinates to remove the box, then EOR 
again with the new coordinates to redraw it. If the box hasn't changed , the Wimp 
will have programmed the dot-dash pattern so that a single EOR plot will give the 
desired shifting effect of the pattern , so this is what the routine should do. 

Of course, the foregoing is only applicable to dragged objects which use the dash 
effect. If you are dragging, say, a sprite, then the move routine only has to do 
anything when the coordinates have changed, viz restore the background that the 
sprite overwrote, then save the new background and replot the sprite. When no 
move has taken place, the routine could do nothing (or change the sprite for an 
animation effect etc.) 

When this call is made the pointer leaves the current window, when the drag ends 
a pointer entering window event will be generated. 

Type 12 

This is similar to types I - 4. It is equivalent to an Adjust drag on one of the scroll 
bars . 

This type is not available in RISC OS 2. 

Related SWis 

None 

Related vectors 

None 

3-149 



Wimp_ForceRedraw (SWI &40001) 

~-1 FiO 

Wimp_ForceRedraw 
(SWI &40001) 

Forces an area of a window or the screen to be redrawn later 

On entry 

RO =window handle (-1 means whole screen, -2 indicates the icon bar) 
Rl =minimum x coordinate of area to redraw 
R2 = minimum y coordinate of area to redraw 
R3 = maximum x coordinate of area to redraw 
R4 =maximum y coordinate of area to redraw 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call forces an area of a window or the screen to be marked as invalid, and to be 
redrawn later using Redraw_Window_Request events. 

A window handle value of -2 on entry is not available in RISC OS 2. 

If RO is -I on entry, then R I - R4 specify an area of the screen in absolute 
coordinates. If RO is not -I, then it indicates a window handle, and Rl- R4 specify 
an area of the window relative to the window's work area origin . 



The Window Manager 

This call could be used 

• to reconstruct the screen if for some reason it has been corrupted 

• to reinstate a particular area after, for example, an error box has been drawn 
over the top of it 

• to redraw the screen after redefining one or more of the soft characters, which 
could affect any part of the screen. 

Two strategies are possible when the task is required to change the contents of a 
window. These are: 

• call this routine, which causes the specified area to be redrawn later 

• call Wimp_UpdateWindow (page 3-131). followed by the necessary graphic 
operations (and calls to Wimp_GetRectangle (page 3-133)) 

The second method is generally quicker, but involves more code. 

Related SWis 

Wimp_RedrawWindow (page 3-129). Wimp_UpdateWindow (page 3-131 ), 
Wimp_GetRectangle (page 3-133) 

Related vectors 

None 



Wimp_SetCaretPosition (SWI &40002) 

Wimp_SetCaretPosition 
(SWI &40002) 

Sets up the data for a new caret position, and redraws it there 

On entry 

RO =window handle (-1 to turn off and disown the caret) 
Rl =icon handle (-1 if none) 
R2 = x offset of caret (relative to work area origin) 
R3 = y offset of caret (relative to work area origin) 
R4 = height of caret (if -I, then R2, R3, R4 are calculated from RO,R I ,R5) 
R5 =index into string (if -I, then R4, R5 are calculated from RO,RI ,R2,R3 

R2 and R3 are modified to exact position in icon) 

On exit 

RO- R5 =preserved 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call removes the caret from its old position, sets up the data for its new 
position, and redraws it there. Subsequent calls to Wimp_RedrawWindow and 
Wimp_UpdateWindow will cause the caret to be automatically redrawn by the 
Wimp, unless it is marked as invisible. 

R4 and R5 can only be set to -I if the icon handle passed in Rl is non-negative 



The Window Manager 

Some of the values may be calculated: 

• If R4 (the height) is -I , the Wimp calculates the x andy coordinates of the caret 
and its height (R2, R3, R4) from the data in RO, RI and R5. This is only possible 
if Rl contains an icon handle. 

• Similarly, if R5 (the index) is -I , the Wimp calculates the index into the string 
and the caret height (R4, R5) from RO- R3. 

In each case, the height of the caret is determined from the bounding box of the 
font used in the icon (for the system font , a height of 40 OS units is used). The 
caret's coordinates refer to the pixel at the bottom of the vertical bar. Note that the 
icon's bounding box and whether it has an outline are also considered . 

The font height also contains some flags. Its full description is : 

bits 0- 15 height in OS units (0- 65535) 
bits 16 - 23 colour (if bit 26 is set) 

Bit 

24 
25 
26 
27 

Meaning when set 

use VDU 5-type caret , else use anti-aliased caret 
the caret is invisible 
use bits 16- 23 fo~ the colour, else caret is Wimp colour II 
bits 16- 23 are unhanslated, else they are a Wimp colour 

If bit 27 is set, then bit 26 must be set and the caret is plotted by EORing the logical 
colour given in bits 16- 23 ontb the screen. For the 256-colour modes, bits 16- 17 
are bits 6- 7 of the tint, and bits 18- 23 are the colour. 

If bit 27 is clear, then the caret is plotted such that the Wimp colour given (or 
colour II) appears when the background is Wimp colour 0 (white). The Wimp 
achieves this by EO Ring the actual colour for Wimp colour 0 and the caret colour 
together, then EORing this onto the screen. 

Esoteric note: to ensure that the caret is pJotted in a given colour on a non-white 
background, you must do the following: 

• use Wimp_ReadPalette (page 3-192) to obtain the real logical colours 
associated with your background and caret (byte 0 of the entries) 

• EOR these together 

• put the result in bits 16- 23 and set bits 26 and 27. 

Related SWis 

Wimp_GetCaretPosition (page 3-154) 

Related vectors 

None 

3-153 



Wimp_GetCaretPosition (SWI &40003) 

3-154 

Returns details of the caret's state 

Wimp_GetCaretPosition 
(SWI &40003) 

On entry 

Rl =pointer to block 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call returns details of the caret's state. The block contains the following: 

RI+O window handle where caret is (-1 if none) 
Rl+4 icon handle (-I if none) 
R I +8 x offset of caret (relative to work area origin) 
Rl + 12 y offset of caret (relative to work area origin) 
Rl + 16 caret height and flags or -I for not displayed 
Rl +20 index of caret into string (if in a writable icon) 

The height and flags returned at Rl+l6 are as described under 
Wimp_SetCaretPosition (page 3-152) . 

Related SWis 

Wimp_SetCaretPosition (page 3-152) 



Related vectors 

None 

The Window Manager 

3-155 



Wimp_CreateMenu (SWI &40004) 

3-156 

Creates a menu structure 

Wimp_ CreateMenu 
(SWI &40004) 

On entry 

Rl =-I means close any active menu, or 
Rl =pointer to menu block (or window handle) 
R2 = x coordinate of top-left corner of top level menu 
R3 = y coordinate of top-left corner of top level menu 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call is used to create a menu structure. The top level menu is initially 
displayed by the Wimp. Having made this call, the task must return to its normal 
polling loop. While the task calls Wimp_Poll, the Wimp maintains the menu tree, 
until the user clicks with any of the mouse buttons. If the click was outside the 
menus, then the Wimp closes all the menus and behaves as if they had not been 
there. If the mouse is clicked inside a menu, then a Menu_Selection event code is 
returned from Wimp_Poll , along with a list of selections. 



The Window Manager 

The menu block contains the following: 

R I+ 0 menu title (if a null string, then the menu is untitled) 
R I+ 12 menu title foreground and frame colour 
R I+ 13 menu title background colour 
Rl + 14 menu work area foreground colour 
Rl + 15 menu work area background colour 
R I+ 16 width of following menu items 
R I +20 height of following menu items 
R I +24 vertical gap between items 

Rl+28 menu items (each 24 bytes): 

bytes 0 - 3 menu flags : 

Bit 

0 

2 
3 

4 

7 
8 

all others 

bytes 4- 7 

Meaning when set 

display a tick to the left of the item 
dotted line following (separates 
sections) 
item is writable for text entry 
generate a message when moving 
to the submenu 
allow submenu to be opened even if 
this item is greyed out (not in 
RISC OS 2) 
this is the last item in this menu 
in the first menu item only, if this 
bit is set then the title data at RI+O 
is the data as for an indirected text 
icon (see the section entitled 
Wimp_Createlcon (SWI &400C2) on 
page 3-96) 
not used; must be zero 

submenu pointer(>= &8000) or window 
handle (I - &7FFF) (-1 if none) 

bytes 8 - II menu icon flags- as for a normal icon 
bytes 12- 23 menu icon data ( 12 bytes)- as for a 

[I normal icon 

If Rl is a window handle, the Wimp will open that window as the menu otherwise 
the menu structure must remain intact as long as the tree is open. The Wimp does 
not take a copy, but uses it directly. 

3-157 



Wimp_CreateMenu (SWI &40004) 

~-1!=\R 

If a menu title starts with'\', then it and all submenus opened off it are reversed. so 
that: 

• ticks appear on the right. arrows on the left; 

• submenus are opened to the left (including Message_MenuWarning); 

• left-justified menu items are right-justified. and vice-versa. 

The above only applies from RISC OS 3 onwards. 

Pressing Return while the caret is inside a writable item is equivalent to pressing a 
mouse button. i.e. it selects that item. 

A menu is basically a window whose work area is entirely covered by the menu 
items. The work area colour bytes at RI +I 4 and R I+ I 5 are therefore not generally 
used unless the 'gap between items· is non-zero; they are overridden by the items· 
icons colours. The window has a Title Bar if the string at RI +0 is non-null. 
otherwise it is untitled. If the title string is not indirected. its maximum length is 
the smaller of 12 and (item-width DIY I6); it should be terminated by a control 
code if its length is less than I 2. 

The menu will be automatically given a vertical scroll bar if it is taller than the 
current screen mode. 

A menu item is a text icon whose bounding box is derived from width and height 
given at R I+ 16 and R I +20. Thus all entries in a menu are the same size. They are 
arranged vertically and lie horizontally between a tick' icon on the left and an 
arrow (submenu indicator) icon on the right. if present. 

The menu item flags can alter the appearance of each item. e.g. by telling the Wimp 
to display the tick. or a separating dashed line beneath it. To shade an item. set bit 
22 of the icon flags. 

If the submenu pointer for an item is not -I. then it points to a similar data 
structure describing a submenu . An arrow is displayed to the right of the menu 
item; if the user moves the mouse pointer over this . then the submenu 
automatically pops up. Generally. submenu titles are the same as the parent item's 
text. or can be a prompt like 'Name: '. 

The submenu pointer can be a window handle instead. Such a window is known as 
a dialogue box or dbox for short. In this case. the window is opened (as if it were a 
menu) when the mouse pointer moves over the arrow. The first writable icon in the 
window is given the input focus. You cannot close a menu window by clicking in it 
or pressing Return . Instead you should give it an 'OK' icon and treat clicks over that 
as a selection. The menu can then be closed using Wimp_CreateMenu with 
RI =-I. 

If you want Return to make a selection. use the key-pressed event. 



The Window Manager 

Cancelling a menu-window can be achieved by clicking outside of the menu 
structure, or by providing a 'Cancel' icon for the user to click on. In the first case, no 
Close_Window_Request is returned for the window; it is closed automatically by 
the Wimp. 

When a menu window is closed, the caret is automatically given back to wherever it 
was before the window was opened. 

Bit 3 of the menu flags changes the submenu behaviour. If it is set, then moving 
over the right arrow will cause a MenuWarning message to be generated. The 
application can respond as it sees fit, usually by calling Wimp_CreateSubMenu 
(page 3-199) to display the appropriate object. Note that in this case the submenu 
pointer in the menu structure does not have to be valid, but it is passed to the 
application in the message block anyway. The submenu pointer is important if 
Wimp_DecodeMenu will be used later on. 

Ma~y of the iconic properties of menu items can be controlled, using the icon flags 
word and icon data bytes. Below is a list of the aspects of an icon that a menu item 
may or may not exhibit: 

• it can contain text. Indeed it must in order to be useful (bit 0 must be set) 

• it can contain a sprite, but see note below 

• it can have a border, but this isn't particularly useful 

• the text is always centred vertically (bit 4 ignored), but the horizontal 
formatting bits (3 and 9) are used 

• the background should be filled (bit 5 set) 

• the text can be anti-aliased 

• the item is drawn only by the Wimp (bit 7 ignored) 

• the icon can be indirected- useful for long writable item strings 

• the button type is always 9 and the ESG is always 0 (bits 12 - 20 ignored); use 
the menu flags to make an item writable 

• the selected bit (21) isn't readable as the icon is 'anonymous'. The task hears 
about the final selection through the Menu_Selection event 

• the shaded bit (22) is useful for disabling certain items. However, such items' 
submenu arrows can't be followed, so you should only shade leaf items 

• the deleted bit (23) is irrelevant 

• the colours/font handle byte (bits 24- 31) should be set as appropriate. 

The icon data contains either the actual text (0 to 12 characters, control-code 
terminated if less than twelve) or the three indirected icon information words. A 
validation string can naturally be used for writable items. 

3-159 



Wimp_CreateMenu (SWI &40004) 

~-1fl0 

A menu item can only usefully contain a sprite if it is a sprite-only (no text) 
indirected icon. This allows for a sprite control block pointer to be given in the 
middle word of the icon data. Typically this is +I for a Wimp sprite, or a valid 
user-area pointer. 

If the task can create more than one menu, it must remember which menu is 
displayed, as the Wimp does not return this when a selection has been made. It 
must also scan down its data structure to determine which submenus the numbers 
relate to, before it can decide what action to take. Wimp_DecodeMenu 
(page 3- I 61) can help with this. 

It is recommended that tasks use a 'shorthand' for defining menus, which is 
translated into the full form required by the Wimp when needed. But menus must 
be held in semi-permanent data structures once created, since the Wimp accesses 
them while menus are open. 

Note that if a menu selection is made using Adjust, it is conventional for the 
application to keep the menu structure open afterwards. What happens is that the 
Wimp marks the menu tree temporarily when a selection is made. The application 
should call Wimp_GetPointerinfo to see if Adjust is pressed. If so. it should call 
Wimp_CreateMenu before returning to Wimp_Poll, which causes the tree to be 
re-opened in the same place. 

The menu structure may be modified before re-opening, in which case any changes 
are noted by the Wimp, for example if menu entries become shaded. If the 
application does not call Wimp_CreateMenu, then the Wimp will delete the menu 
tree on the next call to Wimp_Poll , as the tree was marked temporary when the 
selection was made. 

See the section entitled Menus on page 3-34 for more information about menus. 

Related SWis 

None 

Related vectors 

None 



The Window Manager 

Wimp_DecodeMenu 
(SWI &40005) 

Converts a numerical list of menu selections to a string containing their text 

On entry 

Rl =pointer to menu data structure 
R2 = pointer to a list of menu selections 
R3 = pointer to a buffer to contain the answer 

On exit 

RO corrupted 
buffer updated to contain menu item text. separated by '.'s 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

This call converts a numerical list of menu selections to a string containing the text 
of each successive menu item, e.g. Display. Small icons for a typical Filer 
menu selection. 

Related SWis 

None 

Related vectors 

None 

3-161 



Wimp_Whichlcon (SWI &40006) 

3-162 

Searches for icons that match a given flag word 

Wimp_ Which Icon 
(SWI &40006) 

On entry 

RO =window handle (or -2 to indicate the icon bar) 
Rl =pointer to block to contain the list of icon handles 
R2 = bit mask (bit set means consider this bit) 
R3 =bit settings to match 

On exit 

RO corrupted 
block at Rl updated to contain a list of icon handle words, terminated by -I 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call compares the flag words of all of the icons belonging to the given window 
with the pattern given in R3. Each icon whose flags match has its handle added to 
the block pointed to by R I. 

A window handle value of -2 on entry is not available in RISC OS 2. 

The mask in R2 is used to determine which bits are to be used in the comparison. 
The icon's handle is added to the list if (icon-flags AND bit-mask) = (bit-settings 
AND bit-mask). For example: 

SYS "Wimp_Whichicon" ,window, buffer, 1<<21, 1<<21 

On exit a list of icon handles whose selected bit (21) is set will be in the buffer. 



The Window Manager 

Similarly, to see which is the first icon with ESG number I that is selected: 

SYS "Wimp_Whi c h icon ", window , buffer , &003 F0000 , &002 1 0000 

!buffer now contains the handle of the required icon. or -I if none is selected. 

Related SWis 

Wimp_GetlconState (page 3- 141) 

Related vectors 

None 

3-163 



Wimp_SetExtent (SWI &40007) 

3-164 

Sets the work area extent of a specified window 

Wimp_SetExtent 
(SWI &40007) 

On entry 

RO =window handle 
Rl =pointer to block 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call sets the work area extent of the specified window, and usually causes the 
window's scroll bars to be redrawn (to reflect the new total size of window) . The 
work area extent may not be changed so that any part of the visible work area lies 
outside the extent, so this call cannot change the current size of a window, or cause 
it to scroll. 

On entry, the block contains: 

Rl+ 0 new work area minimum x 
Rl+4 
Rl+8 
Rl+ 12 

new work area minimum y 
new work area maximum x 
new work area maximum y 

It is usual to make this call when a document has been extended, e.g. by text being 
inserted into a word-processor. 



The Window Manager 

Under RISC OS 2 you must set the extent to be a whole number of pixels. If not, 
strange effects can occur, such as the pointer moving beyond its correct bounding 
box. If you do th is, the Wimp automatically readjusts the extent on a mode change. 

From RISC OS 3 onwards the Window extent is automatically rounded to be a 
whole number of pixels (and is re-rounded on a mode change) . 

Related SWis 

None 

Related vectors 

None 

3-165 



Wimp_SetPointerShape (SWI &40008) 

~-1 flfl 

Wimp_SetPointerShape 
(SWI &40008) 

Sets the shape and active point of the pointer 

On entry 

RO =shape number (0 for pointer off) 
RI =pointer to shape data (-1 for no change) 
R2 =width in pixels (must be multiple of 4) 
R3 = height in pixels 
R4 =active point x offset from top-left in pixels 
R5 =active pointy offset from top-left in pixels 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call sets the shape and active point of the pointer. 

The shape data is a series of bytes giving the pixel colours for the shape. Each row 
of the shape is given as a whole number of bytes (e.g. 3 bytes for a 12-pixel wide 
shape) . Bytes are given in left to right order. The least significant two bits of each 
byte give the colour of the leftmost pixel in that group of four (i.e. it looks 
backwards as you write it down in binary) . 

In new programs, you should now use the call Wimp_SpriteOp (page 3-20 I) with 
R0=36 (SetPointerShape) instead of this one. The following principles still apply 
though . 



The Window Manager 

This convention should be used when programming the pointer shape under the 
Wimp: 

• shape I is the default arrow shape (set-up by *Pointer) 

• to use an alternative, define and use shape 2 

• when the pointer leaves the window where it was changed, it should be reset 
to shape I. 

The event codes Pointer_Entering_ Window and Pointer_Leaving_ Window returned 
from Wimp_Poll are very useful for deciding when to reprogram the pointer shape. 

If you want to use Wimp_SpriteOp for all pointer shape programming, and wish to 
avoid using *Pointer, you can use the Wimp sprite ptr_defaul t to program the 
standard arrow shape. Note however that ptr_defaul t does not have a palette, 
so you would have to reset the pointer palette too if your pointer shape changed it. 

Related SWis 

None 

Related vectors 

None 

3-167 



Wimp_OpenTemplate (SWI &40009) 

3-168 

Opens a specified template file 

On entry 

Wimp_ Open Template 
(SWI &40009) 

Rl =pointer to template pathname to open 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This causes the Wimp to open the specified template file. and to read in some 
header information from the file. Only one template file may be open at a time; this 
is the one used by Wimp_LoadTemplate (page 3-170) when that SWI is called. 

Related SWis 

Wimp_CloseTemplate (page 3-169). Wimp_LoadTemplate (page 3-170) 

Related vectors 

None 



Closes the currently open template file 

On entry 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

The Window Manager 

Wimp_ Close Template 
(SWI &400DA) 

This closes the currently open template file. 

Related SWis 

Wimp_OpenTemplate (page 3- I68). Wimp_LoadTemplate (page 3- I 70) 

Related vectors 

None 

3-169 



Wimp_LoadTemplate (SWI &40008) 

3-170 

Loads a template 

Wimp_LoadTemplate 
(SWI &40008) 

On entry 

Rl =pointer to user buffer for template. or~ 0 to find the size of the template 
R2 =pointer to workspace for indirected icons 
R3 =pointer to byte following workspace 
R4 =pointer to 256 byte font reference array (-1 for no fonts) 
R5 =pointer to (wildcarded) name to match (must be 12 bytes word-aligned) 
R6 =position to search from (0 for first call) 

On exit 

RO corrupted 
Rl preserved, or required size of buffer (if Rl ~ 0 on entry) 
R2 =pointer to remaining workspace, or required size of workspace (if Rl ~ 0 on 

entry) 
R3 , R4 preserved 
R5 = pointer to actual name 
R6 = position of next entry (0 if no match found) 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call loads a template. You must have previously called Wimp_OpenTemplate 
to open the template. 



The Window Manager 

The space required by the buffer passed in Rl is 88 bytes for the window, 32 bytes 
for each icon and room for the initial values of all indirected data fields, since all of 
these things are initially copied into the buffer. The indirected data is then copied 
by the Wimp into the workspace area pointed to by R2. The font reference array is 
also updated if fonts are used. 

The required sizes of the buffer and workspace area are hard to work out, and so in 
RISC OS 3 the option was added whereby you can find these values by setting 
RI :5; 0. You should use this option where possible. 

Window templates are created by the template creation utility (FormEd). They are 
stored in a file, and each template has a name associated with it. Because the 
search name may be wildcarded, it is possible to search for all templates of a given 
form (e.g. dialog*) by calling Wimp_LoadTemplate with R6=0 the first time, then 
using the value passed back for subsequent calls. R6 will be returned as 0 on the 
call after the last template is found. As the wildcarded name is overwritten by the 
actual one found, it must be re-initialised before every call and must be big enough 
to have the template name written into it. 

The indirected icon workspace pointer is provided so that when the window 
definition is read into the buffer addressed by Rl, its icon fields can be set 
correctly. An indirected icon's data is read from the file into the workspace 
addressed by R2, and the icon data pointer fields in the window definition are set 
appropriately. R2 is updated, and if it becomes greater than R3, a Window 
definition won't fit error is given. 

The font reference count array is used to overcome the problem caused with 
dynamically allocated font handles. When a template file is created, font 
information such as size, font name etc is stored along with the font handle that 
was returned for the font in FormEd. When a template is subsequently loaded, the 
Wimp calls Font_FindFont and replaces references to the original font number with 
the new handle. It then increments the entry for that handle in the reference array. 
This array should be initialised to zero before the first call to Wimp_LoadTemplate. 

When a window is deleted, for all font handles in the range I - 255 you should call 
Font_LoseFont the number of times given by that font's reference count. This 
implies that a separate 256 byte array is needed for each template loaded. 
However, this can be stored a lot more compactly (e.g. using font handle/count 
byte pairs) once the array has been set up by Wimp_LoadTemplate. 

An alternative is to have a single reference count array for all the windows in the 
task, and only call Font_LoseFont the appropriate number of times for each handle 
when the task terminates. 

3-171 



Wimp_LoadTemplate (SWI &40008) 

Errors 

No errors are generated if the template could not be found. To check for this 
condition check for R6 = 0 on exit. 

If an error occurs you are still expected to close the template file. 

No error is generated for objects of type :t:- I: the object is simply loaded into the 
buffer, and no indirected data processing occurs . This is different from RISC OS 2, 
which reported an error in these circumstances . 

Related SWis 

Wimp_OpenTemplate (page 3-168), Wimp_CloseTemplate (page 3-169) 

Related vectors 

None 



Creates or passes on key presses 

The Window Manager 

Wimp_ProcessKey 
(SWI &400DC) 

On entry 

RO = character code 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call has two uses. The first is to make the Wimp return a Key_Pressed event as 
though the character code passed in RO was typed by the user. It is useful in 
programs where a menu of characters corresponding to those not immediately 
available from the keyboard is presented to the user, and clicking on one of them 
causes the code to be entered as if typed . 

The second use is to pass on a keypress that a task does not understand, so that 
other applications (with the 'hot key' window flag set) may act on it. The key is 
passed (via the Key_Pressed event) to each eligible task in turn, from the top of the 
window stack down. It stops when a task fails to call Wimp_ProcessKey (because it 
recognises the key) , or until the bottom window is reached. 

For this to work, it is vital that a task always passes on unrecognised key presses 
using Wimp_ProcessKey. Conversely, if the program can act on the key stroke, it 
should not then call Wimp_ProcessKey, as this might result in a single key stroke 
causing several separate actions. 

3-173 



Wimp_ProcessKey (SWI &400DC) 

~-174 

As a last resort, if no task acts on a function key press, the Wimp will expand the 
code into the appropriate function key string and insert it into the writable icon 
that owns the caret, if any. 

Related SWis 

None 

Related vectors 

None 



The Window Manager 

Wimp_CioseOown 
(SWI &40000) 

Informs the Wimp that a task is about to terminate 

On entry 

RO =task handle returned by Wimp_Initialise (only required if Rl='TASK') 
Rl ='TASK' (see Wimp_Initialise &400CO) 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call must be made immediately before the task terminates by calling OS_Exit. 
If this was the only extant task. the Wimp will reset the soft key and mode settings 
to their original values (i.e. as they were before Wimp_lnitialise was first called). 
Any application memory used by the task will be returned to the Wimp's free pool. 

If the task handle is not given. then the Wimp will close down the currently active 
task. i.e. the one which was the last to have control returned to it from Wimp_Poll. 
This is sufficient if the task is loaded in the application workspace (as opposed to 
being a relocatable module). 

Module tasks should always pass their handle to Wimp_CloseDown. as there is no 
guarantee that the module in question is the active one at the time of the call. For 
example. a task module would be required to close down in its 'die' code. which 
may be called asynchronously without control passing to the module through 
Wimp_Poll. 

~-175 



Wimp_C/oseOown (SWI &40000) 

A Wimp_CloseDown will cause the service call WimpCloseDown (&53) to be 
generated. See the section entitled Relocatable module tasks on page 3-62 for details. 

Related SWis 

Wimp_Initialise (page 3-87) 

Related vectors 

None 



Starts a 'child' task from within another program 

The Window Manager 

Wimp_StartTask 
(SWI &400DE) 

On entry 

RO = pointer to * Command to be executed 

On exit 

RO = handle of task started, if it is still alive; 0 otherwise 
(not available in RISC OS 2) 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call is used to start a 'child' task from within another program. The text 
pointed to by RO on entry can be any * Command which will cause a Wimp program 
to be executed, e.g. BASIC -quit myProg. 

The Wimp will create a new 'domain' or environment for the task and calls OS_CLI 
to execute the command. If the new task subsequently calls Wimp_Initialise and 
then Wimp_Poll, control will return to caller of Wimp_StartTask. Alternatively, 
control will return when the new task terminates through OS_Exit (which QUIT in 
BASIC calls) . 

This call is used by the Desktop and the Filer to start new tasks. 

Note that you can only call this SWI: 

• if you arJ already a 'live' Wimp task, and have gained control from 
Wimp_Initialise or Wimp_Poll . 

• you are in USR mode. 

3-177 



Wimp_StartTask (SWI &400DE) 

~-178 

Related SWis 

None 

Related vectors 

None 



Reports errors 

The Window Manager 

Wimp_ReportError 
(SWI &400DF) 

On entry 

RO = pointer to standard error block, see below 
Rl =flags, see below 
R2 =pointer to application name for error window title(< 20 characters) 

On exit 

RO corrupted 
R I = 0 if no key click, I if OK selected, 2 if Cancel selected 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call provides a built-in means for reporting errors that may occur during the 
running of a program The error number and its text is pointed to by RO. The control 
code-terminated string pointed to by R2 is used in the Title Bar of the error 
window, optionally preceded by the text Error from 

The format of a standard error block is: 

RO+O 
R0+4 

error number 
zero-terminated error string 

3-179 



Wimp_ReportError (SWI &400DF) 

'l_1 An 

The flags in Rl on entry have the following meanings: 

Bit 

0 
I 
2 
3 

4 

5 

6 

7 

8- 31 

Meaning when set 

provide an OK box 
provide a Cancel box 
highlight Cancel (or OK if bit is cleared) 
if the error is generated while a text-style window is open (e.g. 
within a call to Wimp_CommandWindow), then don't 
producethepromptPress SPACE or click mouse to 
continue, but return immediately 
don't prefix the application name with Error from in the 
error window's Title Bar 
if neither box is clicked, return immediately with R I =0 and 
leave the error window open 
select one of the boxes according to bits 0 and I, close the 
window and return 
will not produce a 'beep' even if WimpFlags bit 4 is clear (this 
bit is reserved in RISC OS 2) 
reserved; must be 0 

If neither bit 0 or I is set. an OK box is provided anyway. Bits 5 and 6 can be used to 
regain control while the error window is still open, say to implement timeouts (an 
example is the disc insert box, which polls the disc drive to see if a disc has been 
inserted), or use keypresses to stand for clicks on either of the boxes. Note though 
that the Wimp should not be re-entered while an error window is open, so you 
should always call Wimp_ReportError with bit 6 of Rl set before you next call 
Wimp_Poll, if you are using bit 5 in this way. 

Wimp_ReportError causes the Service WimpReportError (&57) to be generated. 
See the section entitled Relocatable module tasks on page 3-62 for details. 

If you press Escape when a Wimp_ReportError box is up, the code returned is for 
the non-highlighted box, i.e. Rl=2 if OK is highlighted, and Rl=l if Cancel is 
highlighted. 

Note that RISC OS 2 will always return Rl=l (i.e. OK clicked), even if the Cancel 
box is highlighted. 

Pressing Return selects the highlighted box, and returns I or 2 as appropriate. 

In either case, if the box that would have been selected is not present, the other 
box is selected. 

Related SWis 

None 



Related vectors 

None 

The Window Manager 

3-181 



Wimp_GetWindowOutline (SWI &400EO) 

~-1R? 

Wimp_GetWindowOutline 
(SWI &400EO) 

Gets the bounding box for a window 

On entry 

Rl =pointer to a five-word block 

On exit 

RO corrupted 
The block is updated 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call gets the bounding box for a window. 

On entry, Rl +0 contains the window handle; on exit the block is updated thus: 

Rl +0 window handle (or -2 to indicate the icon bar) 
R I +4 minimum x coordinate of window bounding box 
Rl+8 minimum y coordinate of window bounding box 
Rl + 12 maximum x coordinate of window bounding box 
Rl+l6 maximum y coordinate of window bounding box 

A window handle value of -2 is not available in RISC OS 2. 

The Wimp supplies the xO,yO inclusive, xi, yl exclusive coordinates of a rectangle 
which completely covers the specified window, including its border. This call is 
useful when you want, for example, to set a mouse rectangle to the same size as a 
window. 

Note that this call will only work after a window is opened, not just created. 



Related SWis 
None 

Related vectors 
None 

The Window Manager 

3-183 



Wimp_Pollldle (SWI &400E1) 

~-1R4 

Wimp_Pollldle 
(SWI &400E1) 

Polls the Wimp, sleeping unless certain events have occurred 

On entry 

RO =mask (see Wimp_Poll) 
Rl =pointer to 256 byte block (used for return data; see Wimp_Poll) 
R2 =earliest time for return with Null_Reason_Code event 
R3 =pointer to poll word if RO bit 22 is set (not in RISC OS 2) 

On exit 

see Wimp_Poll (page 3-115) 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call performs the same task as Wimp_Poll. However, the caller also specifies 
an OS_ReadMonotonicTime-type time on entry. The call will not return before 
then, unless there is a non-null event to be processed. Effectively the caller can 
'sleep', not being woken up until the specified time has passed or until it has some 
action to perform. This gives more processing time to other tasks. 

Having performed the appropriate action upon return, the task should add its 
'time-increment'; (e.g. I 00 for a one-second granularity clock) to the previous value 
it passed in R2 and call Wimp_Pollldle again. 

Note that if the Wimp is suspended for a while ( eg the user goes into the command 
prompt) and then returns, it is possible for the current time to be much later than 
the 'earliest return ' time. 



The Window Manager 

For this reason, it is recommended that (for example) a clock task should cater for 
this by incorporating the following structure: 

SYS"OS_ReadMonotonicTime" TO newtime 
WHILE (newtime - oldtime) > 0 

oldtime=oldtime+lOO 
ENDWHILE 
REM Then pass oldtime to Wimp_Pollidle 

Related SWis 

Wimp_Poll (page 3-115) 

Related vectors 

None 

3-185 



Wimp_Piotlcon (SWI &400E2) 

~-1A~ 

Wimp_Piotlcon 
(SWI &400E2) 

Plots an icon in a window during a window redraw or update loop 

On entry 

Rl =pointer to an icon block (see below) 

On exit 

RO corrupted 

Interrupts 
) 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call can be used to plot an icon in a window during a window redraw or update 
loop. The icon doesn't exist as part of the window's definition. Instead, the data to 
be used to plot the icon is passed explicitly through Rl . The format of the block is 
the same as that used by Wimp_Createlcon (page 3-96). except that there is no 
window handle associated with it (this being implicitly the window which is 
currently being redrawn or updated) : 

RI+O minimum x coordinate of icon bounding box 
Rl+4 minimum y coordinate of icon bounding box 
Rl+8 maximum x coordinate of icon bounding box 
R I+ 12 maximum y coordinate of icon bounding box 
Rl+l6 icon flags 
Rl+20 icon data 

See Wimp_Createlcon on page 3-96 for details about these gelds. 



The Window Manager 

Under RISC OS 3 this SWI can be called from outside the redraw code of an 
application . In this case, the block pointed to by Rl should contain screen 
coordinates instead of window relative ones. 

Related SWis 

None 

Related vectors 

None 

3-187 



Wimp_SetMode (SWI &400E3) 

3-188 

Changes the display mode used by the Wimp 

Wimp_SetMode 
(SWI &400E3) 

On entry 

RO = mode number 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call changes the display mode used by the Wimp. It should not be used by 
applications (which should be able to work in any mode), unless absolutely 
necessary. Its main client is the palette utility, which allows the user to change 
mode as required. 

In addition to changing the mode this call resets the palette according to the 
number of colours in the new mode, reprograms the mouse pointer appropriately 
and re-allocates the screen memory to use the minimum required for this mode. In 
addition, the screen is rebuilt (by asking all tasks to redraw their windows) and 
tasks are informed of the change through a Wimp_Poll message. 

Notes: the new mode is remembered for the next time the Wimp is started, but 
does not affect the configured Wimp mode, so this will be used after a hard reset or 
power-up. If there is no active task when Wimp_SetMode is called , the mode 
change doesn't take place until Wimp_Initialise is next called . If there is 
insufficient memory for the mode change, it is remembered and no error is 
generated. 



The Window Manager 

On the next call to Wimp_Poll after a mode change, the Wimp issues 
Message_ModeChanged and Open_Window_Requests for all open windows. If the 
new mode is smaller than the previous one. the windows are also forced back onto 
the screen. This does not happen in RISC OS 2. 

Related SWis 

Wimp_SetPalette (page 3- I 90) 

Related vectors 

None 

3-189 



Wimp_SetPalette (SWI &400£4) 

Sets the palette 

On entry 

Rl =pointer to 20-word palette block 

On exit 

RO corrupted 
Rl preserved 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

This call sets the palette. 

Wimp_SetPalette 
(SWI &400E4) 

The block pointed to by Rl contains the following on entry: 

RI+O Wimp colour 0 RGB value 
Rl+4 Wimp colour I RGB value 
Rl+8 Wimp colour 2 RGB value 

Rl+56 
Rl+60 
Rl+64 
Rl+68 
Rl+72 
Rl+76 

Wimp colour 14 RGB value 
Wimp colour 15 RGB value 
border colour RGB value 
pointer colour I RGB value 
pointer colour 2 RGB value 
pointer colour 3 RGB value 



The Window Manager 

Each RGB value word has the format &BBGGRROO, i.e. bits 0- 7 are reserved. and 
should be 0, bits 8 - 15 are the red value. bits 16- 23 the green and bits 24- 31 the 
blue, as used in a VDU 19.l.I6.r,g,b command. The call, whose main user is the 
palette utility, issues the appropriate palette VDU calls to reflect the new values 
given in the 20-word block. In modes other than 16-colour ones , a remapping of the 
Wimp's colour translation table may be required. necessitating a screen redraw. It 
is up to the user of Wimp_SetPalette to cause this to happen (the palette utility 
does). Tasks are informed of palette changes through a message event returned by 
Wimp_Poll . 

Related SWis 

Wimp_SetMode (page 3- 188). Wimp_ReadPalette (page 3-192) 

Related vectors 

None 

3-191 



Wimp_ReadPalette (SWI &400E5) 

'l_1 Q') 

Reads the palette 

Wimp_ReadPalette 
(SWI &400E5) 

On entry 

Rl =pointer to 20-word palette block 

On exit 

RO corrupted 
R I preserved 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SYC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call reads the palette. The 20-word block is updated in the format described 
under Wimp_SetPalette (page 3-190). However. the bottom byte of the first 16 
entries contains the logical colour number that is used for that Wimp colour. This 
is the same as the Wimp colour in 16-colour modes. In 256 colour modes. bits 0 
and I are bits 6 and 7 of the tint. and bits 2 - 7 are the GCOL colour. 

The values returned from Wimp_ReadPalette are analogous to those returned by 
OS_ReadPalette. in that they always have the bottom nibbles clear. These colours 
are not correct for passing to ColourTrans: you have to make the bottom nibbles 
into copies of the top ones. 

Applications can use this call to discover all of the current Wimp palette settings. 

Related SWis 

Wimp_SetPalette (page 3-190) 



Related vectors 

None 

The Window Manager 

3-193 



Wimp_SetColour (SWI &400E6) 

~-194 

Wimp_SetColour 
(SWI &400E6) 

Sets the current graphics foreground or background colour and action 

On entry 

RO =colour and GCOL action (see below) 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This calls is used to set the current graphics foreground or background colour and 
action to one of the 16 standard Wimp colours. As described earlier, these map 
into ECF patterns in monochrome modes, four grey-level colours in four-colour 
modes, the available colours in I 6-colour modes, and the closest approximation to 
the Wimp colours in 256-colour modes. 

The format of RO is as follows: 

Bits 
0-3 
4-6 
7 

Meaning 

Wimp colour 
GCOL action 
0 for foreground, I for background 

After the call to Wimp_Seteolour, the appropriate GCOL, TINT and (in two-colour 
modes) ECF commands will have been issued. The Wimp uses ECF pattern 4 for its 
purposes. 



Related SWis 

None 

Related vectors 

None 

The Window Manager 

3-195 



Wimp_SendMessage (SWI &400E7) 

3-196 

Wimp_SendMessage 
(SWI &400E7) 

Sends a message to a task. or broadcasts to all tasks 

On entry 

RO =event code (as returned by Wimp_Poll- often 17. 18 or 19) 
Rl =pointer to message block 
R2 = task handle of destination task. or 

window handle (message sent to window's creator). or 
-2 (icon bar: message sent to creator of icon given by R3). or 
0 (broadcast message. sent to all tasks. including the originator) 

R3 =icon handle (only used if R2 = -2) 

On exit 

RO corrupted 
R2 =task handle of destination task (except for broadcast messages) 
the message is queued 
the message block is updated (event codes 17 and 18 only) 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

All messages within the Wimp environment are generated using this call. The 
Wimp uses it internally to keep tasks informed about various events through their 
Wimp_Poll loop. 

For a full description of all the message action codes see the section entitled 
Messages on page 3-230. 



The Window Manager 

User tasks can also generate these types of message, with event codes in the range 
0 to 12. On entry. Rl should point to a block with the format described under 
Wimp_Poll (page 3-115) . For example. if you send an Open_Window_Request to a 
task (R0=2). you should point Rl at a Wimp_OpenWindow (page 3-112) block. 

More often though, Wimp_SendMessage is used by tasks to send events of type 
User_Message to one another. These differ from the ·system' types. in that the 
Wimp performs some special actions. e.g. filling in fields of the message block. and 
noting whether a reply has been received. 

There are three variations. depending on the event code in RO on entry. The first 
two. User_Message and User_Message_Recorded ( 17 and 18). send a message to 
the destination task(s). The latter expects the message to be acknowledged or 
replied to. and if it isn't the Wimp returns the message to the sender. (See 
Wimp_Polleventcodes 17,18and 19.) 

Event code User_Message_Acknowledge ( 19) is used to acknowledge the receipt of 
a message without actually generating an event at the destination task. The 
receiver copies the my_ref field of the message block into the your_ref field and 
returns the message using the task handle of the sender given in the message 
block. If you acknowledge a broadcast message. it is not passed on to any other 
tasks. 

The format of a user message block is: 

Rl +0 length of block. 20- 256 bytes. a whole number of words 
Rl +4 not used on entry 
Rl +8 not used on entry 
R I+ 12 your_ref (0 if this is an original message, not a reply) 
Rl+l6 message action 
Rl +20 message data (format depends on the message action) 

Note that the block length should include any string that appears on the end (e.g. 
pathnames). including the terminating character, and rounded up to a whole 
number of words. 

On exit the block is updated as follows: 

R I +4 task handle of sender 
Rl+8 my_ref (unique Wimp-generated non-zero positive word) 

Thus the receiver of the message will know who sent the message (useful for 
acknowledgements) and will also have a reference that can be quoted in replies to 
the sender. Naturally the sender can also use these fields once the Wimp has filled 
them in. 

3-197 



Wimp_SendMessage (SWI &400E7) 

Note that you can use User_Message_Acknowledge to discover the task handle of 
a given window/icon by calling Wimp_SendMessage with RO= 19, your_ref = 0, and 
R2/R3 the window/icon handle(s) . On exit R2 will contain the task handle of the 
owner. though no message would actually have been sent. 

Related SWis 

Wimp_Poll (page 3- 115) 

Related vectors 

None 



Creates a submenu 

The Window Manager 

Wimp_ CreateSubMenu 
(SWI &400E8) 

On entry 

Rl =pointer to submenu block 
R2 = x coordinate of top left of submenu 
R3 = y coordinate of top left of submenu 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call is made when a message type MenuWarning (&400CO) is received by an 
application. This message is sent by the Wimp when a submenu is about to be 
accessed by the pointer moving over the right-pointing arrow of the parent menu. 

The contents of Rl - R3 are obtained from the three words at offsets +20 to +28 of 
the message block. However, the submenu pointer does not have to be the same as 
that given in this block (which is just a copy of the one given in the parent menu 
entry when it was created by Wimp_CreateMenu) . For example, the application 
could create a new window, and use its handle instead. 

Related SWis 

Wimp_CreateMenu (page 3-156) 

3-199 



Wimp_CreateSubMenu (SWI &400E8) 

Related vectors 

None 



The Window Manager 

Wimp_SpriteOp 
(SWI &400E9) 

Performs sprite operations on sprites from the Wimp's pool 

On entry 

RO =reason code (in the range 0- &FF, see OS_SpriteOp (page 1-761)) 
Rl not used 
R2 = pointer to sprite name 
R3 ... OS_SpriteOp parameters 

On exit 

RO corrupted 
R2 . . . OS_SpriteOp results 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call allows operations on Wimp sprites, without having to specify the Wimp's 
sprite area pointer. Sprites are always accessed by name (i .e. & I 00 is added to the 
reason code given); pointers to actual sprites are not used. Only read-type 
operations are allowed, except that you may use the reason code MergeSpriteFile 
(II) to add further sprites to the Wimp area. 

The Wimp first tries to access the sprite in the RMA part of its sprite pool. If it is not 
found there, it tries the ROM sprite area. If this fails, it returns the usual Sprite 
not found message. 

Related SWis 

OS_SpriteOp (page 1-761) 

3-201 



Wimp_SpriteOp (SWI &400E9) 

Related vectors 

None 



The Window Manager 

Wimp _BaseOfSprites 
(SWI &400EA) 

Finds the addresses of the ROM and RAM resident parts of the Wimp's sprite pool 

On entry 

On exit 

RO = base of ROM sprite area 
R I = base of RMA sprite area 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This can be used to find out the actual addresses of the two areas that make up the 
Wimp sprite pool. for use with OS_SpriteOp. Note that the RMA area may move 
around, e.g. after a sprite file has been merged with it. In view of this, you should 
use Wimp_SpriteOp if possible. 

Note: This call should not be used if you are writing applications that you wish to 
be compatible with future versions of RISC OS. 

Related SWis 

None 

Related vectors 

None 



Wimp_BiockCopy (SWI &400EB) 

Wimp_BiockCopy 
(SWI &400EB) 

Copies a block of work area space to another position 

On entry 

RO = window handle 
Rl =source rectangle minimum x coordinate (inclusive) 
R2 =source rectangle minimum y coordinate (inclusive) 
R3 =source rectangle maximum x coordinate (exclusive) 
R4 =source rectangle maximum y coordinate (exclusive) 
R5 =destination rectangle minimum x coordinate 
R6 = destination rectangle minimum y coordinate 

On exit 

RO - R6 = preserved 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call copies a block of work area space to another position. The Wimp does as 
much on-screen work as it can, using the VDU block copy primitive, and then 
invalidates any areas which must be updated by the application itself. The call is 
useful for performing insert/delete operations in editors. 

All coordinates are relative to the window's work area origin. Note that if any of the 
source area contains icons, their on-screen images will be copied, but their 
bounding boxes will not automatically be moved to the destination rectangle. It is 
up to the application to move the icons explicitly (by deleting and re-creating then) 
so that they are redrawn correctly. 



The Window Manager 

If the source area contains an ECF pattern, e.g. representing Wimp colours in a 
two-colour mode, and the distance between the source and destination is not a 
multiple of the ECF size (eight pixels vertically and one byte horizontally). then the 
copied area will be 'out of sync' with the existing pattern . 

Note that this call must not be made from inside a Wimp_RedrawWindow or 
Wimp_UpdateWindow loop. 

Related SWis 

None 

Related vectors 

None 

3-205 



Wimp_SiotSize (SWI &400EC) 

Wimp_SiotSize 
(SWI &400EC) 

Reads or sets the size of the current slot, the next slot. and the Wimp free pool 

On entry 

RO =new size of current slot (-1 to read size) 
RI =new size of next slot (-I to read size) 

On exit 

RO = size of current slot (i.e. memory for current task) 
Rl =size of next slot (i.e. desirable allocation for next task) 
R2 = size of free pool (i.e. free memory) 
R4 corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

Tasks can use this call to read or set the size of the current slot, i.e. that in which 
the task is executing, and the next slot (for the next task to start up) . It also returns 
the (possibly altered) size of the Wimp free pool. 

If a task wants to alter its memory, it should set RO to the required amount and Rl 
to -1 . 

Next is a number and can be larger than free, in which case next task just gets free. 
Note that the next slot size does not actually have any effect until the next new task 
is run . It is simply the amount of the free pool that is allocated to a new task by 
default. 

No tasks should set their current slot size; normally, a new task will call *WimpSlot, 
which then calls Wimp_SlotSize. 



The Window Manager 

On exit from Wimp_SlotSize. the OS_ChangeEnvironment variables MemoryLimit 
and ApplicationSpaceSize are updated. Note that it is not possible to change the 
application space size if this is greater than MemoryLimit. This is the situation 
when. for example. Twin loads at &80000 and runs another task at &8000, setting 
that task's memory limit to &80000. 

Wimp_SlotSize does not check that the currently active object is within the 
application workspace. or issue Memory service calls. so it should be used with 
caution. The same applies to *WimpSlot which uses this SWI. 

Possible ways in which this call could be used are: 

• the run-time library of a language could provide a system call to set the current 
slot size using Wimp_SlotSize. An example is BASIC's END=&xxxx construct. 
which allows a program to adjust its HIMEM limit dynamically. 

• a program could use Wimp_SlotSize to give itself a private heap above the area 
used by the host language's memory allocation routines. This only works if the 
run-time library routines read the MemoryLimit value once. when the program 
is started. Edit uses this method to allocate memory for its text files . 

Related SWis 

None 

Related vectors 

None 



Wimp_ReadPixTrans (SWI &400ED) 

Wimp_ReadPixTrans 
(SWI &400ED) 

Read pixel translation table for a given sprite 

On entry 

RO = &Oxx if sprite is in the system area 
& lxx if sprite is in a user area and R2 points to the name 
&2xx if sprite is in a user area and R2 points to the sprite 

Rl = 0 if the sprite is in the system area 
I if the sprite is in the Wimp's sprite area 
otherwise a pointer to the user sprite area 

R2 = a pointer to the sprite name (RO = &Oxx or & lxx) or 
a pointer to the sprite (RO = &2xx) 

R6 = a pointer to a four-word block to receive scale factors, 0 ~ do not fill in 
R7 = a pointer to a 2, 4 or 16 byte block to receive translation table, 

0 ~do not fill in (must be 16 bytes long) 

On ex1t 

RO corrupted 
R6 block contains the sprite scale factors 
R7 block contains a 2, 4, or 16 byte sprite translation table 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

The purpose of this call is to discover, for a given sprite. ~how the Wimp would plot 
it if it was in an icon to give it the most consistent appearance independently of the 
current Wimp mode. The blocks set up at R6 and R7 on exit can be passed directly 
to the above mentioned sprite plotting calling. 



The Window Manager 

If the sprite is not found in the passed area, it is then searched for in the Wimp 
sprite pool- except under RISC OS 2. 

The size of the table pointed to by R7 depends on the sprite's mode. Under 
RISC OS 2 the sprite cannot have 256 colours. 

The format of the R6 block is: 

R6+0 x multiplication factor 
R6+4 y multiplication factor 
R6+8 x division factor 
R6+ 12 y division factor 

All quantities are 32-bits and unsigned. 

The format of the R7 block is: 

R7+0 colour to store sprite colour 0 as 
R7+ I colour to store sprite colour I as 

R7+14 
R7+15 

colour to store sprite colour 14 as 
colour to store sprite colour 15 as 

Scale factors depend on the mode the sprite was defined in and the current Wimp 
mode. The colour translation table is only valid for sprites defined in I, 2 or 4-bits 
per pixel modes. The relationships between the sprite colours and the Wimp 
colours used to display them are: 

Sprite bpp 

I 
2 
4 

8 

Colours used 

Colours 0- I ->Wimp colours 0, 7 
Colours 0- 3 ->Wimp colours 0, 2, 4, 7 
Colours 0 - 15 -> Wimp colours 0 - 15 
Translation table is undefined 

So sprites defined with fewer than four bits per pixel have their pixels mapped into 
the Wimp's greyscale colours. 

Use ColourTrans if you want to plot the sprite using the best approximation to its 
actual colours. This works for sprites in a 256-colour mode as well. 

Related SWis 

None 

Related vectors 

None 

3-209 



Wimp_CiaimFreeMemory (SWI &4DOEE) 

, 1)1" 

Wimp_CiaimFreeMemory 
(SWI &400EE) 

Claims the whole of the Wimp's free memory pool for the calling task 

On entry 

RO = I to claim, 0 to release 
Rl =amount of memory required 

On exit 

RO corrupted 
Rl =amount of memory available (0 if none/already claimed) 
R2 =start address of memory (0 if claim failed because not enough) 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call is analogous to OS_ClaimScreenMemory (page 1-380). It allows a task to 
claim the whole of the Wimp's free memory pool (the 'Free' entry on the Task 
Manager display) for its own use. There are restrictions however: the memory can 
only be accessed in processor supervisor (SVC) mode, and while it is claimed, the 
Wimp can't use the free pool to dynamically increase the size of the RMA etc. For 
the second reason , tasks should not hang on to the memory for any longer than 
absolutely necessary. They should also avoid calling code which is likely to have 
much to do with memory allocation, e.g. code which claims RMA space. In other 
words , do not call Wimp_Poll while the free pool is claimed. 

Related SWis 

OS_CiaimScreenMemory (page I-380) 



Related vectors 

None 

The Window Manager 

3-211 



Wimp_CommandWindow (SWI &400EF) 

~-?1? 

Wimp_ CommandWindow 
(SWI &400EF) 

Opens a text window in which normal VDU 4-type output can be displayed 

On entry 

RO =operation type, see below 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call opens a text window in which normal VDU 4-type output can be displayed. 
It is useful for running old-fashioned. text-based programs from within the Wimp 
environment. The exact action depends on RO as follows. 

RO > I RO is treated as a pointer to a text string. This is used as the title for the 
command window. However. the command window is not opened 
immediately; it is just marked as 'pending'. It does not become 'active' 
until the next call to OS_WriteC. When this occurs, the window is opened 
and the VDU 4 text viewport is set to the same area on the screen. 

RO = I The command window status is set to 'active' . However, no drawing on the 
screen occurs. This is used by the SheiiCLI module so that if 
Wimp_ReportError is called, the error will be printed textually and not in a 
window. 



The Window Manager 

RO = 0 The window is closed and removed from the screen. If any output was 
generated between the window being opened with RO > I and this call 
being made, the Wimp prompts with Press SPACE or click mouse 
t o continue before re-building the screen. 

RO = -I The command window is closed without any promp"1ing, regardless of 
whether it was used or not. 

The Wimp uses a command window when starting new tasks. It calls 
Wimp_CommandWindow with RO pointing to the command string, and then 
executes the command. If the task was a Wimp one, it will call Wimp_Initialise, at 
which point the Wimp will close the command window with RO =-I . Thus the 
window will never be activated. However, a text-based program will never call 
Wimp_Initialise. so the command window will be displayed when the program 
calls OS_ WriteC for the first time. 

Certain Filer operations which result in commands such as *Copy being executed 
also use the command window facility in this way. 

Wimp_ReportError (page 3- 179) also interacts with command windows. If the 
window is active, the error text will simply be displayed textually. However, if the 
command window is pending, it is marked as 'suspended' and the error is reported 
in a window as usual. 

Related SWis 

None 

Related vectors 

None 

3-213 



Wimp_ TextColour (SWI &400FO) 

Sets the text foreground or background colour 

Wimp_ TextColour 
(SWI &400FO) 

On entry 

RO =colour 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call is the text colour equivalent of Wimp_SetColour (page 3- 194 ). It is used to 
set the text foreground or background colour to one of the 16 standard Wimp 
colours. As text can't be displayed using ECF patterns, only solid colours are used 
in the monochrome modes. 

RO on entry has the following form : 

Bits 
0 - 3 
7 

Meaning 
Wimp colour (0 - 15) 
0 for foreground, I for background 

Wimp_TextColour is used by Wimp_CommandWindow (page 3-212) and on exit 
from the Wimp. It can be called by applications that wish to display VDU 4-type 
text on the screen in a special window. 

Related SWis 

Wimp_SetColour (page 3-194) 



Related vectors 

None 

The Window Manager 



Wimp_ TransferB/ock (SWI &400Ft) 

Wimp_ TransferS lock 
(SWI &400F1) 

Copies a block of memory from one task's address space to another's 

On entry 

RO = handle of source task 
Rl =pointer to source buffer 
R2 = handle of destination task 
R3 = pointer to destination buffer 
R4 = buffer length 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call copies a block of memory from the source task's address space to the 
destination task. The buffer addresses and the length are byte aligned, i.e. the 
buffers don't have to start on a word boundary or be a whole number of words long. 

This call is used in the memory data transfer protocol. described in the section 
entitled Data transfer protocol on page 3-249. The Wimp ensures that the addresses 
given are valid for the task handles, and generates the error Wimp transfer 
out of range if they are not. 

Related SWis 

None 



Related vectors 

None 

The Window Manager 

~-?17 



Wimp_ReadSyslnfo (SWI &400F2) 

'V::>1R 

Reads system information from the Wimp 

Wimp_ReadSyslnfo 
(SWI &400F2) 

On entry 

RO = information item index 

On exit 

RO =information value 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call is used to obtain information from the Wimp which is not readily available 
otherwise. The value in RO on entry indicates which item of information is required; 
its value on exit is the appropriate value. 

Currently defined values for RO are: 

RO on entry On exit 

0 RO = number of active tasks 

RO = current Wimp mode 

2 RO = pointer to iconsprites filename suffix for the configured mode 
(When loading sprite files containing icons, the suffix should be 
tried; if the file does not exist, try the original filename.) 



The Window Manager 

3 RO = 0 => in text output mode (i.e. outside the desktop, or in 
the SheiiCLI. or in a command window) 

= 1 => in the desktop 
other values reserved (test for non-zero when looking to see whether 
in command mode or not) 
The Wimp also supports a code variable Wimp$ State. which can 
take the following values: 

commands Wimp_ReadSyslnfo (3) returns 0 
desktop Wimp_ReadSyslnfo (3) returns l 
other values shou ld be treated as 'not commands' . 

4 RO = 0 => left to right text entry 
= l => right to left text entry this returns the state last set 

by *WimpWriteDir 

5 RO = current task handle (0 if none active) 
Rl =version specified by current task to Wimp_lnitialise 

6 Reserved 

7 RO =current Wimp version • 100 

RISC OS 2 does not support values of RO > 0 

As the call can be used regardless of whether Wimp_lnitialise has been called yet, 
it can be used to see if the program is running from within the desktop 
environment (RO > 0 on exit) or simply from a command line (RO = 0). Note that 
even if a program is activated from the Task Manager's command line (FI2) facility, 
RO will be greater than zero. 

Related SWis 

None 

Related vectors 

None 

3-219 



Wimp_SetFontColours (SWI &400F3) 

~-220 

Wimp_SetFontColours 
(SWI &400F3) 

Sets the anti-aliased font colours from the two (standard Wimp) colours specified 

On entry 

Rl =font background colour 
R2 = font foreground colour 

On exit 

RO corrupted 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call sets the anti-aliased font colours from the two (standard Wimp) colours 
specified . It calculates how many intermediate colours can be used, and makes the 
appropriate Font Manager calls. It takes the display mode into account. so that 
using this call instead of setting the font colours directly saves the application 
quite a lot of work. 

You should not assume the font colours are as you left them across calls to 
Wimp_Poll. as another task may have called Wimp_SetFontColours before you 
regain control. Conversely, you don't have to preserve the colours before you 
change them. as no-one else will be expecting you to. 

This call is less powerful than ColourTrans_SetFontColours (page 3-367), in that it 
assumes that Wimp colours 0-7 form a grey-scale sequence. 

Related SWis 

Wimp_SetColour (page 3-194) 



Related vectors 

None 

The Window Manager 

3-221 



Wimp_GetMenuState (SWI &400F4) 

3-222 

Wimp_ GetMenuState 
(SWI &400F4) 

Gets the state of a menu, showing which item is selected 

On entry 

RO = 0 ~ report current state of tree, ignoring R2 ,R3 
= I ~ report tree which leads up to R2,R3: 

R2 =window handle 
R3 = icon handle 

Rl =pointer to buffer to contain result 

On exit 

RO corrupted 
The tree is put into the buffer in Rl in the same format as that returned by 
Wimp_Poll event code 9 (Menu_Select). i .e. a list of selection indices terminated 
by-1. 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

The tree returned will be null: 

• if RO = I and the window/icon in R2/R3 is not in the tree, or 

• if RO = 0 or I and the menu tree is owned by a different application , or is closed 
altogether. 

If the window is a dialogue box, the tree returned will go up to (but not include) the 
dialogue box. 

This SWI is not available under RISC OS 2. 



Related SWis 

None 

Related vectors 

None 

The Window Manager 

3-223 



Wimp_RegisterFilter (SWI &400F5) 

~-??A. 

Wimp_RegisterFilter 
(SWI &400F5) 

Used by the Filter Manager to register or deregister a filter with the Wimp 

On entry: 

RO = reason code: 
0 ~ register I deregister pre-filter 
I ~ register I deregister post-filter 
2 ~ register I deregister rectangle copy filter 
3 ~register I deregister get rectangle filter 

R I = address of filter, or 0 to de-register 
R2 =value to be passed in Rl2 on entry to filter 

On exit: 

Registers preserved 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This SWI is provided for the use of the Filter Manager, and should not be used 
unless you want to replace the whole filter system. Use the FilterManager to 
register filters for specific tasks. 

This SWI is not available under RISC OS 2. 



The Window Manager 

Pre~fllters 

A pre filter is called whenever a task calls Wimp_Poll : 

On Entry: 

RO =event mask as passed to Wimp_Poll 
R 1 = pointer to User block as passed to Wimp_Poll 
R2 =task handle 
R 12 = value of R2 when registered 

SVC mode, interrupts enabled. The task that called Wimp_Poll is paged in . 

On Exit: 

RO may be modified by the filter 
All other register and processor mode must be preserved 

Post~fllters 

A post filter is called when the Wimp is about to return an event to a task. 

On Entry: 

RO = event code for event that is about to be returned 
R 1 =pointer to Event block for event to be returned (Owner task paged in) 
R2 =task handle of task that is about to receive the event 

SVC mode, interrupts enabled. The task to which the event is to be returned is 
paged in . 

On Exit: 

The filter may modify RO and the contents of the buffer pointed to by R I, to return 
a different event. 

Rl ,R2 must be preserved. 

If RO = -1 on exit, the event will not be passed to the task. 

Related SWis 

None 

Related vectors 

None 

~-??Fi 



Wimp_AddMessages (SWI &400F6) 

~-??fi 

Wimp_AddMessages 
(SWI &400F6) 

Adds messages to the list of those known by a certain task 

On entry 

RO =pointer to word array of messages to add for task 

On exit 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This SWI allows you to update the list of messages known by a certain task. This 
routine updates the messages list for the current task. 

This call is of use only for tasks that specified a Wimp version number~ 300 to 
Wimp_Initialise. 

Related SWis 

None 

Related vectors 

None 



The Window Manage1 

Wimp_RemoveMessages 
(SWI &400F7) 

Removes messages from the list of those known by a certai n task 

On entry 

RO = pointer to word array of messages to remove from task 

On exit 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

This SWI allows the caller to remove messages from the list specified either on 
Wimp_Initialise or by Wimp_AddMessages. 

This call is of use only for tasks that specified a Wimp version number;?: 300 to 
Wimp_Initialise. 

Related SWis 

None 

Related vectors 

None 

3-227 



Wimp_SetCo/ourMapping (SWI &400F8) 

Wimp_SetColourMapping 
(SWI &400F8) 

Changes the mapping between Wimp colours and physical colours 

On entry 

Rl =pointer to palette to be used for converting Wimp colours to physical colours 
=-I the default Wimp palette is used 
= 0 the palette defined by Wimp_SetPalette is used 
else the table is copied away 

R2 =pointer to 2 byte array for mapping I BPP sprites to Wimp colours 
R3 = pointer to 4 byte array for mapping 2BPP sprites to Wimp colours 
R4 =pointer to 16 byte array for mapping 4BPP sprites to Wimp colours 
R5,R6,R7 must be 0 

On exit 

Interrupts 

Interrupts are not defined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This SWI is used to change the way in which the Window Manager maps its own 
Wimp colours to physical colours. 

On entry R I contains a pointer to a 16 word set of physical colours ( &BBGGRRxx). 
When converting a Wimp colour to its physical colour it indirects through this to 
get the physical colour required. By default this is the same as the palette defined 
using Wimp_SetPalette. 



The Window Manager 

R2 , R3 , and R4 point to byte arrays which are used when converting non-paletted 
sprite colours to their physical colours . Basically, the system uses the values 
stored within the byte array as an index into the palette being used for ColourTrans 
calls. Passing 0 indicates no change, -I indicates the default setting. 

Related SWis 

None 

Related vectors 

None 



Messages 

Messages 

Changes applying to applications passing 300 to Wimp_lnitialise 
If a message is sent to a menu window, then it will be delivered to the task which 
opened the menu tree. This applies to any event code greater than 
Close_Window_Request, as well as the messages (open, close and redraw are all 
dealt with automatically by the Wimp). 

Message actions 

The following is a description of the currently defined message actions. Some of 
these are system types, others are generated by particular modules (most notably 
the Wimp) . Any other module or application can send its own private messages, as 
required. A module is allowed to use its SWI chunk number as a base for the 
message action values. If you require a message action chunk and do not have a 
SWI chunk allocated, refer to the section entitled SWI chunk numbers and names on 
page 4-546. 

System messages 

Message_ Quit (0) 

On receiving this broadcast message a task should tidy up (close files, de-allocate 
memory etc) and close down by calling Wimp_CioseDown (page 3- I 75) and 
OS_Exit. The task doesn't have any choice about closing down at this stage. Any 
objections (because of unsaved data etc) should be lodged when it gets the 
Message_PreOuit (8) described below. 

Message_DataSave (1)- Message_RAMTransmit (7) 

See the section entitled Data transfer protocol on page 3-249 for details of these 
message actions. 

Message_PreQuit (8) 

This broadcast message gives applications the chance to object to a request to 
close down; for example, if they have modified data which has not been saved. If 
the task does not mind terminating, it should ignore this message, and eventually 
a Message_ Quit will be received. 



The Window Manager 

To object to the potential closedown, the task should acknowledge the message by 
calling Wimp_SendMessage with: 

RO = User_Message_Acknowledge ( 19) 
Rl =as returned by Wimp_Poll 
Rl+l2 = Rl+8 (i.e. my_ref copied into your_ref) 

Note that if the user subsequently selects OK (i.e. discard the data and quit 
anyway), the task must restart the closedown sequence by i_ssuing a key-pressed 
event (Ctrl-Shift-FI2) to the task which sent it the PreOuit message: 

SYS "Wimp_ GetCaretPosition" , ,blk 
blk!24=&1FC 
SYS "Wimp_ SendMessage ", S , blk , quitsender 

where quitsender is read from sender field of original PreQuit message . 

The Task Manager uses the Quit and PreQuit messages when the user selects the 
Exit option from its menu. The way in which this works (in pseudo-BASIC) is 
as follows : 

REM in CASE statement for Wimp_Poll event type . .. 
WHEN Menu_ Selection : PROCdecodeMenu 
IF menuChoice$= "Ex it " THEN 

REM send the PreQuit and remember my_ ref 
SYS "Wimp_ SendMessage",User_Message_ Recorded , PreQuitBlock , O 
PreQuitRef = PreQuitBlock ! S 

END IF 
WHEN User_Message_ Acknowledge 

REM got one of our messages back. Is it the PreQuit one? 
IF pollBlock!S = PreQuitRef THEN 

REM no-one objected to PreQuit so safe to issue quit 
SYS "Wimp_SendMessage " ,User_Message_Recorded , quitBlock , O 
quitRef=quitBlock!S 

ELSE REM is it the quit one then? 
REM if so, exit the Desktop 
IF pollBlk ! l6=Message_ Quit AND pollBlk ! S=quitRef THEN quit 

END IF 

WHEN User_Message , User_Message_ Recorded 
REM if someone else did a quit , then terminate desktop 
IF pollBlk ! l6=Message_ Quit AND pollBlk!B<>quitRef THEN quit 

In English , the Task Manager issues a PreOui I broadcast when the Exit item is 
selected from its menu. If this is returned by he Wimp (because no other task 
objected). the Task Manager goes ahead and 1ssues a Quit broadcast. When this 
comes back unacknowledged, the Task Mana~er checks the reference and quits if it 
is correct (as all other tasks would already har e done) . 

3-231 



System messages 

The Task Manager must also be able to respond to the key-pressed event 
(Ctrl-Shift-FI2) &IFC. 

Tasks should automatically restart the quit procedures as described earlier. 

If the Task Manager ever gets a Quit that it didn't originate, it will close itself down. 

Restarting the desktop closedown sequence 

Applications can tell whether they should restart the desktop closedown sequence 
after prompting the user to save any unsaved data. If bit 0 of the flag word is set, 
then the task should not send a Ctrl-Shift-F12 Key_Pressed event to the task which 
sent it the PreOuit message, to restart the closedown sequence, but should 
instead just terminate itself. 

This facility is not available in RISC OS 2. 

Rl+O 
Rl+16 
Rl+20 

24 (size) 
Message_PreOuit (8) 
flag word: 
bit 0 set==:} just quit this task, else desktop being quit 
bits I - 31 reserved (i.e. ignore them) 

Note that if the flag word is not present (i.e. the block is too small), the task should 
treat the flag word as having been zero. Following this, the task should display a 
dialogue box giving the user the chance to either save or discard files, as he sees 
fit. 

Message_PaletteChange (9) 

~-2~2 

This broadcast message is issued by the Palette utility. It should not be 
acknowledged. The utility generates it when the user finishes dragging one of the 
RGB bars for a given colour, or when a new palette file is loaded. 

If a task needs to adapt to a change in the physical colours on the screen, it should 
respond to this message by changing any of its internal tables(colour maps etc). 
and then call Wimp_ForceRedraw to ensure that its windows are redrawn with the 
new colours . Note though that the palette utility automatically forces a redraw of 
the whole screen if any of the Wimp's standard colours change their logical 
mapping, so applications don't have to take further action . 

This message is not issued when the Wimp mode changes ; Message_ModeChange 
( &400C I) reports this, so tasks interested in colour mapping changes should 
recognise this message too. 



The Window Manager 

Message_ SaveDesktop (1 0) 

See the section entitled The desktop save protocol on page 3-245 for details of this. 

Message_Shutdown (14) 

Filer messages 

Rl+O 
R1+16 
Rl+20 

24 (size) 
Message_Shutdown ( 10) 
flags (all reserved) 

This message is issued when the computer is being forced to shutdown, say due to 
power failure on a portable machine. It is broadcast as a result of calling the SWI 
TaskManager_Shutdown (page 3-317) with bit 3 of RO set. Applications receiving 
this should attempt to ensure any unsaved data. 

This facility is not available in RISC OS 2. 

Message_FilerOpenDir (&400) 

A task sends this message to a Filer task. It is a request to open a new directory 
display. The data part of the message block is as follows: 

Rl+20 
Rl+24 

Rl+28 

filing system number 
bit 0 set => do not canonicalise name before using 
all other bits reserved 
full name of directory to view, zero-terminated 

The string given at Rl +28 must be a full specification of the directory to open 
including fileserver (if appropriate). disc name. and pathname starting from S. 
using the same format as the names in Filer windows. Send the message as a 
broadcast User_Message. If the directory name is invalid (e.g. the filing system is 
not present). a Wimp_ReportError error will be generated by the Filer. 

Note that the Filing System modules (eg. ADFSFiler) do not use a broadcast. but 
instead discover the Filer's task handle by means of the Service_StartFiler protocol. 
See the section entitled Relocatable module tasks on page 3-62 for further details. 

Message_FilerCioseDir (&401) 

This message takes the same form as the previous one. All open directory displays 
whose names start with the name given at Rl +28 are closed . 

3-233 



Filer messages 

Message_FilerOpenDirAt (&402) 

This is similar to the Filer_OpenDir message but allows you to specify the position 
and mode for the directory viewer. The format of the message block is as follows: 

Rl+20 
Rl+24 
Rl+28 
Rl+32 
Rl+36 
Rl+40 
Rl+44 

R1+25 

filing system number 
must be 0 
X position of viewer 
Y position of viewer 
width of viewer 
height of viewer 
viewmode: 
bits 0-1 display mode 

0 = large icons 
I = small icons 
2 = full info 
3 - reserved, do not use 

bits 2-3 sort mode 

bit 4 

bit 5 

0 = sort by name 
I = sort by size 
2 = sort by type 
3 = sort by date 

0 = use default display mode 
I = use display mode in bits 0-1 

0 = use default sort mode 
I =use sort mode in bits 2-3 

all other bits reserv~d and must be 0 

full name of directory to view 

This message is not available in RISC OS 2. 



The Window Manager 

Filer Action Window 

The Filer Action Window is a module which performs file manipulation operations 
for the Filer without the desktop hanging whilst they are under way. 

The Filer Action Window is not available in RISC OS 2. 

To drive Filer_Action you must: 

I Wimp_StartTask with a command of •Filer_Action 

2 Send a sequence of messages to the new task describing the activity: 

• specify the directory in which the objects that are going to be acted upon 
exist (using Message_FilerSelectionDirectory) ; 

• specify the objects in the directory (using several 
Message_FilerAddSelection messages); 

• start the action using Message_FilerAction. 

Filer_Action will sort out its own slot size as appropriate. If no messages are sent, 
then Filer_Action will kill itself. 

Controlling the Filer_Action task 

To set the Filer_Action going, the following messages are sent: 

Message_FilerSelectionDirectory ( &403) 
Message_FilerAddSelection ( &404) 
Message_FilerAction ( &405) 

The selection directory is the name of the directory in which the selection of files 
being operated upon lies. AddSelection sends a set of files which are to be added 
to the list of files in the selected directory. You should just send a space separated 
list of leaf names of the selected objects . 

FilerAction starts the operation going. 

Once the Filer_Action is going it can be controlled by using the 
Message_FilerControlAction message. 

Message _FilerSelectionDirectory ( &403) 

The data for this message should be a null-terminated name of a directory. 
Sending this message clears out the current selection of files . 

This message is not available in RISC OS 2. 

3-235 



Filer messages 

Message_FilerAddSelection (&404) 

The data for this message should be a null-terminated string which is a space 
separated list of leaf names of objects in the selection directory which are to be 
operated upon. This adds the given names to the list. 

This message is not available in RISC OS 2. 

Message_FilerAction (&405) 

The format of the data for this message takes the following form: 

Word 

0 

Meaning 

Operation to be performed: 
0 Copy Copy a number of objects from one directory 

to another 
Move (rename) Move a number of objects from one 

directory to another by trying a rename 
first then doing a copy/delete if that fails 

2 Delete Delete a number of objects in a particular 
directory 

3 Set access Set the access of a number of objects to a 
given value 

4 Set type Set the file type of a number of objects to a 
given value 

5 Count Count the file sizes of the selected objects 
6 Move (by copying and deleting afterwards) 

Move a number of objects from one 
directory by copying them then deleting 
the source 

7 Copy local (within directory) 
Copy a single object to a different name in 

the same directory 
8 Stamp files Stamp the selected objects with the time 

when they get stamped 
9 Find file Find an object with a given name. 

Option bits: 
Bit Meaning when set 
0 Verbose 

Confirm 
2 Force 
3 Newer (as opposed to copying always) 
4 Recurse (only applies to access) 



The Window Manager 

Word Meaning 

2 onwards 
Information specific to the particular operation : 
Operation Meaning 
0 Copy null terminated destination directory 

Move (rename) null terminated destination directory 
2 Delete unused 
3 Set access How to set the access 

The l st two bytes are the access values to 
be set 

4 
5 
6 
7 
8 
9 

Set type 
Count 
Move (copy/delete) 
Copy local 
Stamp 
Find 

The 2nd two bytes are a mask which. when 
set. disable the corresponding access 
bit from being set 

Numeric file type to set 
unused 
null terminated destination directory 
null terminated destination object name 
unused 
null terminated name of object to find 

This message is not available in RISC OS 2. 

Message_FilerControiAction (&406) 

The l st word determines what control is to be performed: 

0 Acknowledg~ the control message (to check FilerAction is still going) 
Show the action window (turn verbose on) 

2 Hide the action window (turn verbose off) 

This message is not available in RISC OS 2. 

3-237 



NetFiler message 

Message_FilerSelection (&407) 

This message is sent by the filer to the application , before it starts sending 
Data Load messages when a selection has been dragged from the filer to an 
application . The data block of the message is as follows: 

Rl+20 
Rl+24 
Rl+28 
Rl+32 
Rl+36 
Rl+40 
Rl+44 

Rl+48 
Rl+52 
Rl+56 
Rl+60 

xO of selection bounding box in screen coordinates 
yO of selection bounding box in screen coordinates 
xi of selection bounding box in screen coordinates 
yl of selection bounding box in screen coordinates 
width of each selected item 
height of each selected item 
view mode for this directory: 
bits 0-1 display mode 

0 = large icons 
I = small icons 
2 =full info 
3 - reserved, do not use 

bits 2-3 sort mode 
0 = sort by name 
I = sort by size 
2 = sort by type 
3 = sort by date 

start column of selection in window 
start row of selection in window 
end column of selection in window 
end row of selection in window 

This message is not available in RISC OS 2. 

Netfiler message 

Message_Notify (&40040) 

The NetFiler sends this broadcast message to enable an application to display the 
text of a *Notify command in some pleasing way. If no-one acknowledges the 
message, NetFiler simply displays the text in a window using Wimp_ReportError, 
withthestringMessage from station xxx.xxxintheTitleBar. 



The Window Manager 

Information about the sender, and the text of the notify, are contained in the 
message block. as follows: 

RI+20 
Rl+21 
RI+22 
RI+23 
RI+24 
RI+25 
RI+26 
RI+27 

sending station number 
sending station network number 
LSB of five byte real time on receipt of message 
second byte of time 
third byte of time 
fourth byte of time 
MSB of five byte real time on receipt of message 
message text , terminated by a zero byte 

So if you want to do something with the notify and prevent the NetFiler from 
displaying it, copy the my_ref field into the your_ref field and send the message 
back using Wimp_SendMessage User_Message_Acknowledge (I 9). 

Wimp messages 

Message_MenuWarning (&400CO) 

The Wimp sends this message when the mouse pointer travels over the right arrow 
of a menu item to activate a submenu. The menu item must have its 'generate 
message' bit (3) in the menu flags set for this to happen, otherwise the Wimp will 
just open the submenu item as normal. (The submenu pointer must also be 
greater than zero in order for this message to be sent.) 

In the message block are the values required by Wimp_CreateSubMenu 
(page 3- I 99) on entry. The task may use these, or may choose to take some other 
action (e.g. create a new window and open that as the submenu) . 

RI+20 
RI+24 
RI+28 
RI+32 
RI+36 

RI+ ... 

submenu pointer from menu item 
x coordinate of top left of new submenu 
y coordinate of top left of new submenu 
main menu selected item number (0 for first) 
first submenu selected item number 

-I to terminate list 

After the three words required by Wimp_CreateSubMenu is a description of the 
current selection state, in the same format that would be returned by the 
Menu_Selection event. This information, in conjunction with the task's knowledge 
of the menu structure, is sufficient to work-out the path taken through the menu so 
far. 

3-239 



Wimp messages 

~-240 

Message_ ModeChange ( &400C1) 

Wimp_SetMode (page 3-188) causes this message to be sent as a broadcast. It 
gives tasks a chance to update their idea of what the current screen mode looks like 
by reading the appropriate parameters using OS_ReadVduVariables (page 1-703). 
(Though applications should need to know as little about the display's attributes 
as possible to facilitate mode independence.) 

You should not acknowledge this message. 

After sending the message, the Wimp generates an Open_Window_Request event 
for each window that was active when the mode change occurred . This is because 
going from a wider to a narrower mode (e.g. 16 to 12) may require the horizontal 
coordinates of windows to be compressed to fit them all on to the new display. The 
whole screen area is also marked invalid to force a redraw of each window's 
contents. 

You should take care if. on a mode change, you modify a window in a way that 
involves deleting it and then recreating with different attributes. This will result in 
the handle of the window changing just after the Wimp scans the window stack and 
generates the Open_ Window_Request for it, but before it is delivered from 
Wimp_Poll , and the Wimp will use the wrong handle. In this situation , you should 
internally mark the window as 'to be recreated' on receipt of the ModeChange 
message, and then when you receive the Open_Window_Request for that window, 
carry out the delete/recreate/open action then . 

Message_ Tasklnitialise (&400C2) 

This message is broadcast whenever a task calls Wimp_lnitialise . It is used by the 
Task Manager to maintain its list of active tasks. Information in the message block 
is as follows: 

Rl+4 

Rl+20 
Rl+24 
Rl+28 

new task handle (so it appears that the new task sent the 
message) 

CAO (current active object) pointer of new task 
amount of application memory used by the task 
task name, as given to Wimp_lnitialise, control-char-terminated 



The Window Manager 

Message_ TaskCioseDown ( &400C3) 

This performs a similar task to the one above, keeping the Task Manager (and any 
other interested parties) informed about the state of a task. It is generated by the 
Wimp on the task's behalf when it calls Wimp_CloseDown. If a program 
'accidentally' calls OS_Exit before calling Wimp_CloseDown, the Wimp will 
perform the latter action for it. The message block is standard except for 

RI+4 dying task's handle 

i.e. the Wimp makes it look as though the task sent the message itself. 

Message_SiotSize (&400C4) 

This broadcast is issued whenever Wimp_SlotSize is called. Again, its primary 
client is the task manager, enabling that program to keep its display up to date. The 
message block looks like this: 

RI+4 

RI+20 
RI+24 

handle of the task which owns the current slot 

new current slot size 
new next slot size 

As with most broadcast messages, you should not acknowledge this one. 

Message_ SetS lot ( &400C5) 

This message has two uses. First it allows the Task Manager to discover if an 
application can cope with a dynamically varying slot size. Second, it is used by the 
Task Manager to tell a task to change that size if it can. 

The message block contains the following: 

Rl+20 
Rl+24 

new current slot size 
handle of task whose slot should be changed 

The receiver should check the handle at Rl +24, and the size at Rl +20. If the handle 
is not the task's, it should do nothing (i.e. no acknowledgement). 

If the slot size is big enough for the task to carry on running, it should set RO to this, 
Rl to -I and call Wimp_SlotSize (page 3-206). It should then acknowledge the 
message. 

If the slot size is too small for the task to carry on running, it should not call 
Wimp_SlotSize, but should acknowledge the message if it wants to continue to 
receive these messages. If ever a Message_SetSlot is not acknowledged, the Task 
Manager makes that task an undraggable one on its display. 

3-241 



Wimp messages 

3-242 

You should be prepared to receive negative values for the slot size (which of course 
you shouldn't pass to Wimp_SlotSize), so do a proper signed comparison when 
checking the value in R I +20. 

Message_TaskNameRq (&400C6) 

This forms the first of a pair of messages that can be used to find the name of a task 
given the handle. An application should broadcast this message. It will be picked 
up by the Task Manager, if running. The Task Manager will respond with a 
TaskNamels message (see below). The message block should contain the following 
information: 

Rl+20 handle of task whose name is required 

Message_ TaskNamels ( &400C7) 

The Task Manager responds to a TaskNameRq message by sending this message. 
The message block contains the following: 

Rl+20 
R1+24 
Rl+28 

handle of task whose name is required 
task's slot size 
task's Wimp_lnitialise name, control-char-terminated 

The principle user of this message-pair is the !Help application in providing help 
about ROM modules. 

In RISC OS 3 you should use the SWI TaskManager_TaskNameFromHandle (see 
page 3-314) in preference to these messages. 

Message_ TaskStarted ( &400C8) 

This is sent by the Filer after it has started up all the desktop filers so that the Task 
Manager can 'renumber' it. This is so that during the deskboot saving sequence, 
the Filer_Boot and Filer_OpenDir commands are inserted after the logons returned 
by the NetFiler. 

This message is not available under RISC OS 2. 

Message_MenusDeleted (&400C9) 

This message is returned by the Wimp, with block+20 =menu pointer for the menu 
tree that was deleted, in the following circumstances: 

• if a task has a menu tree open, and another task calls Wimp_CreateMenu , 
thereby deleting the first tree; 

• if a task has a menu tree open, and it calls Wimp_CreateMenu with a different 
menu pointer than the one last used; 



The Window Manager 

'• if a task has a menu tree open, and the user clicks somewhere outside the 
menu tree, thereby closing it. The Wimp now sends mouse clicks as messages 
if the message queue is not empty, which ensures that the click event arrives 
after the Message_MenusDeleted. 

In the case of the former two, the message is only sent after the new menu is 
created. 

Note in particular that no message is returned if a menu selection event is 
returned , or if a menu tree is replaced by another with the same menu pointer. 

This message is not available under RISC OS 2. 

Application me sages 

Alarm 

In addition to the 'normal ' user facilities of !Alarm as documented in the RISC OS 
User Guide, it is also possible for applications to set and receive alarms by using 
some Wimp messages. These are as follows : 

• To set or cancel an alarm send Message_AlarmSet. 

• When an alarm goes off !Alarm broadcasts Message_AlarmGoneOff. 

Message_AiarmSet (&500) 

Setting an alarm 

To set an application alarm , send the following message: 

Rl+l6 
R1+20 
Rl+24 
Rl+30 
Rl+n 

&500 indicates message to !Alarm 
0/ 1 indicates set an alarm (I if 5 byte format) 
date/time 
name of application sender, terminated by 0 
application-specific unique alarm identifier. terminated by 0 

Date & time must be given in standard 5 UTC byte format if +20 is I, otherwise the 
layout is as follows (local time values) : 

Rl+24 
Rl+26 
Rl+27 
Rl+28 
Rl+29 

year as low-byte/high-byte 
month 
date 
hour 
minutes 

Neither the name nor the alarm identifier may be longer than 40 chars each. 



Application messages 

Cancelling an alarm 

To cancel the alarm, use the following message block: 

Rl+l6 
Rl+20 
Rl+24 
Rl+n 

&500 indicates message to !Alarm 
2 indicates cancel an alarm 
name of application , terminated by 0 
application-specific unique alarm identifier, terminated by 0 

The name and identifier must match exactly for the alarm to be successfully 
cancelled . It is not necessary to specify the time of the alarm, as this may have 
changed due to being deferred by Alarm. 

If these messages are sent recorded , !Alarm will acknowledge with 0 if successful , 
or a 0 terminated error string (message type= &500) . 

This message is not available in RISC OS 2. 

Message_AiarmGoneOff (&501) 

Help 

The format of the block sent by !Alarm as a broadcast is : 

Rl+l6 
Rl+20 
Rl+n 

&50 I indicates an alarm has gone off 
name of application sender, terminated by 0 
application-specific unique alarm identifier, terminated by 0 

If the named application recognises the identifier, it must acknowledge this 
message, otherwise !Alarm will ask the user to install the named application . If the 
latter occurs, the alarm is deferred for one minute to allow the application to be 
installed. 

This message is not available in RISC OS 2. 

For an application to use interactive help, two application messages are employed. 
One is used by Help to request the help text, and the other is used by the 
application to return the text message. 

Message_HelpRequest (&502) 

To request help, the Help application must send a message as follows: 

Rl+l6 
Rl+20 
Rl+24 
Rl+28 
Rl+32 
Rl+36 

&502 - indicates request for help 
mouse x coordinate 
mousey coordinate 
mouse button state 
window handle 
icon handle 

(-I if not over a window) 
(-I if not over an icon) 



The Window Manager 

Locations 20 onwards are the results of using Wimp_GetPointerinfo. 

The Wimp will pass this message automatically to the task in charge of the 
appropriate window/icon combination. 

The Help application issues message type &502 every '~oth of a second to allow 
applications such as Edit and Draw to change the help text according to the current 
edit mode. To avoid flicker, the display is only updated when the returned help 
string changes. 

Message_HalpReply (&503) 

If an application receives a Message_HelpRequest, and wishes to produce some 
interactive help, it should respond with the following message: 

RI+I6 
RI+20 

&503 
help message, terminated by 0 

The help text may contain any printable character codes (including top-bit-set 
ones) If the sequence IM is encountered, this will be treated as a line break and 
subsequent text will be printed on the next line in the window. If !Help needs to 
split a line because it is too long, it does so at a word boundary (space character). 

The help text is terminated by a null character. 

The desktop save protocol 
Once the file to be saved is known, the save protocol can start: 

The Task Manager first opens the output file and makes a note of the handle. 

2 The Task Manager then inserts a comment saying when the file was created, so 
that when the user refers to the file they will know how recent it is. 

3 The Task Manager then inserts four •commands: 

• WimpSlot -next <wimp slot 'next ' sjze>K 

• ChangeDynamicArea -FontSize <font area size>K 

• ChangeDynamicArea -SpriteSize <system sprite area size>K 

• ChangeDynamicArea -RamFsSize <RAM disc size>K 

These set the sizes of the 'Next' slot, the font and sprite area sizes, and the 
RAM disc size, as would be expected. It is not sensible to set the RMA size or 
the system stack in this way, as they are much more system-dependent than 
those described above. The screen size cannot be set as it is always reset to the 
size of the current screen mode by the Task Manager. 

3-245 



The desktop save protocol 

3-246 

If there is not enough memory free to be allocated for a particular slot then, 
instead of giving errors, the largest amount of memory which is free will be 
allocated to the slot. 

When the user selects Exit or Shutdown from the task manager's menu, it 
looks to see if the variable SaveDeskSFile is set up - if it is, it automatically 
saves the desktop state in this file before exiting. 

4 Rather than using broadcast messages. the Task Manager talks to all the other 
tasks by using its list of task handles and names. This ensures that the tasks 
are asked to restart in the same order as they were originally started (which is 
not true for broadcasts). 

5 For each task in its list. the task manager sends a Message_SaveDesktop: 

Message_SaveDesktop (I 0) 

Rl+l6 
Rl+20 
Rl+24 

Message_SaveDesktop (I 0) 
(word) file handle of desktop file being written 
flag word: 
bits 0- 31 reserved (ignore them) 

Note that this is a RISC OS rather than a C file handle, so fprintf() cannot be 
used. The RISC OS SW!s OS_BPut or OS_GBPB should be used instead. 

This facility is not available in RISC OS 2. 

6 If the task understands the message, it then writes data directly into the 
desktop file. using the file handle supplied. 

The data is a sequence of •commands suitable for inclusion in a Desktop file. 
each terminated by a linefeed character (&OA). When the file is run to start the 
desktop, each command will be executed as a separate Wimp task. 

A typical example for a C application follows: 

#include <os.h> 
#include <swis . h> 

os_error *save_desktop(int handle) 

char *ptr; 

for (ptr=getenv ("Edi t$Dir "); *ptr; ptr++) 
os_error *error= os_swi2(0S_ BPut , *ptr, handle); 
if (error) return error; 

return os_swi2(0S_BPut , 10, handle); /*line terminator*/ 



The Window Manager 

The data the application should add to the boot file is a restart command 
which is usually a GSTrans'd form of something like /<EditSDir>. 

Note that since several copies of !Edit can be loaded at once, this GSTrans-ing 
operation should be done as soon as the application is loaded (and the result 
stored in a buffer), in case the value of EditSDir changes subsequently. 

Resident modules 

Resident module tasks do not require a restart command of the above form, 
since they are automatically started when the desktop is entered (by means of 
the Service_StartWimp protocol). However, if the modules are not stored in 
the ROM, they will probably be loaded by means of some form of *RMEnsure 
command in a !foo application, so the !foo application should be re-run 
instead. 

There is a service call provided for modules which need to save some state to 
the file, e.g. ColourTrans saves its calibration. For details of this call see the 
section entitled Service_ WirnpSaveDesktop (Service Call &5C) on page 3-78. 

7 If the message is not acknowledged, the task manager goes on to the next one 
in the list. This means that: 

• Tasks which don't understand desktop saving will not be saved in the 
desktop file . 

• If an application gets an error while writing to the file, it should 
acknowledge the message and report the error. The Task Manager will 
detect that the message has been acknowledged, and will abort the save 
operation and remove the file. 

8 When all the tasks have been asked for their restart commands, the file is 
closed , and if the output was a boot file, •opt 4,2 is executed for the 
appropriate disc drive I user id . 

The device claim protocol 

Under RISC OS there are a number of devices which can only be used by one task 
at a time, such as the serial and parallel ports. This protocol provides a method by 
which a task can claim one of those devices for its exclusive use. 

A task wishing to claim exclusive use of a device broadcasts a 
Message_DeviceClaim message. 

2 If a task which currently owns a device wishes to prevent another task from 
claiming the device it should reply to the above message with a 
Message_DeviceinUse message. If a Message_DevicelnUse is received in reply, 
the claim has failed , and the task should issue an error message. 

3 If a DeviceClajm message sent by a task is not acknowledged, the task can 
assume it has claimed the device. 

3-247 



The device claim protocol 

~-24A 

Note: It is legal for a task to claim a device it already owns, as long as it does not 
object to its own requests. 

This protocol can be used under RISC OS 2, but will not be used by applications 
written for it, such as printer drivers prior to version 2.42. 

Device Numbers 

Currently allocated device numbers are: 

Major device 

Parallel port I 
Serial port 2 
Screen palette 3 
Midi Interface 4 

Floppy discs 5 

Sound system 6 

Example 

Minor Device 

0 Internal port 
0 Internal port 
0 

-1 All ports 
0-3 Port number 

-I All floppy discs 
0-3 Drive number (:0- :3) 
0 Entire sound system 

The printer drivers use the above protocol in the following way: 

• If the printer driver starts up with the serial port selected it tries to claim the 
serial port (Major Device 2, Minor Device 0) . If it fails, it issues an error 
message and selects Null: as its output. 

• Whenever the user selects Serial from the printer driver's menu, the printer 
driver tries to claim the serial port, and if it fails it issues an error message and 
leaves the setting as it was. 

• If the printer driver receives a DeviceClaim message while the serial port is 
selected as its destination, it replies with a DevicelnUse message. 

The same procedure is followed for the parallel port. 

Note: There is no need to release a device after you have finished using it, you 
should simply stop objecting to other tasks claiming it. 

When a task exits, it no longer objects to other tasks claiming devices, and so all 
the devices it owned are effectively released. 



Message_DeviceCiaim (11) 

R1+16 
R1+20 
R1+24 
R1+28 

Message_DeviceClaim (II) 
major device number 
minor device number 
zero terminated information string 

The Window Manager 

This message is broadcast by a task wishing to claim exclusive use of a device. 

The information string should contain the name of the application claiming the 
device. 

Message_DevicelnUse (12) 

R1+16 
R1+20 
R1+24 
R1+28 

Message_DevicelnUse ( 12) 
major device number 
minor device number 
Zero terminated information string 

If a task which currently owns a device wishes to prevent another task from 
claiming the device it should reply with Message_DevicelnUse. 

The information string should be used to give information about the task currently 
using the device (for example, 'Serial terminal connection open' if a terminal 
currently owns the serial port). This information can then be used by the task trying 
to claim the device in its error message. 

Data transfer protocol 
The message-passing system is central to the transfer of data around the Wimp 
system . This covers saving files from applications, loading files into applications, 
and the direct transfer of data from one application to another. The last use often 
obviates the need for a 'scrap' (cut and paste) mechanism for intermediate storage; 
data is sent straight from one program to another, either via memory or a 
temporary file. 

Data transfer code uses an environment variable called Wimp$Scrap to obtain 
the name of the file which should be used for temporary storage. This is set by the 
file ! Scrap. ! Boot, when a directory display containing the ! Scrap directory is 
first displayed. (Under RISC OS 2 this was done by the file ! System. ! Boot, when 
a directory display containing the ! System directory is first displayed.) 
Applications attempting data transfer should check that Wimp$ Scrap exists. If it 
doesn't, they should report the error Wimp$ Scrap not defined. 



Data transfer protocol 

Four main message types exist to enable programs to support file/data transfer. 
The protocol which uses them has been designed so that a save to file operation 
looks very similar to a data transfer to another application . Similarly, a load 
operation bears much similarity to a transfer from another program. This 
minimises the amount of code that has to be written to deal with all possibilities. 

The messages types are: 

Message_DataSave 
2 Message_DataSaveAck 
3 Message_DataLoad 
4 Message_DataLoadAck 

There are three others which have associated uses: Message_DataOpen, 
Message_RamFetch and Message_RamTransmit. Before describing the message 
types in detail, we describe the four data transfer operations . 

Note that all messages except for the initiating one should quote the other side's 
my_ref field in the message's your_ref field, as is usual when replyi ng. 

Saving data to a file 

This is initiated through a Save entry in a task's menu. This item will have a 
standard dialogue box, with a 'leaf' name and a file icon which the user can drag to 
somewhere on the desktop, in this case a directory window. The following happens: 

The user releases the mouse button, terminating the drag of the file icon; the 
application receives a User_Drag_Box event. 

2 The application calls Wimp_GetPointerlnfo (page 3- 143) to find out where the 
icon was dropped, in terms of its coordinates and window/ icon handles. 

3 The application sends a DataSave message with the file's leafname to the Filer 
using this information. 

4 The Filer replies with a DataSaveAck message, which contains the complete 
pathname of the file . 

5 The application saves the data to that file . 

6 The application sends the message DataLoad to the Filer. 

7 The Filer replies with the message DataLoadAck. 

The last two steps may seem superfluous, but they are important in keeping the 
application-Filer and application-application protocol the same. 

, 



The Window Manager 

Saving data to another application 

This is initiated in the same way as a Filer save. The following happens: 

The user releases the mouse button. terminating the drag of the file icon; the 
application receives a User_Drag_Box event. 

2 The application calls Wimp_GetPointerinfo to find out where the icon was 
dropped, in terms of its coordinates and window/icon handles. 

3 The application sends a DataSave message with the file's leafname to the 
destination application using this information. 

4 The destination application replies with a DataSaveAck message, which 
contains the pathname <Wimp$ Scrap>. 

5 The application saves the data to that file (which the filing system expands to 
an actual pathname). 

6 The application sends the message DataLoad to the destination task. 

7 The external task loads and deletes the scrap file. 

8 The external task replies with the message DataLoadAck. 

You can see now that the saving task doesn't need to know whether it is sending to 
the Filer or something else. In its initial DataSave message, it just uses the 
window/icon handles returned by Wimp_GetPointerinfo as the destination task (in 
R2/R3) and the Wimp does the rest. It must, of course, always use the pathname 
returned in the DataSaveAck message when saving its data. 

Loading data from a file 

This is very straightforward . A load is initiated by the Filer when the user drags a 
fi le icon into an application window or icon bar icon. 

The Filer sends the DataLoad message to the application . 

2 The application loads the named file and replies with a DataLoadAck message. 

The receiving task is told the window and icon handles of the destination. From 
this it can decide whether to open a new window for the file (the file was dragged 
to the icon bar) or insert it into an existing window. 

3-251 



Data transfer protocol 

Loading data from another application 

This is simply the case of saving data to another application, but from the point of 
view of the receiver: 

The external task sends a DataSave message to the application . 

2 The application replies with a DataSaveAck message, quoting the pathname 
<Wimp$ Scrap>. 

3 The external task saves its data to that file . 

4 The external task sends the message DataLoad to the application. 

5 The application loads and deletes the file <Wimp$Scrap>. 

6 The application replies with the message DataLoadAck to the external task. 

Again, the receiver can decide what to do with the incoming data from the 
destination window and icon handles. 

The messages used in the above descriptions are described below. Messages I and 
3 are generally sent as User_Message_Recorded, because they expect a reply, and 
types 2 and 4 are sent as User_Message, as they don't. The message blocks are 
designed so that a reply can always use the previously received message's block 
just by altering a couple of fields . 

When receiving any message, allow for either type 17 or 18, i.e. don't rely on any 
sender using one type or the other. 

Message_DataSave (1) 

The data part of the message block is as follows: 

Rl+20 
Rl+24 
Rl+28 
Rl+32 
Rl+36 
Rl+40 
Rl+44 

destination window handle 
destination icon handle 
destination x coordinate 
destination y coordinate 
estimated size of data in bytes 
file type of data 

(screen coordinates, i.e. not 
relative to the window) 

proposed leafname of data, zero-terminated 

The first four words come from Wimp_GetPointerlnfo. The rest should be filled in 
by the saving task. In addition to the usual &xxx file types, the following are defined 
for use within the data transfer protocol: 

&1000 
&2000 
&ffffffff 

directory 
application directory 
untyped file (i.e. had load/exec address) 



The Window Manager 

Message_ DataSaveAck (2) 

The message block is as follows: 

Rl+l2 

Rl+20 
Rl+24 
Rl+28 
Rl+32 
Rl+36 
Rl+40 
Rl+44 

my_ref field of the DataSave message 

destination window handle 
destination icon handle 
destination x coordinate 
destination y coordinate 
estimated size of data in bytes; -I if file is 'unsafe' 
file type of data 
full pathname of data (or Wimp$Scra p ). zero-terminated 

The words at +20 to +32 are preserved from the DataSave message. If the receiver 
of the file (i.e. the sender of this message) is not the Filer, then it should set the 
word at +36 to -I. This tells the file's saver that its data is not 'secure', i.e. is not 
going to end up in a permanent file. In turn the saver will not mark the file as 
unmodified. and will not use the returned pathname as the document's window 
title. 

The Filer, on the other hand, will not put -I in this word, and will insert the file's 
full pathname at +44. The saver can mark its data as unmodified (since the last 
save) and use the name as the document window title. 

Message_Dataload (3) 

From the foregoing descriptions you can see that this message is used in two 
situations, firstly by the Filer when it wants an application to load a file. and 
secondly by a task doing a save to indicate that it has written the data to 
<Wimp $Scrap>. The message block looks like this: 

Rl+l2 

Rl+20 
Rl+24 
Rl+28 
Rl+32 
Rl+36 
Rl+40 
Rl+44 

my_ref from DataSaveAck message, or 0 if from Filer 

destination window handle 
destination icon handle 
destination x coordinate 
destination y coordinate 
estimated size of data in bytes 
file type 
full path name of file, zero terminated 

The receiver of this message should check the file type and load it if possible. Mer 
a successful load it should reply with a Message_DataLoadAck. 



Data transfer protocol 

3-254 

If the sender of this message does not receive an acknowledgement, it should 
delete <Wimp$Scrap> and generate an error of the form Data transfer 
failed: Receiver died. 

In RISC OS 3 when the filer sends a data load to an application it appends the 
position of the file in the current selection to the end of the message so the format 
of the block becomes: 

RI+44 
RI+n 

full pathname of file, zero terminated 
column of file in current selection 

R I +n+4 row of file in current selection 

(where n is the length of the full path name and terminator, plus any padding 
needed to word align the next entry) 

You can check for the existence of these values by comparing the size field of the 
message with the position of the terminating zero of the path name. 

Message_DataloadAck (4) 

RI+I2 

RI+20 
RI+24 
RI+28 
RI+32 
RI+36 
RI+40 
RI+44 

my_ref from DataLoad message 

destination window handle 
destination icon handle 
destination x coordinate 
destination y coordinate 
estimated size of data in bytes 
file type 
full pathname of file, zero terminated 

Effectively, the file-loading task just changes the message type to 4 and fills in the 
your_ref field, then sends back the previous DataLoad message to its originator. 

Message_DataSaved (13) 

Rl+l2 
Rl+l6 

reference from DataSave message 
13 

In some cases a file can become 'safe' after the DataSaveAck has been sent. This 
message can be used to tell the originator of the save that the file has become 
'safe'. The reference at R I+ 12 should be the one from the my_ ref field of the 
original DataSave message. 

In order to make use of this message, the saving task should store the my_ref value 
of the DataSave message with each document it tries to save. On receiving the 
DataSaved message it should compare its reference number with the number 
stored for each active document, and mark the document as saved if the numbers 
match. Note that a document can be modified by the user between the time that 



The Window Manager 

the DataSave message was sent and the time that the DataSaved message is 
received; in this case, the task should forget any reference number it holds for the 
document, and ignore any subsequent DataSaved messages. 

Memory data transfer 

The foregoing descriptions rely on the use of the Wimp scrap file. However, task to 
task transfers can be made much quicker by transferring the data within memory. 
The save and load protocols are modified as below to cope with this. 

Saving data to another application (memory) 

This is the same as previously described in the section entitled Saving data to another 
application on page 3-251 up until the DataSave message. Then: 

The external task replies with a RAMFetch message. 

2 The application sends a RAMTransmit message with data. 

3 The external task replies with another RAMFetch message. 

4 The last two steps continue until all the data has been sent and received. 

Loading data from another application (memory) 

I The external task sends a DataSave message to the application. 

2 The application replies with a RAMFetch message. 

3 If this isn't acknowledged with a RAMTransmit, use the <Wimp$Scrap > file to 
perform the operation, otherwise .. . 

4 Get and process the data from the RAMTransmit buffer. 

5 While the RAMTransmit buffer is full: 

Send a RAMFetch for more data 
Get and process the data from the RAMTransmit buffer. 

So if the first RAMFetch message is not acknowledged (i.e. it gets returned as a 
User_Message_Acknowledge), the data receiver should revert to the file transfer 
method. If any of the subsequent RAM Fetches are unanswered (by RAMTransmits), 
the transfer should be aborted, but no error will be generated. This is because the 
sender will have already reported an error to the user. 

The data itself is transferred by the sender calling Wimp_TransferBlock 
(page 3-216) just before it sends the RAMTransmit message. See the description of 
that call for details of entry and exit conditions. 

The termination condition for the saver generating RAMTransmits and the loader 
sending RAM Fetches is that the buffer is not full. This implies that if the amount of 
data sent is an exact multiple of the buffer size, there should be a final pair of 
messages where the number of bytes sent is 0. 



Data transfer protocol 

Here are the message blocks for the two messages: 

Message_RAMFetch (6) 

Rl+l2 

Rl+20 
Rl+24 

my_ref field of DataSave/RAMTransmit message 

buffer address for Message_RAMTransmit 
buffer length in bytes 

This is sent as a User_Message_Recorded so that a lack of reply to the first one 
results in the file transfer protocol being used instead. and a lack of reply to 
subsequent ones allows the transfer to be abandoned. No error should be 
generated because the other end will have already reported one. A reply to a 
RAM Fetch takes the form of a RAMTransmit from the other task. The receiver 
should also generate an error if it can't process the received data. e.g. if it runs out 
of memory. This should also cause it to stop sending RAMFetch messages. 

When allocating its buffer. the receiver can use the estimated data size from the 
DataSave message, but it should be prepared for more data to actually be sent 

Message_RAMTransmit (7) 

Rl+l2 

Rl+20 
Rl+24 

my_ref field of RAMFetch message 

buffer address from RAMFetch message 
number of bytes written into the buffer 

A data-saving task sends this message in response to a RAMFetch if it can cope 
with the memory transfer protocol. If the number of bytes transferred into the 
buffer (using Wimp_TransferBlock) is smaller than the buffer size. then this is the 
last such message. otherwise there is more to send and the receiver will send 
another RAMFetch message. 

All but the last messages of this type should be sent as User_Message_Recorded 
types. If there is no acknowledgement. the sender should abort the data transfer 
and stop sending. It may also give an error message. The last message of this type 
(which may also be the first if the buffer is big enough) should be sent as a 
User_Message as there will be no further RAMFetch from the receiver to act as 
acknowledgement. 



The Window Manager 

The iconise protocol 

This protocol is not available in RISC OS 2. 

Shift held down when the close tool of a window is clicked 

If Shift is held down when the Close icon of a window is clicked, the Wimp does not 
close the window, but instead broadcasts a Message_Iconize. 

If no iconiser is loaded nothing happens. 

If an iconiser is loaded: 

It acknowledges the message (stops the broadcast). 

2 It sends a Message_Windowlnfo to the window. 

Old application 

If the application is an old RISC OS 2 one, it will ignore the above message. 

The iconiser gets acknowledgement back and uses the information in the first 
Message_Iconize to iconise the window. 

New application 

If the application is a new RISC OS 3 application it should react as follows: 

• If it doesn' t want to help it should ignore the message 

• If it wants to help it should reply with a Message_ Windowlnfo. The iconiser will 
then use this information to iconise the window. 

This enables applications such as Edit to give a different icon depending on 
the file type o"f the file being edited in the window. 

• If the application wants to iconise its own window it should acknowledge the 
original Window_Info message, and do all the work itself. 

Closing a window 

Whenever a window is closed the Wimp broadcasts the message 
Message_ Wi ndowCiosed. 

The iconiser then removes the icon. 

When a task exits 

The iconiser spots the Message_TaskOuit and remove all the icons for that task. 



The iconise protocol 

When a new iconiser starts up 

It broadcasts a Message_Windowinfo with a window handle of 0 

An iconiser receiving this message should reopen all iconised windows. 

All applications should ignore such a message. 

Current iconiser (Pinboard) behaviour 

If it does not get a reply to the Message_ Windowlnfo 

I It gets the task name for the task that owns the window and then tries to find a 
sprite called ic_task name in the wimp sprite area. If it fails it uses a sprite 
called ic ?. 

2 It uses the title given in the Message_Iconize. 

If it gets a Message_ Windowlnfo 

I It tries to find the sprite ic_name given in message. If it fails it uses 
. ? 
lC .. 

2 It uses the title given in the Message_Windowinfo. 

Message_lconize (&400CA) 

Rl+20 
Rl+24 
Rl+28 
Rl+48 

window handle 
task handle for task which owns the window 
20 Bytes of title string (last part of first word) 

This message is not available in RISC OS 2. 

Message_WindowCiosed (&400CB) 

Rl+20 
Rl+24 

window handle 

This message is not available in RISC OS 2. 

Message_Windowlnf (&400CC) 

Rl+20 
Rl+24 
Rl+28 

Rl+36 

window handle 
reserved. must be 0 
sprite name to use. null terminated (MAX= 7 chars+ NULL) 

sprite name used is icon_string 
title string to use null terminated (as short as possible truncated 

to 20 characters) 



The Window Manager 

This message is not available in RISC OS 2. 

The Printer protocol 

The printer protocol is used to ensure a uniform procedure by which an application 
may print files of any type, allowing for the files to be printed immediately or 
queued by other software for printing later. The printer manager Printers , supplied 
with RISC OS 3, uses this protocol. The description below assumes that the 
dialogue is being conducted between an application and Printers (to avoid 
referring repeatedly to 'the destination of the printer protocol ' ) 

The protocol for printing a file is 

The application issues either: 

• DataSave (the user has dropped a file onto the Printers icon) 

• PrintSave (the user has initiated an application Print option) . 

2 If Printers is loaded, it replies with either: 

• PrintError if there is an error (the protocol is now over) 

• PrintFile. 

This stage is present for compatibility with RISC OS 2 applications. 

If Printers is not loaded, the message bounces. In this case, the application 
should do one of two things: 

• If it was graphics printing, go ahead and try to print anyway. 

• If it was text printing, complain that the printer manager is required. 

3 The application does one of the following: 

• ignores PrintFile (this is the normal behaviour under RISC OS 3) 

• replies with WiiiPrint and prints the file (this is the RISC OS 2 behaviour, 
now deprecated- the application has 'jumped the queue') 

• converts the file , stores the output in PrinterSTemp, and replies with 
Data Load. 

In the first case, the protocol continues as described below. 

4 Printers responds in one of two ways , depending on whether the destination 
printer is in use or not, by issuing either: 

• PrintTypeOdd (requesting the application to print the file itself 
immediately) 

• DataSaveAck (requesting the application to send the file to Printers 
for queuing) . 

In the first case, PrintTypeOdd is not broadcast, and does not contain valid file 
type or file name fields. These must not be relied on. 



The Printer protocol 

5 If PrinterTypeOdd is issued (the first case above), the application : 

• may be able to print the file itself immediately, in which case it replies 
with PrintTypeKnown and prints the file (the protocol is now over) 

• may not be able to print the file itself, in which case it ignores the 
PrintTypeOdd, and Printers responds with a DataSaveAck, so that it can 
take a copy of the file . 

6 Either way, the application has received a DataSaveAck from Printers. It should 
save the data it wants printed to the file whose name was supplied in the 
DataSaveAck message, and reply with DataLoad. 

7 Printers will respond with DataLoadAck. The file is in the print queue. 

At some future time, the file will rise to the top of the queue (unless the user has 
removed it manually) , and Printers will broadcast a PrintTypeOdd to find an 
application willing to print the file . (This might be the same application as the one 
that queued the file, or a different one.) If the PrintTypeOdd is not replied to, 
Printers will issue the SWI 

sprintf (s, " @PrintType_%3. 3X %s ", file_ type, file_ name) ; 
__ swi (Wimp_ StartTask , _IN (0) , s) ; 

This should be a command that will cause the application to print the file 
immediately. 

In response to the PrintSave, the printer manager may reply with PrintError 
(&80 144). If the size of this message is 20, this means you are talking to an old 
printer manager and it is busy. If the size of the message is not 20, there is an error 
number at offset 20 and null terminated error text at offset 24. 

If the application is doing graphics printing, it should print the file without calling 
Wimp_Poll. Wimp_Poll must not be called when using Printers because when 
Printers regains control it assumes that the current file has been printed and 
moves on to the next entry in the queue. 

The protocol as described above is the one implemented by Printers . Future 
versions of printer managing software may take the copy by RAM transfer from 
applications that support it. To be ready for this, the application should be 
prepared for a RAMFetch to be sent in the place of the DataSaveAck described 
above. (By ignoring this RAMFetch, they will revert to the file-based protocol.) 

The techniques and calls used to actually print are outlined in the section entitled 
Printing a document from an application on page 3-558. 



The WiRdow Manager 

Message_PrintFile (&80140) 

This message is broadcast as a recorded delivery upon receipt of a DataSave or 
PrintSave message. The reason for having this message is two-fold: 

• the application doing the DataSave might need to know that. in effect. the user 
is wanting to print; 

• it allows applications to try and improve on !Printer-provided services such as 
text printing. 

The format of the message is: 

Rl+l2 
Rl+l6 
Rl+20 

Rl+44 

your_ref 
&80140 

from DataSave/PrintSave block 

This allows any application to try and do better than !Printers can do with the 
default actions available to it. Such an application has 3 options: 

• it can ignore the message, in which case. if no-one else claims it. !Printers will 
resort to the normal processes (i.e. issue a DataSaveAck); 

• it can respond with Will Print. in which case !Printers takes no further action; 

• it ca n convert the file into another format and store it in the file specified by 
Printer$ Temp. It should then reply with a DataLoad with the filetype 
reflecting the new type. 

Message_ Will Print ( &80141) 

This message is sent by an application in response to a PrintFile broadcast. The 
application should then proceed to print the file . 

Note: It is recommended that you use the PrintTypeOdd protocol in preference to 
this message. 

~-?fi1 



The Printer protocol 

Message _PrintSave ( &80142) 

The format of this message is: 

Rl+l2 
Rl+l6 
Rl+20 

Rl+44 

0 
&80142 

as for Message_DataSave 

This message allows applications to send files to the printer manager for printing 
without having to know the task handle, etc, since the message is broadcast. The 
message simply needs to be broadcast as a recorded delivery, at which point the 
printer manager will enter the PrintFile dialogue If the message bounces, the 
application should complain as the printer manager is not loaded. 

Message _Printlnit ( &80143) 

This is broadcast when a printer manager is starting up. Any active printer 
managers should quit quietly upon receipt of this message to avoid a clash 
occurring. 

Message_PrintError (&80144) 

Under RISC OS 2 

This message is sent by RISC OS 2 managers in response to a PrintSave if they are 
already printing (as they can only queue one file at a time). It is known as 
Message_PrintBusy under RISC OS 2. 

Under !Printers 

With !Printers, this message is sent if an error occurs as a result of one of the other 
messages being used. The format of the block is: 

Rl+l2 
Rl+l6 
Rl+20 
Rl+24 

your_ref 
&80144 
error number 
error message (null terminated) 

To maintain compatibility with RISC OS 2 printer managers, if the message is the 
original Message_PrintBusy, the size (in RI+O) will be 20. 

Error numbers and messages 

1 Can only print from app l ications when a printer has been selected 

This is sent in reply to a PrintSave when there isn't a selected printer. 



The Window Manager 

Message_PrintTypeOdd (&80145) 

This message is broadcast if the filetype is not considered known by !Printers. 
'Known' is qualified as being the current printer type: text (FFF). obey (FEB) or 
command (FFE) files, TaskExec (FD6). TaskObey (FD7 ). Desktop (FEA) and I st Word 
Plus (AF8) . The format of the message is: 

Rl+l2 
Rl+l6 
Rl+40 
Rl+44 

0 
&80145 
file type of data 
zero terminated filename 

If an application can print this filetype directly, it should respond with 
PrintTypeKnown. The application can either: 

• print the file directly to printer: 

• output it to Printer$Temp, in which case this must be done before replying 
with PrintTypeKnown. 

Currently assigned printer type files are PoScript (FF5) and Printout (FF4). 

Message_PrintTypeKnown (&80146) 

This message is sent by an application in response to a PrintTypeOdd 

Message_SetPrinter (&80147) 

This message is broadcast by !Printers when the printer settings or selection has 
changed. 

Message_PSPrinterQuery (&8014C) 

This message is sent as a recorded delivery by !FontPrint to !Printers when 
!FontPrint either starts up or receives SetPrinter. The layout of the block is: 

Rl+l2 
Rl+l6 
Rl+20 
R1+24 

0 
&8014C 
buffer address (or zero) 
buffer size 

If the buffer address is non-zero, !Printers places the following information into the 
buffer (all Null terminated) : 

• current printer name. 

• current printer type, 

• pathname to printer font file. 



The Printer protocol 

Regardless of the buffer address, ! Printers places the real buffer size into the block 
and replies with PSPrinterAck. 

This message is not available in RISC OS 2. 

Message_PSPrinterAck (&80140) 

This is sent by !Printers to !FontPrint in response to PSPrinterOuery. If !FontPrint 
does not receive this message, it should raise an error to advise the user (e.g. 
! Printers is required to allow use of ! FontPrint) 

This message is not available in RISC OS 2. 

Message _PSPrinterModified ( &8014E) 

This is sent by !FontPrint to !Printers when the user clicks on the Save button. 
!Printers then re-reads the font file and resets the printer's font list. 

This message is not available in RISC OS 2. 

Message _PSPrinterDefaults ( &8014F) 

This is sent by FontPrint to !Printers when the user clicks on the Default button. 
!Printers then resets the font file, resets the printer's font list and replies with 
PSPrinterDefaulted. 

This message is not available in RISC OS 2. 

Message _PSPrinterDefaulted ( &80150) 

This is sent by ! Printers to ! FontPrint when the font file has been reset. 

This message is not available in RISC OS 2. 

Message_PSPrinterNotPS (&80151) 

This is sent by !Printers upon receipt of PSPrinterOuery if the currently selected 
printer is not a PostScript printer. 

This message is not available in RISC OS 2. 

Message _Reset Printer ( &80152) 

This can be sent to !Printers to ensure that the printer settings are correct for the 
currently selected printer. 

This message is not available in RISC OS 2. 



Message _PSisFontPrintRunning ( &80153) 

If !FontPrint receives this message, it will acknowledge it. 

This message is not available in RISC OS 2. 

The DataOpen Message 

Message_DataOpen (5) 

The Window Manager 

This message is broadcast by the Filer when the user double-clicks on a file. It gives 
active applications which recognise the file type a chance to load the file in a new 
window, instead of having the Filer launch a new copy of the program. 

The message block looks like this: 

Rl+20 
Rl+24 
Rl+28 
Rl+32 
Rl+36 
Rl+40 
Rl+44 

window handle of directory display containing file 
unused 
x offset of file icon that was double clicked 
y offset of file icon 
0 
file type 
full pathname of file, zero-terminated 

The x andy offsets can be used to display a 'zoom-box' from the original icon to the 
new window, to give a dynamic impression of the file being opened. 

If the user double-clicks on a directory with Shift held down, this message will be 
broadcast with the file type set to & 1000. 

The file type is set to &3000 for untyped files. 

The application should respond by loading the file if it can, and acknowledging the 
message with a Message_LoadDataAck. If no-one loads the file , the Filer will •Run 
it. 

Note that once the resident application has decided to load the file, it should 
immediately acknowledge the Data Open message. This is so that if the load fails 
with an error (eg. Memory full). the Filer will not then try to •Run the file . This 
would only result in another error message anyway. 



TaskWindow messages 

TaskWindow messages 

TaskWindow_lnput (&808CO) 

3-266 

This message is used to send input data from Parent to Child. 

Rl+20 
Rl+24 

size of input data 
pointer to input data 

Input can also be sent via a normal RAM transfer protocol, i.e. send a 
Message_DataSave, then perform the following two steps until all the data has 
been sent and received: 

wait for Message_RAMFetch 

2 send back Message_RAMTransmit 

See the section entitled Memory data transfer on page 3-255 for a full description of 
this protocol. 

TaskWindow_Output (&808C1) 

This message is sent to the Parent when one of its children has produced output. 

Rl+20 size of output data 
R I +24 ••• output data 

TaskWindow_Ego (&808C2) 

This message is sent to the Parent, to inform him of the Child's task-id. 

Rl+4 
Rl+20 

Child's task-id (as filled in by Wimp) 
Parent's txt-handle (as passed to *TaskWindow or *ShellCLI_Task) 

Note that this is the only time the txt-handle is used. It allows the Parent to 
identify which Child is announcing its task-id. 

TaskWindow_Morio (&808C3) 

This message is sent to the Parent when the Child exits. 

No data (all necessary information is in the wimp message header). 

TaskWindow_Morite (&808C4) 

This message is sent by the Parent to kill the Child. 

No data (all necessary information is in the wimp message header) . 



The Window Manager 

TaskWindow_NewTask (&808C5) 

This message is broadcast by an external task which requires an application (e.g. 
Edit) to start up a task window. If the receiving application wishes to deal with this 
request . it should first acknowledge the Wimp message, then issue a SWI 
Wimp_StartTask with Rl+20 ... as the command. 

Rl+20 ... the command to run 

TaskWindow _Suspend ( &808C6) 

This message is sent by the Parent to suspend a Child . 

No data (all necessary information is in the wimp message header) . 

TaskWindow_Resume (&808C7) 

This message is sent by the Parent to resume a suspended Child. 

No data (all necessary information is in the wimp message header). 



·commands 

*Commands 

3-268 

*Configure WimpAutoMenuDelay 

Sets the configured time before a submenu is automatically opened 

Syntax 

*Configure WimpAutoMenuDelay delay 

Parameters 

Use 

delay time before a submenu is automatically opened, in 
If10 second units 

*Configure WimpAutoMenuDelay sets the configured time the pointer must rest 
over a menu item before its submenu (if any) is automatically opened. 

Note that automatic opening of submenus is disabled if bit 7 of the WimpFlags is 
clear. 

This command is not available under RISC OS 2. 

Example 

*Configure WimpAutoMenuDelay 5 

Related commands 

*Configure WimpFlags, *Configure WimpMenuDragDelay 

\ 



The Window Manager 

*Configure WimpDoubleCiickDelay 

Sets the configured time during which a double click is accepted 

Syntax 

*Configure WimpDoubleClickDelay delay 

Parameters 

Use 

delay time during which a double click is accepted, in 
lfto second units 

*Configure WimpDoubleClickDelay sets the configured time after a single click 
during which a double click is accepted. 

A pending double-click will be immediately cancelled if any of the following occur: 

• Wimp_DragBox is called (for example, in response to a drag button event); 

• the pointer moves by more than the configured number of OS units; 

• the mouse is not clicked again inside the configured amount of time. 

This command is not available under RISC OS 2. 

Example 

*Configure WimpDoubleClickDelay 12 

Related commands 

*Configure WimpDoubleClickMove 



•configure WimpDoubleC/ickMove 

3-270 

*Configure WimpDoubleCiickMove 

Sets the configured distance within which a double click is accepted 

Syntax 

*Configure WimpDoubleClickMove distance 

Parameters 

Use 

distance distance within which a double click is accepted. in 
OS units 

•configure WimpDoubleClickMove sets the configured distance from the position 
of a single click within which a double click is accepted. 

If the pointer moves this distance or further from the first click, the double click is 
cancelled. 

This command is not available under RISC OS 2. 

Example 

*Configure WimpDoubleClickMove 20 

Related commands 

•configure WimpDoubleClickDelay 



The Window Manager 

*Configure WimpDragDelay 

Sets the configured time after which a drag is started 

Syntax 

*Configure WimpDragDelay delay 

Parameters 

Use 

delay time after which a drag is started, in l/10 second units 

*Configure WimpDragDelay sets the configured time after a single click after which 
a drag is started. 

This command is not available under RISC OS 2. 

Example 

*Configure WimpDragDelay 8 

Related commands 

*Configure WimpDragMove 

~-?71 



*Configure WimpDragMove 

3-272 

*Configure WimpDragMove 

Sets the configured distance the pointer has to move for a drag to be started 

Syntax 

*Configure WimpDragMove distance 

Parameters 

Use 

distance distance the pointer has to move for a drag to be started, 
in OS units 

•configure WimpDragMove sets the configured distance from the position of a 
single click that the pointer has to move for a drag to be started . 

This command is not available under RISC OS 2. 

Example 

*Configure WimpDragMove 40 

Related commands 

•configure WimpDragDelay 



The Window Manager 

*Configure WimpFiags 

Sets the configured behaviour of windows when dragged, and of error boxes 

Syntax 

*Conf igu re WimpFlags n 

Parameter 

Use 

n a value between 0 and 255, as follows: 

Bit Meaning when set 

0 window position drags are continuously redrawn 
window resizing drags are continuously redrawn 

2 horizontal scroll drags are continuously redrawn 
3 vertical scroll drags are continuously redrawn 
4 no beep is generated when an error box appears 
5 windows can be dragged partly off screen to right and bottom 

(not available under RISC OS 2) 
6 windows can be dragged partly off screen in all directions 

(not available under RISC OS 2) 
7 open submenus automatically 

If set and the pointer is kept on a non-leaf menu item for more 
than the time specified by *Configure WimpAutoMenuDelay then 
the submenu will be opened automatically by the Wimp 
(not available under RISC OS 2) . 

The effect of clearing bits 0- 3 is that the drag operation is performed 
using an outline, and the window is redrawn at the end of the drag. 

*Configure WimpFiags sets the configured behaviour of windows when dragged, 
and of error boxes. Generally, all of bits 0 - 3 will be either set or cleared, 
depending on whether the user requires continuous updates or outline dragging. 
Bit 4 controls the action of the standard Wimp error reporting window. Bits 5 and 6 
control whether the window can move partly off screen (even if bit 6 is clear) . Bit 7 
controls whether submenus are automatically opened when the pointer rests over 
their parent entry for longer than the configured WimpAutoMenuDelay. 



*Configure WimpF/ags 

3-274 

Examples 

*Configure WimpFlags 0 
*Configure WimpFlags 15 

Related commands 

*Configure WimpAutoMenuDelay, *Status WimpFlags 

Related SWis 

Wimp_Poll. Wimp_OpenWindow. Wimp_ReportError 

• 



The Window Manager 

*Configure WimpMenuDragDelay 

Sets the configured time before an automatically opened submenu is closed 

Syntax 

*Configure WimpMenuDragDelay delay 

Parameters 

delay time before an automatically opened submenu is closed, 
in lfto second units 

Use 

*Configure WimpMenuDragDelay sets the configured time before an automatically 
opened submenu is closed. During this time you can move the pointer over other 
menu entries without closing the submenu, making it easy to reach the submenu. 

Note that automatic opening of submenus is disabled if bit 7 of the WimpFlags is 
clear. 

This facility is not available under RISC OS 2. 

Example 

*Configure WimpMenuDragDelay 7 

Related commands 

*Configure WimpFlags, *Configure WimpMenuDragDelay 



*Configure WimpMode 

3-276 

*Configure WimpMode 

Sets the configured screen mode used 

Syntax 

*Configure WimpMode screen_modeiAuto 

Parameter 

Use 

screen_mode 

Auto 

the display mode that the computer should use after a 
power-on or hard reset, and when entering or leaving the 
desktop 

automatic setting of appropriate mode using monitor 
lead 

*Configure WimpMode sets the configured screen mode used by the machine 
when it is first switched on. or after a hard reset, and when entering or leaving the 
desktop. It is identical to the command *Configure Mode; the two commands alter 
the same value in CMOS RAM. 

You can also set a value of Auto (not available in RISC OS 2). More recent Acorn 
computers can sense the type of monitor lead connected, and hence set an 
appropriate mode. If no lead can be sensed. either because none is present or 
because the computer is of an older design, the mode defaults to mode I 2. 

Under RISC OS 2, this command only sets the configured screen mode used for the 
Desktop; *Configure Mode sets the configured screen mode used for the command 
line. If you leave the Desktop and then re-enter it before powering on again or 
pressing Ctrl Break, the mode used is the one that was last used by the Desktop. 

Example 

*Configure WimpMode 15 

Related commands 

*Configure Mode 

Related SWis 

Wimp_SetMode 



Related vectors 
None 

The Window Manager 

3-277 



*Desktop 

3-278 

*Desktop 

Initialises all desktop facilities, then starts the Desktop 

Syntax 

*Desktop [commandi-File filename] 

Parameters 

Use 

command 

filename 

a * Command which will be passed to Wimp_StartTask when the 
Desktop starts up 

a valid pathname specifying a file, each line of which will be 
passed to Wimp_StartTask when the desktop starts up 

*Desktop initialises all desktop facilities, then starts the Desktop. The Desktop 
provides an environment in which Wimp programs can operate. 

*Desktop automatically starts resident Wimp task modules such as the filers, the 
palette utility and the Task Manager. You can also run an optional * Command or 
each line of a file of * Commands. This is typically used to load applications such 
as Edit. Any * Commands using files must specify them by their full path name. 

If you do run a file of* Commands when you start the desktop, its first line should 
run the file !System!Boot, provided with your computer. This is needed by most 
desktop applications. If you want to start an application that uses fonts, the next 
line of the start-up file should run !Fonts.!Boot, again provided with your 
computer. Applications can then be started on the following lines. 

The Desktop may also be configured as the default language, using the command 
*Configure Language (see page 1-945). 

Examples 

*Desktop 
*Desktop !FormEd 
*Desktop -File !DeskBoot 

Related commands 

*DeskFS, *Desktop_Filer, *Desktop_ADFSFiler eta!. 



Related SWis 
Wimp_StartTask 

Related vectors 
None 

The Window Manager 

~-?7Q 



*Desktop_ ... 

3-280 

Syntax 

*Desktop_ ... 

Commands to start up ROM-resident Desktop utilities 

*Desktop_ADFSFiler. *Desktop_Configure. *Desktop_Draw, 
*Desktop_Edit,*Desktop_Filer, *Desktop_Free, 
*Desktop_NetFiler, *Desktop_Paint, *Desktop_Palette, 
*Desktop_Pinboard, *Desktop_RAMFSFiler, 
*Desktop_ResourceFiler, *Desktop_TaskManager 

Parameters 

Use 

None 

*Desktop_ ... commands are used by the Desktop to start up ROM-resident 
Desktop utilities that appear automatically on the icon bar. However, they are for 
internal use only, and you should not use them; use *Desktop instead. If you do try 
to use these commands outside the desktop, an error is generated. For example, 
*Desktop_Palette will give the error message 'Use *Desktop to start the Palette 
utility'. 

The reason why these commands have to be provided is that it is only possible to 
start a new Wimp task using a command line. 

There is one *Desktop_ ... command that we've documented, because it appears in 
desktop boot files . This is *Desktop_SetPalette. 

Related commands 

*Desktop , * Desktop_SetPalette 

Related SWis 

Wimp_StartTask 

Related vectors 

None 



The Window Manager 

*Desktop_ Set Palette 

Alters the current Wimp palette 

Syntax 

*Desktop_SetPalette RGBO ... RGB15 RGBbor RGBptrl ... RGBptr3 

Parameters 

Use 

All parameters specify palette entries as 6 hex digits of the form BBGGRR. 

RGBO ... RGB15 16 parameters giving the palette values for Wimp colours 
0- 15 

RGBbor I parameter giving the palette value for the border 

RGBptrl ... RGBptr3 3 parameters giving the palette values for pointer colours 
I - 3 

*Desktop_SetPalette alters the current Wimp palette. 

Example 

*Desktop_SetPalette FFFFFF DDDDDD BBBBBB 999999 777777 
555555 333333 000000 994400 OOEEEE OOCCOO OOOODD BBEEEE 
008855 OOBBFF FFBBOO 777777 FFFFOO 990000 OOOOFF 

Related commands 

None 

Related SWis 

Wimp_SetPalette (page 3-190) 

Related vectors 

None 

3-281 



•tconSprites 

*Icon Sprites 

Merges the sprites in a file with those in the Wimp sprite area 

Syntax 

*IconSprites filename 

Parameters 

Use 

filename full name of sprite file to load 

*IconSprites merges the sprites in a file with those already loaded in the Wimp's 
shared sprite area. Sprites in this area are used automatically by certain Wimp 
operations, and because all applications can access them, the need for multiple 
copies of sprite shapes can be avoided. 

Under RISC OS 3 *lconSprites will first try to add a suffix which depends on the 
properties of the configured Wimp mode, and if this doesn't work will use the 
original filename as usual. 

If the configured Wimp mode is a high resolution mono mode (i.e. bit 4 of the 
modeflags is set), then it will use the suffix '23'; otherwise the suffix is: 

<OS units per pixel (x)><OS units per pixel (y)>' 

For example: 

Configured Wimp mode 

23 
20 
12 

Suffix 

'23' 
'22' 
'24' 

This allows applications to provide an alternative set of icons for high resolution 
mono modes (when using the new Wimp) . For example, an application could 
provide a set of colour sprites in a file called ! Sprites, and an alternative 
monochrome set in a file called ! Spri tes23, and then load one set or the other 
automatically by using *Iconsprites <0bey$Dir> . Sprites. 

Example 

*IconSprites <0bey$Dir> . !Sprites 



Related commands 

*Pointer, *SLoad, *SMerge, •ssave, *Too!Sprites 

Related SWis 

Wimp_SpriteOp 

Related vectors 

None 

The Window Manager 

3-283 



*Pointer 

3-284 

*Pointer 

Turns the mouse pointer on or off 

Syntax 

*Pointer [011] 

Parameters 

Use 

0 or 1 or nothing 

*Pointer turns on or off the pointer that appears on screen to reflect the mouse 
position. If you give either no parameter or a parameter of I, pointer I is set to the 
default shape held in the Wimp sprite ptr_default (a blue arrow) and the sprite 
colours are set to their default. The pointer is enabled. If you give a parameter of 0, 
the pointer is disabled. 

Wimp programs that re-program the pointer should use shape 2. Pointer shapes 3 
and 4 are used by the Hourglass module. 

You can move the pointer with OS_ Word 21 ,5 if the mouse and pointer are 
unlinked. You can read the pointer position at any time using OS_ Word 21 ,6. 

Example 

*Pointer 0 turn off the pointer 

Related commands 

None 

Related SWis 

OS_ Word 21 (page 1-683), Wimp_SetPointerShape (page 3-166), 
Wimp_SpriteOp (page 3-20 I) 

Related vectors 

None 



The Window Manager 

*Tool Sprites 

Merges the sprites in a file with those in the Wimp's pool of border sprites 

Syntax 

*ToolSprites filename 

Parameters 

Use 

filename full name of sprite file containing tools to load 

*TooiSprites merges the sprites in a file with those already loaded in the Wimp's 
pool of border sprites. Sprites in this area are used by the Wimp to redraw window 
borders. 

If you change the border sprites, you should then force a redraw of the screen by 
changing mode- even if only to the current mode. 

The default border sprites are held in the file Resources:S.Resources.Wimp.Tools, 
and you may use these as an example. Note that this file does not contain an 
example of every sprite that the Wimp may use; for further details see the section 
entitled RISC OS System Icons on page 3-25. 

Example 

*ToolSprites <0bey$Dir>. !Sprites 

Related commands 

• IconSprites 

Related SWis 

None 

Related vectors 

None 

3-285 



*WimpMode 

3-286 

*WimpMode 

Changes the current screen mode used by the Desktop 

Syntax 

*WimpMode screen_mode 

Parameters 

screen_mode the display mode that the Desktop should use 

Use 

*WimpMode changes the current screen mode used by the Desktop. 

It does not alter the configured value, which will be used next time the computer is 
switched on, or after a hard reset, and when entering or leaving the desktop. 

Example 

*WimpMode 20 

Related commands 

*Configure WimpMode 

Related SWis 

Wimp_SetMode 

Related vectors 

None 



The Window Manager 

*Wimp Palette 

Uses a palette file to set the Wimp's colour palette 

Syntax 

*Wi mpPalett e f i lename 

Parameters 

Use 

filename path name of a file of type &FED (Palette) 

*WimpPalette uses a palette file to set the Wimp's colour palette. Typically the file 
would have been saved using the Desktop's palette utility. If the file is not a Palette 
file , the error message 'Error in palette file' is generated. If no task is currently 
active, the palette is simply stored for later use. Otherwise it is enforced 
immediately. 

Palette files can be read in either of two formats: 

As a list of RGB bytes corresponding to Wimp colours 0- 15 , then the border 
colour and then the three pointer colours. 

2 As a complete VDU sequence, again corresponding to Wimp colours 0- 15, the 
border colour and the pointer colours. Typically an entry would be 
19,colour,R,G,B. 

Type (I) is read for backwards compatibility, but since the palette utility always 
saves files in format (2). you should use this in preference. 

The RunType for Palette files is *WimpPalette %0, so you can also set a new palette 
from the Desktop simply by double-clicking on the file's icon . 

Example 

*WimpPalette greyScale 

Related commands 

None 

Related SWis 

Wimp_SetPalette 

3-287 



*WimpPalette 

3-288 

Related vectors 

None 



The Window Manager 

*WimpSiot 

Changes the memory allocation for the current and (optionally) the next Wimp task 

Syntax 

*WimpSlot [-min ] minsize[K] [-max maxsize[K]] [-next nextsize[K]] 

Parameters 

Use 

minsize 

maxsize 

next size 

the minimum amount of application space, in bytes or 
Kilobytes. that the current Wimp application requires 

the maximum amount of application space, in bytes or 
Kilobytes, that the current Wimp application requires 

the size, in bytes or Kilobytes. that will be allocated- if 
possible- to the next Wimp application 

*WimpSlot changes the memory allocation for the current and (optionally) the 
next Wimp task. It is typically used within Obey files called !Run, which the Filer 
uses to launch a new Wimp application *WimpSiot calls Wimp_SlotSize to try to 
set the application memory slot for the current task to be somewhere between the 
limits specified in the command. 

If there are fewer than minsize bytes free, the error 'Application needs at least 
minsizeK to start up' is generated. 

Otherwise. if the current slot is smaller than minsize, then its size will be increased 
to minsize. If the current slot is already between minsize and maxsize, then it is 
unaltered. If a maxsize is specified, and the current slot is larger than maxsize, then 
its size will be reduced to maxsize. 

The slot size that is set by this command will also apply to the application that the 
*Obey file finally invokes. 

The next slot size is automatically saved in a desktop boot file. You can therefore 
alter the initial default slot either by dragging the Next slider in the Task manager's 
Task display window before saving a desktop boot file, or by editing the desktop 
boot file 

Examples 

*WimpSlot 32K 
*WimpSlot -min 150K -max 300K 

3-289 



·wimpS/of 

3-290 

Related commands 

*WimpTask 

Related SWis 

Wimp_SlotSize 

Related vectors 

None 



The Window Manager 

*Wimp Task 

Starts up a new task 

Syntax 

*WimpTask command 

Parameter 

command • Command which is used to start up the new task 

Use 

*WimpTask starts up a new task. It simply passes the supplied command to the 
SWI Wimp_StartTask. 

*WimpTask will exit via OS_Exit if you call it from outside a Wimp task. 

In RISC OS 2 the command can only be used from within another task. 

Example 

*WimpTask myProg 

Related commands 

*WimpSlot 

Related SWis 

Wimp_StartTask 

Related vectors 

None 

3-291 



*WimpWriteDir 

3-292 

*WimpWriteDir 

Sets the direction of text entry for writable icons 

Syntax 

*WimpWriteDir Oil 

Parameters 

Use 

0 write direction is the default for the current territory 

write direction is the reverse of the default for the current territory 

*WimpWriteDir sets the direction of text entry for writable icons to either the 
default for the current territory, or the reverse of that. 

It also affects the direction in which text inside text icons is printed. 

This facility is not available under RISC OS 2. 

Example 

*WimpWriteDir 0 

Related commands 

None 

Related SWis 

None 

Related vectors 

None 



54 Pin board 

Introduction and overview 
The Pinboard module provides facilities for representing files, applications and 
directories outside the Filer, by positioning icons either on the icon bar or on the 
desktop background (the 'pin board' that gives this module its title). 

It also provides a • Command to change the desktop background from the default 
grey to any sprite of your own choice. 

The Pinboard module is not available in RISC OS 2. 

3-293 



·commands 

*Commands 

3-294 

* AddTinyDir 

Adds a file, application or directory icon to the icon bar 

Syntax 

*AddTinyDir [object] 

Parameters 

object 

Use 

a valid pathname specifying a file, application or 
directory 

* AddTinyDir adds a file, application or directory to the icon bar. If no path name is 
given, it adds a blank directory icon to the icon bar. You can then later install a file, 
application or directory on the icon bar by dragging it to the blank icon. 

Example 

*AddTinyDir adfs::MHardy.$. !System 

Related commands 

*Pin, *RemoveTinyDir 

Related SWis 

None 

Related vectors 

None 



Pinboard 

*BackDrop 

Puts a sprite on the desktop background 

Syntax 

*BackDrop [-Centre I -Scale I -Tile] [filename] 

Parameters 

-centre 

-tile 

-scale 

filename 

Use 

centre sprite on background 

tile sprite over background 

scale sprite to fill background (the default) 

a valid pathname, specifying a sprite file 

*BackDrop puts the first sprite in the given sprite file on the desktop background. 
The sprite is scaled to fill the background unless you specify otherwise. 

If no filename is specified, the current backdrop's placing is altered. 

Example 

*BackDrop adfs: :Disc4.$.Sprites.desert 

Related commands 

None 

Related SWis 

None 

Related vectors 

None 



•p;n 

*Pin 

Adds a file, application or directory to the desktop pin board 

Syntax 

*Pin object x y 

Parameters 

Use 

object 

X 

y 

a valid pathname specifying a file, application or 
directory 

the x-coordinate at which to pin the object's icon, given 
in OS units 

they-coordinate at which to pin the object's icon, given 
in OS units 

*Pin adds a file, application or directory to the desktop pin board, positioning its 
icon at the given coordinates. The coordinates specify the top-left corner of the 
icon's bounding box (ie the box drawn around the icon when it is selected for a 
drag), not of the icon itself. To use a negative coordinate you need to specify it as 
0 -x or 0 -y, to avoid the - sign being interpreted as the start of a flag. (You may 
sometimes see this when Pinboard saves its state to a desktop boot file.) 

There is no equivalent command to remove the icon; to do so, you must choose 
Remove icon from the Pinboard menu. 

Example 

*Pin adfs: :MHardy.$. !System 200 200 

Related commands 

* AddTinyDir 

Related SWis 

None 

Related vectors 

None 



Pinboard 

*Pin board 

Starts the pinboard 

Syntax 

*Pinboard [-Grid] 

Parameters 

-Grid Turn on grid locking (off by default) 

Use 

*Pinboard initialises the pinboard, removing any existing pinned icons and 
backdrop. Grid locking is off by default, but you may turn it on by passing the 
-Grid option to this command, or by choosing Grid lock from the Pinboard 
menu. 

Related commands 

None 

Related SWis 

None 

Related vectors 

None 

3-297 



*Remove TinyDir 

I) I)QQ 

*RemoveTinyDir 

Removes a file, application or directory icon from the icon bar 

Syntax 

*RemoveTinyDir [object] 

Parameters 

object 

Use 

a valid path name specifying a file, application or 
directory 

*RemoveTinyDir removes a file, application or directory icon that was previously 
placed on the icon bar by a * AddTinyDir command. If no path name is given, all 
such icons are removed from the icon bar. 

Example 

*RemoveTinyDir adfs: :MHardy.$. !System 

Related commands 

*AddTinyDir, *Pin 

Related SWis 

None 

Related vectors 

None 



55 Drag A Sprite 

Introduction 
The DragASprite module provides SWI calls with which you can make the pointer 
drag a sprite around the screen. Since not all users will prefer this effect to 
dragging an outline- whether for aesthetics or performance- there is a bit in the 
CMOS RAM used to indicate their preference. (See the section entitled Non-volatile 
memory (CMOS RAM) on page 1-355.) You should examine that bit before using this 
module; if it shows that the user would prefer to drag outlines , oblige them! 

To drag a sprite: 

Prepare a sprite to be dragged (this may be trivial. as the application may have 
a suitable sprite already to hand) . 

2 Call the SWI DragASprite_Start (see page 3-300) . This takes a copy of your 
sprite- so you can dispose of your copy whenever you like- and then starts a 
Wimp drag. 

3 When the Wimp sends you an indication that your drag has finished, you 
should call the SWI DragASprite_Stop (see page 3-302) to release the 
workspace used for the drag. 

3-299 



SWI calls 

SWI calls 

On entry 

RO =flags 
Rl =sprite area holding sprite: 

0 system sprite area 
wimp sprite area 

Other address of sprite area 
R2 = pointer to sprite name 
R3 =pointer to 16-byte block containing box 

DragASprite _Start 
(SWI &42400) 

R4 =pointer to optional 16-byte block containing bounding box (see flags) 

On exit 

RO - R4 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call starts dragging a sprite. The sprite you supply is copied, so there is no 
problem if you dispose of your copy of the sprite. If there is insufficient memory 
available to start the drag, the call reverts to a normal drag of a dotted outline. 



The flags given in RO have the following meanings: 

Bits Meaning 

0- I Horizontal location of sprite in box: 
00 left 
01 centre 
10 right 

2 - 3 Vertical location of sprite in box: 
00 bottom 
01 centre 
10 top 

4 - 5 Drag bounding box is: 
00 whole screen 
0 I display area of window that the pointer's over 
I 0 specified in block pointed to by R4 

6 Bounding box applies to: 
0 the box 

the pointer 

7 Control of drop-shadow: 
0 don't do a drop-shadow 

make a drop shadow when copying the sprite 

8 - 31 Reserved for future use- should be set to 0 

Drag A Sprite 

The blocks pointed to by R3 and- optionally- R4 have the following format: 

Offset Use 

0 x-low 

4 y-low 

8 x-high 

12 y-high 

Related SWis 

l 
box 

bottom-left (x-low, y-low) is inclusive 

top-right (x-high, y-high) is exclusive 

DragASprite_Stop (page 3-302) 

Related vectors 

None 

3-301 



DragASprite_Stop (SWI &42401) 

~-302 

DragASprite_Stop 
(SWI &42401) 

Terminates any current drag operation, and releases workspace 

On entry 

On exit 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call terminates any current drag operation, and releases any workspace 
claimed by the DragASprite module to do a drag. You should make this call when 
your application receives the User_Drag_Box reason code from Wimp_Poll (see 
page 3-115) during a drag. 

Related SWis 

DragASprite_Start (page 3-300) 

Related vectors 

None 



56 The Filter Manager 

Introduction and Overview 
The Filter Manager provides facilities for you to register filters to be used when a 
specified task calls Wimp_Poll. or when Wimp_Poll is about to return to that task. 
These are known- respectively- as pre-filters and post-filters: 

• With a pre-filter, you may alter the event mask the task passes to Wimp_Poll 

• With a post-filter, you may modify the reason code and data block returned by 
Wimp_Poll to provide a new event to the task, or to prevent an event form 
being returned to the task. 

Filters need not be applied to a specific task; you can also apply filters to all tasks. 

Each filter is a routine that has well-defined entry and exit conditions; it is your 
responsibility to write the routine. 



Service Calls 

Service Calls 

'L~f\A 

Service_FilterManagerlnstalled 
(Service Call &87) 

Filter Manager starting up 

On entry 

Rl = &87 (reason code) 

On exit 

Use 

All registers preserved 

This service call is issued when the Filter Manager starts up. You may then register 
new filters using Filter_RegisterPreFilter (page 3-306) and Filter_RegisterPostFilter 
(page 3-308). 



Filter Manager dying 

On entry 

Rl = &88 (reason code) 

On exit 

All registers preserved 

Use 

The Filter Manager 

Service_FilterManagerDying 
(Service Call &88) 

This service call is issued as a broadcast to inform filters that they have been 
deregistered and that the Filter Manager is about to die. 



SWI calls 

SWI calls 
Filter _RegisterPreFilter 

(SWI &42640) 

Adds a new pre-filter to the list of pre-filters 

On entry 

RO =pointer to filter name (null terminated) 
R I = pointer to filter routine 
R2 =value to be passed in Rl2 when filter is called 
R3 =task handle to which to apply filter (or 0 for all tasks) 

On exit 

All registers preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call registers a pre-filter routine (pointed to by Rl ), which will be called 
whenever the specified task calls Wimp_Poll. 



The entry and exit conditions of the filter routine are: 

On entry 

RO = event mask, as passed to Wimp_Poll 
Rl =pointer to event block, as passed to Wimp_Poll 
R2 =task handle of task that called Wimp_Poll 

The Filter Manager 

Rl2 =value of R2 on entry to this SWI (ie Filter_RegisterPreFilter) 

On Exit 

It may clear bits in RO to provide a new event mask 

It must preserve all registers other than RO. 

The routine should exit using the instruction: 

MOVS PC,R14 

Related SWis 

Filter_RegisterPostFilter (page 3-308 ), Filter_DeRegisterPreFilter (page 3-31 0) 

Related vectors 

None 

3-307 



Filter_RegisterPostFilter (SWI &42641) 

Filter_RegisterPostFilter 
(SWI &42641) 

Adds a new post-filter to the list of post-filters 

On entry 

RO =pointer to filter name (null terminated) 
R I = pointer to filter routine 
R2 =value to be passed in Rl2 when filter is called 
R3 =task handle to which to apply filter (or 0 for all tasks) 
R4 = event mask (I bit masks the event out as for Wimp_Poll) 

On exit 

All registers preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call registers a post-filter routine (poin~ed to by RI ), which will be called 
whenever the Wimp is about to return from Wimp_Poll to the specified task. 



The entry and exit conditions of the filter routine are: 

On entry 

RO = event reason code, as returned from Wimp Poll 
Rl =pointer to event block, as returned from Wimp Poll 
R2 =task handle of task that is being returned to 

The Filter Manager 

R 12 =value of R2 on entry to this SWI (ie Filter_RegisterPostFilter) 

Task is paged in, so you can access its memory 

On Exit 

The routine may modify the reason code in RO and the contents of the buffer 
pointed to by Rl to provide a new event. By setting RO to -I on exit it may 
claim the event, and prevent it from being passed to the task. 

It must preserve all registers other than RO. 

The routine should exit using the instruction: 

MOVS PC,R14 

Related SWis 

Filter_RegisterPreFilter (page 3-306), Filter_DeRegisterPostFilter (page 3-311) 

Related vectors 

None 



Filter_DeRegisterPreFilter (SWI &42642) 

~-~10 

Filter_DeRegisterPreFilter 
(SWI &42642) 

Removes a pre-filter from the list of pre-filters 

On Entry 

RO =pointer to filter name (null terminated) 
Rl =pointer to filter routine 
R2 =value to be passed in Rl2 when filter is called 
R3 =task handle to which to apply filter (or 0 for all tasks) 

On exit 

All registers preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call removes a pre-filter from the list of pre-filters. All values on entry must be 
the same as those used to originally register the filter (ie those that were passed to 
Fi lter_RegisterPreFi Iter). 

Related SWis 

Filter_RegisterPreFilter (page 3-306) 

Related vectors 

None 



The Filter Manager 

Filter_DeRegisterPostFilter 
(SWI &42643) 

Removes a post-filter from the list of post-filters 

On entry 

RO =pointer to filter name (null terminated) 
Rl =pointer to filter routine 
R2 =value to be passed in R12 when filter is called 
R3 =task handle to which to apply filter (or 0 for all tasks) 
R4 =event mask (I bit masks the event out as for Wimp_Poll) 

On exit 

All registers preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call removes a post-filter from the list of post-filters. All values on entry must 
be the same as those used to originally register the filter (ie those that were passed 
to Filter_RegisterPostFilter). 

Related SWis 

Filter_RegisterPostFilter (page 3-308) 

Related vectors 

None 

3-311 



*Commands 

*Commands 
*Filters 

Lists all currently active pre- and post-Wimp_Poll filters 

Syntax 

*Filters 

Parameters 

None 

Use 

*Filters lists all currently active pre- and post-Wimp_Poll filters. 

Example 

*Filters ' 

Filters called on entry to Wirnp_ Poll: 
Filter Task 

Penguin All tasks 

Filters called on exit from Wirnp_Poll: 
Filter Task Mask 

Penguin All tasks 00000000 

Related commands 

None 

Related SWis 

Filter_RegisterPreFilter (page 3-306). Filter_RegisterPostFilter (page 3- 308) 

Related vectors 

None 



57 The TaskManager module 

Introduction and Overview 
The Task Manager module provides various facilities to ease the management of 
tasks. These are: 

• a SWI to find the name of a task, given its handle 

• a SWI to enumerate all the currently active tasks 

• a SWI to initiate a desktop shutdown 

• a * Command to change the size of various system areas. 

The Task Manager module is not available in RISC OS 2. 

3-313 



SWI calls 

SWI calls 
TaskManager_ TaskNameFromHandle 

(SWI &42680) 

Finds the name of a task 

On entry 

RO =task handle 

On exit 

RO =pointer to task name 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is re-entrant 

This call returns the name of a task, given its task handle. If you wish to keep the 
name, you must copy it into your own workspace. 

Related SWis 

TaskManager_EnumerateTasks (page 3-315) 

Related vectors 

None 



The TaskManager module 

TaskManager_EnumerateTasks 
(SWI &42681) 

Enumerates all the currently active tasks 

On entry 

RO = 0 for first call, or value from previous call 
Rl =pointer to word aligned buffer 
R2 =buffer length (in bytes) 

On exit 

RO =value to pass to next call , or< 0 if no more entries 
R I =pointer to first unused word in buffer 
R2 =number of unused bytes in buffer 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call enumerates all the currently active tasks. On exit the buffer is filled with 
entries of the form: 

Byte Meaning 

0 task handle 
4 pointer to task name (should be copied away and not used in place) 
8 amount of memory (in K) used by the task 
12 flags: 

Bit 0 I => module task, 0 =>application task 
Bit I I => slot bar can be dragged, 0 => slot bar cannot be dragged 
(Bits 2-31 are reserved, and are currently 0) 



TaskManager_EnumerateTasks (SWI &42681) 

Related SWis 

TaskManager_TaskNameFromHandle (page 3-314) 

Related vectors 

None 



The TaskManager module 

TaskManager _Shutdown 
(SWI &42682) 

Initiates a desktop shutdown 

On entry 

RO = shutdown flags 

On exit 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

This call initiates a desktop shutdown. The actions performed are controlled by the 
shutdown flags held in RO: 

Bit Meaning when set 

0 don't display restart dialogue (equivalent to Exit menu option) 
don't broadcast Message_PreOuit (see page 3-230) 

2 flag in CMOS as portable power-down 
3 send a Message_Shutdown (see page 3-233) 
4 reject OS_UpCall I and 2 (see page 1-179) 
5- 31 reserved (must be zero) 

Related SWis 

None 

3-317 



TaskManager_Shutdown (SWI &42682) 

Related vectors 

None 



The TaskManager module 

*Commands 
*ChangeDynamicArea 

Changes the size of the font cache, system sprite area and/or RAM disc 

Syntax 
*ChangeDynarnicArea [ -FontSize n [K]] [ -SpriteSize n [K]] [ -RarnFsSize n [K]] 

Parameters 

n Size of the area to be set, in kilobytes 

Use 

*ChangeDynamicArea changes the size of the font cache, system sprite area and/or 
RAM disc. It generates an error if it is unable to do so. Its main use is in desktop 
boot files . 

Example 

*ChangeDynamicArea -SpriteSize 32K -RamFsSize lOOK 

Related commands 

None 

Related SWis 

OS_ChangeDynamicArea (page 1-377), OS_UpCall257 (page 1-194) 

Related vectors 

None 

3-319 



3-320 



58 TaskWindow 

Introduction and Overview 
The TaskWindow module is intended to allow programs which do not call SWI 
Wimp_Poll to be pre-emptively scheduled in the RISC OS desktop. In the following 
sections Child refers to the task created from a call to *TaskWindow and Parent 
refers to the task being used to display the Child's output. 

Any screen output produced by the Child is intercepted and sent in Wimp 
messages to the Parent. These messages are documented on page 3-266. 



SWI calls 

SWI calls 

3-322 

TaskWindow Tasklnfo 
(SWI &43380) 

Obtains information from the TaskWindow module 

On entry 

RO = reason code 

On exit 

Registers' values depend on value of RO on entry (see below) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is re-entrant 

This call is used to obtain information from the TaskWindow module which is not 
readily available otherwise. The reason code in RO on entry indicates which item of 
information is required. The registers on exit return the requested information. 

Valid reason codes in RO are: 

On entry 

0 

On exit 

RO is non-zero if the calling task is running in a task window; 
otherwise it is zero 

All other reason codes are reserved. 



Related SWis 

Wimp_ReadSyslnfo (page 3-218) with RO = 3 on entry 

Related vectors 

None 

Task Window 



·commands 

*Commands 
*SheiiCLI Task 

Runs an application in a window 

Syntax 

*ShellCLI_Task xxxxxxxx xxxxxxxx 

Parameters 

Use 

xxxxxxxx 

xxxxxxxx 

an 8 digit hex number giving the task handle of the parent 
task 

an 8 digit hex number giving a handle which may be used 
by the parent task to identify the task 

*ShellCLI_Task runs an application in a window. This command is intended for use 
only within desktop applications 

Use of this command is deprecated. Its functionality is subsumed within 
*TaskWindow. 

Related commands 

•shellCLI_TaskOuit (page 3-325) , *TaskWindow (page 3-326) 

Related SWis 

None 

Related vectors 

None 



Task Window 

*SheiiCLI_ TaskQuit 

Quits the current task window 

Syntax 

*ShellCLI_TaskQuit 

Parameters 

None 

Use 

*SheiiCLI_TaskOuit quits the current task window. This command is intended for 
use only within desktop applications. 

Related commands 

*ShellCLI_Task (page 3-324), *TaskWindow (page 3-326) 

Related SWis 

None 

Related vectors 

None 

3-325 



*Task Window 

Syntax 

*TaskWindow 

Starts a background task, which will obtain a task window if necessary 

*TaskWindow [command] [[-wimpslot) nK] [[-name) taskname] [-ctrl) 
[-display] [-quit) [-task &xxxxxxxx] [-txt &xxxxxxxx] 

Parameters 

Use 

3-326 

command 

n 

taskname 

-ctrl 

-display 

-quit 

-task &xxxxxxxx 

-txt &xxxxxxxx 

command to execute as a background task 

size of memory to allocate to task 

name of task 

allow control characters through, depending on setting of 
Ignore Ctrl menu option 

open the task window immediately, rather than waiting 
for a character to be printed 

make that task quit after the command, even if the task 
window has been opened 

an 8 digit hex number giving the Wimp task-id of the 
calling task 

an 8 digit hex number giving the handle for the Parent to 
identify the Child by 

*TaskWindow starts a background task, which will obtain a task window if it needs 
to get input. or to output a character to the screen . 

Any fields comprising more than one word must be enclosed in double quotes. 

You must call *TaskWindow using *WimpTask (page 3-291) or the SW1 
Wimp_StartTask (page 3-177). rather than using the command line or the SWI 
OS_CLI . You can only call Wimp_StartTask or *WimpTask from within an active 
task. 

If -txt and -task are not used, then before starting the task, a 
TaskWindow_NewTask message is broadcast to find an application (eg Edit) that 
can provide a window in which to show the task's output. An application task which 
receives this broadcast, and which wishes to receive output from the task, should 
acknowledge the message and then SW1 Wimp_StartTask the command given in 
the message block. 



TaskWindow 

Example 

*TaskWindow "Cat Ram:$" -ctrl -display -quit 

Related commands 

None 

Related SWis 

None 

Related vectors 

None 

3-327 





59 SheiiCLI 

Introduction 
This module provides a single * Command that allows you to invoke a command 
shell from a Wimp program. 

It also has two SWis for its own internal use. You must not use them in your own 
code. 



SWI Calls 

SWI Calls 

3-330 

Shell Create 
(SWI &405CO) 

This SWI call is for use by the ShellCLI module only. You must not use it in your 
own code. 



Shei/CLI 

Shell_ Destroy 
(SWI &405C1 

This SWI call is for use by the ShellCLI module only. You must not use it in your 
own code 



*Commands 

*Commands 

3-332 

*SheiiCLI 

Invokes a command shell from a Wimp program 

Syntax 

*ShellCLI 

Parameters 

Use 

None 

*ShellCLI invokes a command shell from a Wimp program, starting it as a Wimp 
task. It prompts the user with *, and passes each line that the user types to the 
command line interpreter, OS_CLI (page 1-929). This is repeated until the user 
enters a blank line, whereupon control is returned to the Wimp program. The Task 
Manager uses this command to implement its *Command (FI2) menu item. 

You must call *ShellCLI using *WimpTask (page 3-291) or the SWI Wimp_StartTask 
(page 3-177). rather than using the command line or the SWI OS_CLI . You can only 
call Wimp_StartTask or *WimpTask from within an active task. 

The command uses the two SWis Shell_ Create and Shell_Destroy; it is the only 
user of these SWis. 

Example 

*WimpTask ShellCLI 

Related commands 

None 

Related SWis 

Shell_Create (page 3-330) , Shell_Destroy (page 3-331) 

Related vectors 

None 



Part 8 - Non-kernel input/output 

3-333 



3-334 



I 
60 ColourTrans 

Introduction 
ColourTrans allows a program to select the physical red . green and blue colours 
that it wishes to use. given a particular output device and palette. ColourTrans 
then calculates the best colour available to fit the required colour. 

Thus, an application doesn't have to be aware of the number of colours available in 
a given mode. 

It can also intelligently handle colour usage with sprites and the font manager, and 
is the best way to set up colours when printing. 

Finally, it supports colour calibration, so that you can make different output 
devices produce the same colours. (This feature is not supported by RISC OS 2) 

Before reading this chapter. you should be familiar with the VDU, sprite and font 
manager principles. 

We also advise that you read the section entitled Printing a document from an 
application on page 3-558. This section gives advice on which ColourTrans calls you 
should use to set colours when printing. You' ll probably find it easiest if you use 
the same calls for screen output; you should then find that your routines for printer 
and screen output can share large parts of coding. 

3-335 



Overview 

Overview 
The ColourTrans module is provided on disc in RISC OS 2 as the file 
System:Modules.Colours. but is in the ROM for later releases of RISC OS. Any 
application which uses it should ensure it is present using the •RMEnsure 
command. say from an Obey file. For example: 

RMEnsure ColourTrans 0.51 RMLoad System :Modules.Colours 
RMEnsure ColourTrans 0.51 Error You need ColourTrans 0.51 or later 

Definition of terms 
Here are some terms you should know when using this chapter. 

GCOL is like the colour parameter passed to VDU 17. It uses a simple format for 
256 colour modes. 

Colour number is what is written into screen memory to achieve a given colour in a 
particular mode. 

Palette entry is a word that contains a description of a physical colour in red, green 
and blue levels. Usually, this term refers to the required colour that is passed to a 
ColourTrans SWI. 

Palette pointer is a pointer to a list of palette entries. The table would have one 
entry for each logical colour in the requested mode. In 256 colour mode. only 16 
entries are needed. as there are only 16 palette registers. 

Closest colour is the colour in the palette that most closely matches the palette 
entry passed. Furthest colour is the one furthest from the colour requested . These 
terms refer to a least-squares test of closeness. 

Finding a colour 

3-336 

There are many SW!s that will find the best fit colour in the palette for a set of 
parameters . Here is a list of the different kinds of parameters that can return a best 
fit colour: 

• Given palette entry, return nearest or furthest GCOL 

• Given palette entry, return nearest or furthest colour number 

• Given palette entry, mode and palette pointer. return nearest or furthest GCOL 

• Given palette entry. mode and palette pointer. return nearest or furthest colour 
number 



Colour Trans 

Setting a colour 

Conversion 

Some SWis will set the VDU driver GCOL to the calculated GCOL after finding it. 

• Given palette entry. return nearest GCOL. and set that colour 

• Given palette entry, return furthest GCOL. and set that colour 

There is a pair of SWis to convert GCOLs to and from colour numbers. Note that 
this only has meaning for 256 colour modes. There are also SWis to convert 
between different colour models. such as RGB. CIE. HSV. and CMYK. 

Sprites and Fonts 
ColourTrans provides full facilities for setting the colours used by sprites and fonts . 

Using other palette SWis 

Wimp 

Printing 

If an application changes the output palette (perhaps by changing the screen 
colours or by switching output to a sprite). then it has to call a SWI to inform 
ColourTrans. This is because ColourTrans maintains a cache used for mapping 
colours. If the palette has independently changed. then it has no way of telling. 

If the screen mode has changed there is no need to use this call. since the 
ColourTrans module detects this itself- but. under RISC OS 2. if output is switched 
to a sprite (and ColourTrans will be used) then the SWI must also be called. 

If you are using the Wimp interface. then the ColourTrans calls are fine to use. 
because they never modify the palette. 

Because ColourTrans allows an application to request an RGB colour rather than a 
logical colour. it is ideal for use with the printer drivers. where a printer may be 
able to represent some RGB colours more accurately then the screen. 

3-337 



Colour calibration 

Colour calibration 

3-338 

There is a major problem in working with colour documents. This is that , if the user 
selects some colours on the screen, they may well come out as different colours on 
a printer or other final output device. Colour calibration is a way to get round this 
problem. 

Colour calibration involves calibrating the screen colours with a fixed standard set 
of colours, and also calibrating the output device colours to the same fixed set of 
colours. Then, when an application draws to the screen, it does so in standard 
colours which are converted by the OS to screen colours. If the application draws 
to the printer it again does so in standard colours, but this time they are converted 
to printer colours. 

So, for the user, calibrating the colours will give constant colour reproduction 
throughout the system, for the cost of calibrating the devices in the first place. 

Colour calibration is not available in RISC OS 2. 



Colour Trans 

Technical Details 

Colours 

GCOL 

Two different colour systems are used in 256 colour modes. The GCOL form is 
much easier to use, while the colour number is optimised for the hardware. In all 
other colour modes, they are identical. 

The palette entry used to request a given physical colour is in the same format as 
that used to set the anti-alias palette in the font manager. 

The 256 colour modes use a byte that looks like this: 

Bit Meaning 

0 Tint bit 0 (red+green+blue bit 0) 
Tint bit I (red+green+blue bit I) 

2 Red bit 2 
3 Red bit 3 (high) 
4 Green bit 2 
5 Green bit 3 (high) 
6 Blue bit 2 
7 Blue bit 3 (high) 

This format is converted into the internal 'colour number' format when stored, 
because that is what the VIDC hardware recognises. 

Colour number 

The 256 colour mode in the colour number looks like this: 

Bit Meaning 

0 Tint bit 0 (red+green+blue bit 0) 
I Tint bit I (red+green+blue bit I) 
2 Red bit 2 
3 Blue bit 2 
4 Red bit 3 (high) 
5 Green bit 2 
6 Green bit 3 (high) 
7 Blue bit 3 (high) 

In fact the bottom 4 bits of the colour number are obtained via the palette, but the 
default palette in 256 colour modes is set up so that the above settings apply, and 
this is not normally altered. 

3-339 



Finding a colour 

Palette entry 

The palette entry is a word of the form &BBGGRROO. That is, it consists of four 
bytes. with the palette value for the blue, green and red gun in the top three bytes. 
Bright white, for instance would be &FFFFFFOO, while half intensity cyan would be 
&77770000. The current graphics hardware only uses the upper nibbles of these 
colours , but for upwards compatibility the lower nibble should contain a copy of 
the upper nibble. 

Finding a colour 

The SWis that find the best fit have generally self explanatory names. As shown in 
the overview, they follow a standard pattern . They are as follows: 

ColourTrans_ReturnGCOL (page 3-350) 
Given palette entry, return nearest GCOL 

ColourTrans_ReturnOppGCOL (page 3-356) 
Given palette entry, return furthest GCOL 

ColourTrans_ReturnColourNumber (page 3-353) 
Given palette entry, return nearest colour number 

ColourTrans_ReturnOppColourNumber (page 3-359) 
Given palette entry, return furthest colour number 

ColourTrans_ReturnGCOLForMode (page 3-354) 
Given palette entry, mode and palette pointer, return nearest GCOL 

ColourTrans_ReturnOppGCOLForMode (page 3-360) 
Given palette entry, mode and palette pointer, return furthest GCOL 

ColourTrans_ReturnColourNumberForMode (page 3-355) 
Given palette entry, mode and palette pointer, return nearest colour number 

ColourTrans_ReturnOppColourNumberForMode (page 3-362) 
Given palette entry, mode and palette pointer, return furthest colour number 

Palette pointers 

Where a palette pointer is used, certain conventions apply: 

• a palette pointer of- I means the current palette is used 

• a palette pointer of 0 means the default palette for the specified mode. 



Colour Trans 

Modes 

Similarly, where modes are used: 

• mode -I means the current mode. 

Best fit colour 

These calls use a simple algorithm to find the colour in the palette that most 
closely matches the high resolution colour specified in the palette entry. It 
calculates the distance between the colours. which is a weighted least squares 
function . If the desired colour is (Rd. Bd. Gd) and a trial colour is (Rt. Bt. Gtl. then: 

distance= redweight x (Rt-Rd)2 + greenweight x (GcGd)2 + blueweight x (BcBd)2 

where redweight = 2. greenweight = 4 and blueweight = I. These weights are set for 
the most visually effective solution to this problem. (In RISC OS 2. the weights 
used were 2, 3 and I respectively.) 

Setting a colour 

Conversion 

ColourTrans_SetGCOL (page 3-351) will act like ColourTrans_ ReturnGCOL. except 
that it will set the graphics system GCOL to be as close to the colour you requested 
as it can . Note that ECF patterns will not yet be used in monochrome modes to 
reflect grey shades. as they are with Wimp_SetColour. 

Simi larly, ColourTrans_SetOppGCOL (page 3-357) will set the graphics system 
GCOL with the opposite of the palette entry passed. 

To convert between the GCOL and colour number format in 256 colour modes. the 
SW!s ColourTrans_GCOLToColourNumber (page 3-363) and 
ColourTrans_ColourNumberToGCOL (page 3-364) can be used. 

Sprites and Fonts 

ColourTrans_SelectTable (page 3-346) will set up a translation table in the buffer. 
ColourTrans_SelectGCOLTable (page 3-348) will set up a list of GCOLs in the 
buffer. See the section entitled Pixel translation table on page 1-752 for a definition of 
these tables (although the latter call does not in fact relate to sprites) . 

ColourTrans_ReturnFontColours (page 3-365) will try and find the best set of 
logical colours for an anti-alias colour range. ColourTrans_SetFontColours 
(page 3-367) also does this. but sets the font manager plotting colours as well . It 
calls Font_SetFontColours. or Font_SetPalette in 256 colour modes- but it works 

3-341 



Using other palette SW/s 

out which logical colours to use beforehand. See the section entitled Colours on 
page 3-405 for details of using colours and anti-aliasing colours; see also the 
descriptions of the relevant commands later in the same chapter, on page 3-453 
and page 3-455. 

Using other palette SWis 
If a program has changed the palette, then ColourTrans_InvalidateCache 
(page 3-369) must be called. This will reset its internal cache. This applies to 
Font_SetFontColours or Wimp_SetPalette or VDU I 9 or anything like that. but not 
to mode change, since this is detected automatically. 

Under RISC OS 2 you must also call this SWI if output has been switched to a 
sprite, and ColourTrans is to be called while the output is so redirected. You must 
then call it again after output is directed back to the screen . Later versions of 
RISC OS automatically do this for you. 

Colour calibration 

3-342 

Colour calibration is performed by ColourTrans using a calibration table that maps 
from device colours to standard colours. 

The palette in RISC OS maps logical colours to device colours (also known as 
physical colours) When you ask RISC OS to select a colour for you, it takes this 
palette and uses a calibration table to convert the device colours to standard 
colours, giving a (transient) palette that maps logical colours to standard colours . 
It then chooses the closest standard colour to the one that you have specified. 

Calibration tables 

A calibration table is a one-to-one map that fills the device colour space. but does 
not necessarily fill the standard colour space. In fact, it consists of three separate 
mappings: one for each component of the device space (red, green and blue on a 
monitor, for example). Each mapping consists of a series of device component/ 
standard colour pairs. 

The pairs are stored as 32-bit words, in the form &BBGGRRDD, where DO is the 
amount of the device component (from 0 to 255). and BBGGRR is the standard 
colour corresponding to that amount. The two other device components ar,e 
presumed to be zero. 



Colour Trans 

The format of the table is: 

Word 

0 

2 
3 
3 + 111 
3 + 111 + 112 

Meaning 

Number of pairs of component I (11l) 
Number of pairs of component 2 (112) 
Number of pairs of component 3 (113) 
111 words giving pairs for component I 
112 words giving pairs for component 2 
113 words giving pairs for component 3 

The length of the table is therefore 3 + 111 + 112 + 113 words. 

Within each of the three sets of mappings, the words must be sorted in ascending 
order of device component. To fill the device colour space, there must be entries 
for device components of 0 and 255, so there must be at least two pairs for each 
component. 

As an example, a minimal calibration table might be: 

Word 

&00000002 
&00000002 
&00000002 
&02010300 
&0203FDFF 
&02010300 
&03FC02FF 
&02010300 
&FF0302FF 

Meaning 

2 pairs of red component 
2 pairs of green component 
2 pairs of blue component 
Device colour 000000 corresponds to standard colour 020 I 03 
Device colour OOOOFF corresponds to standard colour 0203FD 
Device colour 000000 corresponds to standard colour 020 I 03 
Device colour OOFFOO corresponds to standard colour 03FC02 
Device colour 000000 corresponds to standard colour 020 I 03 
Device colour FFOOOO corresponds to standard colour FF0302 

(In this column both device and standard colours are given in 
the format &BBGGRR) 

The default mapping for the screen is that device colours and standard colours are 
the same. This produces the same effect as earlier uncalibrated versions of 
ColourTrans. 

To convert a specific device colour to a standard colour. ColourTrans splits the 
device colour into its three component parts . Then , for each component, it uses 
linear interpolation between the two device components 'surrounding' the 
required device component. The standard colours thus obtained for each 
component are then summed to give the final calibrated standard colour. 

Colour calibration is not available in RISC OS 2. 

3-343 



Service Calls 

Service Calls 
Service_CalibrationChanged 

(Service Call &58) 

Screen calibration is changed 

On entry 

Rl =&58 (reason code) 

On exit 

Use 

All registers preserved 

This service call should not be claimed 

This service is issued by the ColourTrans module when the 
ColourTrans_SetCalibration SWI has been issued. 

It is noticed by the Palette utility in the desktop, which broadcasts a 
Message_PaletteChange. 

This service call is not used by RISC OS 2. 



Colour Trans 

Service lnvalidateCache 
(Service Call &82) 

Broadcast whenever the cache is flushed within ColourTrans 

On entry 

Rl = &82 (reason code) 

On exit 

Use 

All registers preserved 

This service is broadcast whenever the cache is flushed within ColourTrans. You 
should never claim it. 

This service call is not used by RISC OS 2. 

3-345 



SWI Calls 

SWI Calls 

3-346 

ColourTrans SelectTable 
(SWI &40740) 

Sets up a translation table in a buffer 

On entry 

RO =source mode, or -I for current mode, or (if~ 256) pointer to sprite area 
Rl =source palette pointer, or -I for current palette, or (if RO ~ 256) pointer to 

sprite name/sprite in area pointed to by RO (as specified by bit 0 of R5) 
R2 =destination mode, or -I for current mode 
R3 =destination palette pointer, or -I for current palette, or 0 for default for 

the mode 
R4 =pointer to buffer, or 0 to return required size of buffer 
R5 =flags (used if RO ~ 256): 

bit 0 set=> Rl =pointer to sprite; else Rl =pointer to sprite name 
bit I set=> use current palette if sprite doesn't have one; else use default 
bit 2 set=> use R6 and R7 to specify transfer function 
bits 24 - 31 give format of table: 

0 =>return pixel translation table (see page 1-752) 
I => return physical palette table 

all other bits reserved (must be zero) 
R6 =pointer to workspace for transfer function (if RO ~ 256, and bit 2 of R5 is set) 
R7 =pointer to transfer function (if RO ~ 256, and bit 2 of R5 is set) 

On exit 

RO - R3 preserved 
R4 =required size of buffer (if R4 = 0 on entry). or preserved 
R5 - R7 preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 



Colour Trans 

Re-entrancy 

Use 

SWI is not re-entrant 

This call sets up a translation table in a buffer- that is. a set of colour numbers as 
used by scaled sprite plotting. You may specify the source mode palette either 
directly, or (except in RISC OS 2) by specifying a sprite. See the section entitled 
Pixel translation table on page 1-752 for details of such tables. 

You should use this call rather than any other to set up translation tables for 
sprites. as it copes correctly with sprites that have a 256 colour palette. 

If bit 2 of the flags word in R5 is set. then R6 and R7 are assumed to specify a 
transfer routine. which is called to preprocess each palette entry before it is 
converted. The entry point of the routine (as specified in R7) is called with the 
palette entry in RO. and the workspace pointer (as specified in R6) in Rl2. The 
palette entry must be returned in RO. and all other registers preserved. 

In RISC OS 2. RO must be less than 256. and so R5 - R7 are unused. Consequently, 
to use a sprite as the source you first have to copy its palette information out from 
its header. Furthermore. you cannot find the required size of the buffer by setting 
R4 to 0 on entry. 

Related SWis 

ColourTrans_GenerateTable (page 3-346) 

Related vectors 

ColourV 

3-347 



ColourTrans_SelectGCOLTable (SWI &40741) 

3-348 

ColourTrans SelectGCOL Table 
(SWI &40741) 

Sets up a list of GCOLs in a buffer 

On entry 

RO =source mode, or -I for current mode, or (if~ 256) pointer to sprite area 
Rl =source palette pointer, or -I for current palette, or (if RO ~ 256) pointer to 

sprite name/sprite in area pointed to by RO (as specified by bit 0 of R5) 
R2 =destination mode, or -I for current mode 
R3 =destination palette pointer, or -I for current palette, or 0 for default for 

the mode 
R4 = pointer to buffer 
R5 =flags (used if RO ~ 256) : 

bit 0 set~ Rl =pointer to sprite; else Rl =pointer to sprite name 
bit I set~ use current palette if sprite doesn't have one; else use default 
all other bits reserved (must be zero) 

On exit 

RO - R5 preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrant 

Use 

SWI is not re-entrant 

This calL given a source mode and palette (either directly, or- except in 
RISC OS 2- from a sprite). a destination mode and palette, and a buffer, sets up a 
list of GCOLs in the buffer. The values can subsequently be used by passing them 
to GCOL and Tint. 



Colour Trans 

In RISC OS 2, RO must be less than 256, and so R5 is unused. Consequently. to use 
a sprite as the source you first have to copy its palette information out from its 
header. 

Related SWis 

None 

Related vectors 

Co lourY 



ColourTrans_ReturnGCOL (SWI &40742) 

ColourTrans ReturnGCOL 
(SWI &40742) 

Gets the closest GCOL for a palette entry 

On entry 

RO = palette entry 

On exit 

RO = GCOL 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call. given a palette entry, returns the closest GCOL in the current mode and 
palette. 

It is equivalent to ColourTrans_ReturnGCOLForMode for the given palette entry, 
with parameters of -I for both the mode and palette pointer. 

The colours are not calibrated in RISC OS 2, but are calibrated in later versions . 

Related SWis 

ColourTrans_SetGCOL (page 3-351). 
ColourTrans_ReturnColourNumber (page 3-353). 
ColourTrans_ReturnGCOLForMode (page 3-354), 
ColourTrans_ReturnOppGCOL (page 3-356) 

Related vectors 

ColourV 



Colour Trans 

ColourTrans SetGCOL 
(SWI &40743) 

Sets the closest GCOL for a palette entry 

On entry 

RO = palette entry 
R3 =flags 
R4 = GCOL action 

On exit 

RO = GCOL 
R2 = log2 of bits-per-pixel for current mode 
R3 =initial value AND &80 
R4 = preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call, given a palette entry, works out the closest GCOL in the current mode and 
palette, and sets it. The flags in R3 have the following meaning: 

Value of R3 

bit 7 =I 
bit 7 = 0 
bit 8 =I 
bit 8 = 0 

Meaning 

set background colour 
set foreground colour 
use ECFs to give a better approximation to the colour 
don't use ECFs 

The remaining bits of R3 and the top three bytes of R4 are reserved, and should be 
set to zero to allow for future expansion . Bit 8 of R3 is ignored in RISC OS 2, which 
does not support ECF patterns with this call. 

3-351 



Co/ourTrans_SetGCOL (SWI &40743) 

Note that if you are using ECF-generating calls, you cannot use the returned GCOL 
to reselect the pattern; you must instead repeat this call . 

The colours are not calibrated in RISC OS 2, but are calibrated in later versions. 

Related SWis 

ColourTrans_ReturnGCOL (page 3-350), ColourTrans_SetOppGCOL (page 3-357) 

Related vectors 

ColourV 



Colour Trans 

ColourTrans ReturnColourNumber 
(SWI &40744) 

Gets the closest colour for a palette entry 

On entry 

RO = palette entry 

On exit 

RO =colour number 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call. given a palette entry, returns the closest colour number in the current 
mode and palette. 

The colours are not calibrated in RISC OS 2, but are calibrated in later versions. 

Related SWis 

ColourTrans_ReturnGCOL (page 3-350), 
ColourTrans_ReturnColourNumberForMode (page 3-355). 
ColourTrans_ReturnOppColourNumber (page 3-359) 

Related vectors 

ColourV 



Co/ourTrans_ReturnGCOLForMode (SWI &40745) 

ColourTrans ReturnGCOLForMode 
(SWI &40745) 

Gets the closest GCOL for a palette entry 

On entry 

RO = palette entry 
Rl =destination mode, or -I for current mode 
R2 =palette pointer, or -I for current palette, or 0 for default for the mode 

On exit 

RO = GCOL 
Rl =preserved 
R2 = preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call. given a palette entry, a destination mode and palette. returns the closest 
GCOL. 

The colours are not calibrated in RISC OS 2, but are calibrated in later versions . 

Related SWis 

ColourTrans_ReturnGCOL (page 3-350) , ColourTrans_SetGCOL (page 3-351) , 
ColourTrans_ReturnColourNumberForMode (page 3-355). 
ColourTrans_ReturnOppGCOLForMode (page 3-360) 

Related vectors 

Co lourY 



Colour Trans 

ColourTrans ReturnColourNumberForMode 
(SWI &40746) 

Gets the closest colour for a palette entry 

On entry 

RO = palette entry 
R I = destination mode, or -I for current mode 
R2 = palette pointer, or -I for current palette, or 0 for default for the mode 

On exit 

RO =colour number 
Rl =preserved 
R2 = preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

This call , given a palette entry, a destination mode and palette, returns the closest 
colour number. 

The colours are not calibrated in RISC OS 2, but are calibrated in later versions. 

Related SWis 

ColourTrans_ReturnColourNumber (page 3-353), 
ColourTrans_ReturnGCOLForMode (page 3-354). 
Colourrrans_ReturnOppColourNumberForMode (page 3-362) 

Related vectors 

ColourV 

3-355 



ColourTrans_ReturnOppGCOL (SWI &40747) 

3-356 

ColourTrans_ReturnOppGCOL 
(SWI &40747) 

Gets the furthest GCOL for a palette entry 

On entry 

RO = palette entry 

On exit 

RO = GCOL 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call, given a palette entry, returns the furthest GCOL in the current mode and 
palette. 

It is equivalent to ColourTrans_ReturnOppGCOLForMode for the given palette 
entry, with parameters of -I for both the mode and palette pointer. 

The colours are not calibrated in RISC OS 2, but are calibrated in later versions. 

Related SWis 

ColourTrans_ReturnGCOL (page 3-350), ColourTrans_SetOppGCOL (page 3-357). 
ColourTrans_ReturnOppColourNumber (page 3-359), 
ColourTrans_ReturnOppGCOLForMode (page 3-360) 

Related vectors 

Co lourY 



Colour Trans 

ColourTrans_SetOppGCOL 
(SWI &40748) 

Sets the furthest GCOL for a palette entry 

On entry 

RO = palette entry 
R3 = 0 for foreground , or 128 for background 
R4 = GCOL action 

On exit 

RO = GCOL 
R2 = log2 of bits-per-pixel for current mode 
R3 =initial value AND &80 
R4 = preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

This call, given a palette entry, works out the furthest GCOL in the current mode 
and palette, and sets it. 

The top three bytes of R3 and R4 should be zero, to allow for future expansion. 

The colours are not cal ibrated in RISC OS 2, but are calibrated in later versions. 

Related SWis 

ColourTrans_SetGCOL (page·3-351 ), ColourTrans_ReturnOppGCOL (page 3-356) 

3-357 



ColourTrans_SetOppGCOL (SWI &40748) 

Related vectors 

Co lourY 



Colour Trans 

ColourTrans_ReturnOppColourNumber 
(SWI &40749) 

Gets the furthest colour for a palette entry 

On entry 

RO = palette entry 

On exit 

RO = colour number 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

This call . given a palette entry, returns the furthest colour number in the current 
mode and palette. 

The colours are not calibrated in RISC OS 2. but are calibrated in later versions. 

Related SWis 

ColourTrans_ReturnColourNumber (page 3-353). 
ColourTrans_ReturnOppGCOL (page 3-356). 
ColourTrans_ReturnOppColourNumberForMode (page 3-362) 

Related vectors 

ColourV 

3-35~ 



ColourTrans_ReturnOppGCOLForMode (SWI &4074A) 

ColourTrans_ReturnOppGCOLForMode 
(SWI &4074A) 

Gets the furthest GCOL for a palette entry 

On entry 

RO = palette entry 
R I =destination mode or -I for current mode 
R2 =palette pointer, or -I for current palette, or 0 for default for the mode 

On exit 

RO = GCOL 
R I = preserved 
R2 = preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call , given a palette entry, a destination mode and palette, returns the furthest 
GCOL. 

The colours are not calibrated in RISC OS 2, but are calibrated in later versions. 

Related SWis 

ColourTrans_ReturnGCOLForMode (page 3-354). 
ColourTrans_ReturnOppGCOL (page 3-356), 
ColourTrans_SetOppGCOL (page 3-357), 
ColourTrans_ReturnOppColourNumberFor Mode (page 3-362) 



Related vectors 

ColourV 

Colour Trans 

3-361 



Co/ourTrans_ReturnOppColourNumberForMode (SWI &40748) 

ColourTrans_ReturnOppColourNumberForMode 
(SWI &40748) 

Gets the furthest colour for a palette entry 

On entry 

RO = palette entry 
Rl =destination mode or -I for current mode 
R2 =palette pointer, or -I for current palette, or 0 for default for the mode 

On exit 

RO =colour number 
R I = preserved 
R2 = preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call, given a palette entry, a destination mode and palette, returns the furthest 
colour number. 

The colours are not calibrated in RISC OS 2, but are calibrated in later versions. 

Related SWis 

ColourTrans_ReturnColourNumberForMode (page 3-355). 
ColourTrans_ReturnOppColourNumber (page 3-359), 
ColourTrans_ReturnOppGCOLForMode (page 3-360) 

Related vectors 

Colourv 



Colour Trans 

ColourTrans GCOLToColourNumber 
(SWI &4074C) 

Translates a GCOL to a colour number 

On entry 

RO = GCOL 

On exit 

RO = colour number 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

This call changes the value passed from a GCOL to a colour number. 

You should only call this SWI for 256 colour modes; the results will be meaningless 
for any others. 

Related SWis 

ColourTrans_ColourNumberToGCOL (page 3-364) 

Related vectors 

ColourV 

3-363 



ColourTrans_ColourNumberToGCOL (SWI &40740) 

ColourTrans ColourNumberToGCOL 
(SWI &40740) 

Translates a colour number to a GCOL 

On entry 

RO =colour number 

On exit 

RO = GCOL 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call changes the value passed from a colour number to a GCOL. 

You should only call this SWI for 256 colour modes; the results will be meaningless 
for any others. 

Related SWis 

ColourTrans_GCOLToColourNumber (page 3-363) 

Related vectors 

ColourV 



Colour Trans 

ColourTrans ReturnFontColours 
{SWI &4074E) 

Finds the best range of anti-alias colours to match a pair of palette entries 

On entry 

RO = font handle, or 0 for the current font 
Rl =background palette entry 
R2 = foreground palette entry 
R3 =maximum foreground colour offset (0- 14) 

On exit 

RO = preserved 
Rl =background logical colour (preserved if in 256 colour mode) 
R2 = foreground logical colour 
R3 =maximum sensible colour offset (up to R3 on entry) 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call, given background and foreground colours and the number of 
anti-aliasing colours desired, finds the maximum range of colours that can 
sensibly be used. So for the given pair of palette entries, it finds the best fit in the 
current palette, and then inspects the other available colours to deduce the 
maximum possible amount of anti-aliasing up to the limit in R3. 

If anti-aliasing is desirable, you should set R3 = 14 on entry; otherwise set R3 = 0 
for monochrome. 

3-365 



ColourTrans_ReturnFontColours (SWI &4074E) 

3-366 

The values in Rl - R3 on exit are suitable for passing to Font_SetFontColours. You 
can also include them in a font string in a control ( 18) sequence, although we don't 
recommend this as the printer drivers do not properly support this feature. 

Note that in 256 colour modes, you can only set 16 colours before previously 
returned information becomes invalid. Therefore, if you are using this SWI to 
obtain information to subsequently pass to the font manager, do not use more 
than 16 colours. 

Also note that in 256 colour modes, the font manager's internal palette will be set, 
with all 16 entries being cycled through by ColourTrans. 

The colours are not calibrated in RISC OS 2, but are calibrated in later versions . 

See page 3-453 of the chapter entitled The Font Manager for further details of the 
parameters used in this call. 

Related SWis 

ColourTrans_SetFontColours (page 3-367), 
Font_SetFontColours (page 3-453) 

Related vectors 

ColourV 



Colour Trans 

ColourTrans SetFontColours 
(SWI &4074F) 

Sets the best range of anti-alias colours to match a pair of palette entries 

On entry 

RO = font handle, or 0 for the current font 
Rl =background palette entry 
R2 = foreground palette entry 
R3 =maximum foreground colour offset (0- 14) 

On exit 

RO preserved 
Rl =background logical colour (preserved if in 256 colour mode) 
R2 = foreground logical colour 
R3 =maximum sensible colour offset (up to R3 on entry) 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call. given a pair of palette entries , finds the best available range of anti-alias 
colours in the current palette, and sets the font manager to use these colours. It is 
the recommended way to set font colours, as the printer drivers properly support 
this call. A font string control ( 19) sequence uses this call , and so may also be used 
when printing. 

The colours are not calibrated in RISC OS 2, but are calibrated in later versions. 

Related SWis 

ColourTrans_ReturnFontColours (page 3-365) 

3-367 



ColourTrans_SetFontColours (SWI &4074F) 

Related vectors 

ColourV 



Colour Trans 

ColourTrans lnvalidateCache 
(SWI &40750) 

Informs ColourTrans that the palette has been changed by some other means 

On entry 

On exit 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call must be issued whenever the palette has changed since ColourTrans was 
last called. This forces ColourTrans to update its cache. Note that colour changes 
due to a mode change are detected; you only need to use this if another of the 
palette change operations was used. 

Under RISC OS 2 you must also call this SWI if output has been switched to a 
sprite, and ColourTrans is to be called while the output is so redirected. You must 
then call it again after output is directed back to the screen. For example, the 
palette utility on the icon bar calls this SWI when you finish dragging one of the 
RGB slider bars. Later versions of RISC OS automatically do this for you. 

Related SWis 

None 

Related vectors 

ColourV 

3-369 



ColourTrans_SetCalibration (SWI &40751) 

3-370 

ColourTrans SetCalibration 
(SWI &40751) 

Sets the calibration table for the screen 

On entry 

RO = pointer to calibration table 

On exit 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call copies the calibration table pointed to by RO into the RMA as the new 
calibration table for the screen. If the call fails due to lack of room in the RMA then 
the calibration will be set to the default calibration for the screen, and the 'No 
room in RMA: error will be passed back. Another possible error is 'Bad calibration 
table', given if the device component pairs do not cover the full range 00 to &FF 

This call is not available in RISC OS 2. 

Related SWis 

ColourTrans_ReadCalibration (page 3-371) 

Related vectors 

ColourV 



Colour Trans 

ColourTrans ReadCalibration 
(SWI &40752) 

Reads the calibration table for the screen 

On entry 

RO = 0 to read required size of table, or pointer to buffer 

On exit 

RO preserved 
Rl =size of table (if RO = 0 on entry) 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

This call reads the calibration table for the screen into the buffer pointed to by RO, 
which should be large enough to contain the complete table. Ideally you should 
first issue this call with RO=O to read the size of the table, then allocate space, and 
then issue this call again to read the table. 

This call is not available in RISC OS 2. 

Related SWis 

ColourTrans_SetCalibration (page 3-370) 

Related vectors 

ColourV 

3-371 



ColourTrans_ConvertDeviceColour (SWI &40753) 

ColourTrans ConvertDeviceColour 
(SWI &40753) 

Converts a device colour to a standard colour 

On entry 

Rl = 24-bit device colour (&BBGGRROO for the screen) 
R3 = 0 to use the current screen calibration, or pointer to calibration table to use 

On exit 

R2 = 24-bit standard colour (&BBGGRROO) 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call allows applications to read, say, screen colours, and find the standard 
colours to which they correspond. 

This call is not available in RISC OS 2. 

Related SWis 

ColourTrans_ConvertDevicePalette (page 3-373) 

Related vectors 

ColourV 



Colour Trans 

ColourTrans ConvertDevicePalette 
(SWI &40754) 

Converts a device palette to standard colours 

On entry 

RO = number of colours to convert 
Rl =pointer to table of 24-bit device colours 
R2 = pointer to table to store standard colours 
R3 = 0 to use the current screen calibration, or pointer to calibration table to use 

On exit 

RO - R3 preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call allows printer drivers to use the same calibration calculation code for 
their conversions between device and standard colours as the screen does. The 
printer device palette can be set up and then converted using this call to the 
standard colours using the printer's calibration table. This call is mainly provided 
to ease the load on the writers of printer drivers. 

This call is not available in RISC OS 2. 

Related SWis 

ColourTrans_ConvertDeviceColour (page 3-372) 

Related vectors 

ColourV 

3-373 



ColourTrans_ConvertRGBToCIE (SWI &40755) 

3-374 

ColourTrans ConvertRGBToCIE 
(SWI &40755) 

Converts RISC OS RGB colours to industry standard CIE colours 

On entry 

RO = red component 
Rl =green component 
R2 =blue component 

On exit 

RO = CIE X tristimulus value 
Rl = CIE Y tristimulus value 
R2 = CIE Z tristimulus value 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call converts RISC OS RGB colours to industry standard CIE colours, allowing 
easy interchange with other systems. The CIE standard that is output is the XYZ 
tristimulus values. 

All parameters are passed as fixed point 32 bit numbers, with 16 bits below the 
point and 16 bits above the point. We suggest that you use numbers in the range 
0- I, for compatibility with other conversion SWis such as 
ColourTrans_ConvertRGBToCMYK. 

This call is not available in RISC OS 2. 

Related SWis 

ColourTrans_ConvertCIEToRGB (page 3-376) 



Related vectors 

ColourV 

Colour Trans 

3-375 



ColourTrans_ ConvertCIEToRGB (SWI &40756) 

ColourTrans ConvertCIEToRGB 
(SWI &40756) 

Converts industry standard CIE colours to RISC OS RGB colours 

On entry 

RO = CIE X tristimulus value 
R1 = CIE Y tristimulus value 
R2 = CIE Z tristimulus value 

On exit 

RO = red component 
R1 = green component 
R2 =blue component 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call converts industry standard CIE colours to RISC OS RGB colours, allowing 
easy interchange with other systems. The CIE standard that is accepted is the XYZ 
tristimulus values. 

All parameters are passed as fixed point 32 bit numbers, with 16 bits below the 
point and 16 bits above the point. We suggest that you use numbers in the range 
0 - I , for compatibility with other conversion SWis such as 
ColourTrans_ConvertCMYKToRGB. 

This call is not available in RISC OS 2. 

Related SWis 

ColourTrans_ConvertRGBToCIE (page 3-374) 



Related vectors 

Co lourY 

Colour Trans 

3-377 



Co/ourTrans_WriteCalibrationToFile (SWI &40757) 

ColourTrans WriteCalibrationToFile 
(SWI &40757) 

Saves the current calibration to a file 

On entry 

RO =flags 
Rl =file handle of file to save calibration to 

On exit 

RO corrupted 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call saves the current calibration to a file . It does so by creating a list of 
* Commands which will recreate the current calibration . 

If bit 0 of RO is clear then the calibration will only be saved if it is not the default 
calibration . If bit 0 of RO is set then the calibration will be saved even if it is the 
default calibration . 

This call is not avai lable in RISC OS 2. 

Related SWis 

None 

Related vectors 

ColourV 



Colour Trans 

ColourTrans ConvertRGBToHSV 
(SWI &40758) 

Converts RISC OS RGB colours into corresponding hue, saturation and value 

On entry 

RO = red component 
Rl =green component 
R2 =blue component 

On exit 

RO =hue 
R I = saturation 
R2 =value 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call converts RISC OS RGB colours into corresponding hue. saturation and 
value. 

All parameters are passed as fixed point 32 bit numbers, with 16 bits below the 
point and 16 bits above the point. Hue ranges from 0- 360 with no fractional 
element, whilst the remaining parameters are in the range 0- I and may have 
fractional elements. 

When dealing with achromatic colours. hue is undefined. 

This call is not available in RISC OS 2. 



Co/ourTrans_ConvertRGBToHSV (SWI &40758) 

Related SWis 

ColourTra s_ConvertHSVToRGB (page 3-381) 

Related vectors 

ColourV 



Colour Trans 

ColourTrans ConvertHSVToRGB 
(SWI &40759) 

Converts hue, saturation and value into corresponding RISC OS RGB colours 

On entry 

RO =hue 
Rl =saturation 
R2 =value 

On exit 

RO = red component 
Rl =green component 
R2 = blue component 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call converts hue, saturation and value into corresponding RISC OS RGB 
colours. 

All parameters are passed as fixed point 32 bit numbers, with 16 bits below the 
point and 16 bits above the point. Hue ranges from 0- 360 with no fractional 
element, whilst the remaining parameters are in the range 0- I and may have 
fractional elements. 

An error is generated if both the hue and saturation are 0; for this reason we 
recommend that when using this call 0 <hue~ 360. 

This call is not available in RISC OS 2. 



ColourTrans_ConvertHSVToRGB (SWI &40759) 

I) I)Qt') 

Related SWis 

ColourTrans_ConvertRGBToHSV (page 3-379) 

Related vectors 

ColourV 



Colour Trans 

ColourTrans ConvertRGBToCMYK 
(SWI &4075A) 

Converts RISC OS RGB colours into the CMYK model 

On entry 

RO = red component 
Rl =green component 
R2 = blue component 

On exit 

RO = cyan component 
Rl =magenta component 
R2 = yellow component 
R3 = key (black) component 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call converts RISC OS RGB colours into the CMY (cyan/magenta/yellow) model 
with a K (key- ie black) additive. allowing easy preparation of colour separations . 

All parameters are passed as fixed point 32 bit numbers in the range 0- I, with 16 
bits below the point and 16 bits above the point. The 'K' acts as a black additive 
and is a value equally subtracted or added to the given CMY values. 

This call is not available in RISC OS 2. 

Related SWis 

ColourTrans_ConvertCMYKToRGB (page 3-385) 

3-383 



ColourTrans_ConvertRGBToCMYK (SWI &4075A) 

3-384 

Related vectors 

ColourV 



Colour Trans 

ColourTrans ConvertCMYKToRGB 
(SWI &40758) 

Converts from the CMYK model to RISC OS RGB colours 

On entry 

RO = cyan component 
Rl =magenta component 
R2 = yellow component 
R3 = key (black) component 

On exit 

RO = red component 
R l = green component 
R2 =blue component 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call converts from the CMY (cyan/magenta/yellow) model with a K (key- ie 
black) additive to RISC OS RGB colours, allowing easy conversion from colour 
separations . 

All parameters are passed as fixed point 32 bit numbers in the range 0- l, with 16 
bits below the point and 16 bits above the point. The 'K' acts as a black additive 
and is a value equally subtracted or added to the given CMY values. 

This call is not available in RISC OS 2. 

Related SWis 

ColourTrans_ConvertRGBToCMYK (page 3- 383) 

3-385 



ColourTrans_ConvertCMYKToRGB (SWI &40758) 

Related vectors 

ColourV 



Colour Trans 

ColourTrans ReadPalette 
(SWI &4075C) 

Reads either the screen's palette, or a sprite's palette 

On entry 

RO =source mode, or -I for current mode, or (if~ 256) pointer to sprite area 
Rl =source palette pointer, or -I for current palette, or (if RO ~ 256) pointer to 

sprite name/sprite in area pointed to by RO (as specified by bit 0 of R4) 
R2 = pointer to buffer, or 0 to return required size in R3 
R3 = size of buffer (if R2 ::;:. 0) 
R4 =flags (used if RO ~ 256): 

bit 0 set~ Rl =pointer to sprite; else Rl =pointer to sprite name 
bit I set~ return flashing colours; else don't 
all other bits reserved (must be zero) 

On exit 

R2 = pointer to next free word in buffer 
R3 = remaining size of buffer 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call reads either the screen's palette, or a sprite's palette. It is the 
recommended way of doing so. It provides a way for applications to enquire about 
the palette and always read the absolute values, no matter what the hardware is 
capable of. 

All palette entries are returned as true 24bit RGB, passing through the calibration 
if required. In 256 colour modes the palette is returned fully expanded (ie 256 
palette entries, rather than the base 16 entries used by VIDC). 

3-387 



ColourTrans_ReadPalette (SWI &4075C) 

This call is not available in RISC OS 2. 

Related SWis 

Colourrrans_ Write Palette (page 3-389) 

Related vectors 

ColourV, PaletteV 

3-388 



Colour Trans 

ColourTrans WritePalette 
(SWI &40750) 

Writes to either the screen's palette, or to a sprite's palette 

On entry 

RO =-I to write current mode's palette, or pointer to sprite area 
Rl =-I to write current palette, else ignored (if RO =-I); or (if RO:?: 0) pointer to 

sprite name/sprite in area pointed to by RO (as specified by R4) 
R2 = pointer to palette to write 
R3 reserved (must be zero) 
R4 =flags (used if RO:?: 0) : 

bit 0 set::::} Rl =pointer to sprite; else Rl =pointer to sprite name 
bit I set ::::} flashing colours in table; else not present 
all other bits reserved (must be zero) 

On exit 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

This call writes to either the screen's palette. or to a sprite's palette. 

256 colour palettes are first compacted to the base 16 entries used by VIDC- but 
only if the compacted palette expands via the tint mechanism to the original 
palette. Otherwise the full 256 colours are written. 

This call is not available in RISC OS 2. 

3-389 



ColourTrans_WritePalette (SWI &40750) 

Related SWis 

ColourTrans_ReadPalette (page 3-387) 

Related vectors 

ColourV. PaletteV 



Colour Trans 

ColourTrans SetColour 
(SWI &4075E) 

Changes the foreground or background colour to a GCOL number 

On entry 

RO = GCOL number 
R3 =flags: 

bit 7 set ~ set background, else foreground 
bit 9 set ~ set text colour 

R4 = GCOL action 

On exit 

All registers preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call changes the foreground or background colour to a GCOL number (as 
returned from ColourTrans_ReturnGCOL). You should only use it for GCOL 
numbers returned for the current mode. 

If bit 9 of R3 is set on entry, then this call sets the text colours rather than the 
graphics colours. 

This call is not available in RISC OS 2. 

Related SWis 

ColourTrans_ReturnGCOL (page 3-350) 

3-391 



Co/ourTrans_SetCo/our (SWI &4075E) 

Related vectors 
ColourV 



Colour Trans 

ColourTrans_MiscOp 
(SWI &4075F) 

This call is for internal use only. It is not available in RISC OS 2. 



Co/ourTrans_WriteLoadingsToFile (SWI &40760) 

ColourTrans_WriteloadingsToFile 
(SWI &40760) 

Writes a * Command to a file that will set the ColourTrans error loadings 

On entry 

R I = file handle 

On exit 

All registers preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call writes a * Command to the specified file that will set the error loadings 
within the ColourTrans module. This call is mainly provided to support desktop 
saving of the loadings. 

This call is not available in RISC OS 2, nor in RISC OS 3 (version 3.00). 

Related SWis 

None 

Related vectors 

ColourV 



Colour Trans 

ColourTrans SetTextColour 
(SWI &40761) 

Changes the text foreground or background colour to a GCOL number 

On entry 

RO = palette entry 
R3 = flags word: 

bit 7 set => set background colour; else set foreground colour 
all other bits reserved (must be zero) 

On exit 

RO = GCOL 
R3 preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

This call changes the text foreground or background colour to the GCOL number 
(as returned from ColourTrans_ReturnGCOL) that is closest to the specified palette 
entry. You should only use it for GCOL numbers returned for the current mode. 

This call is not available in RISC OS 2, nor in RISC OS 3 (version 3.00) . 

Related SWis 

ColourTrans_SetOppTextColour (page 3-396) 

Related vectors 

Co lourY 

3-395 



ColourTrans_SetOppTextColour (SWI &40762) 

3-396 

ColourTrans_SetOppTextColour 
(SWI &40762) 

Changes the text foreground or background colour to a GCOL number 

On entry 

RO = palette entry 
R3 = flags word: 

bit 7 set~ set background colour; else set foreground colour 
all other bits reserved (must be zero) 

On exit 

RO = GCOL 
R3 preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call changes the text foreground or background colour to the GCOL number 
(as returned from ColourTrans_ReturnGCOL) that is furthest from the specified 
palette entry. You should only use it for GCOL numbers returned for the current 
mode. 

This call is not available in RISC OS 2, nor in RISC OS 3 (version 3.00) . 

Related SWis 

ColourTrans_SetTextColour (page 3-395) 

Related vectors 

ColourV 



Colour Trans 

ColourTrans GenerateTable 
(SWI &40763) 

Sets up a translation table in a buffer 

On entry 

RO =source mode, or -I for current mode, or (if::::: 256) pointer to sprite area 
Rl =source palette pointer, or -I for current palette, or (if RO::::: 256) pointer to 

sprite name/sprite in area pointed to by RO (as specified by bit 0 of R5) 
R2 =destination mode, or -I for current mode 
R3 = destination palette pointer, or -I for current palette, or 0 for default for 

the mode 
R4 = pointer to buffer, or 0 to return required size of buffer 
R5 =flags: 

bit 0 set=> Rl =pointer to sprite; else Rl =pointer to sprite name 
bit I set=> use current palette if sprite doesn't have one; else use default 
bit 2 set=> use R6 and R7 to specify transfer function 
bits 24 - 31 give format of table: 

0 =>return pixel translation table (see page 1-752) 
I => return physical palette table 

all other bits reserved (must be zero) 
R6 =pointer to workspace for transfer function (if bit 2 of R5 is set) 
R7 =pointer to transfer function (if bit 2 of R5 is set) 

On exit 

RO - R3 preserved 
R4 =required size of buffer (if R4 = 0 on entry), or preserved 
R5- R7 preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

3-397 



ColourTrans_GenerateTable (SWI &40763) 

3-398 

Use 

This call is exactly the same as ColourTrans_SelectTable (see page 3-346), except 
that it assumes that R5 always conta ins a valid flags word. 

This call is not available in RISC OS 2, nor in RISC OS 3 (version 3.00). 

Related SWis 

ColourTrans_SelectTable (page 3-346) 

Related vectors 

ColourV 



Colour Trans 

*Commands 
*ColourTransloadings 

Sets the red , green and blue weightings used when trying to match colours 

Syntax 

*ColourTransLoadings redweight greenweight blueweigh t 

Parameters 

Use 

redweight 

greenweight 

blueweight 

red weighting used when trying to match colours 

green weighting used when trying to match colours 

blue weighting used when trying to match colours 

•colourTransLoadings sets the red, green and blue weightings used when trying to 
match colours (as described in the section entitled Finding a colour on page 3-336). 

The main purpose of this command is to enable the Task Manager to save the 
calibration when a desktop save is done. You should not use it yourself. 

This command is not available in RISC OS 2, nor in RISC OS 3 (version 3.00) . 

Example 

*ColourTransLoadings &2 &4 &1 

Related commands 

None 

Related SWis 

ColourTrans_ WriteLoadingsToFile (page 3-394) 

Related vectors 

ColourV 



·cotourTransMap 

3-400 

*ColourTransMap 

Sets up a calibration table from its parameters 

Syntax 

*ColourTransMap RRGGBBDD RRGGBBDD RRGGBBDD RRGGBBDD etc. 

Parameters 

Use 

RRGGBBDD 8 hex digits, such that &RRGGBBDD is the number to be 
placed in the calibration table 

•colourrransMap sets up a calibration table from its parameters. The number of 
parameters passed for each component must have been specified in a previous 
•colourrransMapSize command. 

The main purpose of this command is to enable the Task Manager to save the 
calibration when a desktop save is done. 

This command is not available in RISC OS 2. 

Example 

*ColourTransMap 01000000 FFOOOOFF 00020000 OOFEOOFF ek 

Related commands 

•colourTransMapSize 

Related SWis 

Colour'T'rans_ WriteCalibrationToFile (page 3-3 78) 

Related vectors 

ColourV 



Colour Trans 

*ColourTransMapSize 

Sets how parameters will be passed in the next *ColourTransMap command 

Syntax 

*ColourTransMapSize nl n2 n3 

Parameters 

Use 

nl number of parameters to be passed in *ColourTransMap for component I 

n2 number of parameters to be passed in *ColourTransMap for component 2 

n3 number of parameters to be passed in *ColourTransMap for component 3 

*ColourTransMapSize sets the number of parameters that will be passed in the 
next *ColourTransMap command for each component. It hence also sets the size of 
the resultant calibration table, which will be (3 + n I + n2 + n3) words long. The 
values n I , n2 and n3 are given in the reverse order to a standard calibration table. 

The main purpose of this command is to enable the Task Manager to save the 
calibration when a desktop save is done. 

This command is not available in RISC OS 2. 

Example 

*ColourTransMapSize 8 10 8 

Related commands 

*ColourTransMap 

Related SWis 

ColourTrans_ WriteCalibrationToFile (page 3-378) 

Related vectors 

ColourV 

3-401 



3-402 



61 The Font Manager 

Introduction 

RISC OS 2 

A font is a set of characters of a given type style. The Font Manager provides facilities 
for painting characters of various sizes and styles on the screen. 

To allow characters to be printed in any size. descriptions of fonts can be held in 
files as size-independent outlines. or pre-computed at specific sizes. The Font 
Manager allows programs to request font types and sizes by name, without 
worrying about how they are read from the filing system or stored in memory. 

The Font Manager also scales fonts to the desired size automatically if the exact 
size is not available. The fonts are. in general. proportionally spaced. and there are 
facilities to print justified text- that is. adjusting spaces between words to fit the 
text in a specified width . 

An anti-aliasing technique can be used to print the characters. This technique uses 
up to 16 shades of colour to represent pixels that should only be partially filled-in . 
Thus. the illusion is given of greater screen resolution . 

The Font Manager can use hints. which help it scale fonts to a low resolution while 
retaining maximum legibility. 

References in this chapter to the RISC OS 2 Font Manager describe the outline 
Font Manager that is supplied with Release 1.02 of Acorn Desktop Publisher. The 
RISC OS 2 ROM contains an earlier version of this Font Manager called the bitmap 
Font Manager. This is no longer supported , and you should always use the outline 
Font Manager. 

3-403 



Overview 

Overview 
The Font Manager can be divided internally into the following components: 

• Find and read font files 

• Cache font data in memory to speed painting 

• Get a handle for a font style (many commands use this handle) 

• Paint a string to the VDU memory 

• Change the colours that the text is painted in 

• Other assorted SW!s to handle scaling and measurements. 

Measurement systems 

Much of the Font Manager deals with an internal measurement system, using 
millipoints. This is 1/1 OOOth of a point, or I/72000th of an inch. This system is an 
abstraction from the physical characteristics of the VDU. Text can therefore be 
manipulated by its size, rather than in terms of numbers of pixels , which will vary 
from mode to mode. 

OS coordinates 

The Font Manager also uses OS coordinates as a measurement system. There are 
defined to be I 80 OS units per inch. This is the coordinate system used by the VDU 
drivers, and is related to the physical pixel layout of the screen . Calls are provided 
to convert between these two systems, and even change the scaling factor between 
them. 

Referencing fonts by name 
A SWI is provided to scan through the list of available fonts . This allows a program 
to present the user with a list to select from . The list is cached and so is fast to 
access- except under RISC OS 2, where it's consequently a slow process to get the 
font list unless you cache it yourself, which we recommend . 

Another SWI will return a handle for a given font style. A handle is a number that 
the Font Manager uses as an internal reference for the font style. This is like an 
Open command in a filing system. The equivalent of Close is also provided. This 
tells the Font Manager that the program has finished with the font. 

There is a SWI to make a handle the currently selected one. This will be used 
implicitly by many calls in the Font Manager. It can be changed by commands 
within a string while painting to the VDU . 



Cacheing 

Colours 

The Font Manager 

Cacheing is the technique of storing one or more fonts in a designated space in 
memory. The cacheing system decides what gets kept or discarded from its space. 
Two CMOS variables control how much space is used for cacheing. One sets the 
minimum amount, which no other part of the system will use. The other sets a 
threshold beyond which the Font Manager will discard as much cached 
information as possible in an endeavour not to let the cache grow. However, if 
many more fonts are in use than are reasonable for the configured threshold, the 
Font Manager may be forced to let the cache grow past this point. 

You should adjust these settings to suit the font requirements of your application. 
If too little is allowed, then the system will have to continually re-load the fonts 
from file, which considerably slows response. If it is too large, then you will use up 
memory that could be used for other things. 

The command *FontList is provided to show the total and used space in the cache, 
and what fonts are held in it. This is useful to check how the cache is occupied. 

The anti-aliasing system uses up to I6 colours, depending on the screen mode. It 
will try, as intelligently as possible, to use these colours to shade a character giving 
the illusion of greater resolution . 

Logical colours 

Palette 

The colour shades start with a background value, which is usually the colour that 
the character is painted onto. They progress up to a foreground colour, which is the 
desired colour for the character to appear in . This is usually what appears in the 
centre of the character. Both of these can be set to any valid logical colour 
numbers. 

In between background and foreground colours can be a number of other logical 
colours. There is a call to program the palette so that these are set to graduating 
intermediate levels. The points of transition are called thresholds . The thresholds 
are set up so that the gradations produce a smooth colour change from 
background to foreground . 

For screen modes with more than 16 colours, this sets up a 'pseudo palette' that 
indirects into the real palette. 

3-405 



Painting 

Painting 

Measuring 

VDU calls 

~-406 

A string can be painted into the VDU memory. As well as printable characters which 
are displayed in the current font style, there are non-printing control sequences, 
used in much the same way as those in the VDU driver. They can perform many 
operations, such as: 

• changing the colour 

• altering the write position in the x andy axes 

• changing the font handle 

• changing the appearance and position of the underlining. 

By using these control sequences. a single string can be displayed with as many 
changes of these characteristics as required. 

Many SWis exist to measure various attributes of fonts and strings. With a font, you 
can determine the smallest box which is large enough to contain any character in 
the set. This is called the font bounding box. You can also check the bounding box of 
an individual character. 

With a string, you can measure its bounding box, or check where in the string the 
caret would be for a given coordinate. The caret is a special cursor used with fonts. 
It is usually displayed as a vertical bar with loops on each end. 

A number of Font Manager operations can be performed through VDU commands. 
These have been kept for compatibility and you should not use them, as they may 
be phased out in future versions. 



The Font Manager 

Technical Details 
An easy way to introduce you to programming with the Font Manager is to use a 
simple example. It shows how to paint a text string on the screen using Font 
Manager SWis. Further on in this section is a more detailed explanation of these 
and all other font SWis. 

Here is the sequence that you would use: 

• Font_FindFont -to 'open' the font in the size required 

• Font_SetFont -to make it the currently selected font and size 

• Font_SetPalette -to set the range of colours to use 

• Font_Paint -to paint the string on the screen 

• Font_LoseFont -to 'close' the font. 

Measurement systems 

Internal coordinates 

The description of character and font sizes comes from specialist files called 
metrics files . The numbers in these files are held in units of Ill OOOth of an em. An 
em is the size of a point multiplied by the point size of the font. For example, in a 
I 0 point font. an em is I 0 points. while in a 14 point font it is 14 points. The Font 
Manager converts I OOOths of ems into I OOOths of points, or millipoints, to use for 
its internal coordinate system. A millipoint is equal to l/72000th of an inch. This 
has the advantage that rounding errors are minimal, since coordinates are only 
converted for the screen at the last moment. It also adds a level of abstraction from 
the physical characteristics of the target screen mode. 

OS coordinates 

Unfortunately, the coordinates provided for plot calls are only 16 bits. so this 
would mean that text could only be printed in an area of about 6/7ths of an inch. 

Therefore, the font painter takes its initial coordinates from the user in the same 
coordinates as the screen uses. which are known as OS units. To make the 
conversion from OS units to points. the font painter assumes by default that there 
are 180 OS units to the inch. You can read and set this scale factor. which you may 
find useful to accurately calibrate the on screen fonts. or to build high resolution 
bitmaps. 

3-407 



Font files 

Font files 

3-408 

Internal resolution 

SWis 

When the font painter moves the graphics point after printing a character, it does 
this internally to a resolution of millipoints, to minimise the effect of cumulative 
errors. The font painter also provides a justification facility, to save you the trouble 
of working the positions out yourself. The application can obtain the widths of 
characters to a resolution of millipoints . 

A pair of routines can be used to convert to and from internal millipoint 
coordinates to the external OS coordinates. Font_ConverttoOS (page 3-438) will go 
from millipoints , while Font_Converttopoints (page 3-439) will go to them. 

Scaling factor 

The scaling factor that the above SWis (and many others in the Font Manager) use 
can be read with Font_ReadScaleFactor (page 3-448) . You can also set this with 
Font_SetScaleFactor (page 3-449), although we recommend that you don't do so 
under the desktop, as other applications may assume the default. If you must alter 
this value, you should at the very least restore it before polling the Wimp. 

The font files relating to a font are all held in a single directory structure consisting 
of one or more font subdirectories (for different weights and styles/angles) and one 
or more encoding subdirectories . All Acorn font names should conform to: 

font n ame. [weigh t . [sty le]] 

The weight element can only be omitted if there is no style element either, eg for a 
Symbol font. 

Files held within this structure are: 

Filename 

lntMetrics 
lntMetricO 
IntMetricn 
encoding .x90y4 5 
encoding .f9999x9999 
encoding. b9999x9999 
Outlines 
OutlinesO 
Outlinesn 
Messagesn 

Contents 

metrics information for default encoding 
metrics information for encoding /BaseO 
metrics information for encoding to /Basen 
old format pixel file (4-bits-per-pixel) for encoding 
new format pixel file (4-bits-per-pixel) for encoding 
new format pixel file ( 1-bits-per-pixel) for encoding 
outline file for default encoding 
outline file for encoding /BaseO 
outline file for encoding to /Basen 
mapping of font identifiers to names for country n 



The Font Manager 

The '9999's referred to above mean ·any decimal number in the range I - 9999' . 
They refer to the pixel size of the font contained within the file, which is equal to: 

(font size in l/16ths of a point) x dots per inch I 72 

so. for example. a file containing 4-bits-per-pixel 12 point text at 90 dots per inch 
would be called f240x240, because 12 x 16 x 90 I 72 = 240. 

The formats of these files are detailed in Appendix E: File formats on page 4-457. 

The default encoding for an alphabetic font (as opposed to symbol fonts. which 
have a fixed encoding) depends on the alphabet number of the current encoding. 
The encoding /BaseO includes all the characters supplied with a font ; for an 
example of it, and of the Latin ... encodings, see the file: 

Resources:S.Fonts.Encodings 

For details of the different RISC OS character sets, see TableD: Character sets on 
page 4-561. 

The minimal requirement for a font is that it should contain an IntMetrics file. and 
an Outlines file (which we strongly urge you to include) or an x90y45 file. In 
addition, it can have any number of f9999x9999 or b9999x9999 files, to speed up 
the cacheing of common sizes. 

Master and slave fonts 

If outline data or scaled 4-bpp data is to be used as the source of font data it is first 
loaded into a 'master' font in the cache, which can be sHared between many 'slave· 
fonts at various sizes. There can be only one master font for a given font identifier, 
regardless of size, whereas each size of font requires a separate slave font. If the 
data is loaded directly from a bitmap file into the slave font, the master font is not 
required . 

3-409 



Font names and identifiers 

Font names and identifiers 

Font identifiers are the names of font subdirectories , and are used for all 
programmer's interfaces to the Font Manager, such as SWis. They are constant 
across all countries. Font names are the local form of a font identifier for a 
particular country, and are used for all user interfaces to the Font Manager, such as 
menus. 

Messages files 

Font names are obtained by looking in the file Fontprefix .Messagescountryrw, using 
the font identifier as a key. For example, a UK Messages file would be named 
Messages I . This allows internationalisation by having an extra level of indirection 
between font identifiers and font names. The file Fontprefix.Messages is used as a 
default if the country-specific file is not present. 

The Font Manager only actually scans the font directory if no Messages file can be 
found. Of course. reading a Messages file is much faster than scanning the font 
directory. 

Messages files allow font paths to become much more effective, since new font 
directories can be added to the list of known fonts without losing references to 
other font directories. This and the fact that the Font Manager knows exactly where 
each font is held makes it possible for a user to put fonts on several floppy discs 
and still use them effectively. Messages files also allow you to set the default font 
in a family (eg selecting just 'Trinity' in a font menu can be made to select 
'Trinity.Medium', rather than just the first entry in the sub-menu). 

Details of the format of Messages files are in Appendix E: File formats on page 4-457-
just as for all other font file formats. 

Referencing fonts by identifier 

3-410 

The Font Manager uses the path variable Font$Path when it searches for fonts. This 
contains a list of full pathnames- each of which has (as in all ... $Path variables) a 
trailing' .' - which are, in turn, placed before the requested font identifier. The Font 
Manager uses the first directory that matches, provided it also contains an 
IntMetrics file . Because the variable is a list of path names, you can keep separate 
libraries of fonts . 

Early versions of the Font Manager used the variable Font$ Prefix to specify a single 
font directory. For compatibility, the Font Manager looks when it is initialised to 
see if Font$Path has been defined - if not, it initialises it as follows: 

*SetMacro Font$Path <Font$Prefix>. 



The Font Manager 

This ensures that the old Font$Prefix directory is searched if you haven't explicitly 
set up the Font Manager to look elsewhere. The trailing' .' is needed, as Font$Prefix 
does not include one, and Font$Path requires one. 

*FontCat will list all the fonts that can be found using Font$Path. 

Changing the font path 

Applications which allow the user access to fonts should call Font_ListFonts 
repeatedly to discover the list of fonts available. This is normally done when the 
program starts up. The same call can be used with different parameters to build a 
menu of available fonts (but not under RISC OS 2). 

The commands *Fontinstall, *FontRemove and *FontLibrary add directories to 
Font$Path, or remove them. Service_FontsChanged is then issued to notify 
module-based applications that they should update their list of available fonts by 
calling Font_ListFonts again . These commands are not available under RISC OS 2, 
but where possible, you should use them. (Non module-based applications must 
call Font_ListFonts each time they require a list of available fonts, as they have no 
way of knowing when the list has changed.) 

RISC OS 2 

Under RISC OS 2 families of fonts are often found in a separate font 'application' 
directory, the ! Run file of which RMEnsures the correct Font Manager module from 
within itself. and then either adds itself to Font$Path or resets Font$Path and 
Font$Prefix so that it is the only directory referenced. 

In order to ensure that the user can access the new fonts available, applications 
running under RISC OS 2 should check whether the value of Font$Path or 
FontS Prefix has changed since the list of fonts was last cached, and recache the list 
if so. A BASIC program could accomplish this as follows: 

size% = &200 
DIM buffer% size% : REM this could be a scratch buffer 

SYS "OS_GSTrans " , "<Font$Prefix> and <Font$Path> ", buffer% , size%-1 TO , , l e ng th% 
buffer%?leng th% = 13 : REM ensure there is a terminator (13 for BASIC ) 
IF $buffer%<>oldfontpath$ THEN ' 

oldfontpath$ = $buffer% 
PROCcache_ list of fonts 

END IF 

Note that if the buffer overflows the string is simply truncated, so it is possible that 
the check may miss some changes to Font$ Prefix. However, since new elements are 
normally added to the front of Font$Path, this will probably not matter. 

~-A.11 



Cacheing 

Cacheing 

~-A.1? 

The application could scan the list of fonts when it started up, remembering the 
value of FontSPath and FontSPrefix in oldfontpath$, and then make the check 
described above just before the menu tree containing the list of fonts was about to 
be opened. 

Alternatively the application could scan the list of fonts only when required, by 
setting oldfontpath$="" when it started up, and checking for FontSPath 
changing only when the font submenu is about to be opened (using the 
Message_MenuWarning message protocol) . 

Opening and closing a font 

In order to use a font , Font_FindFont (page 3-419) must be used. This returns a 
handle for the font, and can be considered conceptually like a file open. In order to 
close it, Font_LoseFont (page 3-423) must be used. 

Handles 

Font_ReadDefn (page 3-424) will read the description of a handle, as it was created 
with Font_FindFont. 

In order for a handle to be used. it should be set as the current handle with 
Font_SetFont (page 3-440) . This setting stays until changed by another call to this 
function, or while painting, by a character command to change the handle. 

Font_CurrentFont (page 3-441) will tell you what the handle of the currently 
selected font is. 

Setting cache size 

The size of the cache can be set with two commands. *Configure FontSize sets the 
minimum that will be ~eserved . This allocation is protected by RISC OS and will not 
be used for any other purpose. Running the Task Display from the desktop and 
sliding the bar for font cache will change this setting until the next reset. 

Above this amount, *Configure FontMax sets a maximum amount of memory for 
font cacheing. The Font Manager will endeavour not to use more than this. but may 
have to should there be many more fonts in use than are reasonable for the 
configured FontMax. 



The Font Manager 

The difference between FontSize and FontMax is taken from unallocated free 
memory as required to accommodate fonts currently in use. If other parts of the 
system have used up all this memory, then fonts will be limited to FontSize. If there 
is plenty of free unallocated memory, then FontMax will stop font requirements 
from filling up the system with cached fonts. 

Cache size 

* FontList will generate a list of the size and free space of the cache, as well as a list 
of the fonts currently cached . Font_CacheAddr (page 3-4 18) can be used in a 
program to get the cache size and free space. 

Font_LoseFont 

When a program calls Font_LoseFont. the font may not be discarded from memory. 
The cacheing system decides when to do this. A usage count is kept. so that it 
knows when no task is currently using it. An 'age' is also kept , so that the Font 
Manager knows when it hasn't been used for some time. 

Cache formats 

The cache format. and the algorithms used for cacheing characters, change from 
release to release. You must not directly access the cache. 

Saving and loading the cache 

You can use the commands *SaveFontCache to save the font cache in a known 
state. You can then use * LoadFontCache to reload it later, but there are restrictions 
when doing so: 

• The cache must not contain any claimed fonts (ie ones that are in use). 

• The format of the loaded cache must be understood by the Font Manager 
loading the cache. In practice this generally means that the cache must have 
been saved by the same version of the Font Manager as is loading it. 

Using saved font caches can be a useful speed-up for your applications. 

3-413 



Colours 

Colours 

Colour selection with the Font Manager involves the range of logical colours that 
are used by the anti-aliasing software and the physical colours that are displayed. 

Logical colours 

The logical colour range required is set by Font_SetFontColours (page 3-453). This 
sets the background colour, the foreground colour and the range of colours in 
between . 

Physical colours 

Font_SetPalette (page 3-455) duplicates what Font_SetFontColours does, and 
uses two extra parameters. These specify the foreground and background physical 
colours, using 4096 colour resolution. Given a range of logical colours and the 
physical colours for the start and finish of them. this SWI will program the palette 
with all the intermediate values . 

256 colour screen modes 

There can be a maximum of 16 colours used. For screen modes having more than 
16 colours , the above calls instead set up a 'pseudo palette' that provides for up to 
16 indirect references to colours in the real palette. Such a 'pseudo palette' must 
be defined before trying to paint fonts. 

Wimp environment 

It must be strongly emphasised that if the program you are writing is going to run 
under the Wimp environment then you must not use Font_SetPalette. It will 
damage the Wimp's colour information. It is better to use Wimp_SetFontColours 
(page 3-220). or ColourTrans_SetFontColours (page 3-367). or a control sequence 
19, ... in a string passed to Font_Paint (page 3-429); these all use colours that are 
already in the palette. 

Thresholds 

The setting of intermediate levels uses threshold tables. These can be read with 
Font_ReadThresholds (page 3-457) or set with Font_SetThresholds (page 3-460). 
They use a lookup table that is described in Font_ReadThresholds. 



Painting 

Measuring 

Caret 

The Font Manager 

Font_Paint (page 3-429) is the central SWI that puts text onto the screen. It 
commences painting with the current handle, set with Font_SetFont. Printable 
characters it displays appropriately, using the current handle. Using Font_Paint, 
you can justify the text, back it with a rubout box, transform it, and/or apply kerning 
to its characters. 

A number of embedded control sequences (introduced by control characters) 
change the way the string is painted: 

Number 

9 
II 
17 
18 
19 

21 
25 
26 
27 
28 

Effect 

x coordinate change in millipoints 
y coordinate change in millipoints 
change foreground or background colour 
change foreground , background and range of colours 
set colours using Colour1'rans_SetFontColours (not in 
RISC OS 2) 
comment string that is not displayed 
change underline position and thickness 
change font handle 
set new 4-entry transformation matrix (not in RISC OS 2) 
set new 6-entry transformation matrix (not in RISC OS 2) 

Note that these are not compatible with VDU commands. Any non-printing 
characters not in the above list will generate an error, apart from 0, I 0 and 13 
(which are the only valid terminators) . 

There are a number of calls to return information about a string or character. Most 
of these are obsolete calls from earlier versions of the Font Manager, which are still 
supported for backward compatibility. 

To get information on a string, you should call Font_ScanString. To get information 
on a character, you should call Font_CharBBox. 

After using Font_ScanString, you can call Font_FutureFont (page 3-443) . This will 
return what the font and colours would be if the string was passed through 
Font_Paint. 

If the pointer is clicked on a string, and the caret needs to be placed in between two 
characters , it is necessary to calculate where on the string it would be. Again, 
Font_ScanString can do this. 

3-415 



Mixing fonts' metrics and characters 

You can plot the caret at a given height, position and colour using Font_Caret 
(page 3-436) . Its height should be adjusted to suit the point size of the font it is 
placed with. The information returned from Font_ScanString would be appropriate 
for this adjustment. 

Mixing fonts' metrics and characters 

Where you are using an external printer (eg. PostScript) which has a larger range of 
fonts than those available on the screen, it can often be useful to use a 
similar-looking font on the screen, using the appropriate metrics (ie spacing) for 
the printer font. 

The Font Manager provides a facility whereby a font can be created which has its 
own IntMetrics file, matching the appropriate font on the printer, but uses another 
font's characters on the screen. 

This is done by putting a file called 'Outlines' in the font's directory which simply 
contains the identifier of the appropriate screen font to use. The Font Manager will 
use the IntMetrics file from the font's own directory, but will look in the other font's 
directory for any bitmap or outline information. 

Under RISC OS 3 and later, the identifier can contain a transformation matrix 
specified in the same way as the font identifier passed to Font_FindFont 
(page 3-419) . This allows simple generation of oblique fonts. For an example, see 
the RISC OS 3 file Resources:S.Fonts.Corpus.Oblique.OutlinesO. 

Handling mode changes 

3-416 

For efficiency, the Font Manager caches the value in millipoints of the last y 
coordinate to which it painted, and reuses that value if it paints to the same y 
coordinate next time. However, this cached value does not take account of screen 
eigenvalues, and both RISC OS 2 and RISC OS 3 (version 3.00) fail to notice a 
mode change and update the cached y position to take account of the new eigen 
values . Consequently the Font Manager will paint to the wrong y position on the 
screen . 

To work around this, on receipt of a Service_ModeChange (page 1-617) your 
application should call Font_Paint (page 3-429) to paint a null string at 
coordinates (-1 , -I), which is off the screen. This will invalidate the cached value, 
so a subsequent paint to the same y coordinate as before the mode change will 
then work correctly. For example you would make this call in BASIC: 

SYS "Font_Paint",, "",&10,-1,-1 



Service Calls 

New FontSPath detected 

On entry 

Rl = &6E (reason code) 

On exit 

All registers preserved 

Use 

The Font Manager 

Service_FontsChanged 
(Service Call & 6 E) 

This is issued by the Font Manager to notify any module-based applications that 
they should call Font_ListFonts to update the list of available fonts. 

3-417 



SWI Calls 

SWI Calls 

~-41R 

Font CacheAddr 
(SWI &40080) 

Get the version number, font cache size and amount used 

On entry 

On exit 

RO =version number 
R2 =total size of font cache (bytes) 
R3 =amount of font cache used (bytes) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

The version number returned is the actual version multiplied by I 00. For example, 
version 2.42 would return 242. 

This call also returns the font cache size and the amount of space used in it. 

*FontList can be used to display the font cache size and space. 

Related SWis 

None 

Related vectors 

None 



Get the handle for a font 

The Font Manager 

Font FindFont 
( SWI &40081) 

On entry 

Rl =pointer to font identifier (terminated by a Ctrl char) 
R2 = x point size x 16 (ie in l/16ths point) 
R3 = y point size x 16 (ie in l/16ths point) 
R4 = x resolution in dots per inch (0 ==>use default. -I ==>use current) 
R5 = y resolution in dots per inch (0 ==>use default, -I ==>use current) 

On exit 

RO = font handle 
R I - R3 preserved 
R4 = x resolution in dots per inch 
R5 = y resolution in dots per inch 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call returns a handle to a font whose identifier, point size and screen 
resolution are passed. It also sets it as the current font , to be used for future calls 
to Font_Paint etc. 

The font identifier can also have various qualifiers added to it, which are a '\' 
followed by an identifying letter and the value associated with the qualifier. These 
qualifiers are not supported by RISC OS 2. If the string does not start with a '\', it is 
assumed that it is a font identifier. 

~-41Q 



Font_FindFont (SWI &40081) 

The strings following qualifiers must not contain'\', as this denotes the start of the 
next qualifier. 

The possible qualifiers are: 

\ Fidentifier 

\ ft name 

\ Ei dentifier 

\ et name 

\ Mmatrix 

where: 

font identifier (as for earlier implementations of 
Font_FindFont) 

territory number for font name, followed by the font 
name 

encoding identifier 

territory number for encoding name, followed by the 
encoding name 

transformation matrix to apply to this font 

• identifier is a string of ASCII characters, in the range 33 to 126 inclusive, 
which must represent a legal filename (although it can contain '.'s). 

• name is the name of the font/encoding, expressed in the language of the 
current territory, and using the alphabet of the current territory, and 
terminated by an end-of-string. 

• t is the territory number of the current territory, ie the language in which the 
font/encoding name is expressed. It is followed by a space character, to 
separate it from the following name. 

• matr i x is a set of 6 signed decimal integers which represent the values of the 
6 words that go into making a draw-type matrix: the first four numbers are in 
fact 32-bit fixed point, with the integer part in the top 16 bits; the last two 
numbers are offsets, in Iftoooth of an em. Each number- including the last 
one- must be followed by a space. 

Spaces are significant in the above syntaxes; you must include them only where 
shown. 

The font identifier is the name of the font directory without the FontSPath prefix, and 
is invariant in any territory. These are used in all programmer's interfaces to the 
Font Manager, such as SWis. The font name is the name of the font (ie the one 
displayed to the user) in the given territory. These are used in all user interfaces to 
the Font Manager, such as menus. 

If Font_FindFont fails to find the font, an error message Font 'name' not 
found is returned, where name is the font name if the current territory is the 
same as the one in the string, and is the font identifier otherwise. 



The Font Manager 

Applications should store the entire string returned from Font_DecodeMenu in the 
document, so that if a user loads the document without having the correct fonts 
available, the font name- rather than the identifier- can be returned, as long as 
the user is in the same territory. 

The '\E' (encoding) field indicates the appropriate encoding for the font itself. This 
field is only supplied by Font_DecodeMenu if the font is deemed to be a 'language' 
font, ie one whose encoding depends on the territory. Other fonts are thought of as 
'Symbol' fonts, which have a fixed encoding. 

Note that Font_DecodeMenu will return a font identifier of the following form: 

\Ffontid\ f territory fontname 

To apply a particular encoding to a font. remember to eliminate the existing 
encoding fields (if present) first. Note that no field is allowed to contain a'\'. 

\Eencid\eterritory encname\Ffontid\fterritory fontname 

Since fontid\fterritorlj fontname is also accepted by Font_FindFont. when prepending 
'\Eencid\eterritorlj encname' on the front. you should also put '\F' on the front of the 
original string if it did not start with '\'. · 

In BASIC, this looks like: 

REM original$ is the original string passed to Font._FindFont 
REM encoding$ is the string returned from Font_ DecodeMenu 
REM typically " \E<enc_ id>\e <territory> <enc_ name> " 
REM result is the new string to be passed to Font_ FindFont 

DEF FNapply_encoding_to_font(original$ , encoding$) 
IF LEFT$(original$ , 1)<> " \ " THEN original$ = " \F "+original$ 
original$ = FNremove(original$, " \E " ) 
original$ = FNremove(original$ , " \e") 
= encoding$ + original$ 

REM this function removes the specified field from the string 
REM eliminates all characters from b$ to " \ " 

DEF FNremove(a$,b$) 
LOCAL I% , J% 
I% = INSTR(a$,b$) 
IF I%=0 THEN =a$ :REM nothing to eliminate 
J% = INSTR(a$+ " \ " , " \ ", I%+1) :REM searches from I%+1 
= LEFT$(a$,I%-1)+MID$(a$ , J%) 

In fact it is not strictly necessary to remove the original encoding fields from the 
font identifier, since an earlier occurrence of a field overrides a later one; but if this 
is not done then the length of the total string will continue to grow every time an 
encoding is altered. 

~-421 



FonLFindFont (SWI &40081) 

~-A.?? 

Related SWis 

Font_LoseFont (page 3-423) 

Related vectors 

None 



Finish use of a font 

On entry 

RO = font handle 

On exit 

RO preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

The Font Manager 

Font LoseFont 
(SWI &40082) 

This call tells the Font Manager that a particular font is no longer required. 

Related SWis 

Font_FindFont (page 3-4 I 9) 

Related vectors 

None 

3-423 



FonLReadDefn (SWI &40083) 

~-424 

Read details about a font 

On entry 

RO = font handle 

Font ReadDefn 
(SWI &40083) 

R I = pointer to buffer to hold font identifier, or 0 to return required size of buffer­
if R3 = 'FULL' on entry 

R3 = &4C4C5546 ('FULL') to return full information about encoding and matrix 

On exit 

RO, Rl preserved 
R2 = x point size x 16 (ie in l / 16ths point) 
R3 = y point size x 16 (ie in l/16ths point) 
R4 = x resolution (dots per inch) 
R5 = y resolution (dots per inch) 
R6 = age of font 
R7 = usage count of font 

or. if Rl = 0 and R3 = 'FULL' on entry: 

RO, Rl preserved 
R2 = required buffer size to hold full information 
R3 - R7 corrupted 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 



Use 

The Font Manager 

This call returns a number of details about a font. The usage count gives the 
number of times that Font_FindFont has found the font, minus the number of 
times that Font_LoseFont has been used on it. The age is the number of font 
accesses made since this one was last accessed. 

Note that the x resolution in a 132 column mode will be the same as an 80 column 
mode. This is because it is assumed that it will be used on a monitor that displays 
it correctly, which is not the case with all monitors. 

By setting R3 to 'FULL', you can get the full font identifier, including such 
information as its transformation matrix and encoding. You can also find the 
required size of buffer to hold this information by setting Rl to 0 on entry. These 
features are not available in RISC OS 2. 

Related SWis 

None 

Related vectors 

None 

3-425 



Font_Readlnfo (SWI &40084) 

~-426 

Get the font bounding box 

Font Readlnfo 
(SWI &40084) 

On entry 
RO = font handle 

On exit 
RO preserved 
Rl =minimum x coordinate in OS units for the current mode (inclusive) 
R2 =minimum y coordinate in OS units for the current mode (inclusive) 
R3 =maximum x coordinate in OS units for the current mode (exclusive) 
R4 =maximum y coordinate in OS units for the current mode (exclusive) 

Interrupts 
Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 
Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call returns the minimal area covering every character in the font. This is 
called the font bounding box. 

You should use the SWI Font_CharBBox (see page 3-446) in preference to this one. 

Related SWis 
Font_CharBBox (page 3-446), Font_StringBBox (page 3-463) 

Related vectors 
None 



The Font Manager 

Font_StringWidth 
(SWI &40085) 

Calculate how wide a string would be in the current font 

On entry 

Rl =pointer to string 
R2 =maximum x offset before termination in millipoints 
R3 = maximum y offset before termination in millipoints 
R4 =character code of 'split' character (-I for none); eg 32 for space 
R5 = index of character to terminate by 

On exit 

Rl =pointer to character where the scan terminated 
R2 = x offset after printing string (up to termination) 
R3 = y offset after printing string (up to termination) 
R4 =no of 'split' characters in string (up to termination) 
R5 =index into string giving point at which the scan terminated 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call is used to calculate how wide a string would be in the current font. 

The 'split' character is one at which the string can be split if any of the limits are 
exceeded. If R4 contains -I on entry, then on exit it contains the ntJmber of 
printable (as opposed to 'split') characters found. 

3-427 



Font_StringWidth (SWI &40085) 

The string is allowed to contain control sequences, including font-change 
(26,font_handle) and colour-change ( 17,colour) . After the call, the current font 
foreground and background call are unaffected, but a call can be made to 
Font_FutureFont to find out what the current font would be after a call to 
Font_Paint. 

The string width function terminates as soon as R2, R3 or R5 are exceeded, or the 
end of the string is reached. It then returns the state it had reached , either: 

• just before the last 'split' char reached 

• if the 'split' char is -I, then before the last char reached 

• if R2 , R3 or R5 are not exceeded, then at the end of the string. 

By varying the entry parameters, the string width function can be used for any of 
the following purposes: 

• finding the caret position in a string if you know the coordinates (although 
Font_FindCaret is better for this) 

• find ing the caret coordinates if you know the position 

• working out where to split lines when formatting (set R4=32) 

• finding the length of a string (eg for right-justify) 

• working out the data for justification (as the Font Manager does) . 

You should use the SWI Font_ScanString (page 3-483) in preference to this one­
except under RISC OS 2, where it is not available. 

Related SWis 

Font_FutureFont (page 3-443). Font_ScanString (page 3-483) 

Related vectors 

None 



The Font Manager 

Font Paint 
{SWI &40086) 

Write a string to the screen 

On entry 

RO =initial font handle (I - 255) or 0 for current handle- if bit 8 of R2 is set 
R I = pointer to string 
R2 = plot type: 

bit 0 set~ use graphics cursor justification coordinates (bit 5 must be 
clear); else use R5 to justify (if bit 5 is set) or don't justify 

bit I set~ plot rubout box using either graphics cursor rubout 
coordinates (if bit 5 is clear) or R5 (if bit 5 is set); else don't plot 
rubout box 

bits 2, 3 reserved (must be zero) 
bit 4 set~ coordinates are in OS units; else in millipoints 
bit 5 set~ use R5 as indicated below (bits 0, 4 must be clear) 
bit 6 set~ use R6 as indicated below (bit 4 must be clear) 
bit 7 set~ use R7 as indicated below 
bit 8 set~ use RO as indicated above 
bit 9 set~ perform kerning on the string 
bit I 0 set~ writing direction is right to left; else left to right 

R3 =start x coordinate (in OS coordinates or millipoints, depending on bit 4 of R2) 
R4 =start y coordinate (in OS coordinates or millipoints, depending on bit 4 of R2) 
R5 =pointer to coordinate block- if bit 5 of R2 is set 
R6 =pointer to transformation matrix- if bit 6 of R2 is set 
R7 = length of string- if bit 7 of R2 is set 

On exit 

Rl - R7 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

3-429 



Font_Paint (SWI &40086) 

3-430 

Re-entrancy 

Use 

SWI is not re-entrant 

This call writes a string to the screen , optionally justifying it, backing it with a 
rubout box, transforming it, ancl!or applying kerning to its characters. 

RISC OS 2 ignores the values of RO and of R5- R7. and behaves as though bits 2.3 
and 5- 3I inclusive of R2 are clear. 

Justification 

Justification can be done in one of two ways, depending on the value of bits 0 and 
5 of R2: 

• If bit 0 of R2 is set (in which case bit 5 must be clear). the text is justified 
between the start coordinates (given in R3, R4) and the last position of the 
graphics cursor (see below) . 

In fact, the graphics cursory coordinate is ignored as being too inaccurate. and 
the start y coordinate used for both ends of the text 

• If bit 0 of R2 is clear and bit 5 set (in which case bit 4 must be clear) . the text is 
justified by adding additional spacing between words and letters. These 
additional offsets are specified in a coordinate block pointed to by R5 . 

You can achieve left justification by simply setting these two values to zero. 

If both bits 0 and 5 of R2 are clear then the string isn't justified. 

The rubout box 

Similarly, there are two different ways tQ plot a rubout box. Bit I of R2 must be set; 
then : 

• If bit 5 of R2 is clear, the rubout box is defined by two points previously visited 
by the graphics cursor (see below) 

• If bit 5 of R2 is set. then two coordinate pairs held in the block pointed to by R5 
are used instead. 

In this case pixels are filled only if the pixel centre is enclosed, as in Draw_Fill 

Setting coordinates using the graphics cursor 

To set the justification coordinates using the graphics cursor. you must have 
previously called a VDU 25 move command. Likewise. to set the rubout 
coordinates using the graphics cursor you must also have called VDU 25 twice, to 
describe the rectangle to clear: first the lower-left coordinate (which is inclusive). 
then the upper-right coordinate (which is exclusive) . Thus, to specify both the 



The Font Manager 

justification and rubout coordinates, you must have made three VDU 25 moves, 
with the justify coordinates being last. The Font Manager rounds all these 
coordinates to the nearest pixel. 

Using the coordinate block 

The coordinate block pointed to by R5 contains eight words: these give additional 
spacing to use to achieve justification, and coordinates for the rubout box. The 
values are in millipoints (since bit 4 of R2 must be clear): 

Offset Value 

0 additional x, y offset on space 
8 additional x, y offset between each letter 
16 x, y coordinates for bottom left of rubout box (inclusive) 
24 x, y coordinates for top right of rubout box (exclusive) 

Transformation matrices 

If bit 6 of R2 is set (in which case bit 4 must be clear). the buffer pointed to by R6 
contains a transformation matrix, held as six words. The first four words are 32-bit 
signed numbers. with a fixed point after bit 16 (ie I is represented by I « 16, which 
is 65536). The translations are in millipoints (since bit 4 of R2 must be clear): 

Offset Value 

0 four fixed point multipliers of transformation matrix 
16 x, y coordinates for translation element of transformation matrix 

Subsequent matrices can be included within the string (not in RISC OS 2); they 
alter the matrix to the specified value, rather than being concatenated with any 
previous matrix. Such changes are made by including one of the following control 
sequences: 

27, align , m I, m2, m3, m4 
28, align , ml , m2. m3, m4, m5, m6 

where align means 'sufficient null bytes for subsequent values to be word-aligned'. 
The equation for this is: 

number of null bytes= (address of align+ 3) AND NOT 3 

ml- m4 are little-endian 32-bit signed numbers with a fixed point after bit 16 (ie I 
is represented as I « 16, which is 65536). 

m5 and m6 are the offsets, which- since bit 4 of R2 must be clear- are in 
millipoints. These values are assumed to be 0 if the 27,ml .. . m4 code is used. 

To restore the unit matrix, use 27.align,65536,0.0,65536. 

3-431 



Font_ Paint (SWI &40086) 

Note that underlining and rubout do not work correctly if the x axis is transformed 
so that it is no longer on the output x axis. or has its direction reversed. The effect 
when doing this should not be relied on. 

Text direction 

If bit I 0 of R2 is set. then text is written right to left. rather than left to right. In this 
case the width of each character is subtracted from the position of the current 
point before painting the character. rather than the width being added after 
painting it. Rubout and underline are also filled in from right to left. 

When kerning. the kern pairs stored in the metrics file indicate the left and right 
hand characters of a pair. and the additional offset to be applied between the 
characters if this pair is found. Note that if the main writing direction is right to left. 
then the right hand character is encountered first . and the left hand one is 
encountered next. 

String length 

Normally the string is painted up to its terminator. However. you can paint a 
substring by setting bit 7 of R2 . and specifying the length of the substring in R7. 

Note that the character at IRI ,R71 may be accessed. to determine the character 
offset due to kerning (which in turn affects the underline width). This will not be a 
problem if the string has a terminator. and the R7=1ength facility is used only to 
extract substrings. 

Changing colour 

You can change the colour used by including this control sequence in the string: 

I 9,r,g,b ,R,G,B,max 

This results in a call to ColourTrans_SetFontColours (see page 3-367) . Again. 
RISC OS 2 does not support this control sequence; but it does still provide 
ColourTrans_SetFontColours. which you should use in preference to 17, ... or 18, . . . 
control sequences. 

After the call. the current colours are updated to the last values set by this control 
sequences. 



The Font Manager 

Other control sequences 

There are other control sequences that are supported by all versions of RISC OS, 
and that are similar to certain VDU sequences: 

9 ,dx_low,dx_middle.dx_high 
II ,dy_low,dy_middle,dy_high 
17./oreground_colour ( +&80 for background colour) 

l8,background .foreground .font_colour _offset 
21 .comment_string,terminator (any Ctrl char) 

2 5, underline_position, underline_thickness 
26./ont_handle 

After the call, the current font and colours are updated to the last values set by 
control sequences. 

Control sequences 9 and II allow for movement within a string. This is useful for 
printing superscripts and subscripts , as well as tabs, in some cases. They are each 
followed by a 3-byte sequence specifying a number (low byte first . last byte 
sign-extended), which is the amount to move by in millipoints. Subsequent 
characters are plotted from the new position onwards. 

An example of moving in theY direction (character II) would look like the 
following example, where chr() is a function that converts a number into a character 
and move is the movement in millipoints : 

MoveS t r ing = chr(ll)+chr(move AND &FF)+ 
chr((move AND &FFOO) >> 8)+ 
chr((move AND &FFOOOO) >> 16) 

Control sequence 17 will act as if the foreground or background parameters passed 
to Font_SetFontColours (page 3-453) had been changed. Control sequence 18 
allows all three parameters to that SWI to be set. See that SWI for a description of 
these parameters . 

The underline position within control sequence 25 is the position of the top of the 
underline relative to the baseline of the current font, in units of I/256th of the 
current font size. It is a sign-extended 8 bit number, so an underline below the 
baseline can be achieved by setting the underline position to a value greater than 
127. The underline thickness is in the same units, although it is not sign-extended. 

3-433 



Font_ Paint (SWI &40086) 

3-434 

Note that when the underline position and height are set up, the position of the 
underline remains unchanged thereafter, even if the font in use changes. For 
example, you do not want the thickness of the underline to change .just because 
some of the text is in italics. If you actually want the thickness of the underline to 
change, then another underline-defining sequence must be inserted at the relevant 
point. Note that the underline is always printed in the same colour as the text. and 
that to turn it off you must set the underline thickness to zero. 

Subpixel scaling 

This is quite simple if neither x or y scaling is performed. and also if both x andy 
scaling is performed: the subpixel scaling directions relate to the output device 
axes. 

When just horizontal or just vertical subpixel scaling is performed, it is sometimes 
necessary to swap over the sense of which is horizontal and which is vertical. in 
order to determine the 'size' of the font. 

This goes for the other FontMaxn thresholds too, such as FontMax2, which 
determines whether characters should be anti-aliased. FontMax3 determines 
whether characters should be cached or not, and this must relate to the amount of 
memory taken up by the bitmaps. 

Scaffolding 

Clearly it is not possible to apply scaffolding to characters which are transformed 
such that its new axes do not lie on the old ones. However, if the axes are mapped 
onto each other (ega scale. rotation or reflection about an axis or 45-degree line) 
then scaffolding can still be applied. This can involve swapping over the x andy 
scaffolding. If a font is sheared , then scaffolding may be applied in one direction 
but not the other. 

Bounding boxes 

The bounding box of a transformed character cannot be determined purely by 
transforming the original bounding box of the character outline. This is because 
bounding boxes are axis-aligned rectangles, and character outlines are not. so the 
bounding box of the transformed character is typically smaller than that of the 
transformed bounding box. 

Taking the bounding box of the transformed original bounding box is sufficient to 
work out a large enough box for outline to bitmap conversion . since not much 
memory is wasted (only one character is done at a time, and the character is 
'shrink-wrapped' after conversion). 



The Font Manager 

Bitmap fonts 

If a font has an encoding applied to it, then Font_Paint looks inside 
fontidentifier.encoding to find the bitmap files. This is because bitmap files are specific 
to one encoding. 

Note that Font_MakeBitmap also generates its bitmap files inside the appropriate 
encoding subdirectory. 

If the font has no encoding applied, the bitmap files are inside the font directory, as 
before. 

Note that this means that encoding names must not clash with any of the 
filenames that normally reside within font directories. ie: 

lntMetricslnl 
Outlines! n I 
x90y45 
bnxn 
fnxn 

Related SWis 

] 

] 

n is optional and the prefix is 
truncated so it all fits in I 0 characters 

n is a number from I - 9999 

Font_StringWidth (page 3-427). Font_ScanString (page 3-483) 

Related vectors 

None 



Font_ Caret (SWI &40087) 

Define text cursor for Font Manager 

On entry 

RO =colour (exclusive ORd onto screen) 
Rl =height (in OS coordinates) 
R2 bit 4 = 0 => R3, R4 in millipoints 

= I => R3, R4 in OS coordinates 
R3 = x coordinate (in OS coordinates or millipoints) 
R4 = y coordinate (in OS coordinates or millipoints) 

On exit 

RO - R4 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

Font Caret 
(SWI &40087) 

The 'caret' is a symbol used as a text cursor when dealing with anti-aliased fonts . 
The height of the symbol, which is a vertical bar with 'loops' on the end, can be 
varied to suit the height of the text, or the line spacing. 

The colour is in fact Exclusive ORd onto the screen, so in 256-colour modes it is 
equal to the values used in a 256-colour sprite. You can get these colours by calling 
ColourTrans_ReturnColourNumber. 

Related SWis 

ColourTrans_ReturnColourNumber (page 3-353) 



Related vectors 

None 

The Font Manager 

3-437 



Font_ConverttoOS (SWI &40088) 

Convert internal coordinates to OS coordinates 

On entry 

Rl = x coordinate (in millipoints) 
R2 = y coordinate (in millipoints) 

On exit 

Rl = x coordinate (in OS units) 
R2 = y coordinate (in OS units) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

Font ConverttoOS 
(SWI &40088) 

This call converts a pair of coordinates from millipoints to OS units, using the 
current scale factor. (The default is 400 millipoints per OS unit.) 

Related SWis 

Font_Converttopoints (page 3-439), Font_ReadScaleFactor (page 3-448), 
Font_SetScaleFactor (page 3-449) 

Related vectors 

None 



The Font Manager 

Font_ Converttopoints 
(SWI &40089) 

Convert OS coordinates to internal coordinates 

On entry 

Rl = x coordinate (in OS units) 
R2 = y coordinate (in OS units) 

On exit 

RO is corrupted 
Rl = x coordinate (in millipoints) 
R2 = y coordinate (in millipoints) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

This call converts a pair of coordinates from OS units to millipoints, using the 
current scale factor. (The default is 400 millipoints per OS unit.) 

Related SWis 

Font_ConverttoOS (page 3-438). Font_ReadScaleFactor (page 3-448), 
Font_SetScaleFactor (page 3-449) 

Related vectors 

None 

3-439 



Font_SetFont (SWI &4008A) 

~-440 

Select the font to be subsequently used 

On entry 

RO = handle of font to be selected 

On exit 

RO preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

Font SetFont 
(SWI &4008A) 

This call sets up the font which is used for subsequent painting or size-requesting 
calls (unless overridden by a command 26./ont sequence in a string passed to 
Font_Paint). 

You can also set the font by passing its handle in RO when calling Font_Paint (see 
page 3-429) . Where possible. you should do so in preference to using this SWI. 

Related SWis 

Font_Paint (page 3-429) . Font_CurrentFont (page 3-441). 
Font_SetFontColours (page 3-453) 

Related vectors 

None 



Get current font handle and colours 

The Font Manager 

Font CurrentFont 
(SWI &40088) 

On entry 

On exit 

RO = handle of current ly selected font 
Rl =current background logical colour 
R2 = current foreground logical colour 
R3 = foreground colour offset 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call returns the state of the Font Manager's internal characteristics which will 
apply at the next call to Font_Paint. 

The value in R3 gives the number of colours that will be used in anti-aliasing. The 
colours are f. f+ I ... f+offset. where 'f' is the foreground colour returned in R2, and 
offset is the value returned in R3 . This can be negptive, in which case the colours 
are f. f-1 ... f-loffsetl. Negative offsets are useful for inverse anti-aliased fonts. 

Offsets can range between -14 and + 14. This gives a maximum of 15 foreground 
colours, plus one for the font background colour. If the offset is 0, just two colours 
are used: those returned in R I and R2 . 

The font colours, and number of anti-alias levels, can be altered using 
Font_SetFontColours, Font_SetPalette, Font_SetThresholds and Font_Paint. 

3-441 



Font_CurrentFont (SWI &40088) 

3-442 

Related SWis 

Font_Paint (page 3-429), Font_SetFont (page 3-440). 
Font_SetFontColours (page 3-453) , Font_SetPalette (page 3-455) , 
Font_SetThresholds (page 3-460) 

Related vectors 

None 



Check font characteristics after Font_StringWidth 

On entry 

On exit 

RO = handle of font which would be selected 
Rl =future background logical colour 
R2 = future foreground logical colour 
R3 = foreground colour offset 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

The Font Manager 

Font FutureFont 
(SWI &4008C) 

This call can be made after a Font_StringWidth to discover the font characteristics 
after a call to Font_Paint, without actually having to paint the characters. 

Related SWis 

Font_StringWidth (page 3-427) , Font_Paint (page 3-429) 

Related vectors 

None 

3-443 



Font_FindCaret (SWI &40080) 

3-444 

Find where the caret is in the string 

Font FindCaret 
(SWI &40080) 

On entry 

Rl =pointer to string 
R2 = x offset in millipoints 
R3 = y offset in millipoints 

On exit 

Rl =pointer to character where the search terminated 
R2 = x offset after printing string (up to termination) 
R3 = y offset after printing string (up to termination) 
R4 =number of printable characters in string (up to termination) 
R5 = index into string giving point at which it terminated 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

On exit, the registers give the nearest point in the string to the caret position 
specified on entry. This call effectively makes two calls to Font_StringWidth to 
discover which character is nearest the caret position . It is recommended that you 
use this call, rather than perform the calculations yourself using Font_StringWidth, 
though this is also possible. 

You should use the SWI Font_ScanString (page 3-483) in preference to this one­
except under RISC OS 2, where it is not available. 



Related SWis 

Font_StringWidth (page 3-427). Font_FindCaretJ (page 3-461 ), 
Font_ScanString (page 3-483) 

Related vectors 

None 

The Font Manager 

3-445 



Font_CharBBox (SWI &4008£) 

3-446 

Get the bounding box of a character 

Font CharBBox 
(SWI &4008E) 

On entry 

RO = font handle 
Rl =ASCII character code 
R2 =flags (bit 4 set::::} return OS coordinates, else millipoints) 

On exit 

RO preserved 
Rl =minimum x of bounding box (inclusive) 
R2 =minimum y of bounding box (inclusive) 
R3 =maximum x of bounding box (exclusive) 
R4 =maximum y of bounding box (exclusive) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

You can use this call to discover the bounding box of any character from a given 
font. If OS coordinates are used and the font has been scaled, the box may be 
surrounded by an area of blank pixels, so the size returned wi ll not be exactly 
accurate. For this reason, you should use millipoints for computing, for example, 
line spacing on paper. However, the millipoint bounding box is not guaranteed to 
cover the character when it is painted on the screen, so the OS unit bounding box 
should be used for this purpose. 

Related SWis 

Font_Readlnfo (page 3-426). Font_StringBBox (page 3-463) 



Related vectors 

None 

The Font Manager 

3-447 



FonLReadScaleFactor (SWI &4008F) 

3-448 

Font ReadScaleFactor 
(SWI &4008F) 

Read the internal to OS conversion factor 

On entry 

On exit 

R I = x scale factor 
R2 = y scale factor 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

The x andy scale factors are the numbers used by the Font Manager for converting 
between OS coordinates and millipoints. The default value is 400 millipoints per 
OS unit. This call allows the current values to be read. 

Related SWis 

Font_ConverttoOS (page 3-438), Font_Converttopoints (page 3-439), 
Font_SetScaleFactor (page 3-449) 

Related vectors 

None 



Set the internal to OS conversion factor 

On entry 

Rl = x scale factor 
R2 = y scale factor 

On exit 

Rl , R2 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

The Font Manager 

Font SetScaleFactor 
(SWI &40090) 

Applications that run under the Desktop should not use this call, as other 
applications may be relying on the current settings. If you must change the values , 
you should read the current values beforehand, and restore them afterwards. The 
default value is 400 millipoints per OS unit. 

Related SWis 

Font_ConverttoOS (page 3-438). Font_Converttopoints (page 3-439). 
Font_ReadScaleFactor (page 3-448) 

Related vectors 

.None 

3-449 



Font_ListFonts (SWI &40091) 

3-450 

Font ListFonts 
(SWI &40091) 

Scan for fonts, returning their identifiers one at a time; or build a menu of fonts 

On entry 

Rl =pointer to buffer for font identifier, or for menu definition (0 to return required 
size of buffer) 

R2 = counter and flags: 
bits 0- 15 =counter (0 on first call) 
bits 16-31 = 0 ~ RISC OS 2-compatible mode (see below) 
bit 16 set~ return font identifier in buffer pointed to by Rl (or required 

size of buffer for next identifier if Rl = 0) 
bit 17 set~ return local font name in buffer pointed to by R4 (or required 

size of buffer for next name if R4 = 0) 
bit 18 set ~ terminate strings with character 13, rather than character 0 
bit 19 set ~ return font menu definition in buffer pointed to by R I, and 

indirected menu data in buffer pointed to by R4 (or required sizes 
of buffers if Rl and R4 = 0) 

bit 20 set ~ put 'System font' at head of menu 
bit 21 set ~tick font indicated by R6, and its submenu parent 
bit 22 set ~ return list of encodings, rather than list of fonts 
bits 23-31 reserved (must be zero) 

R3 =size of buffer pointed to by Rl (if Rl * 0) 
R4 =pointer to buffer for font name, or for indirected menu data (0 to return 

required size of buffer) 
R5 =size of buffer pointed to by R4 (if R4 * 0) 
R6 =pointer to identifier of font to tick (0 ~ no tick, I ~tick 'System font') 

On exit 

R I preserved 
R2 = updated counter and preserved flags if listing identifiers/names (-I if no more 

to be listed); or preserved if building menu 
R3 =required size of buffer pointed to by Rl (if Rl = 0 on entry); or 0 if building a 

font menu, and the menu is null; else length of data placed in buffer 
R4 preserved 
R5 =required size of buffer pointed to by R4 (if R4 = 0 on entry); else length of data 

placed in buffer 



The Font Manager 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call has two possible uses: 

Return a list of font/encoding names and/or local names known to the Font 
Manager, and cache the list. The names are returned in alphabetical order, 
regardless of the order in which they are found. ('Local names' are the names 
translated to the language of the current territory, if possible.) 

In this case you should first initialise R2. Only bits I6- I 8 and bit 22 may be 
set; all other bits must be clear. Then for each font/encoding you must call this 
SWI twice : the first time with RI and R4 set to zero to find the required sizes of 
buffers, and the second time with the buffers set up to receive the name(s) of 
that font/encoding. Do not alter the value of R2 between calls . When R2 is -I 
on exit. the last font/encoding has already been found, and any returned 
name(s) are invalid. 

2 Build a menu definition of all fonts known to the Font Manager. The definition 
is suitable for.passing to Wimp_CreateMenu (see page 3-156) . 

In this case you may only set bits I 9- 2 I of R2 on entry. You should make the 
call twice: the first time with RI and R4 set to zero to find the required sizes of 
buffers. and the second time with the buffers set up to receive the menu 
definition. 

Fonts are found by searching the path given by the system variable FontSPath , and 
its subdirectories, for files ending in '. IntMetrics'. Likewise. encodings are searched 
for by searching the path given by the system variable FontSPath, and its 
subdirectories, for files of the form 'font_prefix.Encodings .encoding_id' (which are 
used to specify the encodings of the 'language' fonts , as opposed to the 'symbol' 
fonts , the encoding of which is fixed) . 

When such a file is found, the full name of the subdirectory is put in the buffer, 
terminated by a carriage return or null. If the same font/encoding name is found via 
different paths, only the first one will be reported. The local name is found from a 
Messages file, if present. 

3-451 



Font_ListFonts (SWI &40091) 

3-452 

Possible errors are 'Buffer overflow' (R3 and/or R5 was too small). or 'Bad 
parameters' (the flags in R2 were invalid). If an error is returned. R2 =-I on exit (ie 
listing fonts/encodings is terminated) . 

The Font Manager command *FontCat calls this SWI internally. 

Notes on RISC OS 3 

The Font Manager in the RISC OS 3 ROMs (ie Font Manager 3.07 or earlier) has a 
bug in its handling of indirected menu titles. To work around this, you must use 
MessageTrans to decode the 'FontList' token in the Fonts resource file; if its length 
is more than 12 characters you must set the 'indirected menu title' bit of the first 
menu item. and otherwise you must clear it. 

Notes on RISC OS 2 

In the 'RISC OS 2-compatible mode' (used if bits 16 - 31 of R2 are clear). this call 
works as if bits 16 and 18 of R2 were set on entry, bits 17 and 19 - 31 were clear. and 
R3 was 40 (irrespective of its actual value). 

Under RISC OS 2, this call works as if bits 16 and 18 of R2 were set on entry, and 
bits 17 and 19- 31 were clear (hence R4. R5 and R6 are ignored). However. R3 is 
used to point to the path to search ; a value of -I means that Font$Path is used 
instead. 

If your program does not RMEnsure the current version of the Font Manager. you 
should therefore always use Font$Path to specify the path to search . 

Related SWis 
None 

Related vectors 
None 



The Font Manager 

Font SetFontColours 
(SWI &40092) 

Change the current colours and (optionally) the current font 

On entry 

RO = font handle (0 for current font) 
Rl =background logical colour 
R2 = foreground logical colour 
R3 =foreground colour offset (-14 to+ 14) 

On exit 

RO - R3 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

This call is used to set the current font (or leave it as it is), and change the logical 
colours used. In up to 16 colour modes, the three registers are used as follows: 

• Rl is the logical colour of the background 

• R2 is the logical colour of the first foreground colour to use 

• R3 specifies the offset from the first foreground colour to the last. which is 
used as the actual foreground colour. 

3-453 



Font_SetFontColours (SWI &40092) 

3-454 

The range specified must not exceed the number of logical colours available in the 
current screen mode. as follows: 

Colours 
in mode 

2 
4 
16or256 

Possible values of RI,R2 ,R3 
to use all colours 

0,1 ,0 
0,1,2 
0,1,14 

In a 16 colour mode. to use the top 8 colours. which are normally flashing colours. 
the values 8,9,6 could be used. 

Note that 16 is the maximum number of anti-alias colours. In 256-colour modes. 
the background colour is ignored. and the foreground colour is taken as an index 
into a table of pseudo-palette entries - see Font_SetPalette. 

Related SWis 

Font_SetFont (page 3-440). Font_CurrentFont (page 3-441). 
Font_SetPalette (page 3-455) 

Related vectors 

None 



Define the anti-alias palette 

The Font Manager 

Font SetPalette 
(SWI &40093) 

On entry 

Rl =background logical colour 
R2 = foreground logical colour 
R3 = foreground colour offset 
R4 = physical colour of background 
R5 = physical colour of last foreground 
R6 = &65757254 ('True') to use 24 bit colours in R4 and R5 

On exit 

Rl - R6 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call sets the anti-alias palette. 

If the program you are writing is going to run under the Wimp environment then 
you must not use this call. It will damage the Wimp's colour information. You must 
instead choose from the range of colours already available by using 
Wimp_SetFontColours (page 3-220) or ColourTrans_SetFontColours (page 3-367) 
instead. 

The values in Rl. R2 and R3 have the same use as in Font_SetFontColours. See the 
description of that SWI on the previous pages for the use of these parameters . 

3-455 



Font_SetPalette (SWI &40093) 

R4 and R5 contain physical colour setting information. R4 describes the 
background colour and R5 the foreground colour. The foreground colour is the 
dominant colour of the text and generally appears in the middle of each character. 

The physical colours in R4 and R5 are of the form &BBGGRROO. That is , they 
consists of four bytes. with the palette entries for the blue, green and red guns in 
the upper three bytes . Bright white, for instance, would be &FFFFFFOO, while half 
intensity cyan is &77770000. The current graphics hardware only uses the upper 
nibbles of these colours. but for upwards compatibility the lower nibble should 
contain a copy of the upper nibble. 

Under RISC OS 2, this call sets the palette colour for the range described in R l, R2 
and R3 using R4 and R5 to describe the colours at each end. It also sets the 
intermediate colours incrementally between those of R4 and R5 . In non-256-colour 
modes, the palette is programmed so that there is a linear progression from the 
colour given in R4 to that in R5 . 

Under later versions of RISC OS. if R6 is set to the magic word 'True· . this call treats 
the values in R4 and R5 as true 24-bit palette values (where white is &FFFFFFOO. 
rather than &FOFOFOOO) . Otherwise, for compatibility, palette values are processed 
as follows: 

R4 = (R4 AND &FOFOFOOO) OR ((R4 AND &FOFOFOOO) >> 4) 
R5 = (R5 AND &FOFOFOOO) OR ((R5 AND &FOFOFOOO) >> 4) 

Thus the bottom nibbles of each gun are set to be copies of the top nibbles. 
Furthermore, this call now uses PaletteV to set palette entries in non-256-colour 
modes, and ColourTrans_ReturnColourNumber to match RGB values with logical 
colours in modes with 256 or more colours. If PaletteV is not intercepted, it calls 
OS_ Word I 2 to do so. 

Related SWis 

Font_SetFontColours (page 3-453) 

Related vectors 

None 



The Font Manager 

Font ReadThresholds 
(SWI &40094) 

Read the list of threshold values for painting 

On entry 

R I = pointer to result buffer 

On exit 

R I preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call reads the list of threshold values that the Font Manager uses when 
painting characters . Fonts are defined using up to 16 anti-aliased levels. The 
threshold table gives a mapping from these levels to the logical colours actually 
used to paint the character. 

The format of the data read is: 

Offset 

0 
I 
2 
3 
n 

Value 

Foreground colour offset 
I st threshold value 
2nd threshold value 

&FF 

3-457 



Font_ReadThresholds (SWI &40094) 

3-458 

The table is used in the following way. Suppose you want to use eight colours for 
anti-aliased colours, one background colour and seven foreground colours. Thus 
the foreground colour offset is 6 (there are 7 colours). The table would be set up as 
follows: 

Offset Value 

0 6 
2 

2 4 
3 6 
4 8 
5 10 
6 12 
7 14 
8 &FF 

When this has been set-up (using Font_SetThresholds). the mapping from the 16 
colours to the eight available will look like this: 

Threshold 

2 

4 

6 

8 

10 

12 

14 

Where the output colour is 0. the font background colour is used. Where it is in the 
range I - 7, the colour f+o-1 is used, where 'f' is the font foreground colour, and 'o' 
is the output colour. 

You can view the thresholds as the points at which the output colour 'steps up' to 
the next value. 



Related SWis 

Font_SetFontColours (page 3-453), Font_SetPalette (page 3-455). 
Font_SetThresholds (page 3-460) 

Related vectors 

None 

The Font Manager 

3-459 



Font_SetThresholds (SWI &40095) 

3-460 

Font SetThresholds 
(SWI &40095) 

Defines the list of threshold values for painting 

On entry 

Rl =pointer to threshold data 

On exit 

Rl preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call sets up the threshold table for a given number of foreground colours. The 
format of the input data, and its interpretation , is explained in the previous 
section . 

This command should rarely be needed, because the default set will work well in 
most cases . 

Related SWis 

Font_SetFontColours (page 3-453), Font_SetPalette (page 3-455), 
Font_ReadThresholds (page 3-457) 

Related vectors 

None 



Find where the caret is in a justified string 

The Font Manager 

Font FindCaretJ 
(SWI &40096) 

On entry 

Rl =pointer to string 
R2 = x offset in millipoints 
R3 = y offset in millipoints 
R4 = x justification offset 
R5 = y justification offset 

On exit 

Rl =pointer to character where the search terminated 
R2 = x offset after printing string (up to termination) 
R3 = y offset after printing string (up to termination) 
R4 =no of printable characters in string (up to termination) 
R5 = index into string giving point at which it terminated 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

The 'justification offsets' , R4 and R5, are calculated by dividing the extra gap to be 
filled by the justification of the number of spaces (ie character 32) in the string. If 
R4 and R5 are both zero, then this call is exactly the same as Font_FindCaret. 

You should use the SWI Font_ScanString (page 3-483) in preference to this one­
except under RISC OS 2, where it is not available. 

3-461 



Font_FindCaretJ (SWI &40096) 

3-462 

Related SWis 
Font_FindCaret (page 3-444). Font_ScanString (page 3-483) 

Related vectors 
None 



Measure the size of a string 

The Font Manager 

Font_StringBBox 
(SWI &40097) 

On entry 

Rl =pointer to string 

On exit 

Rl =bounding box minimum x in millipoints (inclusive) 
R2 =bounding box minimum yin millipoints (inclusive) 
R3 =bounding box maximum x in millipoints (exclusive) 
R4 =bounding box maximum yin millipoints (exclusive) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call measures the size of a string without actually printing it. The string can 
consist of printable characters and all the usual control sequences. The bounds are 
given relative to the start point of the string (they might be negative due to 
backward move control sequences, etc) . 

Note that this command cannot be used to measure the screen size of a string 
because of rounding errors. The string must be scanned 'manually' , by stepping 
along in millipoints, and using Font_ConverttoOS and Font_CharBBox to measure 
the precise position of each character on the screen. Usually this can be avoided, 
since text is formatted in rows, which are assumed to be high enough for it. 

You should use the SWJ Font_ScanString (page 3-483) in preference to this one­
except under RISC OS 2, where it is not available. 

3-463 



Font_StringBBox (SWI &40097) 

3-464 

Related SWis 

Font_Readlnfo (page 3-426), Font_CharBBox (page 3-446), 
Font_ScanString (page 3-483) 

Related vectors 

None 



Read the anti-alias colour table 

On entry 

Rl =pointer to 16 byte area of memory 

On exit 

Rl preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

The Font Manager 

Font ReadColourTable 
(SWI &40098) 

This call returns the 16 entry colour table to the block pointed to by Rl on entry. 
This contains the 16 colours used by the anti-aliasing software when painting 
text- that is, the values that would be put into screen memory. 

Related SWis 

Font_SetFontColours (page 3-453) , Font_SetPalette (page 3-455), 
Font_SetThresholds (page 3-460) 

Related vectors 

None 

3-465 



Font_MakeBitmap (SWI &40099) 

3-466 

Make a font bitmap file 

Font_ Make Bitmap 
(SWI &40099) 

On entry 

R I = font handle, or pointer to font identifier 
R2 = x point size x 16 
R3 = y point size x 16 
R4 = x dots per inch 
R5 = y dots per inch 
R6 =flags 

On exit 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call allows a particular size of a font to be pre-stored in the font's directory so 
that it can be cached more quickly. It is especially useful if subpixel positioning is 
to be performed, since this takes a long time if done directly from outlines. 

The flags have the following meanings: 

Bit 

0 

2 
3 
4- 31 

Meaning when set 

construct f9999x9999 (else b9999x9999) 
do horizontal subpixel positioning 
do vertical subpixel positioning 
just delete old file, without replacing it 
reserved (must be 0) 



The Font Manager 

Once a font file has been saved, its subpixel scaling will override the setting of 
FontMax4/5 currently in force (so, for example, if the font file had horizontal 
subpixel scaling, then when a font of that size is requested, horizontal subpixel 
scaling will be used even if FontMax4 is set to 0) . 

If the font has an encoding applied to it (ie if there was a '/E' qualifier in the 
Font_FindFont string, or if this is a 'language' font, which varies in encoding 
according to the territory), then the bitmaps are held inside a subdirectory of the 
font directory: 

prefix .fan tid en tifier.encodi ng. 

Note that Font_Paint also looks inside this directory to find the bitmaps. 

Related SWis 

Font_SetFontMax (page 3-470) 

Related vectors 

None 

3-467 



Font_ UnCacheFile (SWI &4009A) 

3-468 

Delete cached font information, or recache it 

Font UnCacheFile 
(SWI &4009A) 

On entry 

Rl ==pointer to full filename of file to be removed 
R2 == recache flag (0 or I -see below) 

On exit 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

If an application such as ! Font Ed wishes to overwrite font files without confusing 
the Font Manager, it should call this SWI to ensure that any cached information 
about the file is deleted. 

The filename pointed to by Rl must be the full filename (ie in the format used by 
the Filer). and must also correspond to the relevant identifier as it would have 
been constructed from FontSPath and the font identifier. This means that each of 
the elements of FontSPath must be proper full pathnames, including filing system 
prefix and any required special fields ( eg net#fileserver:S.fonts. ). 

The SWI must be called twice: once to remove the old version of the data, and once 
to load in the new version . This is especially important in the case of lntMetrics 
files, since the font cache can get into an inconsistent state if the new data is not 
read in immediately. 



The Font Manager 

The 'recache' flag in R2 determines whether the new data is to be loaded in or not, 
and might be used like this: 

SYS "Font_UnCacheFile",, "filename",O 
replace old file with new one 

SYS "Font_UnCacheFile ",, " filename ",l 

Related SWis 

None 

Related vectors 

None 

3-469 



Font_SetFontMax (SWI &40098) 

3-470 

Set the FontMax values 

Font SetFontMax 
(SWI &40098) 

On entry 

RO =new value of FontMax (bytes) 
Rl - R5 =new values of FontMaxl - FontMax5 (in points, or in pixels x 72 x 16 

under RISC OS 2) 
R6, R7 reserved (must be zero) 

On exit 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call can be used to set the values of FontMax and FontMaxi . .. FontMax5 . 
Changing the configured settings will also change these internal settings, but 
Font_SetFontMax does not affect the configured values, which come into effect on 
Ctrl-Break or when the Font Manager is re-initialised . 

This call also causes the Font Manager to search through the cache, checking to 
see if anything would have been cached differently if the new settings had been in 
force at the time. If so, the relevant data is discarded, and will be reloaded using 
the new settings when next required . 

Related SWis 

Font_ReadFontMax (page 3-472) 



Related vectors 

None 

The Font Manager 

3-471 



Font_ReadFontMax (SWI &4009C) 

~-47') 

Read the FontMax values 

On entry 

On exit 

RO =value of FontMax (bytes) 

Font ReadFontMax 
(SWI &4009C) 

Rl - R5 =values of FontMaxl - FontMax5 (in points, or in pixels x 72 x 16 under 
RISC OS 2) 

R6, R7 may be corrupted 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call can be used to read the values of FontMax and FontMaxl .. . FontMax5. It 
reads the values that the Font Manager holds internally (which may have been 
altered from the configured values by Font_SetFontMax) . 

Related SWis 

Font_SetFontMax (page 3-470) 

Related vectors 

None 



The Font Manager 

Font ReadFontPrefix 
(SWI &40090) 

Find the directory prefix for a given font handle 

On entry 

RO = font handle 
R I = pointer to buffer 
R2 = length of buffer 

On exit 

RO preserved 
Rl =pointer to terminating null 
R2 = bytes remaining in buffer 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call finds the directory prefix relating to a given font handle, which indicates 
where the font's lntMetrics file is, and copies it into the buffer pointed to by R I; for 
example: 

adfs: :4.$. !Fonts.Trinity.Medium. 

One use for this prefix would be to find out which sizes of a font were available 
pre-scaled in the font directory. 

Related SWis 

None 

3-473 



Font_ReadFontPrefix (SWI &40090) 

3-474 

Related vectors 

None 



The Font Manager 

Font_ SwitchOutputToBuffer 
(SWI &4009E) 

Switches output to a buffer, creating a Draw file structure 

On entry 

RO =flags if Rl > 0, else reserved (must be zero) 
Rl =pointer to word-aligned buffer, or: 

8 initially to count the space required for a buffer 
0 to switch back to normal 
-I to leave state unaltered (ie enquire about current status) 

On exit 

RO = previous flag settings 
R I =previous buffer pointer, incremented by space required for Draw file structure 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

After this call , any calls to Font_Paint will be redirected into the buffer. as a Draw 
file structure. 

Each letter painted will be treated as a separate filled object. with the colours 
specified in the paint command. 

The flags in RO have the following meaning: 

Bit Meaning when set 

0 update Rl, but don't store anything 
apply 'hints' to the outlines 

4 give error if bitmapped characters occur (this bit overrides bit 3) 

3-475 



Font_SwitchOutputToBuffer (SWI &4009E) 

All other bits are reserved, and must be zero. 

This call is not available in RISC OS 2. 

On entry, the buffer must contain the following if it is to receive output: 

Size Contents 

4 0 (null terminator) 
4 size remaining, in bytes 

The Draw file structure is placed in the file before the null terminator, between 
(original R I) and (final R I - I) . R I still points to the null terminator; the terminator 
and free space count do not form part of the output data itself. 

If bit 0 of RO is set. output is not actually sent to the buffer, but the pointer is 
updated. This allows the size of the required buffer to be computed properly before 
allocating the space for it. Note that if bit 0 of RO is set, RI must initially be greater 
than 0 (a value of 8 is recommended, since the buffer must allow 8 bytes for the 
terminator and free space counter) . 

The rubout box(es) and any underlining are also sent to the buffer as a series of 
filled outlines. These will be in the correct order so as to be behind any characters 
which overlap them. The output will also take into account matrix transformations . 
font and colour changes, explicit movements. justification and kerning. 

If bit I of RO is set, the character outlines have hints applied to them at the current 
size. This means that they are not really suitable for scaling later on . 

Any characters which are only available as bitmaps will either generate an error (if 
bit 4 of RO is set). or not be output. 

In this way drawing programs can turn on buffering, then proceed to draw text in 
the appropriate position and size, and end up with a series of Draw objects which 
represent the same thing. The set of objects that the Font Manager produces could 
easily be converted into a group by wrapping them suitably 

Related SWis 

None 

Related vectors 

None 



The Font Manager 

Font Read FontMetrics 
(SWI &4009F) 

Reads the full metrics information held in a font's lntMetrics file 

On entry 

RO = font handle 
Rl =pointer to buffer for bounding box information, or 0 to read size of data 
R2 =pointer to buffer for x width information, or 0 to read size of data 
R3 =pointer to buffer for y width information, or 0 to read size of data 
R4 =pointer to buffer for miscellaneous information, or 0 to read size of data 
R5 =pointer to buffer for kerning information, or 0 to read size of data 
R6 = 0 
R7 = 0 

On exit 

RO = file flags 
Rl - R5 =size of data (0 if not present in file) 
R6, R7 undefined 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call reads the full metrics information held in a font's lntMetrics file . 

The flags in RO have the following meaning: 

Bit Meaning when set 
kern pairs don't have x offsets 

2 kern pairs don't have y offsets 
3 there are more than 255 kern pairs 

3-477 



Font_ReadFontMetrics (SWI &4009F) 

3-478 

All other bits are reserved , and you should ignore them. 

Currently this call is not permitted on fonts which have a transformation matrix 
applied to them. It is recommended that the call is made on the untransformed 
version of the font, and the results then transformed appropriately. Note that when 
transforming bounding boxes, the resulting (axis-aligned) box is that which 
bounds all4 transformed bounding box corners. When transforming x andy offsets 
(ie character widths), the last 2 numbers in the matrix (the offsets) should be 
ignored, since the new origin is also moved by these amounts , and they therefore 
cancel out. 

This call is not available in RISC OS 2. 

The format of the data in the buffers is as follows. Except where otherwise stated: 

• all units are millipoints ( 1/72000") 

• all 2-byte and 4-byte numbers are little-endian , signed 

Bounding box information 

arrayj2561 of groups of 4 words (xO, yO, xl , yl) 

X width information 

arrayj256J of words 

Y width information 

arrayj2 561 of words 

Miscellaneous information 

Size 

2 

2 

2 

2 

2 

2 

2 

I 

2 

Description 

xO l maximum bounding box for font ( 16-bit signed) 
yO bottom-left (xO, yO) is inclusive 

xl top-right (xl, yl) is exclusive 

yl all coordinates are in millipoints 

default x offset per char (if flags bit I is set), in millipoints 
( 16-bit signed) 

default y offset per char (if flags bit 2 is set), in millipoints 
( 16-bit signed) 

italic h-offset per em (-1000 x TAN(italic angle)) 
( 16-bit signed) 

underline position , in l/256th em (signed) 

underline thickness, in l/256th em (unsigned) 

CapHeight in millipoints ( 16-bit signed) 



2 

2 

2 

4 

XHeight in millipoints ( 16-bit signed) 

Descender in millipoints ( 16-bit signed) 

Ascender in millipoints ( 16-bit signed) 

reserved (must be zero) 

Kerning information 

The Font Manager 

The kerning information is indexed by a hash table. The hash function used is: 

(first letter) EOR (second letter ROR 4) 

where the rotate happens in 8 bits. 

Description Size 

256 X 4 hash table giving offset from table start of first kern pair for 
each possible value (0- 255) of hash function 

4 

4 

? 

offset of end of all kern pairs from table start 

flag word: 

bit 0 set ~ no bounding boxes 
bit I set ~ no x offsets 
bit 2 set ~ no y offsets 
bits 3- 30 reserved (ignore these) 
bit 31 set~ 'short' kern pairs 

kern pair data 

Each kern pair consists of the code of the first letter of the kern pair, followed by 
the x offset in millipoints (if flags bit I is clear) and they offset in millipoints (if 
flags bit 2 is clear) 

If bit 31 of the flag word is clear, then the letter code, x offset andy offset are each 
held in a word. If bit 31 is set, then the kern pair data is shortened by combining 
the letter code with the first offset word as follows: 

bits 0 - 7 = character code 
bits 8 - 31 = x or y offset 

If necessary, the second letter can be deduced from the first letter and the hash 
index as follows: 

2nd letter= (I st letter EOR hash table index) ROR 4 

where the rotate happens in 8 bits. 

3-479 



Font_ReadFontMetrics (SWI &4009F) 

3-480 

The hash table indicates the point at which to start looking for a given kern pair in 
the list of kern pairs following the table. The entries are consecutive, so each list 
finishes as the next one starts. To search for a given kern pair: 

Work out the value n of the hash function 

2 Look up the nth and (n+ I )th offsets in the hash table 

3 Search for a kern pair having the correct I st letter, looking from the nth offset 
up to- but not including- the (n+ I )th offset. 

Once the kern offsets are obtained, they can be inserted into a Font_Paint string as 
character 9 and II move sequences. (You can also paint kerned text using 
Font_Paint (page 3-429). which may be an easier option .) 

Note that if flag bits I and 2 are both set, then it is illegal for there to be any kern 
pairs. 

Related SWis 

None 

Related vectors 

None 



Decode a selection made from a font menu 

The Font Manager 

Font DecodeMenu 
(SWI &400AO) 

On entry 

RO =flags: 
bit 0 set=> encoding menu, else font menu 
all other bits reserved (must be zero) 

Rl =pointer to menu definition (as returned by Font_ListFonts) 
R2 =pointer to menu selections (as returned by Wimp_Poll with reason code= 9) 
R3 =pointer to buffer to contain answer (0 =>just return size) 
R4 = size of buffer (if R3 ::1- 0) 

On exit 

RO, Rl preserved 
R2 =pointer to rest of menu selections (if R3 ::1- 0 on entry) 
R3 preserved 
R4 = size of buffer required to hold output string (0 => no font selected) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call decodes a selection (as returned from Wimp_Poll) made from a font 
menu. The definition of the font menu is passed in the same format as returned 
from Font_ListFonts. 

This call is not available in RISC OS 2. 

3-481 



Font_DecodeMenu (SWI &400AO) 

Bit 0 of RO determines whether it is the font menu or the encoding menu that is 
being decoded. In either case, the format of the returned string depends on 
whether the names of the fonts/encodings have been specified in a Messagesn file 
inside the font directory. The name field is not present if the Font Manager has 
worked out the list of fonts/encodings by scanning the directory instead. 

File holds: 

Font id, no name 
Font id. with name 
Encoding, no name 
Encoding, with name 

Format of returned string: 

\Ffont_id 
\ Ffont_id\ fterritory fontname 
\Eencoding_id 
\Eencoding_id\eterritory encoding_name 

Since Font_DecodeMenu works by comparing the string in the menu against the 
Font Manager's known font names. in the case of 'System font' being selected from 
a menu that contained it, R4 would be returned as 0. To distinguish this from the 
'no font selected' case. check for R2 pointing to 0 on entry, since 'System font' is 
always the first menu entry if present. 

Related SWis 

Font_ListFonts (page 3-450) 

Related vectors 

None 



The Font Manager 

Font_ScanString 
(SWI &400A1) 

Return information on a string 

On entry 

RO =initial font handle (I - 255) or 0 for current handle- if bit 8 of R2 is set 
RI =pointer to string 
R2 = plot type: 

bits 0-4 reserved (must be zero) 
bit 5 set => use R5 as indicated below 
bit 6 set=> use R6 as indicated below 
bit 7 set=> use R7 as indicated below 
bit 8 set => use RO as indicated above 
bit 9 set=> perform kerning on the string 
bit I 0 set=> writing direction is right to left; else left to right 
bits II - I6 reserved (must be zero) 
bit I7 set=> return nearest caret position; else length of string 
bit I8 set=> return bounding box of string in buffer pointed to by R5 (bit 5 

must be set) 
bit I9 set=> return matrix applying at end of string in buffer pointed to 

by R6 (bit 6 must be set) 
bit 20 =>return number of split characters in R7 (bit 7 must be set) 
bits 2I - 3I reserved (must be zero) 

R3, R4 =offset of mouse click- if bit I7 of R2 is set; else maximum x, y coordinate 
offset before split point 

R5 =pointer to buffer used on entry for coordinate block and split character- if 
bit 5 of R2 is set- and on exit for returned bounding box- if bit I8 of R2 is 
set 

R6 =pointer to buffer used on entry for transformation matrix- if bit 6 of R2 is 
set- and on exit for returned transformation matrix- if bit I9 of R2 is set 

R7 = length of string- if bit 7 of R2 is set 

On exit 

RO preserved 
R I =pointer to point in string of caret position- if bit I7 of R2 is set; else 
to split point, or end of string if splitting not required 

R2 preserved 
R3, R4 = x, y coordinate offset to caret position -if bit I7 of R2 is set; else to split 

point, or end of string if splitting not required 

3-483 



Font_:_ ScanString (SWI &400A 1) 

~-4R4 

R5, R6 preserved 
R7 = number of split characters encountered- if bit 20 of R2 was set; else 

preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call scans a string as if it were painted to the screen using Font_Paint, and 
returns various information about it. It is particularly useful for finding the correct 
position of the caret within a string, or for finding where to split a line, if at all. 

For full details of the parameters passed, and of control sequences that may be 
included in the string, you should see the description of Font_Paint on page 3-429. 
Below we merely describe the changes and additions relative to that SWI. 

This call is not available in RISC OS 2. 

Coordinates 

Unlike Font_Paint, this call uses millipoints for all coordinates; you may not 
specify OS units by setting bit 4 of R2. 

R3 and R4 do not specify the start coordinates of the string. Instead they specify 
either the offset from the start of the string to the mouse click (used to work out 
where to insert the caret). or the maximum offset before the split point (ie the 
width and height remaining on the current line). 

On exit R3 and R4 give the offset of the caret position or the split point. When 
scanning to determine the split point, the scan continues until the current offset is 
less than or greater than the limit supplied, depending on the sign of that limit. If 
R3 is negative on entry, the scan continues until the x offset is less than R3, while if 
R3 is positive, the scan continues until the x offset is greater than R3. Note that 
this is incompatible with the old Font_StringWidth call, which always continued 
until the x andy offsets were greater than R2 or R3. (Font_StringWidth still works in 
the old way, to ensure compatibility). 



The Font Manager 

Graphics cursor coordinates 

Font_ScanString does not use graphics cursor coordinates for justification, nor to 
specify a rubout box. Justification can still be performed using the coordinate block 
pointed to by R5, whereas rubout boxes are not supported at all. 

The coordinate block and split character 

The coordinate block pointed to by R5 differs from that used by Font_Paint in that 
no rubout box is given . Instead the word at offset 16 is used to specify the 'split 
character' on entry. 

The four following words (ie starting at offset 20) are used to return the string's 
bounding box, if bit 18 of R2 is set on entry. This excludes the area occupied by 
underlining or rubout 

Offset Value 

0 additional x, y offset on space 

8 additional x. y offset between each letter 

16 split character (-I ~none) 

20 returned x. y coordinates for bottom left of string bounding box 
(inclusive)- if bit 18 of R2 is set 

28 returned x, y coordinates for top right of string bounding box 
(exclusive) - if bit 18 of R2 is set 

If there is no split character, but bit 20 of R2 is set ('return number of split 
characters in R7'). then R7 will instead be used to return the number of non-control 

I 
characters encountered (ie those characters with codes of 32 or more which are not 
part of a control sequence) . 

Transformation matrices 

If bit 19 of R2 is set on entry, the transformation matrix pointed to by R6 is updated 
on exit to return the matrix applying at the end of the string. 

Text direction 

Where bit I 0 is set (ie the main writing direction is right to left). one would 
normally supply a negative value of R3. 

String length 

Note that the character at IRI ,R71 may be accessed to determine whether it is a 
'split character', as well as to determine the character offset due to kerning. 

3-485 



Font_ Scan String (SWI &400A 1) 

3-486 

Related SWis 

This SWI replaces the following deprecated (still supported, but not 
recommended) SWis: 

Font_StringWidth (page 3-427). Font_FindCaret (page 3-444). 
Font_FindCaret) (page 3-461 ), Font_StringBBox (page 3-463) 

Related vectors 

None 



The Font Manager 

Font SetColourTable 
(SWI &400A2) 

This call is for internal use by the ColourTrans module only. You must not use it in 
your own code. 

This call is not available in RISC OS 2. 

To set font colours you should either use ColourTrans_SetFontColours (see 
page 3-367) or Font_Paint control sequence 19 (see page 3-432). 

3-487 



Font_CurrentRGB (SWI &400A3) 

~-4RR 

Font CurrentRGB 
(SWI &400A3) 

Reads the settings of colours after calling Font_Paint 

On entry 

On exit 

RO = font handle 
Rl =background font colour (&BBGGRROO) 
R2 =foreground font colour (&BBGGRROO) 
R3 =maximum colour offset (0 ~mono, else anti-aliased) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call reads the settings of the RGB foreground and background colours after 
calling Font_Paint. 

This call is not available in RISC OS 2. 

The error 'Undefined RGB font colours' is generated if the colours were not set 
using RGB values. 

Related SWis 

None 

Related vectors 

None 



The Font Manager 

Font FutureRGB 
(SWI &400A4) 

Reads the settings of colours after calling various Font .. SWis 

On entry 

On exit 

RO = font handle 
Rl =background font colour (&BBGGRROO) 
R2 =foreground font colour (&BBGGRROO) 
R3 = maximum colour offset (0::::} mono, else anti-aliased) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call reads the settings of the RGB foreground and background colours after 
calling Font_ScanString, Font_StringWidth, Font_StringBBox, Font_FindCaret or 
Font_FindCaretJ. 

This call is not available in RISC OS 2. 

The error 'Undefined RGB font colours' is generated if the colours were not set 
using RGB values. 

Related SWis 

None 



Font_FutureRGB (SWI &400A4) 

3-490 

Related vectors 
None 



The Font Manager 

Font_ReadEncodingFilename 
(SWI &400A5) 

Returns the filename of the encoding file used for a given font handle 

On entry 

RO = font handle 
Rl =pointer to buffer to receive prefix 
R2 = length of buffer 

On exit 

RO =pointer to encoding filename (in buffer) 
Rl =pointer to terminating 0 of filename 
R2 = bytes remaining in buffer 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call returns the filename of the encoding file used for a given font handle. It is 
primarily useful for PDriverPS to gain access to the file of identifiers that defines an 
encoding, in order to send it to the printer output stream. 

The filename depends on whether the font has a 'public' or 'private' encoding 
(public encodings apply to 'language' fonts, as described in Font_ListFonts, while 
private encodings are not used by the Font Manager, and simply describe the 
PostScript names for the characters in the font). 

Encoding 

public 
private 

Filename 

font_prefix.Encodings.encoding 
font_prefix.font_name.Encoding 

3-491 



Font_ReadEncodingFilename (SWI &400A5) 

3-492 

The error 'Buffer overflow' is generated if the buffer is too small. 

This call is not available in RISC OS 2. 

Related SWis 

None 

Related vectors 

None 



I' 
The Font Manager 

Font FindField 
(SWI &400A6) 

Returns a pointer to a specified field within a font identifier 

On entry 

Rl =pointer to font identifier 
R2 =character code of qualifier required 

On exit 

R I= pointer to value following qualifier in string (if field present) ; else preserved 
R2 = 0 if field not present; else preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

This call, given a font string and a qualifier that specifies a field within that string, 
returns a pointer to the specified field. 

The 'F' field is space-terminated, while all others are control-character terminated. 

This call is not available in RISC OS 2. 

Related SWis 

Font_ApplyFields (page 3-494) 

Related vectors 

None 

3-493 



FonLApplyFields (SWI &400A7) 

3-494 

Font_ApplyFields 
(SWI &400A7) 

Merges a new set of fields with those already in a given font identifier 

On entry 

RO = pointer to original font identifier 
R I =pointer to set of fields to be added (in format of a font identifier) 
R2 = pointer to output buffer, or 0 to get required new size of buffer 
R3 = size of output buffer 

On exit 

RO - R2 preserved 
R3 =remaining size of buffer, or incremented by the length of the output string 

(excluding its null terminator) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call merges a new set of fields with those already in a given font identifier, 
replacing existing fields and adding new ones. You can also delete existing fields 
by specifying a null field to replace it. 

This operation is performed in two passes: 

I Copy fields in JROI from IRII if present, else IROI 

2 Copy fields in I R II from I R II if not present in 1 RO 1 

This call is not available in RISC OS 2. 



The Font Manager 

Related SWis 

Font_FindField (page 3-493) 

Related vectors 

None 

3-495 



Font_LookupFont (SWI &400A8) 

3-496 

Returns information about a particular font 

Font_ Lookup Font 
(SWI &400A8) 

On entry 

RO = font handle, or 0 for current handle 
Rl =0 
R2 = 0 

On exit 

RO, Rl preserved 
R2 = ·characteristics of font: 

bit 0 set~ font is old 'x90y45' bitmap format 
bit I set~ font is in ROM ' 
bit 8 set~ font is monochrome only, irrespective of value of FontMax2 
bit 9 set~ font is filled with non-zero rule , rather than even-odd 
all other bits reserved and should be ignored 

R3-R7 corrupted 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call returns information about a particular font. On exit R2 contains a set of 
flags describing how the font is rendering, and other characteristics. 

This call is not available in RISC OS 2, nor in RISC OS 3 (version 3.00). 

Related SWis 

None 



Related vectors 

None 

The Font Manager 

3-497 



•commands 

*Commands 

::l-4~8 

*Configure FontMax 

Sets the configured maximum desirable size of the font cache 

Syntax 

*Configure FontMax mKin 

Parameters 

Use 

mK 

n 

number of kilobytes of memory reserved 

number of 4k chunks of memory reserved 

*Configure FontMax sets the configured maximum desirable size of the font cache. 
The difference between FontSize and FontMax is the extra amount of memory that 
the Font Manager will attempt to use if it needs to. If other parts of the system have 
already claimed all the spare memory, then FontSize is what it is forced to work 
with . 

If FontMax is bigger than FontSize, when the Font Manager cannot obtain enough 
cache memory it will attempt to expand the cache by throwing away unused blocks 
(ie ones that belong to fonts which have had Font_FindFont called on them more 
often than Font_LoseFont). Once the cache has expanded up to FontMax. the Font 
Manager will throw away the oldest block found , even if it is in use. This can result 
in the Font Manager heavily using the filing system, since during a window redraw 
it is possible that all fonts will have to be thrown away and recached in turn. 

The Font Manager has to keep permanently in its cache some information on each 
font in use. Consequently, if many more fonts are in use than are reasonable for the 
configured FontMax. the Font Manager may be forced to let the cache grow past 
this point. 

Example 

*Configure FontMax 256K 

Related commands 

*Configure FontSize 



Related SWis 

Font_CacheAddr (page 3-418). Font_SetFontMax (page 3-470). 
Font_ReadFontMax (page 3-472) 

Related vectors 

None 

The Font Manager 

3-499 



·configure FontMaxt 

3-500 

*Configure FontMax1 

Sets the maximum height at which to scale from a bitmap font 

Syntax 

*Configure FontMaxl max_pointsize 

Parameters 

Use 

max_height maximum height of font at which to scale from a bitmap 
font; units are points, except under RISC OS 2, which 
uses pixel height (see below) 

*Configure FontMaxi sets the maximum height at which to scale from a bitmap 
font rather than from an outline font- but only if 4 bit per pixel output is possible. 

When the Font Manager can use 4 bits per pixel. it first looks for an f9999x9999 file 
of the correct size; then it looks for an x90y45 font of the correct size. Next it 
considers the values of FontMax2 and 3, and then of FontMax4 and 5. Only if the 
above fail to produce output does it then consider the value of FontMaxi : 

• If the font height is less than or equal to the value specified in FontMaxi. or if 
there is no Outlines file, the Font Manager looks for the x90y45 file to 
determine which bitmap font to scale. If the x90y45 file contains the name of 
an f9999x9999 file, then that file is scaled; else one of the fonts in the x90y45 
file is scaled. 

• Otherwise the Font Manager scales the Outlines file to give an anti-aliased (4 
bits per pixel) bitmap. 

The height is set in points, except under RISC OS 2 which uses pixel height: 

pixel height= height in points x pixels (or dots) per inch I 72 

The pixel height corresponds to different point sizes on different resolution output 
devices. 

Example 

*Configure FontMaxl 25 

Related commands 

*Configure FontMax2 



Related SWis 

Font_SetFontMax (page 3-470). Font_ReadFontMax (page 3-472) 

Related vectors 

None 

The Font Manager 

3-501 



*Configure FontMax2 

3-502 

*Configure FontMax2 

Sets the maximum height at which to scale from outlines to anti-aliased bitmaps 

Syntax 

*Conf i gure FontMax2 max_hei gh t 

Parameters 

Use 

max_he ight maximum height of font at which to scale from outlines 
to anti-aliased bitmaps; units are points. except under 
RISC OS 2, which uses pixel height (see below) 

*Configure FontMax2 sets the maximum height at which to scale from outlines to 
anti-aliased bitmaps, rather than to I bit per pixel bitmaps. 

When the Font Manager can use 4 bits per pixel, it first looks for an f9999x9999 file 
of the correct size; then it looks for an x90y45 font of the correct size. Only if the 
above fail to produce output does it then consider the value of FontMax2 : 

• If the font height is less than or equal to the heights specified in both 
FontMax2 and 3, the Font Manager goes on to consider the values of FontMax4 
and 5, and then of FontMaxl. Any bitmaps it produces from outlines will be 
anti-aliased. 

• Otherwise, the Font Manager uses I bit per pixel bitmaps. It first looks for a 
b9999x9999 file of the correct size. 

If it fails to find one it uses the Outlines file to paint a I bit per pixel bitmap. 
The value of FontMax3 determines whether the Font Manager caches the 
bitmap or the outline . 

The height is set in points, except under RISC OS 2 which uses pixel height: 

pixel height= height in points x pixels (or dots) per inch I 72 

The pixel height corresponds to different point sizes on different resolution output 
devices. 

Example 

*Configure FontMax2 20 

Related commands 

•configure FontMax I, •configure FontMax3 



The Font Manager 

Related SWis 

Font_SetFontMax (page 3-470), Font_ReadFontMax (page 3-472) 

Related vectors 

None 

3-503 



*Configure FontMax3 

*Configure FontMax3 

Sets the maximum height at which to retain bitmaps in the cache 

Syntax 

*Configure FontMax3 max_height 

Parameters 

Use 

3-504 

max_height maximum height of font at which to retain bitmaps in the 
cache; units are points. except under RISC OS 2, which 
uses pixel height (see below) 

•configure FontMax3 sets the maximum height at which to retain bitmaps in the 
cache, rather than the outlines from which they were converted. 

Unlike the other FontMaxn values. FontMax3 affects the Font Manager both when it 
can use 4 bits per pixel , and when it can only use I bit per pixel. 

4 bits per pixel 

When the Font Manager can use 4 bits per pixel, it first looks for an f9999x9999 file 
of the correct size; then it looks for an x90y45 font of the correct size. Only if the 
above fail to produce output does it then consider the value of FontMax3: 

• If the font pixel height is less than or equal to the heights specified in both 
FontMax2 and 3, the Font Manager goes on to consider the values of FontMax4 
and 5, and then of FontMaxl . Any bitmaps it produces will be cached. 

Otherwise, the Font Manager first looks for a b9999x9999 file of the correct 
size. 

If it fails to find one it uses the Outlines file to paint a I bit per pixel bitmap. 
The value of FontMax3 determines whether the Font Manager caches the 
bitmap or the outline: 

• If the font pixel height is less than or equal to the height specified in 
FontMax3, the Font Manager retains the resultant bitmap in the cache. 

• If the font pixel height is greater than the height specified in FontMax3, 
the Font Manager will not cache the bitmaps, but will instead cache the 
outlines themselves. 

It draws the outlines directly onto the destination using the Draw module; 
consequently they are not anti-aliased. The Font Manager sets up the 
appropriate GCOL and TINT settings for this , and resets them afterwards. 



The Font Manager 

I bit per pixel 

If the Font Manager can only use I bit per pixel, it first looks for a b9999x9999 file of 
the correct size. 

If it fails to find one it looks for the Outlines file, scaling it to give a I bit per pixel 
bitmap. The value of FontMax3 determines whether the Font Manager caches the 
bitmap or the outline: 

• If the font pixel height is less than or equal to the height specified in 
FontMax3, the Font Manager retains the resultant bitmap in the cache. 

• I the font pixel height is greater than the height specified in FontMax3, the 
ant Manager will not cache the bitmaps, but will instead cache the outlines 

t emselves. 

I draws the outlines directly onto the destination using the Draw module; 
nsequently they are not anti-aliased. The Font Manager sets up the 

ppropriate GCOL and TINT settings for this, and resets them afterwards. 

If the e is no Outlines file, the Font Manager then looks for an f9999x9999 file of the 
corre t size; then it looks for an x90y45 font of the correct size. Finally it uses the 
x90y 5 file to determine which bitmap font to scale. If the x90y45 file contains the 
nam of an f9999x9999 file, then that file is scaled; else one of the fonts in the 
x90y 5 file is scaled. 

eight is set in points, except under RISC OS 2 which uses pixel height: 

ixel height= height in points x pixels (or dots) per inch /72 

ixel height corresponds to different point sizes on different resolution output 
devic s. 

Example 

figure FontMax3 35 

SetFontMax (page 3-470). Font_ReadFontMax (page 3-472) 

None 

3-505 



*Configure FontMax4 

*Configure FontMax4 

Sets the maximum width at which to use horizontal subpixel anti-aliasing 

Syntax 

*Configure FontMax4 max_width 

Parameters 

Use 

3-506 

max_ width maximum width of font at which to use horizontal 
subpixel anti-aliasing; units are points , except under 
RISC OS 2, which uses pixel width (see below) 

•configure FontMax4 sets the maximum width at which to use horizontal subpixel 
anti-aliasing. 

When the Font Manager can use 4 bits per pixel, it first looks for an f9999x9999 file 
of the correct size (note that this bitmap may have been constructed with subpixel 
anti-aliasing already performed- see Font_MakeBitmap); then it looks for an 
x90y45 font of the correct size. Next it considers the values of FontMax2 and 3. 
Only if the above fail to produce output does it then consider the value of 
FontMax4 and 5: 

• If the font pixel width is less than or equal to the width specified in FontMax4, 
the Font Manager will look for the Outlines file , and will construct 4 
anti-aliased bitmaps for each character, corresponding to 4 possible horizontal 
subpixel alignments on the screen. 

Likewise, if the font pixel height is less than or equal to the height specified in 
FontMax5, the Font Manager will perform vertical subpixel anti-aliasing. Thus 
if both horizontal and vertical subpixel anti-aliasing occurs, 16 bitmaps will be 
constructed. 

When painting the text. the Font Manager will use the bitmap which 
corresponds most closely to the required alignment. 

• Otherwise the Font Manager goes on to consider the value of FontMaxl; it will 
not use subpixel anti-aliasing. 

The width is set in points. except under RISC OS 2 which uses pixel width : 

pixel width= width in points x pixels (or dots) per inch I 72 

The pixel width corresponds to different point sizes on different resolution output 
devices. 



Example 

*Configure FontMax4 0 

Related commands 

*Configure FontMax5 

Related SWis 

Font_SetFontMax (page 3-470). Font_ReadFontMax (page 3-472) 

Related vectors 

None 

The Font Manager 

3-507 



*Configure FontMax5 

*Configure FontMax5 

Sets the maximum height at which to use vertical subpixel anti-aliasing 

Syntax 

*Configure FontMaxS max_height 

Parameters 

Use 

3-508 

max_height maximum font pixel height at which to use vertical 
subpixel anti-aliasing 

*Configure FontMax5 sets the maximum height at which to use vertical subpixel 
anti-aliasing. 

When the Font Manager can use 4 bits per pixel, it first looks for an f9999x9999 file 
of the correct size (note that this bitmap may have b~en constructed with subpixel 
anti-aliasing already performed- see Font_MakeBitmap); then it looks for an 
x90y45 font of the correct size. Next it considers the values of FontMax2 and 3. 
Only if the above fail to produce output does it then consider the value of 
FontMax4 and 5: 

• If the font pixel height is less than or equal to the height specified in 
FontMax5, the Font Manager will look for the Outlines file, and will construct 4 
anti-aliased bitmaps for each character, corresponding to 4 possible vertical 
subpixel alignments on the screen. 

Likewise, if the font pixel width is less than or equal to the width specified in 
FontMax4, the Font Manager will perform horizontal subpixel anti-aliasing. 
Thus if both vertical and horizontal subpixel anti-aliasing occurs, 16 bitmaps 
will be constructed. 

When painting the text, the Font Manager will use the bitmap which 
corresponds most closely to the required alignment. 

• Otherwise the Font Manager goes on to consider the value of FontMaxl: it will 
not use subpixel anti-aliasing. 

The height is set in points, except under RISC OS 2 which uses pixel height: 

pixel height= height in points x pixels (or dots) per inch /72 

The pixel height corresponds to different point sizes on different resolution output 
devices. 



Example 
*Configure FontMax4 0 

Related commands 
*Configure FontMax5 

Related SWis 
Font_SetFontMax (page 3-470). Font_ReadFontMax (page 3-472) 

Related vectors 
None 

The Font Manager 

3-509 



•configure FontSize 

3-510 

*Configure FontSize 

Sets the configured amount of memory reserved for the font cache 

Syntax 

*Configure FontSize sizeK 

Parameters 

Use 

size number of kilobytes to allocate 

*Configure FontSize sets the configured amount of memory reserved for the font 
cache. This is claimed when the Font Manager is first initialised. If insufficient 
memory is free, the Font Manager starts running using what is available. 

The Font Manager will never shrink its cache below this configured size. 

The minimum cache size can also be changed from the Task Manager, by dragging 
the font cache bar directly, although this is not remembered after a Control-reset. 

Example 

*Configure FontSize 32K 

Related commands 

*Configure FontMax 

Related SWis 

Font_CacheAddr (page 3-418) 

Related vectors 

None 



The Font Manager 

*FontCat 

Lists the fonts available in a directory 

Syntax 

*FontCat [directory] 

Parameters 

directory pathname of a directory to search for fonts 

Use 

*FontCat lists the fonts available in the given directory. If no directory is given, 
then the directory specified in the system variable Font$Path is used. 

Font_FindFont uses the same variable when it searches for a font. 

Example 

*FontCat adfs:$.Fonts. 
Corpus.Medium 
Portrhouse.Standard 
Trinity.Medium 

Related commands 

None 

Related SWis 

The last'.' is essential 

Font_FindFont (page 3-4 I 9). Font_ListFonts (page 3-450) 

Related vectors 

None 

3-511 



•Fontlnsta/1 

3-512 

*Font Install 

Adds a directory to the list of those scanned for fonts 

Syntax 

*Fontinstall [directory] 

Parameters 

Use 

directory pathname of a directory to add to FontSPath 

* Fontinstall adds a directory to the list of those scanned for fonts. It does so by 
altering the system variable FontSPath so that the given pathname appears before 
any others, and is not repeated. It also rescans the directory, even if it was already 
known to the Font Manager. 

If no pathname is given, all directories in FontSPath are rescanned . 

Service_FontsChanged is issued whenever a directory is scanned. 

This command is not available in RISC OS 2. 

Example 

*Fontinstall RAM:$ .Font s. The last·.· is essential 

Related commands 

*FontRemove 

Related SWis 

None 

Related vectors 

None 



The Font Manager 

*Fontlibrary 

Sets a directory as the font library, replacing the previous library 

Syntax 

*FontLibrary directory 

Parameters 

Use 

directory a valid pathname specifying a directory 

*FontLibrary sets a directory as the font library, replacing the previous library in 
the list of those scanned for fonts. It does so by altering the system variable 
FontSPrefix to the given directory, and ensures that the string '<FontSPrefix>.' 
appears on the front of the system variable FontSPath . 

Note however that if the previous font library had also been explicitly added to 
FontSPath (say by *Fontlnstall). it will still be scanned. 

This command is not available in RISC OS 2. 

Example 

*FontLibrary scsifs: :MyDisc.$.FontLib 

Related commands 

None 

Related SWis 

None 

Related vectors 

None 

3-513 



•FontList 

3-514 

*Fontlist 

Displays the fonts in the font cache, its size, and its free space 

Syntax 

*FontLis t 

Parameters 

None 

Use 

*FontList displays the fonts currently in the font cache. For each font. its identifier 
is given, together with its point size, its resolution, the number of times it is being 
used by various applications, and the amount of memory it is using. 

The size of the font cache and the amount of free space (in Kbytes) is also given. 

Example 
*FontList 

Name 

1.Homerton.Medium 
2.Homerton.Medium 

Cache size: 32 Kbytes 
free: 24 Kbytes 

Related commands 

None 

Related SWis 

Font_ListFonts (page 3-450) 

Related vectors 

None 

Size Dots/inch 

12 point 90x45 
master ROM outlines 

Use Cache memory 

3 
1 

4 Kbytes 
696 bytes 



The Font Manager 

*FontRemove 

Removes a directory from the list of those scanned for fonts 

Syntax 

*FontRemove [directory] 

Parameters 

directory path name of a directory to remove from FontSPath 

Use 

*FontRemove removes a directory from the list of those scanned for fonts. It does 
so by removing the given path name from the system variable FontSPath. 

This command is not available in RISC OS 2. 

Example 

*FontRemove RAM:$.Fonts. The last' .' is essential 

Related commands 

*Fontlnstall 

Related SWis 

None 

Related vectors 

None 

3-515 



•LoadFontCache 

3-516 

*LoadFontCache 

Loads a file back into the font cache 

Syntax 

*LoadFontCache filename 

Parameters 

Use 

filename a valid pathname specifying a file previously saved using 
•saveFontCache 

I 

*LoadFontCache loads a file that was previously saved using •saveFontCache back 
into the font cache. 

An error is generated if any fonts are currently claimed, or if the font cache format 
cannot be read by the current Font Manager (ie it was created by a version of the 
Font Manager that used an incompatible font cache format). 

The size of the font cache slot will - if necessary- be increased to accommodate 
the new cache data; but it will not be decreased, even if the new cache data is 
smaller than the current cache slot size. 

This command is useful for setting up the font cache to a predefined state, to save 
time scaling fonts later on. 

This command is not available in RISC OS 2. 

Example 

*LoadFontCache scsi: :MyDisc.$.FontCache 

Related commands 

•saveFontCache 

Related SWis 

None 

Related vectors 

None 



The Font Manager 

*SaveFontCache 

Saves the font cache to a file 

Syntax 

*SaveFontCache filename 

Parameters 

filename a valid pathname specifying a file 

Use 

*SaveFontCache saves the current contents of the font cache, with certain extra 
header information, to a file of type &FCF (FontCache). The Run alias for this 
filetype executes *LoadFontCache, which loads the file back into the font cache. 

This command is not available in RISC OS 2. 

Example 

*SaveFontCache scsifs::MyDisc.$.FontCache 

Related commands 

• LoadFontCache 

Related SWis 

None 

Related vectors 

None 

~-!=\17 



Application Notes 

Application Notes 

3-518 

BASIC example of justified text 
100 SYS "Font_ FindFont"., "Trinity . Medium ", 320,320 , 0 , 0 TO HAN% 
110 REM sets font handle 
120 SYS "Font_SetPalette", ,8,9 , 6 , &FFFFFFOO,&OOOOOOOO 
130 REM Set the palette to use colours 8-15 as white to black 
140 MOVE 800,500 
150 REM Set the right hand side of justification 
160 SYS "Font_ Paint ",, "This is a test",&ll , 0,500 
170 SYS "Font_ LoseFont ", HAN% 

On line 160, Font_Paint is being told to use OS coordinates and justify, starting at 
location 0,500. 800,500 has been declared as the right hand side of justification by 
line 140. 



62 SuperSample module 

Introduction and Overview 
The SuperSample module provides SWJs for the use of the Font Manager. You must 
not use them in your own code. 

This module is not available under RISC OS 2. 

3-519 



SWI calls 

SWI calls 

3-520 

Super_Sample90 
(SWI40080) 

Th is SWI is for internal use only. You must not use it in your own code. 



SuperSample module 

Super_Sample45 
(SWI 40081) 

This SWI is for internal use only. You must not use it in your own code. 

3-521 



3-522 



63 Draw module 

Introduction 
The Draw module is an implementation of PostScript type drawing. A collection of 
moves, lines, and curves in a user-defined coordinate system are grouped together 
and can be manipulated as one object, called a path. 

A path can be manipulated in memory or upon writing to the VDU. There is full 
control over the following characteristics of the path: 

• rotation, scaling and translation of the path 

• thickness of a line 

• description of dots and dashes for a line 

• joins between lines can be mitred, round or bevelled 

• the leading or trailing end of a line, or dot (which are in fact just very short 
dashes), can be butt, round, a projecting square or triangular (used for arrows) 

• filling of arbitrary shapes 

• what the fill considers to be interior 

A path can be displayed in many different ways. For example, if you write a path 
that draws a petal, and draw it several times rotating about a point, you will have a 
flower. This uses only one of the characteristics that you can control. 

The Draw application was written using this module, and this is the kind of 
application that it is suited to. It is advisable to read the section on Draw in the 
User Guide to familiarise yourself with some of the properties of the Draw module. 

3-523 



Overview 

Overview 
There are many specialised terms used within the Draw module. Here are the most 
important ones. If you are familiar with PostScript, then many of these should be 
the same. 

• A path element is a sequence of words. The first word in the sequence has a 
command number, called the element type, in the bottom byte. Following this 
are parameters for that element type. 

• A subpath is a sequence of path elements that defines a single connected 
polygon or curve. The ends of the subpath may be connected, so it forms a 
loop (in which case it is said to be closed) or may be loose ends (in which case it is 
said to be open). A subpath can cross itself or other subpaths in the same path. 

See below for a more detailed explanation of when a subpath is open or 
closed. 

• A path is a sequence of subpaths and path elements. 

• A Bezier curve is a type of smooth curve connecting two endpoints , with its 
direction and curvature controlled by two control points . 

• Flattening is the process of converting a Bezier curve into a series of small lines 
when outputting. 

• Flatness is how closely the lines will approximate the original Bezier curve. 

• A transformation matrix is the standard mathematical tool for two-dimensional 
transformations using a three by three array. It can rotate, scale and translate 
(move) . 

• To stroke means to draw a thickened line centred on a path. 

• A gap is effectively a transparent line segment in a subpath . If the subpath is 
stroked. the piece around the gap will not be plotted. Gaps are used by Draw to 
implement dashed lines. 

• Line caps are placed at the ends of an open subpath and at the ends of dashes 
in a dashed line when they are stroked. They can be butt, round, a projecting square 
or triangular. 

• Joins occur between adjacent lines. and between the start and end of a closed 
subpath . They can be mitred, round or bevelled. 

• To Fill means to draw everything inside a path. 

• Interior pixels are ones that are filled . Exterior pixels are not filled. 

• A winding number rule is the rule for deciding what is interior or exterior to a path 
when filling. The interior parts are those that are filled . 

• Boundary pixels are those that would be drawn if the line were stroked with 
minimum thickness for the VDU . 



Draw module 

• Thickening a path is converting it to the required thickness- that is generating a 
path which, if filled , would produce the same results as stroking the original 
path . 

Scaling systems 
This is an area where you must take great care when using the Draw module, 
because four different systems are used in different places. 

OS units 

OS units are notionally Ill 80th of an inch, and are the standard units used by the 
VDU drivers for specifying output to the screen. 

This coordinate system is (not surprisingly) what the Draw module uses when it 
strokes a path onto the screen. 

Internal Draw units 

Internally, Draw uses a coordinate system the units of which are l/256th of an OS 
unit. We shall call these internal Draw units. 

In a 32 bit internal Draw number, the top 24 bits are the number of OS units, and 
the bottom 8 bits are the fraction of an OS unit. 

User units 

The coordinates used in a path can be in any units that you wish to use. These are 
converted by the transformation matrix into internal Draw units when generating 
output. 

Note that because it is a fixed point system, scaling problems can occur if the user 
units differ too much from the internal Draw units. Because of this problem, you 
are limited in the range of user units that you can use. 

Transform units 

Transform units are only used to specify some numbers in the transformation 
matrix. They divide a word into two parts: the top two bytes are the integer part, 
and the bottom two bytes are the fraction part. 

3-525 



Transformation matrix 

Transformation matrix 

Winding rules 

This is a three by three matrix that can be used to rotate, scale or translate a path 
in a single operation. It is laid out like this: 

[ a fJ 
d 

e f 
~ ] 

This matrix transforms a coordinate (x, y) into another coordinate (x', y') as follows: 

x' =ax+ cy + e 
y' = bx + dy + f 

The common transformations can all be easily done with this matrix. Translation 
by a given displacement is done bye for the x axis and f for they axis. Scaling the 
x axis uses a, while they axis uses d. Rotation can be performed by setting 
a= cos(S). fJ = sin(S). c = -sin(S) and d = cos(S), where e is the angle of rotation. 

a, b, c and dare given in transform units to allow accurate specification of the 
fractional part. e and fare specified in internal Draw units, so that the integer part 
can be large enough to adequately specify displacements on the screen. (Were 
transform units to be used for these coefficients, then the maximum displacement 
would only be 256 OS units. which is not very far on the screen.) 

The winding rule determines what the Draw module considers to be interior, and 
hence filled. 

Even-odd roughly means that an area is filled if it is enclosed by an even number of 
subpaths. The effect of this is that you will never have two adjacent areas of the 
same state, ie filled or unfilled. 

Non-zero winding fills areas on the basis of the direction in which the subpaths 
which surround the area were constructed. If an equal number of subpaths in each 
direction surround the area, it is not filled, otherwise it is. 

The positive winding rule will fill an area if it is surrounded by more anti-clockwise 
subpaths than clockwise. The negative winding rule works in reverse to this. 

Even-odd and non-zero winding are printer driver compatible, whereas the other 
two are not. If you wish to use the path with a printer driver, then bear this in mind. 



Draw module 

Stroking and filling 

Printing 

Floating point 

Flattening means bisecting any Bezier curves recursively until each of the resulting 
small lines lies within a specified distance of the curve. This distance is called 
flatness. The longer this distance, the more obvious will be the straight lines that 
approximate the curve. 

All moving and drawing is relative to the VDU graphics origin (as set by 
VDU 29,x;y; ). 

None of the Draw SWis will plot outside the boundaries of the VDU graphics 
window (as set by VDU 24,l;b;r;t ; ). 

All calls use the colour (both pixel pattern and operation) set up for the VDU driver. 
Note that not all such colours are compatible with printer drivers. 

If your program needs to generate printer output, then it is very important that you 
read the chapter entitled Printer Drivers on page 3-555 . The Draw SWis that are 
affected by printing have comments in them about the limitations and effects. 

SWI numbers and names have been allocated to support floating point Draw 
operations . In fact for every SWI described in this chapter, there is an equivalent 
one for floating point- just add FP to the end of each name. 

The floating point numbers used in the specification are IEEE single precision 
floating point numbers. 

They may be supported in some future version of RISC OS, but if you try to use 
them in current versions you'll get an error back. 

3-527 



Technical Details 

Technical Details 

Data structures 

Path 

3-528 

Many common structures are used by Draw module SW!s. Rather than duplicate 
the descriptions of these in each SWI, they are given here. Some SW!s have small 
variations which are described with the SWI. 

The path structure is a sequence of subpaths, each of which is a sequence of 
elements . Each element is from one to seven words in length . The lower byte of the 
first word is the element type. The remaining three bytes of it are free for client use. 
On output to the input path the Draw module will leave these bytes unchanged. 
However, on output to a standard output path the Draw module will store zeroes in 
these three bytes. 

The element type is a number from 0 to 8 that is followed by the parameters for the 
element, each a word long. The path elements are as follows: 

Element 
Type 

0 

2 

3 

4 

5 

Parameters 

n 

ptr 

xy 

xy 

6 xI y I x2 y2 x3 y3 

Description 

End of path. n is ignored when read ing the 
path, but is used to check space when 
reading and writing a path. 

Pointer to continuation of path. ptr is the 
address of the first path element of the 
continuation. 

Move to (x, y) starting new subpath The new 
subpath does affect winding numbers and 
so is filled normally. This is the normal way 
to start a new subpath . 

Move to (x, y) starting new subpath. The new 
subpath does not affect winding numbers 
when filling. This is mainly for internal use 
and rarely used by applications. 

Close current subpath with a gap. 

Close current subpath with a line. It is better 
to use one of these two to close a subpath 
than 2 or 3, because this guarantees a closed 
subpath. 

Bezier curve to (x3, y3) with control points at 
(xi , yl) and (x2 , y2). 



7 xy 

8 xy 

Draw module 

Gap to (x. y). Do not start a new subpath. 
Mainly for internal use in dot-dash 
sequences. 

Line to (x. y). 

You will notice that there are some order constraints on these element types: 

• path elements 2 and 3 start new subpaths 

• path elements 6. 7 and 8 may only appear while there is a current subpath 

• path elements 4 and 5 may only appear while there is a current subpath, and 
end it. leaving no current subpath 

• path elements 2 and 3 can also be used to close the current subpath (which is 
a part of starting a new subpath). 

Open and closed subpaths 

When you are stroking (using Draw_Stroke). if a subpath ends with a 4 or 5 then it 
is closed. and the ends are joined- whereas a 2 or 3 leaves a subpath open. and 
the loose ends are capped. These four path elements explicitly leave a stroked 
subpath either open or closed . 

Some other operations implicitly close open subpaths. and this will be stated in 
their descriptions. 

Just because the ends of a subpath have the same coordinates. that doesn't mean 
the subpath is closed. There is no reason why the loose ends of an open subpath 
cannot be coincident. 

Output path 

After a SWI has written to an output path. it is identical to an input path. When it is 
first passed to the SWI as a parameter. the start of the block pointed to should 
contain an element type zero (end of path) followed by the number of available 
bytes. This is so that the Draw module will not accidentally overrun the buffer. 

3-529 



Data structures 

Fill style 

Matrix 

The fill style is a word that is passed in a call to Draw_Fill , Draw_Stroke, 
Draw_StrokePath or Draw_ProcessPath. It is a bitfield , and all of the calls use at 
least the following common states. See the description of each call for differences 
from this: 

Bit(s) 

0, I 

2 

3 

4 

5 

6- 31 

Value Meaning 

0 
I 
2 
3 
0 
I 
0 

0 
I 
0 

non-zero winding number rule . 
negative winding number rule . 
even-odd winding number rule . 
positive winding number rule. 
don't plot non-boundary exterior pixels. 
plot non-boundary exterior pixels. 
don't plot boundary exterior pixels . 
plot boundary exterior pixels. 
don't plot boundary interior pixels. 
plot boundary interior pixels. 
don't plot non-boundary interior pixels. 
plot non-boundary interior pixels . 
reserved- must be written as zero 

The matrix is passed as pointer to a six word block, in the order a, b, c, d, e. and f as 
described earlier. That is: 

Offset Value Common use(s) 

0 a x scale factor, or cos(9) to rotate 
4 b sin(9) to rotate 
8 c -sin(9) to rotate 
12 d y scale factor, or cos(9) to rotate 
16 e x translation 
20 f y translation 

If the pointer is zero, then the identity matrix is assumed- no transformation takes 
place. 

Remember that a - dare in Transform units, while e and fare in internal Draw units ; 
for example plotting with a scale factor of I- which is & I 000 Transform units- and 
with a translation of (64 , 32)- which are respectively &4000 and &2000 internal 
Draw units- would use the values 1&1000, 0, 0, &I 000, &4000, &20001 



Draw module 

Flatness 

Flatness is the maximum distance that a line is allowed to be from a Bezier curve 
when flattening it. It is expressed in user units. So a smaller flatness will result in a 
more accurate rendering of the curve, but take more time and space. For very small 
values of flatness. it is possible to cause the 'No room in RMA' error. 

A recommended range for flatness is between half and one pixel. Any less than this 
and you're wasting time; any more than this and the curve becomes noticeably 
jagged. A good starting point is: 

flatness = number of user units in x axis I number of pixels in x axis 

A value of zero will use the default flatness. This is set to a useful value that 
balances speed and accuracy when stroking to the VDU using the default scaling. 

Note that if you are going to send a path to a high resolution printer, then you may 
have to set a smaller flatness to avoid jagged curves. 

Line thickness 

The line thickness is in user coordinates. 

• If the thickness is zero then the line is drawn with the minimum width that can 
be used. given the limitations of the pixel size (so lines are a single pixel wide) . 

• If the thickness is 2, then the line will be drawn with a thickness of I user 
coordinate translated to pixels on either side of the theoretical line position. 

• If the line thickness is non-zero. then the cap and join parameter must also be 
passed. 

3-531 



Data structures 

Cap and join 

3-532 

The cap and join styles are each passed as a pointer to a four word block. A pointer 
of zero can be passed if cap and join are ignored (as they are for zero thickness 
lines). The block is structured as follows: 

Word 

0 

4 

8 

12 

Byte 

0 

2 
3 

0,1 
2,3 

0,1 

2,3 

all 

Description 

join style 
0 = mitred joins 
I = round joins 
2 = bevelled joins 

leading cap style 
0 =butt caps 
I = round caps 
2 = projecting square caps 
3 = triangular caps 

trailing cap style (as leading cap style) 
reserved- must be written as zero. 

This value must be set if using mitred joins. 
fractional part of mitre limit for mitre joins 
integer part of mitre limit for mitre joins 

setting for leading triangular cap width on each side 
(in 256ths of line widths, so &0100 is I linewidth) 
setting for leading triangular cap length away from 
the line, in the same measurements as above 

This sets the trailing triangular cap size, using the 
same structure as the previous word . 

The mitre limit is a little more complex than the others , so it is explained here 
rather than above. At any given corner, the mitre length is the distance from the 
point at which the inner edges of the stroke meet, to the point where the outer 
edges of the stroke meet. This distance increases as the angle between the lines 
decreases. If the ratio of the mitre length to the line width exceeds the mitre limit, 
stroke treats the corner with a bevel join instead of a mitre join . Also see the notes 
on scaling, later in this section . 

Under RISC OS 2, the mitre limit is treated as unsigned . It is now treated as signed, 
but must be positive (ie ~ &7FFFFFFF) . 

Note that words at offsets 4, 8, and 12 are only used if the appropriate style is 
selected by the earlier parts. The structure can therefore be made shorter i f 
triangular caps and mitres are not used. 



Draw module 

Dash pattern 

Scaling 

Draw SWis 

The dash pattern is passed as a pointer to a block, the size of which is defined at 
the start, as follows: 

Word 

0 

4 

8- 4n+4 

Description 

distance into dash pattern to start in user 
coordinates 

number of elements (n) in the dash pattern 

elements in the dash pattern. each of which is a 
distance in user coordinates. 

Again the pointer can be zero. which implies that continuous lines are drawn. 

Each element specifies a distance to draw in the present state. The pattern starts 
with the draw on , and alternates off and on for each successive element. If it 
reaches the end of the pattern while drawing the line. then it will restart at the 
beginning. 

If n is odd , then the elements will alternate on or off with each pass through the 
pattern : so the first element will be on the first pass, off the second pass . on the 
third pass , and so on. 

The Draw module uses fixed point arithmetic for speed. The number 
representations used are chosen to keep rounding errors small enough not to be 
noticeable. 

However, if you use the transformation matrix to scale a path up a great deal. you 
will also scale up the rounding errors and make them visible. 

To avoid such problems, we recommend that you don't use scale factors of more 
than 8 when converting from User units to internal Draw units . (This maximum 
recommended scale factor of 8 is &80000 in the Transform units used in the 
transformation matrix.) 

Though there are a number of SWis, they all call Draw_ProcessPath. Because this 
takes so many parameters , the other SWis are provided as an easy way of using its 
functionality. 

There are two that output to the VDU. Draw_Stroke emulates the PostScript stroke 
function and will draw a path onto the VDU. Draw_Fill acts like the fill function and 
fills the inside of a path . It is likely that most applications will only use these two 
SWis. 



Printer drivers 

Printer drivers 

The others are shortcuts for processing a path in one way or other. 
Draw_StrokePath acts exactly like Draw_Stroke, except it puts its output into a path 
rather than onto the VDU. Filling its output path produces the same results as 
stroking its input path . Draw_FiattenPath will handle only the flattening of a path , 
writing its output to a path. Likewise, Draw_TransformPath will only use the matrix 
on a path. All these processing SWis are useful when a path will be sent to the VDU 
many times. If the path is flattened or transformed before the stroking, then it will 
be done faster. 

If you are using a printer driver, you should note that it cannot deal with all calls to 
the Draw module. For full details of this, see the chapter entitled Printer Drivers on 
page 3-555. As a general rule, you should avoid the following features: 

• AND, OR, etc operations on colours when writing to the screen. 

• Choice of fill style: eg fill excluding/including boundary, fill exterior, etc. 

• Positive and negative winding number rules. 

• Line cap enhancements, particularly differing leading and trailing caps and 
triangular caps. 

The printer driver will also intercept DrawV and modify how parts of the Draw 
module work. Here is a list of the effects that are common to all the SWis that 
output to the VDU normally: 

• cannot deal with positive or negative winding numbers 

• cannot fill: 

non-boundary exterior pixels 

2 exterior boundary pixels only 

3 interior boundary pixels only 

4 exterior boundary and interior non-boundary pixels 

• an application should not rely on any difference between the following fill 
states: 

interior non-boundary pixels only 

2 all interior pixels 

3 all interior pixels and exterior boundary pixels 



SWI Calls 

Main Draw SWI 

Draw module 

Draw ProcessPath 
(SWI &40700) 

On entry 

RO =pointer to input path buffer (see below) 
Rl =fill style 
R2 = pointer to transformation matrix, or 0 for identity matrix 
R3 = flatness, or 0 for default 
R4 = line thickness, or 0 for default 
R5 =pointer to line cap and join specification (if required) 
R6 = pointer to dash pattern , or 0 for no dashes 
R7 =pointer to output path buffer, or value (see below) 

On exit 

RO depends on entry value of R7 
if R7 = 0, I or 2 
if R7 = 3 
if R7 is a pointer 

Rl - R7 preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

SWI is not re-entrant 

Use 

RO is corrupted 
RO = size of output buffer 
RO = pointer to new end of path indicator 

All the other SWis in the Draw module are converted into calls to this SWI. They are 
provided to ensure that suitable names exist for common operations and to reduce 
the number of registers to set up when calling. 

3-535 



Draw_ProcessPath (SWI &40700) 

3-536 

The input path, matrix, flatness, line thickness, cap and join, and dash pattern are 
as specified in the section entitled Data structures on page 3-528. 

The fill style is as on page 3-530, with the following additions: 

Bit(s) 

6- 26 
27 
28 
29 
30 
31 

Meaning 

reserved- must be written as zero 
set if open subpaths are to be closed 
set if the path is to be flattened 
set if the path is to be thickened 
set if the path is to be re-flattened after thickening 
set for floating point output (not implemented) 

Normally, the output path will act as described on page 3-529, but with the 
following changes if the following values are passed in R7: 

Value 

0 

I 

2 

3 

&80000000+pointer 

Meaning 
Output to the input path buffer. Only valid if the 
input path's length (ie storage requirement) does not 
change during the call, such as when doing a 
transformation only. 

Fill the path normally. 

Fill the path, subpath by subpath . (Draw_Stroke will 
often use this to economise on RMA usage) . 

Count how large an output buffer is required for the 
given path and actions . 

Output the path's bounding box, in transformed 
coordinates. The buffer will contain the four words : 
low x, low y, high x, high y. 

pointer Output to a specified output buffer. 

The length of the buffer must be indicated by putting a suitable path element 
0 at the start of the buffer, and a pointer to the new path element 0 is returned 
in RO to allow you to append to the output path. 

You may do the following things with this call, in this order: 

Open subpaths may be closed (if selected by bit 27 of Rl ). 

2 The path may be flattened (if selected by bit 28 of R I) . This uses R3 . 

3 The path may be dashed (if R6:;:. 0) . 

4 The path may be thickened (if selected by bit 29 of R I) . This uses R4 and R5 . 

5 The path may be re-flattened (if selected by bit 30 of Rl ). This uses R3 . 

6 The path may be transformed (if R2:;:. 0). 

7 Finally, the path is output in one of a number of ways, depending on R7 . 

\ 



Draw module 

Note that R3 , R4 and R5 may be left unspecified if the options that use them are 
not specified. 

If you try dashing, thickening or filling on an unflattened Bezier curve, it will 
produce an error, as this is not allowed. 

If you are using the printer driver, then it will intercept this SWI and affect its 
operation . In addition to the general comments in the section entitled Printer drivers 
on page 3-534 , it is unable to handle R7 = I or 2. 

Related SWis 

None 

Related vectors 

DrawV 

3-537 



Draw_Fi/1 (SWI &40702) 

3-538 

Draw Fill 
(SWI &40702) 

Process a path and send to VDU, filling the interior portion 

On entry 

RO = pointer to input path 
Rl =fill style, or 0 for default 
R2 = pointer to transformation matrix, or 0 for identity matrix 
R3 =flatness, or 0 for qefault 

On exit 

RO corrupted 
R I - R3 preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This command emulates the PostScript 'fill' operator. It performs the following 
actions: 

• closes open subpaths 

• flattens the path 

• transforms it to standard coordinates 

• fills the resulting path and draws to the VDU. 

The input path, matrix, and flatness are as specified in the section entitled Data 
structures on page 3-528. 



Draw module 

The fill style is as specified on page 3-530 with the following addition . A fill style of 
zero is a special case . It specifies a useful default fill style, namely &30. This means 
fill to halfway through boundary, non-zero rule. 

If you are using the printer driver, then it will intercept this SWI and affect its 
operation. See the general comments in the section entitled Printer drivers on 
page 3-534. 

Related SWis 

None 

Related vectors 

DrawV 

3-539 



Draw_ Stroke (SWI &40704) 

3-540 

Process a path and send to VDU 

Draw Stroke 
(SWI &40704) 

On entry 

RO = pointer to input path 
Rl =fill style, or 0 for default (see below) 
R2 = pointer to transformation matrix, or 0 for identity matrix 
R3 = flatness, or 0 for default 
R4 = line thickness, or 0 for default 
R5 =pointer to line cap and join specification (if required) 
R6 = pointer to dash pattern , or 0 for no dashes 

On exit 

RO corrupted 
R I - R6 preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This command emulates the PostScript 'stroke' operator. It performs the following 
actions : 

• flattens the path 

• applies a dash pattern to the path , if R6 "# 0 

• thickens the path, using the specified joins and caps 

• re-flattens the path, to flatten round caps and joins, so that they can be filled. 



Draw module 

• transforms the path to standard coordinates 

• fills the resulting path and draws to the VDU. 

The input path, matrix, flatness , cap and join , and dash pattern are as specified in 
the section entitled Data structures on page 3-528. 

The fill style is as specified on page 3-530 with the following additions. A fill style 
of zero is a special case. If the line thickness in R4 is non-zero, then it means &30, 
as in Draw_Fill. If R4 is zero, then & I 8 is the default. as the flattened and thickened 
path will have no interior in this case. 

If the top bit of the fill style is set, this makes the Draw module plot the stroke all 
at once rather than one subpath at a time. This means the code will never double 
plot a pixel, but uses up much more temporary work-space. 

The line thickness is as on page 3-53 I, with the following added restrictions. If the 
specified thickness is zero, Draw cannot deal with filling non-boundary exterior 
pixels and not filling boundary exterior pixels at the same time, ie fill bits 3 - 2 
being 0 I. If the specified thickness is non-zero, Draw cannot deal with filling just 
the boundary pixels, ie fill bits 5 - 2 being 0 I I 0. 

If you are using the printer driver, then it will intercept this SWI and affect its 
operation . In addition to the general comments in the section entitled Printer drivers 
on page 3-534, you should also be aware that most printer drivers will not pay any 
attention to bit 3 I of the fill style- ie plot subpath by subpath or all at once (see 
above) . Use Draw_ProcessPath to get around this problem by processing it before 
stroking. 

Related SWis 

Draw_StrokePath (page 3-542) 

Related vectors 

DrawV 

3-541 



Draw_StrokePath (SWI &40706) 

3-542 

Draw StrokePath 
(SWI &40706) 

Like Draw_Stroke, except writes its output to a path 

On entry 

RO = pointer to input path 
Rl =pointer to output path, or 0 to calculate output buffer size 
R2 = pointer to transformation matrix, or 0 for identity matrix 
R3 = flatness , or 0 for default 
R4 = line thickness, or 0 for default 
R5 = pointer to line cap and join specification 
R6 =pointer to dash pattern, or 0 for no dashes 

On exit 

RO depends on entry value of Rl 
if Rl = 0 RO =calculated output buffer size 
if Rl =pointer RO =pointer to end of path marker in output path 

R I - R6 preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

The input and output paths, matrix, flatness. line thickness, cap and join, and dash 
pattern are as specified in the section entitled Data structures on page 3-528. 

This call acts exactly like a call to Draw_Stroke, except that it doesn't write its 
output to the VDU, but to an output path. 



Related SWis 
Draw_Stroke (page 3-540) 

Related vectors 
DrawV 

Draw module 

3-543 



Draw_FiattenPath (SWI &40708) 

3-544 

Draw FlattenPath 
(SWI &40708) 

Converts an input path into a flattened output path 

On entry 

RO =pointer to input path 
Rl =pointer to output path, or 0 to calculate output buffer size 
R2 =flatness. or 0 for default 

On exit 

RO depends on entry value of Rl 
if R I = 0 RO =calculated output buffer size 
if Rl =pointer RO =pointer to end of path marker in output path 

Rl, R2 preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

The input and output paths, and flatness are as specified in the section entitled 
Data structures on page 3-528. 

This call acts like a subset of Draw_StrokePath. It will only flatten a path. This 
would be useful if you wanted to stroke a path multiple times and didn't want the 
speed penalty of flattening the path every time. 

Related SWis 

Draw_StrokePath (page 3-542) 



Related vectors 

DrawV 

Draw module 

3-545 



Draw_ TransformPath (SWI &4070A) 

3-546 

Draw TransformPath 
(SWI &4070A) 

Converts an input path into a transformed output path 

On entry 

RO = pointer to input path 
Rl =pointer to output path , or 0 to overwrite the input path 
R2 = pointer to transformation matrix, or 0 for identity matrix 
R3 = 0 

On exit 

RO depends on entry value of Rl 
if Rl = 0 RO is corrupted 
if R I = pointer RO = pointer to end of path marker in output path 

Rl - R3 preserved 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

The input and output paths, and matrix are as specified in the section entitled Data 
structures on page 3-528. 

This call acts like a subset of Draw_StrokePath. It will only transform a path. This 
would be useful if you wanted to stroke a path multiple times and didn't want the 
speed penalty of transforming the path every time. It is also useful if you want to 
transform a path before dashing, thickening and so on, to avoid having the 
rounding errors from the latter operations magnified by the transformation . 



Related SWis 
Draw_StrokePath (page 3-542) 

Related vectors 
DrawV 

Draw module 

3-547 



Application Notes 

Application Notes 

Example of simple drawing 

3-548 

The test program that is shown here was devised to represent millimetres 
internally and scale them to be the correct size when drawn on a particular 
monitor. Because monitors are different sizes, and even the same model can be 
adjusted differently in terms of vertical and horizontal picture size, this example 
would have to be adjusted to suit your particular setup. 

This example also has a restriction on screen modes. It will only work on one where 
the screen is I 280 OS units by I 024 OS units- which most of the current modes are 
(but not. for example, I 32 column modes). This corresponds to 327680 internal 
Draw units by 262 I44 internal Draw units . 

The first thing to do is to fill the screen with a colour and measure the horizontal 
and vertical size in millimetres. For this test, the display area measured 2 I Omm 
across by I60mm down . 

Because of scaling limitations. we will work with a user scale of thousandths of 
millimetres. Thus , there are 2 I 0000 user units across and I 60000 user units down. 

The BASIC program described here is presented in a jumbled order so that the 
features are described and written one at a time . Once it is all typed in, then it will 
seem a lot more obvious. 

Transformation matrix 

The next step is to work out the scaling factors for the transformation matrix. 
Taking the horizontal size first , we start with 327680 internal Draw units = 210000 
user units, giving 1.5604 internal Draw units per user unit. Vertically, 262I44 
internal Draw units= I60000 user units . giving 1.6384 internal Draw units per user 
unit. 

These figures must now be converted to the Transform units used for scaling in the 
transformation matrix. The 32 bit Transform number is 216 times the actual value, 
since its fractional part is 16 bits long. So horizontally we want 216 x I .5604, which 
is I 02261 (& 18F75). and vertically we want 216 x 1.6384, which is I 07374 (& IA36E) . 

The transformation matrix is initialised as follows: 

[ &00018F75 
0 
0 

0 
&OOOIA36E 
0 

0 
0 ] 



Draw module 

This could be calculated automatically, using the following BASIC code. which . 
whilst not the most efficient. is hopefully the clearest way of representing it: 

30 xsize = 210000 : ysize = 160000 
40 xscale% = (1280 * 256 I xsize) * &010000 
50 yscale% = (1024 * 256 I ysize) * &010000 

After this, xscale% would be &000 18F75 and y scale% would be &000 IA36E, the 
values to place in the matrix. The matrix would be programmed as follows: 

20 DIM transform% 23 
60 transform%!0 xscale% 
70 transform%!4 = 0 
80 transform% ! 8 = 0 
90 transform%!12 = yscale% 
100 transform%!16 0 
110 transform%!20 = 0 

Important 

:REM element a in the matrix 
: REM element b 
:REM element c 
: REM element d 
:REM element e 
:REM element f 

It is important to remember that. whilst this example is using thousandths of 
millimetres as its internal coordinate system. they could be anything within the 
valid limits. Draw is not affected by what they are. Using the technique described 
above. any valid units can be used. We used 210000 by 160000 user units for our 
scale; it could be 500000 by 350000 or 654363 by 314159 or whatever. This program 
will work with all valid scales , simply by changing the definitions of xs i z e and 
ysize. 

Creating the path 

In order to create the path . this simple program uses a procedure to put a single 
word into the path and advance the pointer. In a large application. it would be a 
good idea to write individual routines to generate each element type, because this 
technique would become tedious in a large program. 

This preamble defines what needs to be at the start of the program. Notice that 
line 20 overwrites the earlier definition. 

10 pathlength% = 256 
20 DIM path% pathlength% - 1 , transform% 23 
160 pathptr% = 0 :REM Initialise the pointer 

Later on in the program would be the procedure to add a word to the path: 

320 END 
330 DEF PROCadd(value%) 
340 IF pathptr%+4 > pathlength% THEN ERROR O, " Insufficient path buffer" 
350 path% !pathptr% = value% 
360 pathptr% += 4 
370 ENDPROC 

3-549 



Example of simple drawing 

The simple path shown here generates a rectangle with no bottom line. It is 90mm 
by 40mm and offset by 80mm in the x andy axes from the origin . 

170 PROCadd(2) 
180 PROCadd(8) 

PROCadd(80000) : PROCadd(80000) :REM Move to start 
PROCadd(80000) : PROCadd(120000) :REM Draw 

190 PROCadd(8) PROCadd ( 170000) : PROCadd ( 120000) 
200 PR0Cadd(8) PROCadd ( 170000) : PROCadd ( 80000) 
250 PROCadd(4) 
260 PROCadd(O) 

REM Close the subpath. PROCadd(5) would close the rectangle 
PROCadd(pathlength%-pathptr%-4) :REM End path 

Simple stroke 

Once the path and the transformation mat rix have been completed, all that 
remains is to set the graphics origin and stroke the path onto the screen. 

270 VDU 29 , 0;0 ; 
280 SYS "Draw_ Stroke ", path% , 0 , transform% , 0 , 0 , 0 , 0 

Translation 

Another matrix operation that can be performed is translation , or moving. 
Remember that the parameters in the matrix are in internal Draw coordinates , not 
the millimetres used in this example as user coordinates. If you want to translate 
in OS coordinates, then the translation must be multiplied by 256. 

In this example, we are going tore-stroke the path , translated 60 OS units in x and 
-IOO OS units in y. 

290 transform% ! 16 = 60<<8 
300 transform% !20 = -100<<8 
310 SYS "Draw_ Stroke ", path% , 0 , transform% , 0,0 , 0 , 0 

You will now see two versions of the path . the new one I 00 OS units lower and 60 
OS units shifted to the right. 

Similarly, the matrix may be modified to rotate the path . If you aren't sure how to 
do this , then see any mathematical text on matrix arithmetic. 

Curves 

In order to add a curve to the path , we will add a new subpath to the section that 
creates the path. This curve draws an alpha shape. Note that element type 2 
implicitly closes the initial subpath: 

210 PR0Cadd(2) : PROCadd(50000) : PROCadd(50000) 
220 PROCadd(6) : PROCadd(80000) : PROCadd(80000) 
230 PROCadd ( 85000) PROCadd (30000) 
240 PROCadd ( 50000) : PROCadd ( 60000) 

: REM 
:REM 
:REM 
:REM 

xl, yl 
x2, y2 
x3 , y3 
x4 , y4 



Draw module 

Whilst the flatness can be left at its default value, this shows how the stroke 
commands can be changed to set the flatness to a sensible value. 640 is used 
because th is program was run in a 640 pixel mode. 

280 SYS "Draw_ Stroke ", path% , 0,transform% , xsize/640 , 0 , 0 , 0 
310 SYS "Draw_ Stroke ", path% , 0 , transform% ,xsize/640 , 0 , 0 , 0 

Line thickness 

To make the lines shown thicker than the default, it is necessary to specify a 
thickness and also the joins and caps block. Notice that line 20 has been changed 
to allocate space for the joins and caps block. We will use round caps and bevelled 
joints. 

20 DIM path% pathlength%-1 , transform% 23 , joinsandcaps% 15 
120 joinsandcaps%!0 &010102 
130 joinsandcaps% ! 4 = 0 
140 joinsandcaps%!8 = 0 
150 joinsandcaps%!12 = 0 

Now all that remains is to change the stroke commands to specify a thickness and 
point to the block just specified. For this example we will make the first stroke 5000 
units (5mm) thick and the second one half that: 

280 SYS "Draw_ Stroke ", path% , 0 , transform% ,xsize/640 , 5000 , joinsandcap s %, 0 
310 SYS "Draw_ Stroke " ,path% , 0 , transform% ,xsize/640 , 250 0,j oinsandcap s %, 0 

Plainly, there are many more features that could be added to this program. But you 
should have the idea now of how it fits together and be able to experiment for 
yourself. 

3-551 





Part 9 - Printing 

3-553 





64 Printer Drivers 

Introduction 

Printing from applications 
One of the major headaches on some operating systems is that all applications 
must write drivers for all the required types of printers. This duplicates a lot of work 
and makes each application correspondingly larger and more complex. 

The solution to this problem that RISC OS has adopted is to supply a virtual 
printer interface, so that all printer devices can be used in the same way. Thus, your 
application can write to the printer, without being aware of the differences between 
(for example) a dot matrix printer, a PostScript printer, and a plotter. 

To send output to the printer, an application must engage in a dialogue with the 
printer driver. This is similar in part to the dialogue used with the Wimp when a 
window needs redrawing. 

To simplify printer driving further, output to the printer is done using a subset of 
the same calls that normally write to the screen. Calls to the VDU drivers and to the 
SpriteExtend, Draw, ColourTrans and Font modules are trapped by the printer 
driver. It interprets all these calls in the most appropriate way for the selected 
printer, using the printer's resolution and set of features to the best. Thus 
applications need not know about printer specific operation, but this does not 
result in lack of fine control of the printer. 

Of course, not all calls have meaning to the printer driver- flashing colours for 
example. These generate an error or are ignored as appropriate. 

The structure of the printing system 
Printer drivers are written to support a general class of printers, such as PostScript 
printers. Under RISC OS 3 you can have more than one printer driver installed at 
the same time, and it is easy to switch between them. Support for this is suppli~d 
by a sharer module. and also by the new Printer manager application. which als~ 
provides facilities that allows users to control the unique attributes of each type of 
printer. 

3-555 



The structure of the printing system 

3-556 

The structure of the printing system need not concern application writers; you do 
not need to know which part of the printing system is handling your calls. Further 
details are given in the section entitled The structure of the printing system on 
page 3-589. should you be interested. 



Overview 

Rectangles 

Printer Drivers 

A key feature of all printer drivers is the rectangle. In normal use, it is a page. It is 
however possible to have many rectangles appear on the same physical sheet of 
paper. For example, an A3 sized plotter may be used to draw two A4 rectangles on 
it side by side; or it could be used to generate a pagination sheet for a DTP 
package, showing many rectangles on a sheet. 

When reading this chapter, in most cases you can consider a rectangle and a page 
to be effectively equivalent, but bear in mind the above use of rectangles. 

Measurement systems 

Millipoints 

Many of the printer driver SWis deal with an internal measurement system, using 
millipoints . This is lf 10oo of a point, or If72000 of an inch. This system is an 
abstraction from the physical characteristics of the printer. Printed text and 
graphics can be manipulated by its size, rather than in terms of numbers of print 
pixels, which will vary from printer to printer. 

OS units 

OS units are the coordinate system normally used by the VDU drivers. In this 
context , an OS unit is defined as If lBO of an inch, so each OS unit is 2; 5 of a point, 
or 400 millipoints. 

It is in this coordinate system that all plotting commands are interpreted. When a 
rectangle is declared, it is given a size in OS units. This is treated like a graphics 
window, with output outside it being clipped, and so on. 

Transform matrix 

Like the Draw module, the printer driver uses a transform matrix to convert OS 
units to the scale, rotation and translation required on paper. With a matrix with no 
scaling transformation, a line of 180 OS units (ie one inch) will appear as an 
approximation of an inch long line on all printers. Naturally, it depends on the 
resolution of the printer as to how close to this it gets. If the matrix scaled x andy 
up by two, then the line would be two inches long. 

3-557 



Printing a document from an application 

Printing a document from an application 
I 

Overview of printing 

3-558 

This section describes how to print from an application . 

Initiating printing under the Wimp 

If your application is running under the Wimp, it must initiate printing using the 
Wimp message protocol described in the section entitled The Printer protocol on 
page 3-259. 

Get information on the printer you're going to use 

Your application should not make any assumptions about the printer that it is 
going to use; RISC OS supports many types of printers, and your users could be 
using any of them. Similarly, you shouldn't make assumptions about the printer 
driver you'll be using. 

Instead you should use the SWI PDriver_Info (see page 3-602) to find out any 
information you need to know about the printer and printer driver that you 're 
using. You should do so each time you start printing, rather than when your 
application is loaded. This is because the user may change either the way in which 
they are using a printer or the printer that they are using during the time your 
application is printing. The information this call returns includes: 

• the type of printer driver in use 

• the version number of that printer driver 

• the x andy resolution of the printer in use 

• the name of the printer in use 

• the halftone resolution of the printer (if any) . 

It also returns a features word giving a bit mask showing: 

• the printer driver's colour and shading capabilities 

• the printer driver's plotting capabilities, such as its ability to handle filled 
shapes, thick lines, overwriting and transformed sprites 

• the printer driver's support for optional features such as screen dumps, 
arbitrary transformations, insertion of illustrations, and font declaration and 
handling. 

You may wish to- or indeed have to- change the behaviour of your application 
based on this information. Note that many colour limitations you might be worried 
about can be overcome by the printer drivers' own halftoning. 



Printer Drivers 

There are two other informational SW!s that you may find useful: 

• PDriver_CheckFeatures (see page 3-608) provides a quick way of checking if 
specific features are available by comparing a bit mask of features you desire 
to be present against the printer driver's own features word. 

• PDriver_PageSize (page 3-609) returns the size of the paper in use and its 
printable area. 

Open the printer: file for output 

To start a print job, you should first open 'printer: ' as an output file . This device 
independent name is used so that the Printer application can control the actual 
destination of printed output using the OS_Byte 5 call (for details of this call , see 
page 1-508 ). 

You may- if you wish- open any other valid path name as a file to use as a printer 
output. The file created may subsequently be dumped to the printer. This 
technique could be used for background printing, for instance. 

Start a new print job 

The next stage of printing is to start a new print job by passing the file handle of 
the output file you just opened (see above) to PDriver_Select)ob (see page 3-61 3) . 

This call suspends the current print job, if there is one, and sets up a new job that 
uses the file handle that you passed for its output. 

Declare the fonts your document uses 

You should then declare any fonts that your document uses, assuming the printer 
driver you're using supports this feature. (You can find this out using PDriver_Info; 
see the section above entitled Get information on the printer you're going to use) . Certain 
printer drivers need this information before printing begins; for example, the 
PostScript driver needs it to generate more efficient output, to perform font 
downloading, and to conform with structuring rules for PostScript documents. 

To declare the fonts, you should call PDriver_DeclareFont (see page 3-638) for each 
distinct font that your document uses. The definition of what is a 'distinct font' is 
strict , and is given in the documentation of this SWI. Having declared each font, 
you must make one further call of this SWI , passing special values to indicate the 
end of the list of fonts . Even if your document does not use any fonts you should 
still make this 'end of list' call; the printer driver then knows that your application 
is aware of this call, and uses no fonts . 

3-559 



Overview of printing 

3-560 

Specify the rectangles to be printed on a page 

You're now ready to print a page. The first step is to specify as rectangles those 
area(s) of your document that you wish to have printed on the page. 

You must call PDriver_GiveRectangle (see page 3-623) for each rectangle, 
specifying the location and size of the rectangle within the document. an lD for the 
rectangle (allocated by you). a transformation to apply to it before printing. and its 
location and background colour on the printed page. 

Typically you will just specify a single rectangle consisting of a whole page of your 
document. An example of the use of multiple rectangles would be for printing 
'thumbnails' (ie printing multiple pages of your document on a single page). 

Print the rectangles specified by the printer driver 

To actually start printing you call PDriver_DrawPage (see page 3-626) . This returns 
the first rectangle for your application to plot. This may be all of a rectangle you 
specified for printing, or it may only be a strip of that rectangle. You should plot the 
rectangle using calls that normally output to the screen; the printer driver 
intercepts these calls. and converts them to printed output. For general 
information see the section entitled Trapping of output calls on page 3-563. and the 
section entitled Guidelines on output ca lls to use on page 3-564. For a more detailed 
description of how the printer drivers handle each output call. see the section 
entitled The output calls in detail on page 3-565. 

Having plotted the first rectangle. you shou ld find any other rectangles to plot by 
repeatedly calling PDriver_GetRectangle (see page 3-628). plotting each rectangle 
as it is returned . Eventually the call will return a special value indicating that there 
are no more rectangles to print. 

You must not make any assumptions about the returned rectangles. The printer 
driver is free to request any rectangle from the area(s) that you specified be 
printed; it may do so in any order it pleases. as many times as it pleases. A dot 
matrix driver. for instance. may get the output a strip at a time to conserve 
workspace. and may make multiple passes over a strip (particularly if it uses a 
multi-coloured ribbon); whereas a PostScript driver can process an entire page in 
one go. 

Similarities with the Window Manager 

You may have noticed that this procedure is very similar to the process used by the 
Wimp to redraw windows: Wimp_RedrawWindow initiates the redraw. returning the 
first rectangle to draw. and Wimp_GetRectangle returns all subsequent windows to 
redraw. You should find that with care you can share a lot or all of the code to 
redraw windows and to print. 



Printer Drivers 

Draw any other pages 

For each page, you must repeat the procedure in the above two sections (Specify the 
rectangles to be printed on a page, and Print the rectangles specified by the printer driver) . 

End the print job 

To end the print job, you must call PDriverEndJob (see page 3-617). 

Close the output file 

Finally, you must close the output file you've been using (typically 'printer:' ). 

Error handling whilst printing 

If you get an error from any printing SWI or from any other call whilst printing 
pages, you must do one of the following: 

• Correct the cause of the error and continue 

• Immediately call PDriver_AbortJob to end the current job before any error 
message or other output occurs. 

Because the printer driver intercepts output calls this may itself cause an error; 
thus you may get an infinite loop where an error causes an error, which causes 
an error, which ... 

This implies that all calls inside the main print loop must be error-returning SWis 
(ie have their 'X' bit set; see the chapter entitled An introduction to SWis on 
page 1-23, and the chapter entitled Generating and handling errors on page 1-41 ). 

There are also changes made to error handling within printing to ensure that 
Escape conditions and errors are not ignored for an undue length of time; see the 
section entitled Error handling changes on page 3-586. 

Multitasking whilst printing 

Multitasking (ie calling Wimp_Poll) whilst printing has an obvious advantage: 

• You can use other applications whilst printing takes place. 

However, there are problems associated with it: 

• Multitasking is incompatible with the queueing mechanism used by the 
Printers application. If you call Wimp_Poll whilst printing, the Printers 
application will assume that you have finished; if there is another job in the 
queue it will continue with that, which will obviously cause an immediate 
error. Future versions of RISC OS may address this problem. 

3-561 



Overview of printing 

• It is difficult to arrange your printing such that you call Wimp_Poll sufficiently 
often to confer a useful degree of multitasking on the rest of the system . since 
you cannot predict for all classes of printer the size and complexity of 
rectangles that you will be asked to print. 

To do so properly, you need to use a timer. 

• You must select the previous print job before polling the Wimp, and reselect 
your own job on return. 

In practice these problems are likely to outweigh any advantages conferred by 
multitasking. If you have any doubts as to whether or not you should multitask. we 
recommend that you don't. 

Code skeleton 

3-562 

This example code skeleton may help you to understand the above: 

Use Printers message protocol if running under the Wimp 

PDriver_ Info 
REM check what features are available (eg PDriver_DeclareFont) 

OPEN printer : 

PDriver_ SelectJob 

IF driver supports PDriver_ DeclareFont THEN 
WHILE fonts to be declared 

PDriver_ DeclareFont font 
ENDWHILE 
PDriver_ DeclareFont end of font list 

END IF 

FOR each page to print 
REPEAT 

END FOR 

PDriver_ GiveRectangle 
UNTIL all rectangles declared 
REM typically only one rectangle given, specifying whole page 

PDriver_ DrawPage 
WHILE more rectangles to print 

plot returned rectangle using supported output calls 
PDriver_ GetRectangle 

ENDWHILE 

PDriver_EndJob 

CLOSE printer : 



Printer Drivers 

Other calls for controlling a print job 

PDriver_Current)ob (page 3-615) will tell you the file handle for the currently active 
print job. 

PDriver_Enumerate)obs (page 3-631) allows you to scan through all the print jobs 
that the printer driver currently knows about. 

PDriver_Cancel)ob (page 3-629) will cancel a job. It is normally followed by the job 
being aborted. It is not intended to be used by the printing application, but by 
another task that allows cancellations of print jobs. It would use 
PDriver_Enumerate)obs to find out which jobs exist and then cancel what it wishes 
to. The application that owns the cancelled job would subsequently find that it had 
been cancelled and would then abort the job. 

PDriver_Reset (page 3-62 I) will abort all print jobs known to the printer drivers. 
Normally, you should never have to use this command. It may be useful during 
development of an application as an emergency recovery measure. 

Trapping of output calls 

Software vectors 

When printing occurs, the printer driver intercepts software vectors through which 
pass calls that may output to the screen. These are: 

e ByteV 

• ColourV 

• DrawV 

• SpriteV 

• WrchV. 

It treats the intercepted calls in different ways: 

It appropriately processes the call itself; typically this produces printed output, 
or alters the printer driver's own record of the graphic state for the current print 
job. 

2 It faults the call as one that is inappropriate to call in the context of a print job. 

3 It ignores the call as one that is irrelevant to the print job, and has no wider 
meaning to the rest of RISC OS. 

4 It passes the call on to RISC OS, as it is one that is relevant to other parts of 
the system. 

A few calls are both processed by the printer driver and passed on to RISC OS. 

3-563 



Guidelines on output calls to use 

Font manager SWis 

Furthermore, when printing starts the printer driver issues a service call which 
alters the font manager's SWI handling: 

• It processes certain SWis itself. as normal. 

• It passes certain SWis to the printer driver using an internal mechanism. The 
printer driver may then : 

I process the call 

2 ignore the call . 

The font manager does not process such SWis itself. 

Guidelines on output calls to use 

3-564 

This section outlines which calls you should use for output to the printer drivers. 

General advice 

Only use overwriting; do not use logical operations such as AND, OR, EOR and 
NOT. as many types of printer (eg PostScript printers, plotters) cannot support 
them. Avoid using ECFs. 

Setting colours 

You should set colours for all printing using appropriate calls to the ColourTrans 
module, rather than by other calls (such as Font_SetFontColours) . The ColourTrans 
calls are independent of the current screen mode and palette, and ensure that the 
colours rendered by the printer are the best approximations it is able to produce. 

All other calls that set colours take the colour to be printed, choose the closest 
colour available from the current screen palette, and then ask the printer to render 
that colour. So the printer produces its best approximation to the screen palette's 
best approximation . Using these other calls : 

• makes the printer driver output dependent on the current screen mode and 
palette 

• artificially limits the printer driver to the number of colours displayed on the 
screen, which can be particularly embarrassing if (say) a user were to try to 
print in colour whilst in a 2 colour mode. 

We therefore recommend that you do not set colours with these other calls . 

Graphic object output 

You should use calls to the Draw module to print object-oriented graphics such as 
rectangles. This is preferable to using VDU and PLOT sequences. 



Printer Drivers 

Painting fonts 

You should paint fonts using font manager SWis rather than VDU sequences. Set 
colours using ColourTrans calls, or control ( 19) sequences within the string to be 
painted- as these in fact use ColourTrans. Do not set colours using font manager 
calls , or other (non- 19) control sequences. 

Sprite output 

Use OS_SpriteOp calls to output sprites. You should set colours for the sprite 
using a translation table, set up using ColourTrans calls during the print job. 

Character output 

You should use the OS_ Write ... SWis, OS_NewLine and OS_PrettyPrint for 
character output. Do not use OS_PrintChar. 

You should avoid OS_Byte calls and VDU sequences wherever possible- in 
particular where an alternative method is available and recommended . For 
example, you should use font SWis for font painting rather than the VDU 
sequences that do so. 

The output calls in detail 

ByteV 

The following sections contain tables giving more detail on how the printer driver 
treats calls passing through the software vectors it claims, and how it interacts with 
the font manager. Some of the tables are followed by extra information on the 
more complex calls; unless otherwise stated, you should not take th is to mean that 
such calls are recommended over and above all other supported ones. 

The printer drivers pass on the vast majority of calls made through ByteV; they are 
interpreted as usual by the ROM's OS_Byte routine. The printer drivers claim and 
process only the following calls : 

Call processed Meaning Notes 

OS_Byte 135 
Read character at text cursor Use only to read 'screen' mode; 

and screen mode returned character may be invalid 

OS_Byte 163 
Read/write general graphics Use only to set dot-dash length (ie 

information R1 = 242, R2 :5 64) 

OS_Byte 218 Read/write bytes in VDU queue No restrictions 

3-565 



ColourV 

ColourV 

3-566 

The printer driver intercepts calls to the ColourTrans module, via the ColourV 
vector. Most of them are passed straight on to the ColourTrans module, but some 
are processed by the printer driver: 

ColourTrans Meaning Printer driver's treatment 
SWI 

Colour Number To Translate a colour number to a 
Passed on 

GCOL GCOL 

Convert CIE To 
Convert industry standard CIE 

RGB 
colours to RISC OS RGB Passed on 

colours 

Convert CMYK To Convert from the CMYK model 
Passed on 

RGB to RISC OS RGB colours 

Convert Device Convert a device colour to a 
Passed on 

Colour standard colour 

Convert Device Convert a device palette to 
Passed on 

Palette standard colours 

Convert HSV To 
Convert hue, saturation and 

RGB 
value into corresponding Passed on 
RISC OS RGB colours 

Convert RGB To 
Convert RISC OS RGB colours 

CIE 
to industry standard CIE Passed on 

colours 

Convert RGB To Convert RISC OS RGB colours 
Passed on 

CMYK into the CMYK model 

Convert RGB To 
Convert RISC OS RGB colours 

HSV 
into corresponding hue, Passed on 

saturation and value 

GCOL To Colour Translate a GCOL to a colour 
Passed on 

Number number 

Generate Table 
Set up a translation table in a Processed if R2 = -1 (ie table is for 

buffer current mode); passed on otherwise 

Inform ColourTrans that the 
Invalidate Cache palette has been changed by Passed on 

some other means 

MiscOp For internal use only Passed on 



Printer Drivers 

ColourTrans 
Meaning Printer driver's treatment 

SWI 

Select GCOL Set up a list of GCOLs in a 
Passed on 

Table buffer 

Select Table 
Set up a translation table in a Processed if R2 = -1 (ie table is for 

buffer current mode) ; passed on otherwise 

Set Calibration 
Set the calibration table for the 

Passed on 
screen 

Change the foreground or 
Set Colour background colour to a GCOL Passed on 

number 

Set the best range of anti-alias 
Set Font Colours colours to match a pair of Processed 

palette entries 

Set GCOL 
Set the closest GCOL for a 

Processed 
palette entry 

Set Opp GCOL 
Set the furthest GCOL for a 

Processed 
palette entry 

Set Opp Text 
Change the text foreground or 

Colour 
background colour to a GCOL Passed on 

number 

Change the text foreground or 
Set Text Colour background colour to a GCOL Passed on 

number 

Read Calibration 
Read the calibration table for 

Passed on 
the screen 

Read Palette 
Read either the screen's 

Passed on 
palette, or a sprite's palette 

Return Colour Get the closest colour for a 
Processed 

Number palette entry 

Return Colour Get the closest colour for a Processed if R1 = -1 (ie colour is for 
Number For Mode palette entry current mode) ; passed on otherwise 

Return Font 
Find the best range of anti-alias 

Colours 
colours to match a pair of Passed on 

palette entries 

Return GCOL 
Get the closest GCOL for a 

Passed on 
palette entry 

3-567 



ColourV 

3-568 

ColourTrans Meaning Printer driver's treatment 
SWI 

Return GCOL For Get the closest GCOL for a 
Passed on 

Mode palette entry 

Return Opp Colour Get the furthest colour for a 
Processed 

Number palette entry 

Return Opp Colour Get the furthest colour for a Processed if R1 = -1 (ie colour is for 
Number For Mode palette entry current mode) ; passed on otherwise 

Return Opp GCOL 
Get the furthest GCOL for a 

Passed on 
palette entry 

Return Opp GCOL Get the furthest GCOL for a 
Passed on 

For Mode palette entry 

Write Calibration Save the current calibration to a 
Passed on 

To File file 

Write Loadings To 
Write a • Command to a file that 
will set the Colour Trans error Passed on 

File 
loadings 

Write Palette 
Write to either the screen's 

Passed on 
palette, or to a sprite's palette 

ColourTrans_ReturnColourNumber 
ColourTrans_ReturnColourNumberForMode with R1 = -1 

Both these calls are treated in the same way by the printer drivers. They return a 
code value, in the range 0- 255 , that identifies the specified RGB combination as 
accurately as possible to the printer driver. How this code value is determined may 
vary from printer driver to printer driver, and indeed even from print job to print job 
for the same printer driver. An application should therefore not make any 
assumptions about what these code values mean . 

Most printer drivers implement this by pre-allocating some range of code values to 
evenly spaced RGB combinations , then adopting the following approach: 

• If the RGB combination is already known about. return the corresponding code 
value. 

• If the RGB combination is not already known about and some code values are 
st i ll free , allocate one of the unused code values to the new RGB combination 
and return thpt code value. 

• If the RGB combination is not already known about and all code values have 
been allocated, return the code number whose RGB combination is as close as 
possible to the desired RGB combination. 



Printer Drivers 

The pre-allocation of evenly spaced RGB combinations will ensure that even the 
third case does not have really terrible results . 

ColourTrans_ReturnOppColourNumber 
ColourTrans_ReturnOppColourNumberForMode with R1 = -1 

These calls behave exactly as though ColourTrans_ReturnColourNumber had been 
called with RO containing the furthest possible RGB combination from the one 
actually specified. 

This results in a subtle difference between the 'opposite' colours returned by the 
printer driver, and those normally returned by the ColourTrans module. The printer 
driver returns the colour closest to the RGB value most different to that given, 
whereas ColourTrans returns the colour furthest from the given RGB. This 
difference will only be obvious if your printer cannot print a very wide range of 
colours. 

ColourTrans_SelectTable with R2 = -1 

Each RGB combination in the source palette, or implied by it in the case of 256 
colour modes, is converted into a colour number as though by 
ColourTrans_ReturnColourNumber (see above). The resulting values are placed in 
the table. 

ColourTrans_SetFontColours 

This call sets the printer driver's version of the font colours, to as accurate a 
representation of the desired RGB values as the printer can manage. Along with 
control ( 19) sequences within the string to be painted- which themselves use this 
call- it is the recommended way to set font colours. 

As with other ColourTrans calls, the returned values are obtained by calling the 
ColourTrans module; in this case before the printer driver's own colours are 
actually set. just as with the above calls, you should not subsequently use these 
values to set printing colours. 

3-569 



ColourV 

3-570 

ColourTrans_ SetGCOL 

This call sets the printer driver's version of the foreground or background colour, as 
appropriate. It is the recommended way to do so. 

The gcol_action passed in R4 is interpreted as follows: 

• If gcol_action MOD 8 :t: 0, subsequent plots and sprite plots will not do anything. 

• If gcol_action = 0, the RGB value in RO is remembered by the printer driver and 
used for subsequent plots . Plotting is done by overwriting with the closest 
approximation to this RGB value that the printer can render. Subsequent sprite 
plotting will be done without using the sprite's mask. 

• If gcol_action = 8, subsequent plots will be treated the same as R4 = 0 above, 
except that sprite plots will be done using the sprite's mask, if any. 

• If gcol_action > 8, and gcol_action MOD 8 = 0, an unspecified solid colour will be 
used. 

This call never uses ECFs; the flag which sets whether or not to use ECFs (bit 8 of 
R3) is ignored. 

After th is has been done, the call is effectively converted into a call to 
ColourTrans_ReturnGCOL, and is passed down to the ColourTrans module in order 
to set the information returned . Note that the returned GCOL is therefore the 
closest GCOL available from the current screen palette, which may considerably 
differ from the passed RGB value. You should therefore not 'subsequently use the 
returned value to set colours for printing. 

ColourTrans_ SetOppGCOL 

This behaves like ColourTrans_SetGCOL above, except that the RGB value the 
printer driver remembers is the furthest possible RGB value from the one actually 
specified in RO, and the returned values are given by converting this call into a call 
to ColourTrans_ReturnOppGCOL. Again, you should not subsequently use the 
returned value to set printing colours, as they are dependent on the current screen 
palette. 

ColourTrans_ SetTextColour 
ColourTrans_SelectOppTextColour 

You should not use these calls to set text colours when printing, as the printer 
drivers ignore text colours. You should instead use the font manager to print 
coloured text ; if necessary, you can use the outline System font introduced in 
RISC OS 3. 



DrawV 

Printer Drivers 

Printer drivers intercept Draw SW!s via the DrawV vector. Those calls that normally 
plot to the screen are intercepted and processed by the printer driver to generate 
printer output. There are a number of restrictions on these calls, mainly due to the 
limitations of PostScript. Fortunately most of the operations that are disallowed 
are not particularly useful. 

All other calls to DrawV are passed on to the Draw module and treated in the same 
way as usual. 

Floating point calls 

The floating point Draw module calls are not intercepted at present. If and when 
the Draw module is upgraded to deal with them, printer drivers will be similarly 
upgraded. 

Treatment of Draw SWis 

The table below summarises the printer driver's treatment of each integer Draw 
SWI. It is followed by more detailed notes of the restriction on each of the calls 
processed by the printer driver: 

DrawSWI Meaning Printer driver's treatment 

Fill 
Process and output a path, filling Processed, but with restrictions; see 

the interior portion below for notes 

Flatten Path 
Convert an input path into a 

Passed on 
flattened output path 

Faulted if R? = 1 or 2; processed 
Process Path Multi-purpose main Draw SWI otherwise, but with restrictions ; see 

below for notes 

Stroke Process and output a path 
Processed, but with restrictions; see 

below for notes 

Stroke Path 
Process a path, writing output to 

Passed on 
a path 

Transform Path Convert an input path Passed on 

3-571 



DrawV 

~-f\72 

Draw _ProcessPath 

This call is faulted if R7 = I (fill path normally) or R7 = 2 (fill path subpath by 
subpath) on entry. Use the appropriate one of Draw_Fill or Draw_Stroke if you want 
to produce printed output. If the operation you're trying to do is too complicated 
for them, it almost certainly cannot be handled by some printer drivers, such as the 
PostScript one. 

If you are using this call to calculate bounding boxes. using the R7 = &80000000+ 
address option, then the parameters such as the matrix, flatness and line thickness 
must exactly correspond with those in the intended call. If they differ. then 
rounding errors, flattening errors and the like may cause clipping. 

All other values of R7 correspond to calls that don't do any plotting and are dealt 
with in the normal way by the Draw module. If you're trying to do something 
complicated and you've got enough workspace and RMA, a possible useful trick is 
to use Draw_ProcessPath with R7 pointing to an output buffer, followed by 
Draw_Fill on the result. 

Draw_Fill 
Printer drivers can deal with most common calls to this SWI. The restrictions are: 

• They cannot deal with fill styles that invoke the positive or negative winding 
number rules- ie those with bit 0 set. 

• They cannot deal with a fill style which asks for non-boundary exterior pixels to 
be plotted (ie bit 2 is set). except for the trivial case in which all of bits 2- 5 are 
set (ie all pixels in the plane are to be plotted) . 

• They cannot deal with the following values for bits 5-2: 

00 I 0- plot exterior boundary pixels only. 
0 I 00- plot interior boundary pixels only. 
I 0 I 0- plot exterior boundary and interior non-boundary pixels only. 

• An application should not rely on there being any difference between what is 
printed for the following three values of bits 5- 2: 

1000- plot interior non-boundary pixels only. 
I I 00- plot all interior pixels. 
1110- plot all interior pixels and exterior boundary pixels . 

A printer driver will generally try its best to distinguish these, but it may not be 
possible. 



Printer Drivers 

Draw_ Stroke 
Again , most common calls to this SWI can be dealt with . The restrictions on the 
parameters depend on whether the specified thickness is zero or not. 

If the specified thickness is zero. the restrictions are: 

• Printer drivers cannot deal with a fill style with bits 3- 2 equal to 0 I -one that 
asks for pixels lying off the stroke to be plotted and those that lie on the stroke 
not to be. 

• Most printer drivers will not pay any attention to bit 31 of the fill style, which 
distinguishes plotting the stroke subpath by subpath from plotting it all at 
once. 

If the specified thickness is non-zero, all the restrictions mentioned above for 
Draw_Fill also apply to this call . Further restrictions are: 

• Printer drivers cannot deal with bits 5-2 being 0 II 0- a call asking for just the 
boundary pixels of the resulting filled path to be plotted . 

• Most printer drivers will not pay any attention to bit 31 of the fill style. which 
distinguishes plotting the stroke subpath by subpath from plotting it all at 
once. 

Font manager SWis 

The printer driver interacts with the font manager via a service call and the SWI 
PDriver_FontSWI in such a way that when it is active, calls to some SWis are passed 
to the printer driver, which may then process the SWI or ignore it. The table below 
shows how each SWI is handled. Note that some of the SWis listed as being 
processed by the font manager may cause a Lose Font operation, which is passed 
to the printer driver: 

FontSWI Meaning Processing 

Cache Addr 
Get the version number, font 

Processed by font manager as usual 
cache size and amount used 

Caret Define text cursor 
Passed to printer driver, 

but ignored by it 

Char BBox 
Get the bounding box of a 

Processed by font manager as usual 
character 

Convert to OS 
Convert internal coordinates to 

Processed by font manager as usual 
OS coordinates 

Convert to Points 
Convert OS coordinates to 

Processed by font manager as usual 
internal coordinates 

3-573 



Font manager SW/s 

FontSWI Meaning Processing 

Current Font 
Get current font handle and 

Processed by font manager as usual 
colours 

Current RGB 
Read the settings of colours 

Processed by font manager as usual 
after calling Font_Paint 

Decode Menu 
Decode a selection made from a 

Processed by font manager as usual 
font menu 

Find Caret 
Find where the caret is in the 

Processed by font manager as usual 
string 

Find Caret J 
Find where the caret is in a 

Processed by font manager as usual 
justified string 

Find Font Get the handle for a font 
Passed to printer driver and 

processed by it 

Future Font 
Check font characteristics after 

Processed by font manager as usual 
Font_StringWidth 

Read the settings of colours 
Future RGB after calling various Font_ ... Processed by font manager as usual 

SWis 

Scan for fonts, returning their 
List Fonts names one at a time; or build a Processed by font manager as usual 

menu of fonts 

Lose Font Finish use of a font 
Passed to printer driver and 

processed by it 

Make Bitmap Make a font bitmap file Processed by font manager as usual 

Paint Output a string 
Passed to printer driver and 

processed by it 

Read Colour Table Read the anti-alias colour table Processed by font manager as usual 

Read Defn Read details about a font Processed by font manager as usual 

Read Encoding 
Return the filename of the 

encoding file used for a given Processed by font manager as usual 
Filename 

font handle 

Read Font Max Read the FontMax values Processed by font manager as usual 

Read Font Metrics 
Reads the metrics information 

Processed by font manager as usual 
held in a font's lntMetrics file 

Read Font Prefix 
Find the directory prefix for a 

Processed by font manager as usual 
given font handle 

3-574 



Printer Drivers 

Font SWI Meaning Processing 

Read Info Get the font bounding box Processed by font manager as usual 

Read Scale Factor 
Read the internal to OS 

Processed by font manager as usual 
conversion factor 

Read Thresholds 
Read the list of threshold values 

Processed by font manager as usual 
for printing 

Scan String Return information on a string Processed by font manager as usual 

Set Colour Table 
For internal use by the Passed to printer driver, 

ColourTrans module only but ignored by it 

Set Font 
Select the font to be Passed to printer driver and 
subsequently used processed by it 

Passed to printer driver and 

Set Font Colours 
Change the current colours and processed by it; however, you should 

(optionally) the current font use ColourTrans_ 
SetFontColours to set font colours 

Set Font Max Set the FontMax values Processed by font manager as usual 

Set Palette Define the anti-alias palette 
Passed to printer driver, 

but ignored by it 

Set Scale Factor 
Set the internal to OS 

Processed by font manager as usual 
conversion factor 

Set Thresholds 
Define the list of threshold 

Processed by font manager as usual 
values for printing 

String BBox Get the bounding box of a string Processed by font manager as usual 

String Width 
Calculate how wide a string 

Processed by font manager as usual 
would be 

Switch Output To Switch output to a buffer, 
Processed by font manager as usual 

Buffer creating a Draw file structure 

UnCache File 
Delete uncached font 

Processed by font manager as usual 
information, or recache it 

Font_ SetFontColours 

The use of Font_SetFontColours is not recommended, as it results in the setting of 
colours that depend on the current screen palette. Instead, set font colours to 
absolute RGB values using ColourTrans_SetFontColours or control ( 19) sequences 
within the string to be painted. Similarly, the use of colour-changing control 
sequences in strings passed to Font_Paint is not recommended . 

3-575 



SpriteV 

SpriteV 

3-576 

Font_ Paint 

Scale 

How exactly this call operates varies quite markedly between printer drivers. For 
instance. most dot matrix printer drivers will probably use the font manager to 
write into the sprite they are using to hold the current strip of printed output. while 
the PostScript printer driver uses the PostScript prologue to define a translation 
from font manager font names to printer fonts . 

Printer drivers intercept OS_SpriteOp via the SpriteV vector. Most calls are simply 
passed through to the operating system or the SpriteExtend module. The ones that 
normally plot to the screen are generally intercepted and processed by the printer 
driver to generate printer output. 

If a sprite is printed unsealed. its size on the printed output is the same as its size 
would be if it were plotted to the screen using the screen mode in effect at the start 
of the print job. If it is printed scaled. the scaling factors are applied to this size. It 
is done this way in the expectation that the application is scaling the sprite for 
what it believes is the current screen mode. 

Colours 
The colours used to plot sprite pixels are determined as follows: 

• If the call does not allow a pixel translation table. or if no translation table is 
supplied. the current screen palette is consulted to find out what RGB 
combination the sprite pixel 's value corresponds to. The printer driver then 
does its best to produce that RGB combination . 

• If a translation table is supplied with the call. the printer driver assumes that 
the table contains code values allocated by ColourTrans_SelectTable with 
R2 =-I. 

It can therefore look up precisely which RGB combination is supposed to 
correspond to each sprite pixel value. Because of the variety of ways in which 
printer drivers can allocate these values. the translation table should always 
have been set up in the current print job and using these calls . 

The latter method is strongly recommended over the former. As usual when 
printing, if you don't use ColourTrans calls. you will get unpredictable results that 
are dependent on the current screen palette. 



Printer Drivers 

Treatment of SpriteOp reason codes 

The table below shows the printer driver's treatment of each SpriteOp reason code: 

Reason 
Meaning Printer driver's treatment 

code 

2 Screen save Faulted: unknown what 'screen' may be 

3 Screen load Faulted: unknown what 'screen' may be 

8 Read area control block Passed on 

9 Initialise sprite area Passed on 

10 Load sprite file Passed on 

11 Merge sprite file Passed on 

12 Save sprite file Passed on 

13 Return name Passed on 

14 Get sprite Faulted: unknown what 'screen' may be 

15 Create sprite Passed on 

16 Get sprite from user coordinates Faulted: unknown what 'screen' may be 

Passed on for user sprite (ie when & 100 

24 Select sprite 
or &200 added to reason code) ; faulted for 
system sprite (ie when reason code is 24) ; 

see note below 

25 Delete sprite Passed on 

26 Rename sprite Passed on 

27 Copy sprite Passed on 

28 Put sprite Processed 

29 Create mask Passed on 

30 Remove mask Passed on 

31 Insert row Passed on 

32 Delete row Passed on 

33 Flip about x axis Passed on 

34 Put sprite at user coordinates Processed 

35 Append sprite Passed on 

3-577 



SpriteV 

Reason 
Meaning Printer driver's treatment 

code 

36 Set pointer shape Passed on 

37 Create/remove palette Passed on 

40 Read sprite information Passed on 

41 Read pixel colour Passed on 

42 Write pixel colour Passed on 

43 Read pixel mask Passed on 

44 Write pixel mask Passed on 

45 Insert column Passed on 

46 Delete column Passed on 

47 Flip about y axis Passed on 

48 Plot sprite mask Processed 

49 Plot mask at user coordinates Processed 

50 Plot mask scaled Processed 

Faulted; you should instead pass the 
51 Paint character scaled character to WrchV using OS_WriteC (or a 

derivative) 

52 Put sprite scaled Processed 

Processed, but normally treated as reason 
53 Put sprite grey scaled code 52, because grey-level anti-aliasing can 

be unpredictable and is hard to support 

54 Remove lefthand wastage Passed on 

55 Plot mask transformed Processed 

56 Put sprite transformed Processed 

57 Insert/delete rows Passed on 

58 Insert/delete columns Passed on 

60 Switch output to sprite 
Passed on ; applications can still create 

sprites whilst printing 

61 Switch output to mask 
Passed on; applications can still create 

masks whilst printing 

62 Read save area size Passed on 

3-578 



WrchV 

Printer Drivers 

OS_ SpriteOp 24 

A call to SpriteV with reason code 24 is passed through to the operating system if 
it is for a user sprite (ie when & I 00 or &200 is added to the reason code), as the call 
is simply asking the operating system for the address of the sprite concerned. If the 
call is for a system sprite (ie nothing has been added to the reason code). it is 
faulted, because it is asking for a sprite to be selected for use with the VDU 
25 ,232-239 sprite plotting sequences, which are themselves not supported by 
printer drivers. 

The printer driver queues all characters sent through WrchV in the same way as the 
VDU drivers do. processing complete character sequences as they appear. 

The printer driver will not pick up any data currently in the VDU queue, and may 
send sequences of its own to the VDU drivers. Consequently, you should not select 
a print job if there is an incomplete sequence in the VDU queue. Also, the output 
stream specification set by OS_Byte 3 should be in its standard state- as though 
set by OS_Byte 3,0. Finally, the printing application should not use any output calls 
whilst partway through sending a VDU sequence. as the two may clash. 

Internal graphics state of printer driver 

When plotting starts in a rectangle supplied by a printer driver. the printer driver 
behaves as though the VDU system were in the following state: 

• VDU drivers are enabled. 

• VDU 5 state is set up. 

• All graphics cursor positions and the graphics origin have been set to (0,0) in 
the user's rectangle coordinate system. 

• A VDU 5 character size and spacing of 16 OS units by.32 OS units have been set 
in the user's rectangle coordinate system. 

• The graphics clipping region has been set to bound the actual area that is to 
be plotted, with a possible slight difference caused by rounding errors when 
converting the coordinates to OS units. However, an application cannot read 
what this area is; the printer drivers do not and cannot intercept 
OS_ReadVduVariables or OS_ReadModeVariable. 

• The area in which plotting will actually take place has been cleared to the 
background colour supplied in the corresponding PDriver_GiveRectangle call. 

3-579 



WrchV 

3-580 

• The cursor movement control bits (ie the ones that would be set by 
VDU 23, 16, ... ) are set to &40- so that cursor movement is normal, except that 
movements beyond the edge of the graphics window in VDU 5 mode do not 
generate special actions. 

• One OS unit has a nominal size on the paper of IfJso inch, depending on the 
transformation supplied with this rectangle. 

• A pixel has a nominal size on the paper of If9o inch square (ie 2 OS units 
square); thus all PLOT line, PLOT point and PLOT outline calls produce lines 
that are approximately If9o inch wide. 

• No text coordinate system is defined. 

This is designed to be as similar as possible to the state set up by the window 
manager when redrawing. 

The printer driver maintains its own state, and calls that it processes alter this 
state rather than that of the screen. If WrchV is called but the printer driver does 
not currently want a rectangle printed, it will keep track of the state- for example, 
the current foreground and background colours- but will not produce any printer 
output. 

Rounding 

Most printer drivers will either not do the rounding to pixel centres normally done 
by the VDU drivers, or will round to different pixel centres- probably the centres of 
their device pixels. 

Treatment of character sequences 
The table below shows the number of extra bytes needed to complete each 
character sequence, and whether the printer driver claims and processes the 
sequence, claims and faults it, claims and ignores it, or passes it on to the VDU 
drivers. It gives further information for most sequences, or a reference to a longer 
note following the table: 

Character Extra 
Meaning Printer driver's treatment 

sequence bytes 

0 0 Do nothing Ignored 

1 1 
Send character to 

Faulted: would probably disrupt printing 
printer only 

2 0 Enable printer Faulted: would probably disrupt printing 

3 0 Disable printer Ignored: would probably disrupt printing 



Printer Drivers 

Character Extra 
Meaning Printer driver's treatment 

sequence bytes 

4 0 Write text at text cursor 
Faulted: text printing always uses graphics 

cursor 

5 0 
Write text at graphics Ignored: text printing always uses graphics 

cursor cursor anyway 

6 0 
Enable processing of 

Processed: reverses effect of character 21 
character sequences 

7 0 Generate bell sound Passed on 

8 0 
Move cursor back one 

Processed: always moves graphics cursor 
character 

9 0 
Move cursor on one 

Processed: always moves graphics cursor 
character 

10 0 
Move cursor down one 

Processed: always moves graphics cursor 
line 

11 0 Move cursor up one line Processed: always moves graphics cursor 

12 0 Clear window Processed: always clears graphics window 

13 0 
Move cursor to start of 

Processed : always moves graphics cursor 
current line 

14 0 Turn on page mode Ignored: meaningless when printing 

15 0 Turn off page mode Ignored: meaningless when printing 

16 0 Clear graphics window Processed 

17 1 Define text colour 
Ignored: text colour is unused in graphics 

printing 

18 2 Define graphics colour Processed: see note below 

19 5 Define logical colour Passed on: affects screen hardware 

20 0 
Restore default logical 

Passed on: affects screen hardware 
colours 

Processed: printer driver parses but does 
21 0 Disable VDU drivers not process subsequent character 

sequences, until it receives character 6 

22 1 Select screen mode 
Faulted: cannot change the 'mode' of a 

printed page 

23,0 8 
Set the interlace or the 

Passed on: affects screen hardware 
cursor appearance 

3-581 



WrchV 

Character Extra 
Meaning Printer driver's treatment 

sequence bytes 

23,1 8 
Control the appearance 

Passed on: affects screen hardware 
of the cursor 

23,2-5 8 
Define ECF pattern and 

Passed on: affects global resources 
colours 

23,6 8 Set dot-dash line style Ignored : use Draw SWis for dotted lines 

23,7 8 
Scroll text window or Faulted: text printing always uses graphics 

screen window 

23,8 8 
Clear a block of the text Faulted : text printing always uses graphics 

window window 

23,9 8 
Set flash time for first 

Passed on: affects screen hardware 
flashing colour 

23,10 8 
Set flash time for 

Passed on : affects screen hardware 
second flashing colour 

23,11 8 Set default patterns Passed on: affects global resources 

23,12-15 8 
Define ECF patterns 

Passed on : affects global resources 
and colours 

23,16 8 
Control movement of Processed: bit 6 of the flags is ignored, and 

cursor treated as if set 

23,1 7,0-1 7 Set tint for text colours 
Ignored : text printing always uses graphics 

colours 

23,1 7,2-3 7 
Set tint for graphics 

Processed 
colours 

23,17,4 7 
Choose colour patterns 

Passed on : affects global resources 
used 

Exchange text 
Ignored: text printing always uses graphics 

23,17,5 7 foreground and 
background colours 

colours 

23,17,6 7 Set ECF origin Passed on : affects global resources 

Set character 
Processed: uses screen pixel size for the 

23,17,7 7 
size/spacing 

screen mode that was in effect when the 
print job was started 

23,18-24 8 Reserved 
Faulted : reserved, so meaning not known 

by printer driver 



Printer Drivers 

Character Extra 
Meaning Printer driver's treatment 

sequence bytes 

Obsolete font calls 
23,25-26 8 provided for Faulted: obsolete 

compatibility 

Obsolete sprite call 
23,27 8 provided for Faulted : obsolete 

compatibility 

23,28-31 8 Reserved 
Faulted: reserved , so meaning not known 

by printer driver 

23,32-255 8 
Redefine printable 

Passed on: affects global resource 
characters 

Processed : window must lie entirely with in 
24 8 Define graphics window rectangle currently being printed, or 

unpredictable results will occur 

25,0-15 4 Plot solid line Processed 

25,1 6-31 4 Plot dotted line 
Processed: plots solid line (use 
Draw_Stroke to get dotted lines) 

25,32-47 4 Plot sol id line Processed 

25,48-63 4 Plot dotted line 
Processed: plots solid line (use 
Draw_Stroke to get dotted lines) 

25,64-71 4 Plot point Processed 

25,72-79 4 Horizontal line fill 
Faulted: cannot be implemented on some 

printers 

25,80-87 4 Triangle fill Processed 

25,88-95 4 Horizontal line fill 
Faulted: cannot be implemented on some 

printers 

25,96-103 4 Rectangle fill Processed 

25,104-111 4 Horizontal line fill 
Faulted: cannot be implemented on some 

printers 

25,112-119 4 Parallelogram fill Processed 

25,120-127 4 Horizontal line fill 
Faulted : cannot be implemented on some 

printers 

25,128-143 4 Flood fill 
Faulted: cannot be implemented on some 

printers 

25,144-151 4 Circle outline Processed 

3-583 



WrchV 

Character Extra 
Meaning Printer driver's treatment 

sequence bytes 

25,152-159 4 Circle fill Processed 

25,160-167 4 Circular arc Processed 

25,168-175 4 Segment Processed 

25,176-183 4 Sector Processed 

25,184 4 Move relative Processed: equivalent to 25,0 

25,185-187 4 
Relative rectangle Faulted: dependent on current picture 

move/copy contents 

25,188 4 Move absolute Processed: equivalent to 25,4 

25,198-191 4 
Absolute rectangle Faulted: dependent on current picture 

move/copy contents 

25,192-199 4 Ellipse outline Processed 

25,200-207 4 Ellipse fill Processed 

25,208-215 4 Font plot Faulted 

25,216-231 4 Reserved 
Faulted: reserved , so meaning not known 

by printer driver 

25,232-239 4 Sprite plot Faulted 

25,240-255 4 Reserved 
Faulted: reserved, so meaning not known 

by printer driver 

26 0 
Restore default Processed: resets graphics window to 

windows maximum size (ie rectangle being printed) 

27 0 Do nothing Ignored 

28 4 Define text window 
Ignored: text printing always uses graphics 

window 

29 4 Define graphics origin Processed 

30 0 Home cursor Processed: always moves graphics cursor 

31 2 Move cursor Processed: always moves graphics cursor 

32-126 0 
Output printable Processed: outputs character in system 

character font (use Font SWis for font printing) 

3-584 



Printer Drivers 

Character Extra Meaning Printer driver's treatment sequence bytes 

127 0 Delete Processed 

128-255 0 
Output printable Processed : outputs character in system 

character font (use Font SWis for font printing) 

VDU 18 and GCOLs 

You should only use the GCOL sequence (VDU 18,gcol_action ,colour) if absolutely 
necessary, and you should be aware of the fact that the printer driver has a 
simplified interpretation of the parameters. as follows: 

• As usual the background colour is affected if colour;::: 128, and the foreground 
colour if colour< 128. 

• The gcol_action is treated in the same way as for ColourTrans_SetGCOL; see 
page 3-570. 

We strongly recommend that applications should use ColourTrans calls to set 
colours, as these will allow the printer to produce as accurate an approximation as 
it can to the desired colour, independently of the screen palette. 

Miscellaneous SWis 

Processor flags 

It should be noted that most of the informational calls associated with the VDU 
drivers, and OS_ReadVduVariables in particular, will produce undefined results 
when a printer driver is active. These results are likely to differ between printer 
drivers. In particular. they will vary according to whether the printer driver plots to 
a sprite internally and if so. how large the sprite concerned is. 

The only informational calls that the application may rely upon are: 

OS_ Word I 0 used to read character and ECF definitions. 
used to read palette definitions. 
used to read palette definitions. 

OS_Word II 
OS_ReadPalette 
OS_Byte 218 when used to read number of bytes in VDU queue. 

Note that processor flags may have different values on exit from some calls when a 
printer driver is active to those that they would otherwise have. 

3-585 



Error handling changes 

Error handling changes 

3-586 

This section describes a couple of somewhat unusual features of the printer 
drivers' error handling that an application author should be aware of. Before 
reading this, you should have read the section entitled Error handling whilst printing 
on page 3-561. 

Escape handling 
Firstly, Escape condition generation and side effects are turned on within various 
calls to the printer driver and restored to their original state afterwards. If the 
application has Escape generation turned off, it is guaranteed that any Escape 
generated within the print job will be acknowledged and turned into an 'Escape' 
error. If the application has Escape generation turned on , most Escapes generated 
within the print job will be acknowledged and turned into 'Escape' errors, but there 
is a small period at the end of the call during which an Escape will not be 
acknowledged. If the application makes a subsequent call of one of the relevant 
types to the printer driver, that subsequent call will catch the Escape. If no such 
subsequent call is made, the application will need to trap the Escape itself. 

Escape generation is turned on permanently for these SWis: 

• PDriver_SelectJob for a new job 

• PDriver_EndJob. 

When the printer driver is intercepting plotting calls (ie there is an active print job, 
and plotting output is directed either to the screen or to a sprite internal to the 
printer driver, and the Wimp is not reporting an error- as defined by 
ServiceCall_WimpReportError) escape generation is also enabled for these calls : 

• PDriver_DrawPage 

• PDriver_GetRectangle 

• OS_WriteC and its derivatives- ie all SWis that call WrchV 

• All ColourTrans SWis- except ColourTrans_ColourNumberToGCOL, 
ColourTrans_GCOLToColourNumber, ColourTrans_InvalidateCache, 
ColourTrans_MiscOp, ColourTrans_SetOppTextColour and 
ColourTrans_SetTextColour. 

• Draw_Fill 

• Draw _Stroke 

• Font_SetFontColours 

• Font_SetPalette 

• Font_Paint 



Printer Drivers 

• OS_SpriteOp with reason codes 28 (put sprite), 34 (put sprite at user 
coordinates). 48 (plot mask), 49 (plot mask at user coordinates). 50 (plot mask 
scaled) 52 (put sprite scaled), 53 (put sprite grey scaled), 55 (plot mask 
transformed). or 56 (put sprite transformed). 

Persistent errors 

Secondly, inside a number of calls, any error that occurs is converted into a 
'persistent error'. The net effect of this is that: 

• The error number is left unchanged. 

• The error message has the string' (print cancelled)' appended to it. If it is so 
long that this would cause it to exceed 255 characters, it is truncated to a 
suitable length and · .. . (print cancelled)' is appended to it. 

• Any subsequent call to any of the routines concerned will immediately return 
the same error. 

The reason for this behaviour is to prevent errors that the application is not 
expecting from being ignored. For example, quite a lot of code assumes incorrectly 
that OS_ WriteC cannot produce an error; generating a persistent error ensures that 
it cannot reasonably get ignored forever. 

Persistent errors are created at all times for these SWis: 

• PDriver_EndJob 

• PDriver_GiveRectangle 

• PDriver_DrawPage 

• PDriver_GetRectangle 

When the printer driver is intercepting plotting calls, the following SWis also 
generate persistent errors: 

• OS_WriteC and its derivatives- ie all SWis that call WrchV 

• All ColourTrans SWis- except ColourTrans_ColourNumberToGCOL, 
ColourTrans_GCOLToColourNumber, ColourTrans_lnvalidateCache, 
ColourTrans_MiscOp, ColourTrans_SetOppTextColour and 
ColourTrans_SetTextColour. 

• Draw_Fill 

• Draw_Stroke 

• Draw_ProcessPath with R7=1 

• Font_SetFontColours 

• Font_SetPalette 

• Font_Paint 

3-587 



Error handling changes 

3-588 

• OS_SpriteOp with reason codes 28 (put sprite), 34 (put sprite at user 
coordinates). 48 (plot mask). 49 (plot mask at user coordinates), 50 (plot mask 
scaled) 52 (put sprite scaled). 53 (put sprite grey scaled), 55 (plot mask 
transformed). or 56 (put sprite transformed) 

PO river_ CanceiJob 

PDriver_CancelJob puts a print job into a similar state. with the error message 
being simply 'Print cancelled'. However, this error is only returned by subsequent 
calls from the list above, not by PDriver_CancelJob itself. 



Printer Drivers 

Technical Details 

The structure of the printing system 

The Printers application 

The Printers application is the user interface to the printing system. It is split into 
two parts. 

The 'front end' 

The 'front end' of the Printers application contains those parts of the code that are 
device independent. This includes support for such things as the text printing 
queue, reading printer definition files. 

The 'back ends' 

The Printers application has several 'back ends', each of which contains code that 
is specific to a particular class of device. RISC OS 3 provides back ends for 
PostScript printers, Laser)et printers, and dot-matrix printers. 

A back end implements such things as handling the printer configuration window 
for that class of printer, passing the information from that window to the printer 
drivers, and printing fancy text files. New back ends can be added to support new 
classes of printers, faxes, and so on. 

Printer definition files 

Printer definition files are supplied with the other RISC OS applications in a 
directory named Printers. Inside this directory there is a Top_Left file used to 
calibrate the position of output on Epson and IBM compatible dot matrix printers, 
a subdirectory for each supported printer manufacturer (eg Epson, Star, Apple, 
etc). and a Read_Me file giving extra help. 

Inside each of the subdirectories there are some printer definition files (eg FX-80) 
and a further Read_Me file. These Read_Me files give some technical detail on 
what is in each definition file , paying attention to tricky areas to guide you should 
you either want to modify the files, or want to choose the most appropriate starting 
point to provide support for a new printer. They also give some guidance on which 
files to try for 'compatible' printers. 

You will find further help in the chapter entitled Printer definition files on page 3-697. 

3-589 



The structure of the printing system 

3-590 

The PrintEdit application 

The PrintEdit application is used to edit dot matrix and Laser)et printer definition 
files. You can use this application to provide support for a new printer by editing 
the printer definition file of an already supported printer that has similar 
behaviour. 

The FontPrint application 

The FootPrint application is used to edit the list of supported fonts in the Printer 
application's configuration for the current PostScript printer. With it you can 
specify mappings between RISC OS font names and the printer's native font 
names, and the encodings that those fonts use. You can also specify whether a font 
is resident in the printer, or to be supplied by downloading it from RISC OS. 

The PDriver module 

The PDriver module- also known as the PDriver sharer module- allows you to 
have multiple resident printer drivers , and hence easily use different devices such 
as a dot-matrix printer, a PostScript printer and a Fax card during the same session. 
The module is responsible for tracking which printer drivers are loaded, and which 
of these is the 'current' printer driver. It is also responsible for handling printer 
jobs, and tracking which printer driver owns which jobs. 

When the PDriver sharer module starts up, it issues the service call 
Service_PDriverStarting (see page 3-599). Any printer drivers resident at that t ime 
should declare themselves to the PDriver sharer module by calling 
PDriver_DeclareDriver (see page 3-640) . 

The PDrlver module's SWI handling 

The PDriver sharer module receives all printer driver SWis. It processes some of 
these SWis by itself. and some in conjunction with a printer driver, but passes on 
the majority to the current printer driver (set using PDriver_SelectDriver- see 
page 3-643) . 

Most of the SWis that the PDriver sharer module processes in whole or in part by 
itself relate to job handling: 

• The PDriver sharer module processes the SWis PDriver_CurrentJob 
(page 3-615) and PDriver_Enumerate)obs (page 3-631 ). These just require 
some inspection of its internal job management structures , and no interaction 
with the real drivers. 



Printer Drivers 

• The PDriver sharer module needs the cooperation of the printer drivers to 
process the PDriver_SelectJob (page 3-613). PDriver_Select111 ustration 
(page 3-634 ), PDriver_AbortJob (page 3-619), PDriver_EndJob (page 3-617) and 
PDriver_Reset (page 3-621) job handling SW1s. 

The code for the select SW!s is quite complex, as it has to deselect the current 
job on one driver, and then select the new job on a new driver. Any errors 
occurring in the selection process will lead to no job being selected on exit. 

Ending and Aborting are easily handled: they just clear the internal data for 
the specified job, and then pass through to the real driver. Resetting is 
similarly easy; it just requires that all drivers be reset. 

• The PDriver sharer module does not process PDriver_CancelJob (page 3-629) 
nor PDriver_CancelJobWithError (page 3-633). These simply set flags inside 
the real driver to stop future printer actions on the specified job from 
working- they do not affect the job management in the PDriver sharer module 
itself. 

The printer drivers 

Each printer driver handles a particular class of output device. They are mainly 
responsible for producing the device-dependent output necessary to print a page. 
They receive SWI calls via a handler registered with the PDriver sharer module 
when they declare themselves using PDriver_DeclareDriver; see page 3-640 for 
details of this mechanism. 

RISC OS 3 provides printer drivers for PostScript printers (PDriverPS). and for bit 
image devices such as dot-matrix printers (PDriverDP). 

PDriverDP 

PDriverDP differs from PDriverPS in that it is further subdivided, to cope with the 
wide range of available bit image devices. 

The PDriverDP module itself handles the device-independent parts of printing, 
rendering print jobs into bit image strips. These strips are then passed to a 
PDumper module (or printer dumper). 

Printer dumpers 

Printer dumpers provide the actual device driving for a particular type of bit image 
printer, outputting the bit image in an appropriate manner. In RISC OS 3 
(version 3.00) they are also responsible for performing colour matching, error 
diffusion and halftoning; the same code is duplicated in each printer dumper. 

RISC OS 3 provides printer dumpers for LaserJets (PDumperLJ), ImageWriters 
(PDumperlW) and lntegrex/Epson printers (PDumperDM). PDumperDM is 
effectively two printer dumpers in one; they are combined to save ROM space. 

3-591 



The structure of the printing system 

3-592 

Note that there is not a one to one correspondence between printer dumpers and 
back ends for the Printers application. For example, the dot-matrix back end caters 
for both PDumperiW and PDumperDM. 

For more information on printer dumpers, see the chapter entitled Printer Dumpers 
on page 3-663. 

PDumperSupport 

In RISC OS 3 (version 3.10) the colour matching, error diffusion and halftoning has 
been separated from the printer dumpers and is provided by an additional module 
called PDumperSupport. It reads in printer dumper palette files to do so; these are 
held in the Printers application. 

The PDumperSupport module saves ROM space, and allows the code to be used as 
a resource by third party printer dumpers, as it provides a SWI interface. 
Alternatively, third parties may choose not to use this module, but instead to 
perform colour matching in their own printer dumpers. Another option is to 
replace the PDumperSupport module to modify the colour matching performed by 
the Acorn printer dumpers. 

Summary 

The diagram below summarises the printing system in RISC OS 3 (version 3.I 0) : 

~tPril.~ ____ -_-__ -_·_·_· __ -__ ·_·_·_·_-_l__ ~~~:~:~---
.,ps LJ DP 

Printing 
application 

MakePSFont 
PO river 

(PDriver sharer 14------__J 
module) 

Figure 64.I Structure of printing system in RISC OS 3 (version 3.I 0) 



Printer Drivers 

The RISC OS 2 printing system 
The RISC OS 2 printing system was much simpler in structure, but at the expense 
of considerable duplication of code. Each printer driver had its own printing 
application. Only one such application could be loaded at once. hence there was 
no PDriver sharer module. Its job handling capabilities were supplied by each 
printer driver. 

There were also no printer dumper modules, nor the PDumperSupport module. 
Each class of dot-matrix printer had its own printer driver. There was no support for 
ImageWriters. 

If you were using a PostScript printer the structure was simply this: 

Printing 
application 

[~ 
~~~~~~ ............. r·· 

Figure 64.2 Structure of printing system in RISC OS 2 

(The other parts of the printing system- shown above in grey- could not have 
been loaded at the same time as the PostScript system .) 

Extending the printing system 
There are a variety of ways in which you can extend the printing system, replacing 
one or more of its parts. Acorn is prepared to supply source code for the current 
system to developers wishing to do this; we strongly recommend that you follow 
this route for maximum compatibility with the existing system. 

Adding printer definition files 

You can add support for a new printer that closely matches an existing one by 
creating a new printer definition file (or more likely modifying an existing one) 
using the PrintEdit application. This may be for as trivial a reason as changing the 
name to match a particular printer or to make things more obvious to the user, or 
it may involve changing sequences to make things work better (or work at all) with 
a particular printer. Obviously you don't need source code to do this. 

3-593 



Extending the printing system 

3-594 

Adding a printer dumper 

You need to add a new printer dumper if the existing ones don't understand the 
output format of the printer you wish to support, or if you want to optimise things 
for your printers (such as printing on 20 out of 24 pins , or providing new colour 
matching). 

A new printer dumper is virtually guaranteed to need a new printer definition file . 
Sometimes the PrintEdit application will be capable of creating this (eg 20 out of 
24 pins); sometimes you will need to create them by hand, to modify PrintEdit, or 
to write your own tool. You might also need to supply a new palette file for your 
dumper. 

Adding a back end to the Printers application 

You will also need a new back end to the Printers application if your printer differs 
in major ways from those already supported: for example to add a direct drive laser 
printer, or a fax card . While these printers are still bit image- and thus can use a 
printer dumper- they need new text printing code, and (since they can 't use the 
parallel port, for example) they need new printer connection management. 

The LaserJet is a good example of this: it uses a printer dumper. yet it has its own 
back end since its text requirements differ from those of other dot-matrix printers. 

Adding a printer driver 

To add a radically different type of printer you will need to write a new printer 
driver. For example, a pen plotter or turtle graphics printer might need a new driver. 

Adding a palette file and/or a new PDumperSupport module 

You may wish to do this for an existing printer to modify the colour balance, whilst 
still using the Acorn drivers and printer dumpers. 



Printer Drivers 

Printer driver numbers 
Printer drivers are identified by numbers, which are used as parameters to many of 
the PDriver SW!s. Currently assigned printer driver numbers are: 

Value Meaning 

0 PostScript 
Epson FX80 or compatible 

2 HP Laser)et or compatible 
3 Integrex Colour)et 
4 FAX modem 
5 Direct drive laser printer 
6 Caspel graphics language 
7 PDumper interface 
99 Ace Computing Epson JX/Star LC I 0 driver or Paint)et driver 

Using PostScript fonts 

The new PostScript printer drivers have enhanced support for utilising PostScript 
fonts resident in the printer, as well as the ability to download PostScript 
equivalents of RISC OS fonts. 

As far as the application writer is concerned, the details of the process are 
transparent. but a brief summary is presented below. 

New-style applications 

When an application attempts to print a document containing fonts, it should 
declare them using PDriver_DeclareFont; see the section entitled Declare the fonts 
!lOur document uses on page 3-559, and the documentation of the SWI on page 3-638. 

When the printer driver is ready to output the PostScript prologue, it scans this list 
of fonts. Each name is passed to the MakePSFont module, which attempts to 
ensure that the font is available in the printer by one of the following methods: 

• Using an existing PostScript font directly 

• Augmenting an existing PostScript font by applying a different encoding 
and/or transformation matrix, and/or by adding extra characters such as 
composite accented characters. 

• Downloading an existing Type I PostScript version of the font on the fly. 

• Generating and downloading a Type 3 PostScript version of the font on the fly. 

The most efficient method possible is chosen- downloading is only done as a last 
resort , because the resulting fonts are very large. 

3-595 



Using PostScript fonts 

3-596 

To make this choice, the printer driver has to know which fonts are already 
available in the printer. This information is maintained by the printer driver system, 
and controlled by use of the FontPrint application. FontPrint lets the user specify 
the mapping between RISC OS font names and PostScript font names, such as 
Trinity. Medium maps to Times-Roman. 

Old-style applications 

An old-style application does not make any calls to PDriver_DeclareFont, and 
hence the printer system cannot be certain about which fonts to provide. (The rules 
of PostScript prologue generation prevent us from simply sending the font the first 
time it is used in the print job- they must all be known in advance) . 

There are two mechanisms for coping with this situation . The simplest emulates 
the old printer driver and sends a prologue file that blindly provides a fixed set of 
fonts . This satisfies most old applications because they were written with this 
expectation. The advanced user can edit the prologue file by hand to adjust the list 
of fonts provided 

The second and more sophisticated method takes the intersection of the set of 
fonts known to the font manager and the set of fonts known by FontPrint to be 
resident in the printer. It passes each font in the resulting set to MakePSFont. Thus 
all of the fonts that can be provided by simple renaming of an existing PostScript 
font are sent, which is fa irly comprehensive but still efficient. 

The user chooses between these two mechanisms by the 'Verbose prologue' switch 
in the Printers configuration window. 

Font names 

A standard Adobe implementation of PostScript- such as that used on the Apple 
LaserWriter- has 35 fonts built in . Font names have been preallocated for RISC OS 
fonts that have the same metrics and general appearance as those fonts , and map 
onto them. This allows Acorn to produce a version of !PrinterPS that already knows 
the correct font name mappings. These names are: 

RISC OS name 

Churchill .Medium.Italic 
Clare.Medium 
Clare.Medium.Oblique 
Clare.Demi 
Clare.Demi.Oblique 
Corpus.Medium 
Corpus.Medium.Oblique 
Corpus. Bold 
Corpus.Bold.Oblique 

PostScript name 

ZapfChancery-Mediumltalic 
AvantGarde-Book 
AvantGarde-BookOblique 
AvantGarde-Demi 
AvantGarde-DemiOblique 
Courier 
Courier-Oblique 
Courier-Bold 
Courier-BoldOblique 



Homerton.Medium 
Homerton.Medium.Oblique 
Homerton. Bold 
Homerton.Bold.Oblique 
NewHall. Medium 
NewHall.Medium.Italic 
NewHall. Bold 
NewHall. Bold. Italic 
Pembroke.Medium 
Pembroke.Medium.Italic 
Pembroke.Bold 
Pembroke.Bold.Italic 
Robinson. Light 
Robinson. Light.Italic 
Robinson.Demi 
Robinson. Demi.Italic 
Selwyn 
Sidney 
Trinity. Medium 
Trinity.Medium.Italic 
Trinity. Bold 
Trinity. Bold. Italic 

Helvetica 
Helvetica-Oblique 
Helvetica-Bold 
Helvetica-BoldOblique 
NewCenturySchlbk-Roman 
NewCenturySchlbk-Italic 
NewCenturySchlbk-Bold 
NewCenturySchlbk-Bolditalic 
Palatino-Roman 
Palatino-Italic 
Palatino-Bold 
Palatino-Bolditalic 
Bookman-Light 
Bookman-Lightitalic 
Bookman-Demi 
Bookman-Demiitalic 
ZapfDingbats 
Symbol 
Times-Roman 
Times-Italic 
Times-Bold 
Times-Bolditalic 

Printer Drivers 

You can use Tl To Font to convert AFM (Adobe Font Metrics) files into lntMetrics 
files, and hence ensure that the correct metrics are used. 

3-597 



Service Calls 

Service Calls 

For internal use only 

You must not use it in your own code. 

3-598 

Service_Print 
(Service Call &41 ) 



PDriver sharer module started 

Printer Drivers 

Service_PDriverStarting 
(Service Call &65) 

On entry 

Rl = &65 (reason code) 

On exit 

Use 

All registers preserved 

This service call is issued when the PDriver sharer module starts up. Any printer 
drivers resident at that time should declare themselves to the PDriver sharer 
module by calling PDriver_DeclareDriver (see page 3-640). 

3-599 



Service_PDriverGetMessages (Service ·Ca/1 &78) 

3-600 

Service_PDriverGetMessages 
(Service Call &78) 

Get common messages file 

On entry 
Rl = &78 (reason code) 

On exit 

Use 

Not claimed 

RO - R8 must be preserved 

Call claimed 

Rl = 0 (implies service claimed) 
R3 = pointer to 20 byte block for open messages file 

This service call is issued by a PDriver module that is about to open the common 
message file for printer drivers, held in Resources:S.Resources.PDrivers.Messages. 
It is provided so that the module can find if another PDriver module has already 
opened the file , and if so get its MessageTrans block: 

• If the service call is claimed R3 will point to a 20 byte block. The first 16 bytes 
of this are a MessageTrans block referring to the file, and the remaining word is 
a usage count. The PDriver module should increment this usage count and use 
the MessageTrans block to access the file. When the module has finished using 
the file it should decrement the usage count, and if the count is:::; 0 should 
then call MessageTrans_CloseFile (page 3-750) followed by OS_Module 7 
(page 1-234) to free the 20 byte block. 

• If the service call is not claimed the PDriver module should instead allocate 20 
bytes using OS_Module 6 (page 1-233), and then use MessageTrans_OpenFile 
(page 3-743) to open Resources:S.Resources.PDrivers .Messages, placing the 
MessageTrans block in the first 16 bytes of the claimed buffer, and setting the 
usage count in the last word to I . 

A PDriver module receiving this service call that is using the common messages file 
should set R3 to point to the MessageTrans block and claim the service call by 
setting R I to zero. 

' · 



Printer Drivers 

Service_PDriverChanged 
(Service Call & 7F) 

Currently selected printer driver has changed 

On entry 

Rl = &7F (reason code) 
R2 =printer driver number of new driver (see page 3-595) 

On exit 

Use 

All registers are preserved 

This service call is issued when the PDriver sharer module has changed the 
currently selected printer driver. R2 contains the printer driver number being 
selected; see page 3-595 for a list of these. 

This may be of use, for example, to a spooler module that needs to monitor which 
printer driver is currently selected. 

3-601 



SWI Calls 

SWI Calls 

~-n02 

PDriver Info 
(SWI &80140) 

Get information on the printer driver 

On entry 

On exit 

RO =version number and type: 
bits 0- 15 printer driver's version number x I 00 
bits 16- 31 printer driver number (see page 3-595) 

Rl = x resolution of printer driven, in dots per inch 
R2 = y resolution of printer driven, in dots per inch 
R3 = features word: see below 
R4 = pointer to printer name. null terminated, maximum 20 characters long 
R5 = x halftone resolution in repeats/inch (same as Rl if no halftoning) 
R6 = y halftone resolution in repeats/inch (same as R2 if no halftoning) 
R7 = printer driver specific number identifying the configured printer 

(which is zero. unless it has been changed using PDriver_Setlnfo) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 
I 

This calls tells an application what the capabilities of the attached printer are. 'Phis 
allows the application to change the way it outputs its data to suit the printer. 



Printer Drivers 

The values can be changed by the SWI PDriver_Setlnfo, typically as a result of the 
user changing the printer configuration using the Printers application . If this call is 
made while a print job is selected, the values returned are those for that job (ie 
those in force when the job was first selected using PDriver_Select)ob). If this call 
is made when no print job is active, the values returned are those that would be 
used for a new print job 

The value returned in RO is split in half. The bottom 16 bits of RO have the version 
number of the printerdriverx 100: egVersion 3.21 would be 321 (&0141). The top 
16 bits contain the printer driver number of the currently selected driver; see 
page 3-595 for a list of these. 

R3 returns a bitfield that describes the available features of the current printer. 
Most applications shouldn't need to look at this word , unless they wish to alter 
their output depending on the facilities available. 

It is split into several fields: 

Bits 

0-7 
8- 15 
16- 23 
24- 31 

Subject 

printer driver's colour capabilities 
printer driver's plotting capabilities 
reserved- must be set to zero 
printer driver's optional features 

In more detail, each individual bit has the following meaning. For a complete 
description of the values bits 0- 2 may have, see page 3-605: 

Bit(s) 

0 

2 

3- 7 

8 

Value Meaning 

0 it can only print in monochrome. 

I it can print in colour. 

0 it supports the full colour range- ie it can manage 
each of the eight primary colours. Ignored if bit 0 = 0. 

I 

0 

0 

it supports only a limited set of colours. 

it supports a semi-continuous range of colours at the 
software level. Also, if bit 0 = 0 and bit 2 = 0, then an 
application can expect to plot in any level of grey. 

it only supports a discrete set of colours at the 
software level; it does not support mixing, dithering, 
toning or any similar technique. 

reserved and set to zero. 

it can handle filled shapes. 

it cannot handle filled shapes other than by outlining 
them; an unsophisticated XY plotter would have this 
bit set. for example. 

3-603 



PDriver_lnfo (SWI &80140) 

Blt(s) Value Meaning 

9 0 it can handle thick lines. 

it cannot handle thick lines other than by plotting a 
thin line. (An unsophisticated XY plotter would also 
come into this category. The difference is that the 
problem can be solved , at least partially, if the 
plotter has a range of pens of differing thicknesses 
available.) 

10 0 it handles overwriting of one colour by another on 
the paper properly. This is generally true of any 
printer that buffers its output, either in the printer or 
the driver. 

it does not handle overwriting of one colour by 
another properly, but only overwriting of the 
background colour by another. (This is a standard 
property of XY plotters.) 

11 0 it does not support transformed sprite plotting. 

I it supports transformed sprite plotting. 

12 0 it cannot handle new Font manager features. 

it can handle new Font manager features such as 
transforms and encodings. 

13- 23 reserved and set to zero. 

24 0 it does not support screen dumps. 

it does support screen dumps. 

25 0 it does not support transformations supplied to 
PDriver_DrawPage other than scalings, translations, 
rotations by multiples of 90 degrees and 
combinations thereof. 

it does support arbitrary transformations supplied to 
PDriver_DrawPage. 

26 0 it does not support the PDriver_lnsertlllustration call 

it does support the PDriver_lnsertlllustration call 

27 0 it does not support the PDriver_MiscOp call. 

I it does support the PDriver_MiscOp call. 

28 0 it does not support the PDriver_SetDriver call. 

I it does support the PDriver_SetDriver call . 

29 0 it does not support the PDriver_DeclareFont call. 

it does support the PDriver_DeclareFont call. 

3-604 



Printer Drivers 

The table below shows the effect of bits 0- 2 in more detail: 

Colours available 
Arbitrary greys 

A limited set of greys (probably only black and white) 

Arbitrary greys 

A limited set of greys (probably only black and white) 

Arbitrary colours 

A limited discrete set of colours, including all the 
eight primary colours 

Arbitrary colours within a limited range (for example, 
it might be able to represent arbitrary greys, red, 
pinks and so on, but no blues or greens). This is not 
a very likely option 

A finite set of colours- as for instance an XY plotter 
might have 

The printer name pointed to by R4 is always null terminated, regardless of what the 
terminating character was when the name was passed to PDriver_Setlnfo. If 
PDriver_Setlnfo has not been called, then R4 will point to a zero length string on 
return from PDriver_Info. 

A copy should be taken of the name at R4 if you intend to use this. With the 
introduction of multiple printer drivers this name can change. 

The value in R7- a printer driver specific number identifying the configured 
printer- is for internal use only. 

Related SWis 

PDriver_Setlnfo (page 3-606), PDriver_CheckFeatures (page 3-608) 

Related vectors 

None 

3-605 



PDriver_Setlnfo (SWI &80141) 

3-606 

Configure the printer driver 

PDriver Setlnfo 
(SWI &80141) 

On entry 

Rl = x resolution of printer driven, in dots per inch 
R2 = y resolution of printer driven, in dots per inch 
R3 = features word: 

bit 0 set ~ colour, else monochrome 
all other bits reserved (must be zero) 

R4 = pointer to new printer name, null terminated, maximum 20 characters long 
R5 = x halftone resolution in repeats/inch (same as Rl if no halftoning) 
R6 = y halftone resolution in repeats/inch (same as R2 if no halftoning) 
R7 =printer driver specific number identifying the configured printer 

On exit 

Rl - R7 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call is used by the Printer application on the desktop to configure a printer 
driver so that it is set up for a specific printer within the general class of printers 
the driver supports. The printer name can also be modified; a copy is taken, and 
any future calls to PDriver_Info will return this modified string. 

This call only affects print jobs started after it is called. Existing print jobs use 
whatever values were in effect when they were started. 

Only bit 0 of the features word passed in R3 is used; all other bits are ignored. 



Printer Drivers 

The printer name in R4 is ignored by RISC OS 2. 

The value in R7- a printer driver specific number identifying the configured 
printer- is for internal use only. 

This SWI must never be called by user applications. 

Related SWis 

PDriver_Info (page 3-602) 

Related vectors 

None 

3-607 



PDriver_CheckFeatures (SW/ &80142) 

3-608 

Check the features of a printer 

On entry 

PDriver CheckFeatures 
(SWI &80142) 

RO = mask of bits to check in features word 
Rl =desired value of features word 

On exit 

RO, Rl preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

If the features word that PDriver_lnfo would return in R3 satisfies (features_ word 
AND RO) = (RI AND RO). then it returns normally with all registers preserved. 
Otherwise q suitable error is generated if appropriate. For example, no error will be 
generated if the printer driver has the ability to support arbitrary rotations and 
your features word value merely requests axis preserving ones. 

Related SWis 

PDriver_lnfo (page 3-602) 

Related vectors 

None 



Find how large the paper and print area is 

Printer Drivers 

PDriver_PageSize 
(SWI &80143) 

On entry 

On exit 

Rl = x size of paper (including margins). in millipoints 
R2 = y size of paper (including margins). in millipoints 
R3 = left edge of printable area of paper. in millipoints from paper's left edge 
R4 = bottom edge of printable area of paper. in millipoints from paper's bottom 

edge 
R5 = right edge of printable area of paper. in millipoints from paper's left edge 
R6 =top edge of printable area of paper. in millipoints from paper's bottom edge 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call returns the size of the paper in use and its printable area. An application 
can use this information to decide how to place the data to be printed on the page. 

The values can be changed by the SWI PDriver_SetPageSize. typically as a result of 
the user changing the printer configuration using the Printers application. If this 
call is made while a print job is selected. the values returned are those for that job 
(ie those in force when the job was first selected using PDriver_SelectJob). If this 
call is made when no print job is active. the values returned are those that would 
be used for a new print job. 

3-609 



PDriver_PageSize (SWI &80143) 

~-R10 

All units are in millipoints, and R3 - R6 are relative to the bottom left corner of the 
page. 

Related SWis 

PDriver_SetPageSize (page 3-611) 

Related vectors 

None 



Set how large the paper and print area is 

Printer Drivers 

PDriver_SetPageSize 
(SWI &80144) 

On entry 

Rl = x size of paper (including margins). in millipoints 
R2 = y size of paper (including margins). in millipoints 
R3 = left edge of printable area of paper, in millipoints from paper's left edge 
R4 = bottom edge of printable area of paper, in millipoints from paper's bottom 

edge 
R5 = right edge of printable area of paper, in millipoints from paper's left edge 
R6 =top edge of printable area of paper, in millipoints from paper's bottom edge 

On exit 

Rl - R6 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call is used by the Printers application to set- for a particular driver- the 
paper size and printable area associated with subsequent print jobs. It must never 
be called by user applications. 

All units are in millipoints. and R3 - R6 are relative to the bottom left corner of the 
page. 

Related SWis 

PDriver_PageSize (page 3-609) 

3-611 



PDriver_SetPageSize (SWI &80144) 

Related vectors 

None 



Make a given print job the current one 

Printer Drivers 

PDriver SelectJob 
(SWI &80145) 

On entry 

RO = file handle for print job to be selected, or zero to suspend current print job 
Rl =pointer to a title string for the job, or zero if none 

On exit 

RO = file handle for print job that was previously active, or zero if none 
Rl preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call makes a given print job the current one. The job is identified by the handle 
of the file used for output from the job ( eg printer:), which must be open for output. 

The current print job (if any) is suspended, and a print job with the given file 
handle is selected. If a print job with this file handle already exists, it is resumed; 
otherwise a new print job is started. The printer driver starts to intercept plotting 
calls if it is not already doing so. 

A file handle of zero has special meaning; the current print job (if any) is 
suspended, and the printer driver ceases to intercept plotting calls. 

Note that this call never ends a print job. To do so, use one of the SWis 
PDriver_EndJob or PDriver_AbortJob. 

3-613 



PDriver_SelectJob (SWI &80145) 

~-f\14 

The title string pointed to by R I is treated by different printer drivers in different 
ways. It is terminated by any character outside the range ASCII 32 -126. It is only 
ever used if a new print job is being started, not when an old one is being resumed. 
Typical uses are: 

• A simple printer driver might ignore it. 

• The PostScript printer driver adds a line '%%Title:' followed by the given title 
string to the PostScript header it generates. 

• Printer drivers whose output is destined for an expensive central printer in a 
large organisation might use it when generating a cover sheet for the 
document. 

An application is always entitled not to supply a title (by setting Rl =0). and a 
printer driver is entitled to ignore any title supplied. 

Printer drivers may also use the following OS variables when creating cover sheets , 
etc: 

PDriverSFor 
PDriverSAddress 

indicates who the output is intended to go to 
indicates where to send the output. 

These variables must not contain characters outside the range ASCII 32 - 126. 

If an error occurs during PDriver_SelectJob, the previous job will still be selected 
afterwards, though it may have been deselected and reselected during the call. No 
new job will exist. One may have been created during the call, but the error will 
cause it to be destroyed again. 

Related SWis 

PDriver_CurrentJob (page 3-615), PDriver_EndJob (page 3-617). 
PDriver_AbortJob (page 3-619). PDriver_Reset (page 3-621). 
PDriver_EnumerateJobs (page 3-631). PDriver_Selectlllustration (page 3-634) 

Related vectors 

None 



Get the file handle of the current job 

On entry 

On exit 

RO =file handle for current job, or 0 if none 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

Printer Drivers 

PDriver CurrentJob 
(SWI &80146) 

This call gets the file handle of the current job, returning it in RO. A value of zero is 
returned if no print job is active. 

Related SWis 

PDriver_SelectJob (page 3-613), PDriver_EndJob (page 3-617), 
PDriver_AbortJob (page 3-619), PDriver_Reset (page 3-621), 
PDriver_EnumerateJobs (page 3-631 ), PDriver_Selectlllustration (page 3-634) 

Related vectors 

None 

3-615 



PDriver_FontSWI (SWI &80147) 

3-616 

PDriver FontSWI 
(SWI &80147) 

This call is part of the internal interface between the font system and printer 
drivers. Applications must not call it. 



End a print job normally 

Printer Drivers 

PDriver EndJob 
(SWI &80148) 

On entry 

RO =file handle for print job to be ended 

On exit 

RO preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call should be used to end a print job normally. This may result in further 
printer output- for example, the PostScript printer driver will produce the 
standard trailer comments. 

If the print job being ended is the currently active one, there will be no current print 
job after this call. so plotting calls will no longer be intercepted. 

If the print job being ended is not currently active, it will be ended without altering 
which print job is currently active or whether plotting calls are being intercepted. 

Related SWis 

PDriver_Select)ob (page 3-6I 3). PDriver_Current)ob (page 3-6I 5). 
PDriver_Abort)ob (page 3-619). PDriver_Reset (page 3-621), 
PDriver_CancelJob (page 3-629), PDriver_CancelJobWithError (page 3-633). 
PDriver_Selectiilustration (page 3-634) 

3-617 



PDriver_EndJob (SWI &80148) 

3-618 

Related vectors 

None 



End a print job without any further output 

Printer Drivers 

PDriver AbortJob 
(SWI &80149) 

On entry 

RO = file handle for print job to be aborted 

On exit 

RO preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call should be used to end a print job abnormally. It should be called 
immediately you get an error while printing, before you try to display the error 
message. It will not try to produce any further printer output. This is important if an 
error occurs while sending output to the print job's output file. 

If the print job being aborted is the currently active one, there will be no current 
print job after this call. so plotting calls will no longer be intercepted. 

If the print job being aborted is not currently active, it will be aborted without 
altering which print job is currently active or whether plotting calls are being 
intercepted. 

Related SWis 

PDriver_Select)ob (page 3-613). PDriver_Current)ob (page 3-615). 
PDriver_EndJob (page 3-617) , PDriver_Reset (page 3-621 ). 
PDriver_Cancel)ob (page 3-629). PDriver_Cancel)obWithError (page 3-633). 
PDriver_Selectlll ustration (page 3-634) 

~-f\1 q 



PDriver_AbortJob (SWI &80149) 

Related vectors 

None 



Abort all print jobs 

Printer Drivers 

PDriver Reset 
(SWI &8014A) 

On entry 

On exit 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This SWI aborts all print jobs known to all printer drivers. leaving the printer drivers 
with no active or suspended print jobs and ensuring that plotting calls are not 
being intercepted. 

Normal applications shouldn't use this SWI, but it can be useful as an emergency 
recovery measure when developing an application. 

A call to this SWI is generated automatically if the machine is reset or the printer 
driver module is killed or RMTidy'd. 

Related SWis 

PDriver_SelectJob (page 3-613) , PDriver_CurrentJob (page 3-615). 
PDriver_EndJob (page 3-617), PDriver_AbortJob (page 3-619), 
PDriver_Selectiii ustration (page 3-634) 

3-621 



PDriver_Reset (SWI &8014A) 

3-622 

Related vectors 
None 



Specify a rectangle to be printed 

Printer Drivers 

PDriver_GiveRectangle 
(SWI &80148) 

On entry 

RO =rectangle identification word (specified by application) 
Rl =pointer to 4 word block, containing rectangle to be plotted (in OS units) 
R2 = pointer to 4 word block, containing transformation table 
R3 =pointer to 2 word block, containing the plot position (in millipoints) 
R4 = background colour for this rectangle, in the form &BBGGRROO. 

On exit 

RO - R4 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This SWI allows an application to specify a rectangle from its workspace to be 
printed, how it is to be transformed and where it is to appear on the printed page. 

The word in RO is reported back to the application when it is requested to plot all 
or part of this rectangle. 

The 4 word block pointed to by Rl contains the following: 

Word Contents 

0 low x coordinate of rectangle to print, in OS units (inclusive) 
low y coordinate of rectangle to print, in OS units (inclusive) 

2 high x coordinate of rectangle to print, in OS units (exclusive) 
3 high y coordinate of rectangle to print, in OS units (exclusive) 

3-623 



PDriver_GiveRectangle (SWI &80148) 

3-624 

The value passed in R2 is the dimensionless transformation to be applied to the 
specified rectangle before printing it. The entries are given as fixed point numbers 
with 16 binary places , so the transformation is: 

x· = (x X R2!0 + y X R2!8)/216 

y' =(X X R2!4 + y X R2! 12)/2 16 

(The rectangle and the transformation are very similar to Draw module rectangles 
and transformation matrices.) 

The value passed in R3 is the position where the bottom left corner of the rectangle 
is to be plotted on the printed page in millipoints. 

An application should make one or more calls to PDriver_GiveRectangle before a 
call to PDriver_DrawPage and the subsequent calls to PDriver_GetRectangle. 
Multiple calls allow the application to print multiple rectangles from its workspace 
to one printed page- for example. for 'two up' printing. 

The printer driver may subsequently ask the application to plot the specified 
rectangles or parts thereof in any order it chooses. An application should not make 
any assumptions about this order or whether the rectangles it specifies will be 
split. A common reason why a printer driver might split a rectangle is that it prints 
the page in strips to avoid using excessively large page buffers. 

Assuming that a non-zero number of copies is requested and that none of the 
requested rectangles go outside the area available for printing, it is certain to ask 
the application to plot everything requested at least once. It may ask for some 
areas to be plotted more than once. even if only one copy is being printed , and it 
may ask for areas marginally outside the requested rectangles to be plotted. This 
can typically happen if the boundaries of the requested rectangles are not on exact 
device pixel boundaries. 

If PDriver_GiveRectangle is used to specify a set of rectangles that overlap on the 
output page, the rectangles will be printed in the order of the 
PDriver_GiveRectangle calls . For appropriate printers (ie most printers. but not XY 
plotters for example). this means that rectangles supplied via later 
PDriver_GiveRectangle calls will overwrite rectangles supplied via earlier calls . 

The rectangle specified should be a few OS units larger than the 'real ' rectangle. 
especially if important things lie close to its edge. This is because rounding errors 
are liable to appear when calculating bounding boxes. resulting in clipping of the 
image. Such errors tend to be very noticeable. even when the amounts involved are 
small. We recommend that you initially try a margin of I point (2lf2 OS units). 
increasing this if results are not satisfactory. 



Printer Drivers 

However, you shouldn't make the rectangle a lot larger than the real rectangle. This 
will result in slowing the process down and use of unnecessarily large amounts of 
memory. Also, some subsequent users may scale the image according to this 
rectangle size (say to use some PostScript as an illustration in another document). 
resulting in it being too small. 

Related SWis 

PDriver_DrawPage (page 3-626). PDriver_GetRectangle (page 3-628) 

Related vectors 

None 

3-625 



PDriver_DrawPage (SWI &8014C) 

3-626 

PDriver_DrawPage 
(SWI &8014C) 

Called to draw the page after all rectangles specified 

On entry 

RO =number of copies to print 
Rl =pointer to 4 word block, to receive the rectangle to print (in OS units) 
R2 =page sequence number within the document, or 0 
R3 = pointer to a page number string, or 0 

On exit 

RO = non-zero if more rectangles to be printed, zero if finished 
Rl preserved 
R2 = identification word for rectangle containing rectangle to print- if RO::;:. 0 
R3 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This SWI should be called after all rectangles to be plotted on the current page 
have been specified using PDriver_GiveRectangle. It returns the first rectangle (if 
any) that the printer driver wants plotted in the area. 

R2 on entry is zero or contains the page's sequence number within the document 
being printed (ie. 1-n for ann-page document) . 

R3 on entry is zero or points to a string, terminated by a character in the ASCII 
range 33 - I 26, which gives the text page number: for example '23', 'viii ', 'A- I '. Note 
that spaces are not allowed in this string. 



Printer Drivers 

If RO is non-zero on exit, the area pointed to by RI has been filled in with the 
rectangle that needs to be plotted, and R2 contains the rectangle identification 
word for the user-specified rectangle that this is a part of. If RO is zero, the contents 
of R2 and the area pointed to by Rl are undefined. The rectangle in RI is in user 
coordinates before transformation . 

Your application should stop trying to plot the current page if RO = 0, and continue 
otherwise. 

If RO-:;= 0, it in fact gives the number of copies still to be printed, but this is only 
intended to be used for information purposes- for example, putting a 'Printing 
page m of n' message on the screen. Note that on some printer drivers you cannot 
rely on this number changing incrementally, ie it may suddenly go from n to zero. 
As long as it is non-zero, RO's value does not affect what the application should try 
to plot. 

The 4 word block pointed to by RI contains the following on exit: 

Word Contents 

0 low x coordinate of rectangle to print, in OS units (inclusive) 
low y coordinate of rectangle to print. in OS units (inclusive) 

2 high x coordinate of rectangle to print, in OS units (exclusive) 
3 high y coordinate of rectangle to print, in OS units (exclusive) 

The information passed in R2 and R3 is not particularly important. though it helps 
to make output produced by the PostScript printer driver conform better to 
Adobe's structuring conventions. If non-zero values are supplied, they should be 
correct. Note that R2 is not the sequence number of the page in the print job, but 
in the document. For example, if a document consists of I I pages, numbered " (the 
title page), 'i '-'iii' and 'I '-'7', and the application is requested to print the entire 
preface part, it should use R2 = 2, 3, 4 and R3 ~ 'i', 'ii ' , 'iii ' for the three pages. 

Related SWis 

PDriver_GiveRectangle (page 3-623). PDriver_GetRectangle (page 3-628) 

Related vectors 

None 

3-627 



PDriver_GetRectangle (SWI &80140) 

3-628 

Get the next print rectangle 

PDriver_GetRectangle 
(SWI &80140) 

On entry 

Rl =pointer to 4 word block. to receive the rectangle to print (in OS units) 

On exit 

RO = non-zero if more rectangles to be printed, zero if finished 
R I preserved'l 
R2 = identification word for rectangle containing rectangle to print- if RO -:1- 0 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This SWI should be used after plotting a rectangle returned by a previous call to 
PDriver_DrawPage or PDriver_GetRectangle, to get the next rectangle the printer 
driver wants plotted. It returns precisely the same information as 
PDriver_DrawPage. See page 3-626 for further details 

Related SWis 

PDriver_GiveRectangle (page 3-623). PDriver_DrawPage (page 3-626) 

Related vectors 

None 



Printer Drivers 

PDriver CanceiJob 
(SWI &8014E) 

Stops the print job associated with a file handle from printing 

On entry 

RO =file handle for job to be cancelled 

On exit 

RO preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This SWI causes subsequent attempts to output to the print job associated with 
the given file handle to do nothing other than generate the error 'Print cancelled'. 
An application is expected to respond to this error by aborting the print job, which 
must be done before giving any error message. See the section entitled Error 
handling changes on page 3-586. 

Related SWis 

PDriver_End)ob (page 3-617), PDriver_Abort)ob (page 3-619). 
PDriver_Cance]JobWithError (page 3-633) 

Related vectors 

None 

3-629 



PDriver_ScreenDump (SWI &8014F) 

3-630 

Output a screen dump to the printer 

On entry 

PDriver_ScreenDump 
(SWI &8014F) 

RO = file handle of file to receive the dump 

On exit 

RO preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

If this SWI is supported (ie if bit 24 of R3 is set on exit from PDriver_Info), this call 
makes the printer driver output a screen dump to the file handle supplied in RO. 
The file concerned should already be open for output. 

If the SWI is not supported, an error is returned . 

Note that currently none of the Acorn printer drivers support this SWI. 

Related SWis 

None 

Related vectors 

None 



List existing print jobs 

On entry 

Printer Drivers 

PDriver EnumerateJobs 
(SWI &80150) 

RO = zero to enumerate first print job, or handle returned from previous call 

On exit 

RO = next print job handle, or zero if no more 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call enumerates all the existing print jobs within the system, returning their 
job handles. The order in which they appear is undefined. To enumerate the 
complete list you should set RO to zero and repeatedly call this SWI until RO is 
returned as zero. 

Related SWis 

PDriver_Current)ob (page 3-615) 

Related vectors 

None 

3-631 



PDriver_SetPrinter (SWI &80151) 

3-632 

PDriver SetPrinter 
(SWI &80151) 

This call is used to set options specific to a particular printer driver. It is a private 
interface between the RISC OS 2 printing applications and the corresponding 
printer drivers. You must not use it. 

This SWI has now been superseded by the SWI PDriver_SetDriver (page 3-656) 



Printer Drivers 

PDriver CanceiJobWithError 
(SWI &80152) 

Cancels a print job- future attempts to output to it generate an error 

On entry 

RO =file handle for job to be cancelled 
Rl =pointer to error block 

On exit 

RO, Rl preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This SWI causes subsequent attempts to output to the print job associated with 
the given file handle to do nothing other than generate the specified error. An 
application is expected to respond to this error by aborting the print job, which 
must be done before giving any error message. See the section entitled Error 
handling changes on page 3-586. 

This call is not available in RISC OS 2, unless version 2.0.0 or above of the printer 
driver module has been soft-loaded. 

Related SWis 

PDriver_End)ob (page 3-617), PDriver_Abort)ob (page 3-619), 
PDriver_Cancel)ob (page 3-629) 

Related vectors 
I 

None 

3-633 



PDriver_Se/ect/1/ustration (SWI &80153) 

3-634 

PDriver Selectlllustration 
(SWI &80153) 

Makes the given print job the current one, and treats it as an illustration 

On entry 

RO = file handle for print job to be selected, or 0 to deselect all jobs 
Rl =pointer to title string for job, or 0 

On exit 

RO = file handle for previously active print job, or 0 if none was active 
R I preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call does exactly the same thing as PDriver_SelectJob, except when it used to 
start a new print job. In this case, the differences are: 

• The print job started must contain exactly one page; if it doesn't, an error will 
be generated. 

• Depending on the printer driver involved, the output generated may differ. (For 
instance, the PostScript printer driver will generate Encapsulated PostScript 
output for a job started this way.) 

The intention of this SWI is that it should be used instead of PDriver_SelectJob 
when an application is printing a single page that is potentially useful as an 
illustration in another document. For example, the Draw application uses this to 
print. 



Printer Drivers 

This call is not available in RISC OS 2, unless version 2.00 or above of the printer 
driver module has been soft-loaded. 

Related SWis 

PDriver_Select)ob (page 3-613 ), PDriver_Current)ob (page 3-615). 
PDriver_End)ob (page 3-617). PDriver_Abort)ob (page 3-619). 
PDriver_Reset (page 3-621). PDriver_Cancel)ob (page 3-629), 
PDriver_Cancel)obWithError (page 3-633) 

Related vectors 

None 

3-635 



PDriver_lnsertlllustration (SWI &80154) 

3-636 

PDriver lnsertlllustration 
(SWI &80154) 

Inserts a file containing an illustration into the current job's output 

On entry 

RO =file handle for file containing illustration 
Rl =pointer to Draw module path to be used as a clipping path. or 0 if no 

clipping is required 
R2 = x coordinate of where the bottom left corner of the illustration is to go 
R3 = y coordinate of where the bottom left corner of the illustration is to go 
R4 = x coordinate of where the bottom right corner of the illustration is to go 
R5 = y coordinate of where the bottom right corner of the illustration is to go 
R6 = x coordinate of where the top left corner of the illustration is to go 
R7 = y coordinate of where the top left corner of the illustration is to go 

On exit 

RO- R7 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

If this SWI is supported (ie if bit 26 of R3 is set on exit from PDriver_lnfo). it inserts 
an external file containing an illustration. such as an Encapsulated PostScript file. 
into the current job's output The format of such an illustration file depends on the 
printer driver concerned. and many printer drivers won't support any sort of 
illustration file inclusion at all. 

All coordinates in the clipping path and in R2- R7 are in 256ths of an OS unit, 
relative to the PDriver_GiveRectangle rectangle currently being processed. 



Printer Drivers 

This call is not available in RISC OS 2, unless version 2.00 or above of the printer 
driver module has been soft-loaded. 

Related SWis 

PDriver_Selectlllustration (page 3-634) 

Related vectors 

None 

3-637 



PDriver_DeclareFont (SWI &80155) 

3-638 

PDriver DeclareFont 
(SWI &80155) 

Declares the fonts that will be used in a document 

On entry 

RO = handle of font to be declared, or zero 
Rl =pointer to name of font to be declared, or zero 
R2 = flags word: 

bit 0 set::::} don't download font if not present within device 
bit I set::::} when font is used kerning is applied 
all other bits reserved (must be zero) 

On exit 

RO - R2 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call declares the fonts that will be used in a document, either by name or by 
handle. Certain printer drivers need this information before printing begins; for 
example, the PostScript driver needs it to perform font downloading, and to 
conform with structuring rules for PostScript documents. You should declare fonts 
after you have called PDriver_Select)ob (page 3-613) or PDriver_Selectlllustration 
(page 3-634) to start the print job. 

Before calling PDriver_DeclareFont you must check if the printer driver you are 
using supports it by calling PDriver_Info (page 3-602) and examining bit 29 of R3 
on return. If it is set you should declare each distinct font that your document uses 
by repeated calls of PDriver_DeclareFont. For the purposes of this call, a font is 
'distinct' if it differs in its name, encoding or matrix fields (\F, \E or \M; for details of 



Printer Drivers 

font name syntax see the chapter entitled The Font Manager on page 3-403) . You 
must not declare other variations in the font such as size, colour, etc. You may 
declare the font by its handle (passed in RO). or by a pointer to its name (RO = 0, Rl 
=pointer to name). Any font name you pass must be exactly the same as is passed 
to Font_FindFont (see page 3-419), including any encoding and matrix 
information. 

After you have declared all the fonts, you must make one further call with both RO 
and R I set to zero to signify the end of the list. If your document does not use any 
fonts you should still make this 'end of list' call; the printer driver then knows that 
your application is aware of this call, and will generate more efficient output. 

The flags word gives other information about the font . 

• Setting bit 0 stops a non-resident font being downloaded, in which case it will 
be substituted with a resident font, usually Courier (although this is driver 
specific). An example of appropriate use of this facility would be to set up a 
draft print option , so the correct font is used unless it can only be obtained at 
the expense of a slow download. 

• Bit I is used to specify if kerning is applied to the font at any point in the job, 
so the PostScript printer driver knows whether or not it needs to download the 
font's kerning information. 

Once you have declared the fonts your application may then go on to make any 
PDriver_DrawPage request (page 3-626) . 

If thi s SWI is not called at all. the results are printer driver dependent. PDriverDP 
does not care in the least whether you call this SWI or not. On the other hand 
PDriverPS does care, and will perform default actions configured by the user, 
dependent on which fonts are already in the printer and which fonts need to be 
downloaded. 

This call is not available under RISC OS 2. 

Related SWis 

None 

Related vectors 

None 

3-639 



PDriver_DeclareDriver (SWI &80156) 

3-640 

PDriver DeclareDriver 
(SWI &80156) 

Registers a printer driver with the PDriver sharer module 

On entry 

RO = pointer to reason code handler for driver 
Rl =pointer to driver's private word (to be passed in Rl2 when calling driver) 
R2 =printer driver number (see page 3-595) 

On exit 

RO - R2 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call registers a printer driver with the PDriver sharer module. A driver should 
make this call when it is started, or when it receives Service_PDriverStarting 
(page 3-599). The driver can then be selected using PDriver_SelectDriver 
(page 3-643) . Duplicate printer drivers are not allowed, and an error is generated if 
the driver is already registered. 

You must register any new printer driver numbers with Acorn; see the section 
entitled Printer driver and printer dumper numbers on page 4-550. 



Printer Drivers 

The driver passes pointers to a reason code handler and to a private word (typically 
the driver's private workspace pointer) . The driver's reason code handler provides 
entry points used by the sharer to implement PDriver_ ... SWis. The sharer fully 
implements these SWis itself: 

PDriver_DeclareDriver 
PDriver_RemoveDriver 
PDriver_SelectDriver 
PDriver_EnumerateDrivers 

For all other SWis , the sharer subtracts the PDriver SWI chunk base (&80140) from 
the SWI number to derive a reason code, and then calls the appropriate driver's 
reason code handler with the following register usage: 

On entry 

Rll =reason code (SWI number- &80 140) 
R 12 = pointer to private word 
Rl4 =return address 

Other register usage as documented for corresponding SWI 

On exit 

V clear 

V set 

register usage as documented for corresponding SWI 

RO = pointer to error block 

The handler should implement the functionality of the SWI, as documented. 

This call is not available under RISC OS 2. 

Related SWis 

PDriver_RemoveDriver (page 3-642) 

Related vectors 

None 

3-641 



PDriver_RemoveDriver (SWI &80157) 

3-642 

PDriver RemoveDriver 
(SWI &80157) 

Deregisters a printer driver with the PDriver sharer module 

On entry 

RO =printer driver number (see page 3-595) 

On exit 

RO preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call deregisters a printer driver with the PDriver sharer module. This cancels 
all jobs associated with the driver. Doing so can get some applications confused­
and possibly crash them. if they have pending jobs and believe the driver to still be 
present- so we strongly recommend that a driver checks that it has no pending 
jobs before calling this SWI. 

This call is not available under RISC OS 2. 

Related SWis 

PDriver_DeclareDriver (page 3-640) 

Related vectors 

None 



Selects the specified driver 

Printer Drivers 

PDriver SelectDriver 
(SWI &80158) 

On entry 

RO =printer driver number (page 3-595), or -I to set no current active driver. 
or -2 to read current driver 

On exit 

RO = previous driver number, or -I if none 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call selects the specified driver. returning an error if the driver has not been 
registered. This call is not designed for use by applications' authors. and should 
only be used by the Printer application . 

If you must use this call . your code should store the previous driver number 
(returned in RO). and attempt to reselect it when finished . 

This call is not available under RISC OS 2. 

Related SWis 

PDriver_DeclareDriver (page 3-640). PDriver_RemoveDriver (page 3-642). 
PDriver_EnumerateDrivers (page 3-644) 

Related vectors 

None 

3-643 



PDriver_EnumerateDrivers (SWI &80159) 

3-644 

PDriver EnumerateDrivers 
(SWI &80159) 

Enumerates all drivers within the system. 

On entry 

RO =zero to enumerate first driver, or handle returned from previous call 

On exit 

RO =handle to enumerate next driver, or zero if no more 
R I = printer driver number (page 3-595) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call enumerates all the drivers within the system, returning their printer driver 
numbers (a list of which is on page 3-595) . To enumerate the complete list you 
should set RO to zero and repeatedly call this SWI until RO is returned as zero. 

This call is not available under RISC OS 2. 

Related SWis 

PDriver_SelectDriver (page 3-643) 

Related vectors 

None 



Processes miscellaneous printer driver operations 

Printer Drivers 

PDriver_MiscOp 
{SWI &8015A) 

On entry 

RO = reason code 
Other registers are reason code dependent 

On exit 

Reason code dependent 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call processes miscellaneous printer driver operations. The action depends on 
the reason code passed in RO: 

RO 
0 

2 

&80000000 
&80000001 
&80000100-
&BOOOOFFF 

Action 

Adds a font name to a list of those known to the 
current printer 

Page 

3-647 

Removes font name(s) from a list of those known 3-649 
to the current printer 

Enumerates the font name(s) in a list of those 
known to the current printer 

Registers a printer dumper with PDriverDP 

Deregisters a printer dumper with PDriverDP 

An extension mechanism to provide direct control 
over a printer dumper 

3-650 

3-652 

3-653 

3-654 



PDriver_MiscOp (SWI &8015A) 

3-646 

Reason codes with bit 31 clear are applicable to all drivers, whereas those with bit 
31 set are driver specific. 

This call is not available under R1SC OS 2. 

Related SWis 

PDriver_MiscOpForDriver (page 3-655) 

Related vectors 

None 



Printer Drivers 

PDriver_MiscOp 0 
(SWI &8015A) 

Adds a font name to a list of those known to the current printer 

On entry 

RO = 0 (reason code) 
R I = pointer to RISC OS font name (control-character terminated) 
R2 =pointer to printer's native font name (control-character terminated), 

orO if none 
R3 = flag word for printer dependent code: 

bit 0 set ~font is resident within device 
bit I set ~font to be downloaded at job start 
bit 2 set ~ font has been downloaded 
bits 3-31 reserved (must be zero) 

R4 = flag word for font addition: 
bit 0 set~ overwrite existing entries 
bits I- 31 reserved (must be zero) 

On exit 

Use 

RO - R4 preserved 

This call adds a font name to a list of those known to the current printer. It is used 
by the Printers application, and need not be called by other applications 

If no job is selected, the font name gets added to a global list which describes the 
fonts known to the printer. If a job is selected, the font name instead gets added to 
a local list- associated with the job- which describes the fonts and their 
mappings within that job. Each record is stored as a separate block within the 
RMA. When PDriver_Select)ob is called to start a job, the local list is initialised by 
copying the blocks in the current global list. 

The RISC OS font name pointed to by Rl should ideally contain the encoding 
vector used (ie \Ffont_name \Eencoding); you can also include matrix information for 
derived fonts. This name is case insensitive. 

R2 contains a pointer to the printer's native font name to be associated with the 
RISC OS font name. This is case sensitive, and is used by the printer dependent 
code as required. You may pass a null name if necessary; for example direct drive 
laser printer drivers don't have native font names. 

3-647 



PDriver_MiscOp 0 (SWI &8015A) 

3-648 

R3 is a flag word to be used by the printer dependent code; see specific printer 
documentation for further details. 

R4 contains a flag word to associate with the addition of the record. Bit 0 controls 
what happens when you try to add a font name that has already been defined; if the 
bit is set, the old data gets overwritten, whereas if it is clear an error is generated. 



Printer Drivers 

PDriver_MiscOp 1 
(SWI &8015A) 

Removes font name(s) from a list of those known to the current printer 

On entry 

RO = I (reason code) 
Rl =pointer to RISC OS font name (control-character terminated). or zero to 

delete all fonts 

On exit 

Use 

RO , Rl preserved 

This call is used to remove font name(s) from a list of those known to the current 
printer. It is used by the Printers application , and need not be called by other 
applications. 

R I points to the font name to be removed, but if this pointer is zero, all font names 
get removed. 

If no job is selected. the font name(s) get removed from the global list; if a job is 
selected, the font name(s) instead get removed from the local list. See 
PDriver_MiscOp 0 on page 3-64 7 for more details of how these lists are used. 

No error is generated if you attempt to remove all font names but none are 
registered, whereas an error will be generated if you attempt to remove a specific 
font name that is not present. 

Current versions of this call ignore R I, and always remove all fonts. 

3-649 



PDriver_MiscOp 2 (SWI &8015A) 

3-650 

PDriver_MiscOp 2 
(SWI &8015A) 

Enumerates the font name(s) in a list of those known to the current printer 

On entry 

RO = 2 (reason code) 
Rl =pointer to return buffer. or zero to return required size of buffer 
R2 = size of return buffer, or zero to return required size of buffer 
R3 =zero to enumerate first font names. or handle returned from previous call. 

or (if Rl = R2 = 0) header size to add to returned buffer size 
R4 =flags: 

all bits reserved (must be zero) 

On exit 

Use 

if Rl =F- 0 on entry then: 

R I = pointer to first free byte in buffer 
R2 = number of free bytes in buffer 
R3 = handle to enumerate next font names, or zero if no more 
R4 preserved 

else: 

R I preserved 
R2 = required size of buffer to return data + header size passed in R3 
R3 , R4 preserved 

This call enumerates the font name(s) in a list of those known to the current 
printer. It is used by the Printers application. and need not be called by other 
applications. 

To enumerate the complete list you should set R3 to zero and repeatedly call this 
SWI until R3 is returned as zero 

If no job is selected, the global list is enumerated; if a job is selected, the local list 
is instead enumerated. See PDriver_MiscOp 0 on page 3-647 for more details of 
how these lists are used. 



Printer Drivers 

The font names are returned as a series of three word records in the return buffer: 

Offset 

0 
4 
8 

Meaning 

pointer to RISC OS font name (control-character terminated) 
pointer to native font name (control-character terminated) 
flag word for printer dependent code (see PDriver_MiscOp 0) 

The font names are stored in blocks within the RMA. Ideally you should make a 
copy of these, as someone could later remove them by calling PDriver_MiscOp I . 

Before enumerating the fonts you can find the required size of the return buffer by 
calling this SWI with Rl and R2 set to zero, and R3 set to the size of any header for 
which you wish to pre-allocate room. The required buffer size is returned in R2 (ie 
sufficient to hold all enumerated fonts, and the given size of header) . 

3-651 



PDriver_MiscOp &80000000 (SWI &8015A) 

PDriver_MiscOp &80000000 
(SWI &8015A) 

Registers a printer dumper with PDriverDP 

On entry 

RO = &80000000 (reason code) 
Rl =number of printer dumper to register (see page 3-665) 
R2 =version of PDriverDP required by dumper x I 00 
R3 = pointer to dumper's private word (to be passed in R 12 when calling dumper) 
R4 = pointer to reason code handler for dumper 
R5 = supported calls bit mask 
R6 =supported strip types bit mask 

On exit 

Use 

RO - R6 preserved 

This call registers a printer dumper with PDriverDP. A dumper should make this call 
when it is started, or when it receives Service_PDumperStarting (page 3-676) . We 
recommend you use the PDriver_MiscOpForDriver form (see page 3-655), as this 
ensures correct operation even if PDriverDP is not the currently selected driver. 
Duplicate printer dumpers are not allowed, and an error is generated if the dumper 
is already registered . 

The dumper passes pointers to a reason code handler, and to a private word 
(typically the dumper's private workspace pointer) . The dumper's reason code 
handler provides entry points used by PDriverDP to implement those parts of its 
functionality that are printer dependent, such as initialising a printer, or outputting 
a strip of an image. 

The dumper also passes a bit mask in each of R5 and R6. If bit n of the mask is set, 
then it shows (respectively) that the printer dumper supports reason code nor that 
it can output strip type n. A dumper must support reason codes 0- 7, and strip 
types 0- 2; PDriverDP will assume that it does so. Bits corresponding to undefined 
reason codes or strip types must be zero. 

For details of the current range of reason codes and strip types- and of the entry 
conditions for the handler- see the section entitled Reason code handler entry and exit 
conditions on page 3-664. 



Printer Drivers 

PDriver_MiscOp &80000001 
(SWI &8015A) 

Deregisters a printer dumper with PDriverDP 

On entry 

RO = &80000001 (reason code) 
Rl =number of printer dumper to deregister (see page 3-665) 

On exit 

Use 

RO, R I preserved 

This call deregisters a printer dumper with PDriverDP. A dumper should make this 
call when it dies. This call may return an error, especially if the dumper is currently 
being used for a print job, in which case the dumper must refuse to die, returning 
the original error. We recommend you use the PDriver_MiscOpForDriver form (see 
page 3-655). as this ensures correct operation even if PDriverDP is not the currently 
selected driver. 

3-653 



PDriver_MiscOp &80000100- &BOOOOFFF (SWI &8015A) 

3-654 

PDriver_MiscOp &800001 00 - &80000FFF 
(SWI &8015A) 

An extension mechanism to provide direct control over a printer dumper 

On entry 

RO = &80000100- &80000FFF (reason code) 
Rl =number of printer dumper to process call (see page 3-665) 
R2 - R7 are reason code dependent 

On exit 

Use 

Reason code dependent 

These calls are an extension mechanism to provide direct control over a printer 
dumper. Registers RO- R7 are passed straight through to the specified dumper 
using the MiscOp entry point; the processing of these registers is dumper-specific. 

All current Acorn printer dumpers do not use this feature, and merely return 
control immediately the MiscOp entry point is called. 



Printer Drivers 

PDriver_MiscOpForDriver 
(SWI &80158) 

Processes miscellaneous printer driver operations using a specified driver 

On entry 

RO = reason code 
R8 = number of printer driver to which to pass call 
Other registers are reason code dependent 

On exit 

Reason code dependent 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call processes miscellaneous printer driver operations using a specified driver. 
It is identical to PDriver_MiscOp, save that the call gets passed to the driver 
specified in R8. For details of the various reason codes see page 3-64 7 onwards. 

This call is not available under RISC OS 2. 

Related SWis 

PDriver_MiscOp (page 3-645) 

Related vectors 

None 

3-655 



PDriver_SetDriver (SW/8015C) 

Configures the current printer driver 

PDriver SetDriver 
(SWI 8015C) 

PrinterDM version 

3-656 

Sets the current printer dumper, if PrinterDM is the current printer driver 

On entry 

Rl =printer dumper number (see page 3-665) 
R2 =pointer to command to ensure printer dumper present 
R3 =pointer to 256 byte data block giving dumper configuration data 
R4 = pointer to 256 byte block giving PDriverDP and dumper configuration data 
R5 = configuration word for dumper 

On exit 

Rl - R5 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call sets the current printer dumper to that specified by the number held in 
R I. It does so by calling the dumper's reason code handler with reason code 0. For 
a list of current printer dumper numbers, see page 3-665. 

R2 points to a command line, used to load the printer dumper if it is not already 
loaded. The length of this command line should not exceed 256 bytes including the 
terminating character. 



Printer Drivers 

R3 and R4 are both pointers to 256 byte data blocks containing configuration data 
for the dumper. PDriverDP copies each block, adds some information to the block 
pointed to by R4 (see below). and then passes the dumper pointers to the copies. 
Consequently you may free the original buffers on exit. 

R5 is a configuration word, the meaning of which is dumper-specific. 

The information that PDriverDP adds to the copy of the block pointed to by R4 
consists of 12 unsigned bytes at the start of the block (which overwrite the existing 
contents) : 

Offset Meaning 

0 height in dots of a strip (pin height x no. of vertical interlace passes: 
ie PrintEdit's DumpDepth) 
number of vertical interlace passes- I (ie PrintEdit's x interlace) 

2 number of horizontal interlace passes- I (ie PrintEdit's y interlace) 
3 number of passes over line- I: for multiple pass printing, eg colour 
4 strip type (see page 3-665) 
5 output depth (bits per pixel) : can only be I (monochrome) or 8 (grey 

or colour 
6 number of passes per strip, 0 => I pass: useful for colour separation 
7 number of current pass 
8 - II PDriverDP's copy of dumper's private word 

and 4 signed words that are appended to the block: 

Offset Meaning 

256 configuration word for dumper (as passed in R5) 
260 pointer to active printer dumper 
264 printer dumper number (as passed in Rl) 
268 left margin in pixels (calculated from the Printers application's paper 

sizes) 

For details of the information the Printers application places in the buffers and 
configuration word when it makes this call, see the documentation of 
PDumperReason_SetDriver on page 3-668. 

This call is not available under RISC OS 2. 

PDriverPS version 
This SWI is used as part of the private interface between the Printers application 
and PDriverPS. You must not use it from your own applications; it is only of 
relevance to anyone wishing to replace the current PostScript printer drivers. See 
the section entitled Extending the printing system on page 3-593. 

This call is not available under RISC OS 2. 

3-657 



PDriverPS version 

3-658 

Related SWis 

None 

Related vectors 

None 



Printer Drivers 

Example program 
This is an example BASIC procedure that does a standard 'two up' printing job: 

DEFPROCprintout(firstpage%, lastpage%, title$, filename$ , fontptr%) 
REM Open destination file and set up a local error handler that 
REM will close it again on an error. 
LOCAL H%, 0% 
H% = OPENOUT(filename$) 
LOCAL ERROR 
ON ERROR LOCAL :RESTORE ERROR:CLOSE#H% : PR0Cpasserror 

REM Start up a print job associated with this file, remembering the 
REM handle associated with the previous print job (if any), then 
REM set up a local error handler for it. 
SYS "PDriver_ SelectJob " ,H%,title$ TO 0% 
LOCAL ERROR 
ON ERROR LOCAL:RESTORE 
ERROR:SYS "PDriver_AbortJob" , H% : SYS"PDriver_SelectJob", O% : PROCpasserror 

PROCdeclarefonts(fontptr%) 

REM Now we decide how two pages are to fit on a piece of paper. 
LOCAL left%, bottom% , right% , top% 
REM see below for an explanation of PROCgetdocumentsize 
PROCgetdocumentsize(box%) 
SYS "PDriver_ PageSize" TO , , , left% , bottom% , right%,top% 
REM see below for an explanation of PROCfittwopages 
PROCfittwopages(left% , bottom%,right% , top% , box% , matrix% , originl% , origin2%) 

REM Start the double page loop 
LOCAL page%, copiesleft% , pagetoprint% , white% 
white%=&FFFFFFOO 

FOR page%=firstpage% TO lastpage% STEP 2 

REM Set up to print two pages , or possibly just one last time around. 
SYS "PDriver_GiveRectangle", page%, box%, matrix%, originl% , white% 
IF page%<lastpage% THEN 

SYS "PDriver_GiveRectangle ", page%+1, box%, matrix%, origin2%, white% 
END IF 

REM Start printing. As each printed page corresponds to two document pages , 
REM we cannot easily assign any sensible page numbers to printed pages . 
REM So we simply pass zeroes to PDriver_ DrawPage. 
SYS "PDriver_DrawPage",l,box2%,0,0 TO copiesleft%, ,pagetoprint% 
WHILE copiesleft%<>0 

REM see below for an explanation of PROCdrawpage 
PROCdrawpage(pagetoprint% , box2%) 
SYS "PDriver_GetRectangle", , box% TO copiesleft% , ,pagetoprint% 

ENDWHILE 

REM End of page loop 
NEXT 

3-659 



Notes 

Notes 

3-660 

REM All pages have now been printed. Terminate this print job. 
SYS "PDriver_ EndJob ", H% 

REM Go back to the first of our local error handlers . 
RESTORE ERROR 

REM And go back to whatever print job was active on entry to this procedure 
REM (or to no print job if no print job was active). 
SYS "PDriver_ SelectJob", O% 

REM Go back to the caller's error handler . 
RESTORE ERROR 
REM Close the destination file. 
CLOSE#H% 
ENDPROC 

DEFPROCpasserror 
SYS "BASICTrans_Message " ,42 , ERL,REPORT$ TO ; flags% 
IF (flags% AND 1)<>0 THEN 

REPORT:IF ERL<>O THEN PRINT " at line "ERL ELSE PRINT 
ENDIF 
ENDPROC 

This uses the following global areas of memory: 

box% 4 words 
box2% 4 words 
matrix% 4 words 
originl% 2 words 
origin2% 2 words 

And the following external procedures: 

DEFPROCdeclarefonts(fontptr%) 

• checks the printer driver's features bit and, if necessary, declares the fonts in 
the structure pointed to by fontptr%. 

DEFPROCgetdocumentsize(box%) 

• fills the area pointed to by box% with the size of a document page in OS units . 

DEFPROCfittwopa ges (l %, b %, r% , t %, box% , transform% , orgl% , org2%) 

• given left, bottom, right and top bounds of a piece of paper, and a bounding 
box of a document page in OS units, sets up a transformation and two origins 
in the areas pointed to by tr%, orgl% and org2% to print two of those pages 
on a piece of paper. 



Printer Drivers 

DEFPROCdrawpage (page% , box% ) 

• draws the parts of document page number 'page%' that lie with the box held in 
the 4 word area pointed to by 'box%'. 

If printing is likely to take a long time and the application does not want to hold 
other applications up while it prints, you may like to use multitasking. To do so, 
you should regularly use a sequence like the following during printing: 

SYS " PDriver_SelectJob ", O% 
SYS "Wimp_ Poll " ,mask%,area% TO reason% 

process reason% as appropriate 

SYS "PDriver_ SelectJob", H% TO 0% 

However, you should first see the section entitled Multitasking whilst printing on 
page 3-561, which explains the issues involved in multitasking printing. 

3-661 



3-662 



65 Printer Dumpers . 

Introduction and Overview 
This chapter describes printer dumper modules, used in conjunction with the 
PDriverDP module to provide support for bit image printing. 

The way in which these modules fit in with the rest of the printing system is 
explained in the previous chapter on printer drivers, in the section entitled The 
structure of the printing system on page 3-589. 

The relationship of printer dumpers to the PDriverDP module is very similar to that 
between printer drivers and the printer sharer module. In both cases the 'parent' 
module issues a service call when it starts, and it is the duty of the 'child' to 
register at this time. When registering the child passes to the parent module an 
entry point. The parent module calls this entry point to pass on those calls that it 
cannot handle because they are device dependent. 

For printer dumper modules, the service call they should respond to is 
Service_PDumperStarting (see page 3-676). They should register themselves by 
calling PDriver_MiscOpForDriver &80000000 (see page 3-652 and page 3-655). 
either on receiving this service call or on starting up. They should ignore any errors 
from this call. 

When a printer dumper module dies it must deregister itself by calling 
PDriver_MiscOpForDriver &8000000 I (see page 3-653 and page 3-655). this time 
refusing to die if an error is returned. 

3-663 



Technical Details 

Technical Details 

Reason code handler entry and exit conditions 
A printer dumper's reason code handler is called in SVC mode. Rll always contains 
the reason code for the call. The following reason codes are assumed to be 
supported by all PDumper modules: 

Value Name on page 

0 PDumperReason_SetDriver page 3-668 
PDumperReason_OutputDump page 3-670 

2 PDumperReason_ColourSet page 3-671 
3 PDumperReason_StartPage page 3-672 
4 PDumperReason_EndPage page 3-673 
5 PDumperReason_StartJob page 3-673 
6 PDumperReason_AbortJob page 3-674 
7 PDumperReason_MiscOp page 3-674 

Other reason codes are reserved for future use. If a dumper receives an unknown 
reason code, it should return the call with all registers preserved. 

R 12 is always a pointer to the printer dumper's private word, as passed in R3 when 
it first registered itself using PDriver_MiscOp &80000000 (see page 3-652) . The 
remaining register usage is reason code dependent. and detailed below. 

All calls can return an error, which is done in the normal way by returning with the 
V flag set and RO pointing to an error block. 

Escape will be enabled during most calls , especially for reason code I 
(PDumperReason_OutputDump) as this can often take quite a long time. If a 
dumper is going to spend a long time processing a request. it should check the 
escape state regularly and return an escape error if necessary. 

If you are writing a dumper. you should preserve all registers. save for those 
explicitly used to return a value. 



Printer Dumpers 

Common parameters 

Printer dumper numbers and names 

These are the current printer dumper numbers in use. and the names of the 
corresponding PDumper modules: 

Value Meaning PDumper module 

0 Sprite device PDumperSP 
Dot-matrix generic PDumperDM 

2 LaserJet compatible device PDumperLJ 
3 Apple ImageWriter device PDumperiW 
4 Dot reducing 24 pin device PDumper24 
5 Colour Deskjet compatible device PDumperDJ 

You must register any new printer dumper numbers with Acorn; see the section 
entitled Printer driver and printer dumper numbers on page 4-550. 

Strip types 

Most calls to the printer dumper reason code handler specify the type of strip 
being printed. The values used are: 

Value Meaning 

0 monochrome 
grey scale 

2 256 colour 

3-665 



How the PDumper reason codes get called 

How the PDumper reason codes get called 

This is a 'code fragment ' description of printing: 

Use Printers message protocol if running under the Wimp 

This is done by ' Printers 
PDriver_SetDriver 

This is done by applications 
PDriver_Info 
REM check what features are available (eg PDriver_ DeclareFont) 

OPEN printer : 

PDriver_SelectJob 

IF driver supports PDriver_ DeclareFont THEN 
WHILE fonts to be declared 

PDriver_DeclareFont font 
ENDWHILE 
PDriver_ DeclareFont end of font list 

END IF 

FOR each page to print 
REPEAT 

END FOR 

PDriver_ GiveRectangle 
UNTIL all rectangles declared 
REM typically only one rectangle given , specifying whole page 

PDriver_ DrawPage 
WHILE more rectangles to print 

ENDWHILE 

plot returned rectangle using supported output calls 
PDriver_ GetRectangle 

PDriver_EndJob 

CLOSE printer : 



Printer Dumpers 

Here is the same 'code fragment' description of printing showing where the various 
reason codes are used in calls to a dumper's reason code handler: 

Use Printers message protocol if running under the Wimp 

This is done by ! Printers 
PDriver_ SetDriver 

PDumperReason_SetDriver 

This is done by applications 
PDriver_ Info 

the printer gets configured 

REM check what features are available (eg PDriver_ DeclareFont) 

OPEN printer : 

PDriver SelectJob 
PDumperReason_ StartJob 

IF driver supports PDriver_ DeclareFont THEN 
WHILE fonts to be declared 

PDriver_ DeclareFont font 
ENDWHILE 
PDriver_ DeclareFont end of font list 

END IF 

FOR each page to print 
REPEAT 

PDriver_GiveRectangle 
UNTIL all rectangles declared 
REM typically only one rectangle given , specifying whole page 

PDriver_ DrawPage 
PDumperReason_StartPage 

WHILE more rectang les to print 
plot returned rectangle using support ed output calls 

PDumperReason_ColourSet 
PDriver_ GetRectangle 

PDumPerReason_OUtputDump 
ENDWHILE 

PDumperReason_EndPage 
PDumperReason_AbortJob (R3=0) to tidy workspace for page end 
PDumperReason_StartPage for the next copy 

ENDFOR 

PDriver_ EndJob 
PDumperReason_AbortJob (R3*0) 

CLOSE printer : 

to tidy up job workspace 

3-667 



Printer Dumper reason codes 

Printer Dumper reason codes 

PDumperReason_SetDriver (reason code 0) 

::\-nnA 

On entry 

Rl =printer dumper number 
R2 =pointer to command to ensure printer dumper present 
R3 =pointer to 256 byte data block giving dumper configuration data 
R4 = pointer to 272 byte block giving PDriverDP and dumper configuration data 
R5 =configuration word for dumper 
Rll = 0 (printer dumper reason code) 
Rl2 =pointer to dumper's private word 

On exit 

Details 

This is called when the printer dumper is being selected by PDriver_SetDriver (see 
page 3-656) . 

Rl is unlikely to be useful to the printer dumper, which probably knows its own 
number. 

The command pointed to by R2 is again unlikely to be useful to the printer dumper. 
The command may not have been used, as the dumper may already have been 
loaded when PDriver_SetDriver was called. 

This call sets the current printer dumper to that specified by the number held in 
Rl . It does so by calling the dumper's reason code handler with reason code 0. 

R3 and R4 are both pointers to data blocks containing configuration data for the 
dumper. Both blocks are transient. and so you must copy any data you need before 
returning to the caller. When this reason code is called by the Printers application 
in RISC OS 3 (version 3. I 0) via PDriver_SetDriver (page 3-656). the contents of the 
data blocks are as follows: 

• The data block pointed to by R3 holds the name of the palette file to be used, 
(eg: 'Printers:Palettes.O'). which is supplied by the Printers application . 



Printer Dumpers 

• The data block pointed to by R4 is split into two categories: 

Bytes 0- II and bytes 256- 271 contain information added by PDriverDP, 
as detailed on page 3-657. 

2 Bytes 12- 255 (244 bytes in all) contain information passed by the Printers 
application- mainly the control strings that are defined using the 
PrintEdit application. The location of each string within the buffer is given 
as a byte offset from the start of these 244 bytes; at this offset there will be 
a byte giving the string's length, followed by the string itself (without a 
terminator). An offset of zero implies that there is no corresponding string. 

The italicised words below show the names used by PrintEdit for the passed 
information. All bytes , whether offsets or values, are unsigned quantities; all 
words are signed: 

Offset Meaning 

12+0 data length multiplier 
+I da ta length added (line as printer sees it is dim x width + dla) 
+2 dump height- ie bit rows high per dump 
+ 3 offset to page start string 
+4 offset to page end string 
+5 offset to line return string (for x interlace) 
+6 offset to line skip string (for blank lines) 
+ 7 offset to line end I string 
+8 offset to line end 2 string for 2nd vertical interlace 
+9 offset to line end 3 string for 3rd vertical interlace 
+I 0 offset to zero skip string 
+I I offset to line start I string for pre length output 
+ 12 offset to line start 2 string for post length output 
+ 13 offset to line pass I string for colour I, pre length output 
+ 14 offset to line pass I b string for colour I, post length output 
+ 15 offset to line pass 2 string for colour 2, pre length output 
+ 16 offset to line pass 2b string for colour 2, post length output 
+ 17 offset to line pass 3 string for colour 3, pre length output 
+18 offset to line pass 3b string for colour 3, post length output 
+ 19 offset to line pass 4 string for colour 4, pre length output 
+20 offset to line pass 4b string for colour 4, post length output 
+21 offset to string to set lines per page 
+22 number of lines per page (set from text height in !Printers) 
+23 number of leading zeros to leave (always set to lf6" by !PrintEdit) 
+24 multiplier used to convert from output to no. of dpi to skip 

(derived from skip resolution) 
+28 divider used to convert from output to no. of dpi to skip 

(derived from skip resolution) 
+32 short advance used for roll paper (always set to I " by !PrintEdit) 

3-669 



PDumperReason_ OutputDump (reason code 1) 

+ 36 offset to form feed string 
+37 reserved (3 bytes) 
+40 paper x offset (ie x pixels to subtract from margin) 
+44 papery offset (ie y pixels to subtract from margin) 

R5 is a configuration word, the meaning of which is dumper-specific. The top byte 
will always be the version number of PDriverDP This is 3 for RISC OS 3 
(version 3.1 0); if you receive a lower value you should fault it. 

Other bits of the configuration word currently defined are: 

Bit Meaning when set 

0 Horizontal output (PDumperDM) 
Supports multiple copies (PDumperLJ) 
Roll paper feed (PDumperDM) 
Supports compression (PDumperLJ) 

2 Do not send form feeds (PDumperLJ) 
3 Use PaintJet paper movement commands (PDumperLJ) 

All bits not described above are reserved. 

PDumperReason_ OutputDump (reason code 1) 

3-670 

On entry 

RO = pointer to start of strip data giving bitmap for strip 
Rl =file handle for output 
R2 = strip type (see page 3-664) 
R3 =width output dump should be, in pixels 
R4 = height of strip in pixels 
R5 =width of strip in bytes (ie amount to add to RO to go down one line) 
R6 = halftoning information: 

bits 0- 7 = horizontal resolution in pixels 
bits 8- 15 =vertical resolution in pixels 
bits 16 - 31 reserved 

R7 =pointer to copy of PDriverDP and dumper configuration data (see page 3-668) 
R8 =pointer to private word for job (see PDumperReason_Startlob on page 3-673) 
Rll = I (printer dumper reason code) 
Rl2 =pointer to dumper's private word 

On exit 



Details 

Printer Dumpers 

This routine is called by PDriverDP when it has generated a strip for output at the 
dumper's required depth. The strip is passed as a bitmap stored in sprite format. 
RO points to the bitmap data, not to a sprite header; there may be a header 
preceding the data, but the dumper must not rely on this . 

This routine should then render the data to the file handle passed in Rl . 
Interlacing will already have been catered for by PDriverDP. 

The strip can be at either I or 8 bits-per-pixel. The values stored relate to the byte 
values returned from PDumperReason_ColourSet (see page 3-671 ). 

PDumperReason_ColourSet (reason code 2) 

On entry 

RO =physical colour (&BBGGRROO) 
R2 =strip type (see page 3-664) 
R3 =pointer to private word for job (see PDumperReasort_Startlob on page 3-673) 
R4 = halftoning information: 

bits 0- 7 =horizontal resolution in pixels 
bits 8- 15 =vertical resolution in pixels 
bits 16 - 31 reserved 

R5 =pointer to copy of PDriverDP and dumper configuration data (see page 3-668) 
Rll = 2 (reason code) 
R 12 = pointer to dumper's private word 

On exit 

Details 

R3 = strip type dependent colour number 

This call is made when ever the PDriver needs to convert a physical colour to a 
colour number. The colour number is specific to the printer dumper and strip type. 

The printer dumper can use PDumperSupport to do this by calling 
PDumper_SetColour (page 3-689) . 

3-671 



PDumperReason_StartPage (reason code 3) 

PDumperReason_StartPage (reason code 3) 

~-672 

On entry 

RO =copies requested 
Rl =file handle for output 
R2 =strip type (see page 3-664) 
R3 = number of blank pixel rows to skip before start of data 
R4 =pointer to private word for job (see PDumperReason_StartJob on page 3-673) 
R5 =pointer to copy of PDriverDP and dumper configuration data (see page 3-668) 
R6 = left margin in pixels 
R7 =horizontal and vertical resolution : 

bits 0 - 15 = x pixel resolution in dpi 
bits 16- 31 = y pixel resolution in dpi 

Rll = 3 (reason code) 
Rl2 =pointer to dumper's private word 

On exit 

Details 

RO = number of copies to be performed 
R3 = number of blank pixel rows remaining to skip before start of data 

This routine is called at the start of the page. This routine should set up the printer 
and skip to the correct print position. 

If the printer can be requested to perform multiple copies itself then this routine 
should return the number of copies passed in adjusted appropriately- the 
returned number of copies being how many times PDriverDP will print a given 
page. 

However much line skipping is performed at the page start should be subtracted 
from R3 before returning; PDriverDP will perform the rest. Note that R3 on return 
must not be negative. 

The routine is also passed the horizontal margin. This cannot be modified, and it is 
assumed that the dumping routine will process it appropriately, for example by 
padding each line start with null bytes, or by moving the graphics origin to the 
right. 

If the printer is a generic dot matrix (ie the printer dumper number is I) and it has 
roll paper (ie bit I of R5!256 is set). then R3 should be ignored and instead R5!32 
pixel rows should be skipped (ie the short advance used for roll paper) . As above, 
you can return any remainder of this in R3. 



Printer Dumpers 

PDumperReason_EndPage (reason code 4) 

On entry 

Rl =file handle for output 
R2 =strip type (see page 3-664) 
R3 =pointer to private word for job (see PDumperReason_Startlob on page 3-673) 
R4 =pointer to copy of PDriverDP and dumper configuration data (see page 3-668) 
Rll = 4 (reason code) 
Rl2 =pointer to dumper's private word 

On exit 

Details 

When called the PDumper should output the end of page sequence to the file and 
then return. 

PDumperReason_StartJob (reason code 5) 

On entry 

RO = pointer to private word for job (see below) 
Rl =file handle for output 
R2 =strip type (see page 3-664) 
R5 =pointer to copy of PDriverDP and dumper configuration data (see page 3-668) 
Rll = 5 (reason code) 
Rl2 =pointer to dumper's private word 

On exit 

Details 

When this is called the printer dumper should handle setting up the required 
workspace for the job. The private word for the job should be treated the same way 
as the private word for a dumper, that is, the meaning is defined by the dumper. 
Typically workspace is allocated and attached to the private word. 

The printer dumper can use PDumperSupport to do this by calling 
PDumper_StartJob (page 3-686). 

3-673 



PDumperReason_AbortJob (reason code 6) 

PDumperReason_AbortJob (reason code 6) 

On entry 

RO =pointer to private word for job (see PDumperReason_Start)ob on page 3-673) 
Rl =file handle for output 
R2 =strip type (see page 3-664) 
R3 = subreason code: 0 ~end of a page, else end of document 
Rll = 6 (reason code) 
R 12 = pointer to dumper's private word 

On exit 

Details 

When this is called the PDumper should release any workspace specified, ie all 
document specific workspace at the end of document, or all page specific 
workspace at the end of a page. The PDumper should not output anything to the 
file . 

If an error occurs during a print sequence this call will be made with an 'end of 
document' subreason code; other calls will not be used. 

The printer dumper can use PDumperSupport to do this by calling 
PDumper_TidyJob (page 3-688) . 

PDumperReason_MiscOp (reason code 7) 

3-674 

On entry 

RO = PDriver_MiscOp reason code 
Rll = 7 (reason code) 
Rl2 =pointer to dumper's private word 
Other register usage as for PDriver_MiscOp SWI- see page 3-645 onwards 

On exit 



Details 

Printer Dumpers 

This call is provided so that dumpers can provide specific features that require an 
interface other than the control block. The current Acorn printer system does not 
use this call; if this reason code is used, current printer drivers merely return the 
call with all registers preserved. 

3-675 



Service Calls 

Service Calls 

3-676 

PDriverDP module starting up 

Service_PDumperStarting 
(Service Call &66) 

On entry 

Rl = &66 (reason code) 

On exit 

Use 

All registers preserved 

This service call is issued when the PDriverDP module starts up. Any printer 
dumpers resident at that time should declare themselves to PDriverDP by calling 
PDriver_MiscOpForDriver &80000000 (see page 3-652 and page 3-655). 



PDriverDP module dying 

On entry 

Rl = &67 (reason code) 

On exit 

All registers preserved 

Use 

Printer Dumpers 

Service_PDumperDying 
(Service Call &67) 

This service call is issued as a broadcast to inform printer dumpers that they have 
been deregistered and that the PDriverDP module is about to die. 

3-677 



3-678 



66 PDumperSupport 

Introduction and Overview 
This chapter describes the PDumperSupport module, introduced in RISC OS 3 
(version 3.10). This module's SWI interface provides colour matching, error 
diffusion and halftoning facilities for the use of printer dumpers. This avoids 
unnecessary duplication of code in each module, and provides a service for third 
party printer dumpers 

The way in which th is module fits in with the rest of the printing system is 
explained in the earlier chapter on printer drivers, in the section entitled The 
structure of the printing system on page 3-589. 

3-679 



SWI calls 

SWI calls 

3-680 

PDumper_lnfo 
(SWI &41 BOO) 

Returns information about the PDumper support module 

On entry 

On exit 

RO =version number xI 00 ( eg version 1.23 stored as 123) 
Rl = bit field of optional features implemented by support module: 

bit 0 set~ supports halftone grey 
bit I set ~ supports error diffuse grey 
bit 2 set~ supports halftone colour 
bit 3 set ~ supports error diffuse colour 
bits 4 - 31 reserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call simply returns information about the PDumper support module, giving its 
version number and which optional features it supports. 

This call is not available under RISC OS 2, nor under RISC OS 3 (version 3.00) . 

Related SWis 

None 



Related vectors 

None 

PDumperSupport 

3-681 



PDumper_Ciaim (SWI &41801) 

3-682 

PDumper_Ciaim 
(SWI &41 801) 

Allocates a block of memory and links it into the chain 

On entry 

RO =pointer to anchor word 
R3 = size of block to be claimed 
R4 =tag for block 

On exit 

RO preserved 
R2 = pointer to block allocated (on a word boundary) 
R3, R4 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call allocates a block of memory and links it into the printer dumper's chain . 
The chain is specified by the anchor word. which is typically the printer dumper's 
private word . The size specified need not be a word multiple. The tag is a four byte 
value stored after the link point. Although you may claim multiple blocks with the 
same tag, you must be aware that if you subsequently call PDumper_Find it is 
uncertain which of these blocks it will find; see page 3-685. 

This call is not available under RISC OS 2, nor under RISC OS 3 (version 3.00) . 

Related SWis 

PDumper_Free (page 3-684). PDumper_Find (page 3-685) 



Related vectors 

None 

PDumperSupport 

3-683 



PDumper_Free (SWI &41802) 

3-684 

PDumper_Free 
(SWI &41 802) 

Attempts to release a block of memory from the printer dumper's chain 

On entry 

RO =pointer to anchor word 
R2 = pointer to block to be released 

On exit 

RO, R2 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call attempts to release a block of memory from the printer dumper's chain . 
The chain is specified by the anchor word. If the block is not part of the specified 
chain then it is not released , and an error is generated. 

This call is not available under RISC OS 2, nor under RISC OS 3 (version 3.00) . 

Related SWis 

PDumper_Ciaim (page 3-682). PDumper_Find (page 3-685) 

Related vectors 

None 



PDumperSupport 

PDumper_Find 
(SWI &41 803) 

Scans the printer dumper's chain for a block of memory with the given tag 

On entry 

RO =pointer to anchor word 
R2 = tag for block 

On exit 

R2 = pointer to block found 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call scans the printer dumper's chain for a block of memory with the given tag, 
returning the first match it finds. The chain is specified by the anchor word. 

If you have claimed several blocks with the same tag, you cannot be certain which 
one this call will return. If there is no match, this call generates an error. 

This call is not available under RISC OS 2, nor under RISC OS 3 (version 3.00). 

Related SWis 

PDumper_Claim (page 3-682), PDumper_Free (page 3-684) 

Related vectors 

None 

3-685 



PDumper_StartJob (SWI &41804) 

3-686 

PDumper_StartJob 
(SWI &41 804) 

Sets up any workspace that is required for a job 

On entry 

RO = pointer to anchor word 
Rl =flags word: all bits reserved (must be zero) 
R2 =pointer to filename of palette to load, or 0 if none to be loaded 

On exit 

RO - R2 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call sets up any workspace required for a job. The support module links this 
into the chain specified by the anchor word, which is typically the printer dumper's 
private word . You should call it at the start of a job (ie when your dumper is called 
with the reason code PDumperReason_StartJob) . 

The flags word in Rl is reserved for future expansion , and for the time being you 
must set it to zero. If non-null, R2 contains a pointer to the filename of a palette 
file to use for the job, which is loaded into a block with a tag of I. 

This call is not available under RISC OS 2, nor under RISC OS 3 (version 3.00). 

Related SWis 

PDumper_TidyJob (page 3-688) 



Related vectors 

None 

PDumperSupport 

3-687 



PDumper_TidyJob (SWI &41805) 

3-688 

Releases workspace used for a job 

PDumper_ Tidy Job 
(SWI &41 805) 

On entry 

RO = pointer to anchor word 
Rl =pointer to list of tags terminated by a null word, or 0 
R2 = reason code: 0 ~ end of page, else end of document 

On exit 

RO - R2 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This routine releases workspace used for a job, as specified by Rl and R2 . The 
support module releases this from the chain specified by the anchor word . 

Rl points to a list of tags; any block having a matching tag will be released. 
Furthermore, any blocks allocated by the support module that are specific to the 
page or document (as given in R2) will be released . 

This call is not available under RISC OS 2, nor under RISC OS 3 (version 3.00). 

Related SWis 

PDumper_StartJob (page 3-686) 

Related vectors 

None 



PDumperSupport 

PDumper_SetColour 
{SWI &41 806) 

Processes the colour setting required by the printer dumper 

On entry 

RO = pointer to anchor word 
R1 =physical colour (&BBGGRROO) 
R2 = strip information: 

bits 0- 7 =strip type (see page 3-665) 
bits 24- 31 = pass number 

R4 = halftoning information: 
bits 0 - 7 =horizontal resolution in pixels 
bits 8 - 15 =vertical resolution in pixels 
bits 16- 31 reserved (must be zero) 

On exit 

RO - R2 preserved 
R3 = strip type dependant colour number 
R4 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call processes the colour setting required by the printer dumper. In doing so. 
it scans the chain specified by the anchor word for any palette block to use, 
decodes the strip type, and then returns a suitable colour number. 

If this call generates an error, R3 may be corrupted on return. 

• This call is not available under RISC OS 2, nor under RISC OS 3 (version 3.00) . 

3-689 



PDumper_SetColour (SWI &41806) 

Related SWis 

PDumper_Claim (page 3-682). PDumper_Find (page 3-685) 

Related vectors 

None 

~-690 



PDumperSupport 

P Dumper _PrepareStrip 
(SWI &41 807) 

Processes a bitmap into a format suitable for printing 

On entry 

RO = pointer to anchor word 
Rl =pointer to bit image data 
R2 =resulting format of the strip 

bits 0 - 7 = format : 
0 ~grey level (halftoned) 
I ~grey level (diffused) 
2 ~colour (halftoned) 
3 ~colour (diffused) 

all other bits reserved (must be zero) 
R3 =width output dump should be, in pixels 
R4 = height of strip in pixels 
R5 =width of strip in bytes (ie amount to add to Rl to go down one line) 
R6 = halftoning information: 

On exit 

bits 0- 7 =horizontal resolution in pixels 
bits 8 - 15 =vertical resolution in pixels 
bits 16- 31 reserved (must be zero) 

RO - R6 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

3-691 



PDumper_PrepareStrip (SWI &41 807) 

~-692 

Use 

This call processes the specified 8 bit-per-pixel bitmap generated by the PDriverDP 
module into a format suitable for printing by the relevant output routine. 

This call is not available under RISC OS 2, nor under RISC OS 3 (version 3.00) . 

Related SWis 

None 

Related vectors 

None 



PDumperSupport 

PDumper_LookupError 
(SWI &41 808) 

Accesses the internal error handling routines within the support module 

On entry 

RO = pointer to error block, including message token 
Rl =pointer to string to substitute for '%0', or zero if no string 

On exit 

RO = pointer to resolved error block 
V flag set 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call accesses the internal error handling routines within the support module. 
On entry RO is a pointer to an error block, the error message in which is a token for 
one of the messages in the file Resources:S.Resources.PDrivers.Messages. The 
support module extracts the corresponding message from the file; it then scans it 
for the string '%0', for which (if found) it substitutes the string pointed to by Rl. 

Using this call removes any need to have MessageTrans routines within a printer 
dumper, as most printer dumpers simply resolve errors. 

This call is not available under RISC OS 2, nor under RISC OS 3 (version 3.00) . 

Related SWis 

None 

3-693 



PDumper_LookupError (SWI &41 BOB) 

3-694 

Related vectors 

None 



PDumperSupport 

PDumper_CopyFilename 
(SWI &41 809) 

Copies a specified filename into a buffer 

On entry 

RO = pointer to buffer into which to copy string 
R I = size of buffer 
R2 =pointer to string to be copied (control-character terminated) 

On exit 

RO = pointer to character in buffer after terminating null 
R2= pointer to last character copied from string 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call copies the specified filename into a buffer. The routine terminates on any 
character :::;32 and converts it to a null. An error is generated if an overflow occurs 
(ie more than Rl characters need to be copied). 

This call is not available under RISC OS 2, nor under RISC OS 3 (version 3.00). 

Related SWis 

None 

Related vectors 

None 

3-695 



3-696 



67 Printer definition files 

Introduction and Overview 
The RISC OS User Guide has a chapter describing how to use PrintEd it to create new 
printer definition files , either by starting from scratch or by editing an existing 
definition. This section contains extra information to help you with more complex 
tasks. 

When using PrintEdit, it is important you understand the Printers back end and the 
printer dumper used by the printer definition file being edited. The data held in a 
printer definition file is just that- data. It has no meaning and no pre-ordained use 
until the printer driver software starts to interpret it. The meaning of any individual 
data item in the printer definition file is actually imposed by the Printers 
application and the back end it is using, and by PDriverDP and the printer dumper 
it is using, rather than by PrintEdit. If PrintEdit lets you type in a certain number or 
select a certain option, it does not necessarily follow that this will have the desired 
effect on the software. An example of this is the Dump depth field: 

• PrintEdit will let you type in any number. 

• PDriverDP uses this number when rendering the bit image, and can also cope 
with any number (except zero) . 

• PDumperDM, on the other hand, assumes both that the Dump depth is a 
multiple of eight, and that the Dump height times the number of vertical 
interlace passes is equal to the Dump depth. You can easily type in a number 
which does not satisfy these conditions , but if you do so PDumperDM may fail 
in an arbitrary way; even if it doesn't , the printout will almost certainly be 
incorrect. 

If an existing Printers back end and/or an existing printer dumper will not do what 
you need, then you will have to write one. To be able to make this decision, you 
need to find out precisely what the existing back ends and printer dumpers can do 
by reading this section . It gives a set of PrintEdit example windows, and discusses 
what can be done with each field . All of the information is available to a Printers 
back end, but the Printers application only imposes a meaning on some of it. 
Likewise, all of the data for the current graphics resolution is available to a printer 
dumper, but PDriverDP only imposes a meaning on a small amount of it. 

3-697 



Introduction and Overview 

3-698 

Notation 

This information is passed to the dumpers using PDumperReason_SetDriver. This 
section uses BBC BASIC conventions to show how such data is passed: so 
R4!( 12+40) indicates the word at offset 52 from the location pointed to by R4, 
whereas R4?( 12+0) indicates the byte at offset 12 from the same location. For full 
details of how the data is passed, you must see page 3-668. 

Version numbers 

There have been some changes between RISC OS 3 (version 3.00) and RISC OS 3 
(version 3.1 0) to the graphics sections of printer definition files . Quite a few extra 
fields have been added, and exactly what all of the fields are used for and when 
have changed slightly too. Only the RISC OS 3 (version 3.1 0) behaviour is 
documented here. Some information on the differences is given in the 
Printers.Read_Me file. To ensure that your dumper is dealing with format data from 
RISC OS 3 (version 3.10) or later, check the version number passed to 
PDumperReason_SetDriver, which should be 3 or greater. 

Overview of following sections 

The most common use of PrintEdit is for dealing with Epson/IBM compatible 
printers. In each of the sections below we will use them as the core example and for 
discussing general points. Any points specific to other classes of printers appear at 
the end of each section. 



Printer definition files 

Technical details 

Printer definition editor 

General points, and Epson and IBM compatible printers 

The appearance of the Printer definition editor window when the Epson EX-800 
printer definition file is loaded is as follows: 

~ C3 Printer definition editor 
Printer class: I d~ I 
Printer type: I Epson EX-888 Colour I 
Printer nallf: I EX-888 I 
Sprite nallf: I dp I 

Paper X offset: I 6, 83 I ~~~~~ <)inches 
Paper Y offset: ?=I ===7 ·=76==1~----, 
Graphics 110des: I 7 I[!] 

Text 110des: I Edit no hi9hlishts,,, lim 
I Edit draft highlights .. , lim 
I Edit HLU highlights.,, lim 
lEdit character ~~appinss .. . 11m 

The Printer class represents a type of printer; it determines which back end 
Printers uses for the printer. For Epson and IBM-compatible printers this field 
should be set to dp, so that the !Printers.dp back end is used. 

Printer type is the full name of the printer. 

Printer name is the name you want to appear underneath the printer on the icon 
bar. The name can be up to I 0 characters long. 

Sprite name determines the sprites to be used by the Printers application as the 
printer icon on the icon bar. When the printer is the default, Printers uses the 
named sprite, which should be cream. When the printer is not the default, Printers 
precedes the sprite name with 's_' and instead uses that sprite- which should be 
grey. See !Printers.dp.Resources.! Sprites for example sprites. 

For Epson and IBM-compatible printers this field should be set to dp, which makes 
the Printers application use the two sprites dp and s_dp. 

The paper offsets represent the top (Y) and left (X) sections of the paper on which 
the printer cannot physically print. The PaperY offset is the amount of cut sheet 
paper which has already gone past the print head before it can print anything; this 
differs for different printer models. Similarly the Paper X offset is the small 
section at the left hand edge on which the head cannot print, although why this is 
so is not always obvious. Together the paper offsets define the logical (0,0) origin 

3-699 



Printer definition editor 

3-700 

on the physical paper. The Printers.Read_Me file contains details on using the 
Printers .Top_Left file to set the offsets for Epson and IBM compatible dot matrix 
printers . 

Normally the paper offsets will be set correctly for the printer being used. However, 
if necessary you can change the paper offsets away from their true values, probably 
by using negative numbers. This allows you to move the image around on the 
paper if you need to do so and there is no facility for this in the application doing 
the printing. Unfortunately it is not easy to do the same sort of trick with PostScript 
printers , so think about whether you ever need to use PostScript before resorting 
to this trick. Do not try to use the Graphics margins in Printers to move the image, 
as that is not their function . 

PrintEdit actually holds the paper offsets in each of the graphics resolution data 
blocks in units of pixels at that printer resolution , converting them from the units 
in which they were specified as it does so. These values are passed to the dumper 
by PDumperReason_SetDriver in words R4!( 12+40) and R4!( 12+44); it is then the 
respons ibility of the printer dumper to act on this information if it wishes to . The 
Acorn printer dumpers all subtract the paper offsets from the top and left margins 
passed to them by PDriverDP (also in units of pixels), since the section of the 
margins which is within the paper offsets has already been skipped implicitly by 
the printer mechanism. 

Graphics modes shows the number of graphics modes that have been defined for 
your printer. For details of editing their settings, see the sections starting on 
page 3-702. 

Text modes defines the type of text modes your printer can use. For Epson and 
IBM-compatible printers there are four categories available. 

lntegrex printers 

The appearance of the Printer definition editor window with the 
Printers .lntegrex.Col)et 132 file loaded is: 

~f;J_j Prinhr definition editor 
Printer class: I dpl 
Printer type: I Intmex Colourjet 132 
Printer naM: I Co1Jet132 
Sprite na~~e: ix 

Paper X offset: I 6.83 I A!. O · h 
Paper y offset: I 7 0 76 I w• InC es 
&raphics 110des: I 3 1[1] 

Text 110des: I Edit no highlights •• , II§] 
I Edit draft highlights. , . I!E§] 
• , · • ~·: ·· h1q; ~-~ i ····· · D 
I Edit character ~~appim ... I!E§] 



Printer definition files 

The lntegrex back end is combined with the generic dot-matrix back end. 
Consequently the Printer class remains as dp. However, the Sprite name is ix, so 
that the icon on the icon bar is the same under RISC OS 3 as it was for !PrinteriX on 
RISC OS 2. 

lmageWriter printer 

The appearance of the Printer definition editor window with the 
Printers.Apple.lmgWritell file loaded is: 

~I C3 Printer deli nit ion editor 
Printer class: I d~ 
Printer type: IRpple I~mllriterii Colour! 
Printer nallf: I l~gWritll I 
Sprite nallf: I dp I 

Paper X offset: I 5, 48 I <$> 1111 <) inches 
Paper Y offset: l=l ===L=94'==IL.......,;-----, 
Graphics 110des : I 3 1[!] 

Text 110des: I Edit no highlights .. , I~ 
I Edit draft highlights.,, I~ 
I Edit HLQ highlights .. ' I~ 
!Edit character tuppings ... l~ 

The Image Writer back end is combined with the generic dot-matrix back end. 
Consequently the Printer class remains as dp. 

HP LaserJet compatible printers 

The appearance of the Printer definition editor window with the 
Printers.HP.Desk)et+ file loaded is: 

~ C3 Printer deli nit ion editor 
Printer class: I Ijl • I 
Printer type: I HP DeskJet Plus I 
Pr inter nallf: I DeskJet+ I 

Sprite nallf: I li I 
Paper X offset : I 4.23 I <$> 1111 <) inches 
PaperY offset: l=l ===8·=88'==IL.......,;-----, 
Graphics 110des: I 3 1[!] 

Text 110des: I Edit portrait 110de . .. I~ 
I Edit landscape 110de. . . I~ 

I Edit character tuppings ... I~ 

The differing text mode titles (Edit portrait mode and Edit landscape mode 
rather than 'Edit no highlights', 'Edit draft highlights' and 'Edit NLO highlights') 
are set up by PrintEdit when the Printer class is 11. The information is still stored in 
exactly the same way as for Epson and IBM-compatibles. 

3-701 



Graphics mode: Dump information 

Graphics mode: Dump information 

3-702 

General points, and Epson and IBM compatible printers 

The Dump information in the Graphics mode window for the Epson.EX-800 file at 
a resolution of 240 by 216 dpi is shown below: 

Graphics 110de .. 
!Delete 110del I OK 1-o-

DuiiP infor~~ation-------====-====an 
DUIIP quality: 

Monochro~~e: [ili]S11all halftone 
Greyscales: [ili]S~~all halftone 

Colour: OS~~all halftone 

Output order: <)Horizontal 

X resolution: l248l 
llodule na~~e: F.l P;E!Du6:~p==er=::::DM~I 

Palette file: 18 I 

[ili]Large halftone 
[ili]Large halftone [ili]Dithered 
0Dithered 

i>Uertical 

Y resolution: F.l21~6===9 
Module nullber: 11 

DuiiP depth: 124 I 
X interlace: 11 I 
Y interlace: 12 I 

Skip resolution: F-168;;===9 
DuiiP height: Is 

Data length ~~t~ltiplier:l F.1====l 
Data length added: 18 

The meaning of much of this information is imposed by PDriverDP, and to a lesser 
extent the back end. The items which are not used by PDriverDP or the Printers 
application and are passed to a dumper using PDumperReason_SetDriver are: 

• the Output order (bit 0 of R5 or of R4!256) 

• the Data length multiplier (R4?(12+0)) 

• the Data length added (R4?12+1 ). 

It is the dumper that gives meaning to the information these fields hold. You can 
therefore use them to pass any numeric information to a new dumper, irrespective 
of their title in this PrintEdit window. 

The Dump quality boxes should normally all be selected, as most of the software 
supports these features on most printers. You should not select the colour options 
for dot matrix printers that do not support colour. It is also good practice not to 
enable the colour options for resolutions which use horizontal or vertical interlace. 
The Dump quality boxes which you select will be made available by the relevant 
back end in the Quality menu of the printer configuration window. 

Output order is specific to dp class printers, and is only acted on by PDumperDM. 
It selects between the parts of the dumper that are for Epson/IBM compatible 
printers (output order is Vertical), or the parts that are for lntegrex Colourjet 132 
compatible printers (output order is Horizontal) . 



Printer definition files 

Note that when Horizontal order has been selected many of the other Dump 
information and Dump strings settings either become irrelevant, or must be set to 
certain values . See the section entitled lntegrex printers on page 3-708. 

X (horizontal) andY resolution (vertical) define the graphics resolution in dots per 
inch. These should be given in your printer manual, but may be in different units. 
The printer manual will usually quote resolutions before vertical interlacing has 
been applied (see later), so in this case the manual would quote 240 by 72 dpi, 
rather than 240 by 216 dpi (since 216/3 = 72) . The manual is also likely to give dots 
per line rather than dots per inch for the horizontal resolution ; for example, 960 
dots per line on 8 inch paper is 120 dpi horizontal resolution . The vertical 
resolution is often omitted altogether, in which case it is likely to be 72 dpi for 9 pin 
printers , 180 dpi for 24 pin printers doing 24 pin graphics, 60 dpi for Epson 24 pin 
printers doing emulated 8 pin graphics, and 72 dpi for IBM 24 pin printers doing 
emulated 8 pin graphics. 

Module name and Module number define the PDumper module used for the 
printer. For more information see the section entitled Printer dumper numbers and 
names on page 3-665 . 

Palette file defines the palette file name, which is currently always 0. This 
corresponds to the file !Printers. Palettes .O (or rather Printers:Palettes.O). This 
pathname is constructed by the back end from the filename given in the printer 
definition file . It is passed to the dumpers by PDumperReason_SetDriver in the 
string pointed to by R3 . The Acorn printer dumpers all pass this path name to the 
PDumperSupport module, which loads and uses this file for colour matching and 
halftoning data. 

Skip resolution defines the leading zero skip resolution in dots per inch. This is 
almost always 60 for Epson printers (the resolution of 27, '$')and 120 for IBM 
printers (the resolution of 27, 'd '). 

The zero skip resolution as passed to the dumpers needs some explanation . It is 
passed in a form that is easier for the dumper code to use, as a multiplier 
(R4!( 12+24)) and a divider (R4! ( 12+28)) . There is also a specified number of 
leading zeros you should leave to allow the print head time to accelerate 
(R4?( 12+23)). Finally you should include the left margin in output pixels (R4!268), 
by adding it to the number of actual zero printer pixels at the start of your output 
data. 

To convert from a number of zero pixels at the output horizontal resolution to a 
number of zero skip pixels, use the following formula : 

skip_zeros = ((output_zeros + left_margin- run_up) x multiplier) DIV divider 

3-703 



Graphics mode: Dump information 

3-704 

The number of actual zero data pixels which should still be output as print data is 
a combination of the remainder from this and the run_up itself. given by: 

run_up + (((output_zeros + left_margin- run_up) x multiplier) MOD divider) 
DIV multiplier 

You can probably perform the DIV and the MOD of ((output_zeros + left_margin­
run_up) x multiplier) as a single operation if you are writing your dumper in 
assembler. If (output_zeros + left_margin- run_up) is negative, then you should 
do no leading zero skipping, and the actual number of print data zeros to output 
should be: 

output_zeros + left_margin 

Remember that if you need to use paper offsets in your dumper (which depends on 
the type of printers it is for). before using the left_margin in the above calculations 
you must subtract the paper X offset from it: 

left_margin = (R4!268)- (R4!( I2+40)) 

If this gives a negative left margin, then set it to zero. The divider and/or multiplier 
are optimised down to I if possible by PrintEdit (eg. I80 dpi output, 60 dpi skip 
gives multiplier of I and divider of 3), so your DIV and MOD code should be 
optimised for small numbers (I in particular), or should treat I as a special case if 
not optimised. 

Dump depth (R4?0) is the number of pins on the print head (ie Dump height) 
multiplied by the number of vertical interlace passes (ie Y interlace+ I); so for the 
EX-800 at 240 by 2I6 dpi, the Dump depth of 24 is obtained from 8 pins and a Y 
interlace of 2, giving 8 x (2 + I) = 24. PDumperDM (with vertical output) requires 
the Dump depth to be a multiple of 8. 

Dump height (R4?( I2+2)) is the number of pins used for graphics printing on the 
print head; for example it is 8 on 9 pin printers. PDumperDM (with vertical output) 
requires the Dump height to be a multiple of 8. 



Printer definition files 

X interlace (R4?2) is the number of horizontal interlace passes of the print head 
(starting from pass 0). For example at 240 dpi horizontal resolution most printers 
cannot print adjacent dots, so two passes (X interlace of I) are required, with 
alternate dots set to zero: 

x interlace = 0 

1st pass 

x interlace = 0 

2nd pass 

120 dpi 

11111 1 11 1 1 111 
: : : : : : : : : : : : : 

illllllllllll 
120 dpi 

Figure 67.1 X interlacing with two horizontal passes 

Note that this diagram shows a simplified view of the situation . In particular, it 
shows the dots made by the pins as being half as wide when performing interlacing 
(240 dpi) . This is not the case, since the pins are obviously fixed in size, and the 
dots are just as wide as for 120 dpi. Each dot printed actually covers the entire of 
the blank (zero) dot to the right of it, with the obvious effect that dots from the two 
interlace passes actually overlap. This does not really affect the resolution of the 
printout. the actual effect being that the centre of a dot is If480" further right than 
the code thinks it is, and hence so is the entire printout. It does however make the 
printout darker. 

3-705 



Graphics mode: Dump information 

~-70n 

Y interlace (R4?1) is the number of vertical interlace passes of the print head 
(starting from pass 0) . For example a 9 pin printer doing 8 pin graphics is 
fundamentally doing 72 dpi vertical resolution, because that is how far apart the 
pins are. But by feeding the paper by a fraction of the pin separation and making 
another pass of the head, greater resolution can be achieved at the cost of speed: 

y interlace = 0 
72 dpi 

MSB bit 7 

bit 6 

bit 5 

bit 4 

bit 3 

bit 2 

bit 1 

LSB bit 0 

MSB bit 7 

bit 6 

bit 5 

bit 4 

bit 3 

bit 2 

bit 1 

LSB bit 0 

y interlace = 2 
216 dpi 

PassO Pass 1 Pass 2 

Figure 67.2 Y interlacing with two horizontal passes 

After pass 0 the paper is fed by lf216", and again after pass I. After pass 2 the paper 
is fed by 211216 ", so the total feed is a full head width for an eight pin head, since 
24f2 16 " = 8/72 ". 

Just as for horizontal interlacing, this diagram shows a simplified view of the 
situation . In particular, it shows the dots made by the pins as being one third 
height when performing interlacing (216 dpi). This is not the case. since the pins 
are obviously fixed in size, and the dots are just as tall as for 72 dpi. Each dot 
printed actually covers both of the blank dots below it, with the obvious effect that 
dots from the three interlace passes actually overlap. This does not really affect the 
resolution of the printout, the actual effect being that the centre of a dot is lh2" 

further down than the code thinks it is, and hence so is the entire printout. It does 
make the printout darker however. 



Printer definition files 

The Data length multiplier (R4?( 12+0)) and Data length added (R4?( 12+ I)) are 
used to convert the number of columns in a row of graphics out to the data length 
that must be passed to the printer. 

• For Epson printers, you specify a line of graphics by saying 

27, ···.graphics mode, number of columns 

Since you always pass the number of columns , the Data length multiplier is I 
regardless of whether the printer is 8 pin, 24 pin or 48 pin. Because the 
graphics mode precedes the data length, there is no need to include it in the 
data length, and so the Data length added is 0. 

• For IBM printers. you specify a line of graphics by saying 

27, T. 'g', number of bytes , graphics mode. 
An 8 pin printer requires I byte of data per column, a 24 pin printer requires 
3 bytes per column, and a 48 pin printer requires 6 bytes per column . The Data 
length multiplier is respectively I , 3 or 6. Because the graphics mode follows 
the data length, it must be included in the data length. and so the Data length 
added is I . 

In both cases the data length (after manipulation) is sent out as a 2 byte binary 
number, low byte first then high byte. For example: 

27, ··· . graphics mode, low byte, high byte 

where low byte x 256 +high byte= size. 

Both schemes are sensible; they are just different ways of counting how much data 
there is in the graphics line. 

3-707 



Graphics mode: Dump information 

~-70A 

Colour printing 

For colour ribbon printing, the contents of a '(dump depth) ' are different. This is 
described below after the relevant PrintEdit fields have been described. 

For colour printing, consider the Epson EX-800 at 120 by 72 dpi. The Dump 
information (which is fairly obvious and therefore needs no description) is as 
follows: 

lntegrex printers 

Graphics 110de .. 

DuiiP inforNtion -
______ __..!:ID::e::le::te::R::o::de::_l.::l =O=K~I '{} 

Du!IP quality: 
MonochroRe: ~SRall halftone 
Greyscahs: ~SRall halftone 

Colour: ~SRall halftone 

Output order: <) Horizont I 

X resolution: ?.l1~28l!::='iffi" 
Module naRe: I PDu~~eerDM 

~large halftone 
~large halftone ~Dithered 
~Dithered 

~ Uertical 

Y resolution: F.ln====i 
Module nullber: 11 

Skip resolution: F,l68:;=====i Palette file: F.l8=== 
DuiiP depth: I B 

X interlace:! ~*e=== 
Y interlace: I& 

Du!IP height: IB 
Data length RUltiplier: F.11=='9 

Data hngth added: I& 

The Dump information at 160 by 126 dpi for an Integ rex printer is: 

Graphics 110de .. 
!Delete 110del I OK I '{} 

Du!IP inforMtion--------====--====111 
DUIIP quality: 

MonochroRe: ~SMII halftone 
6rmcahs: ~ SMII halftone 

Colour: ~SNII halftone 

Output order: ~ Horizont I 

X resolution: ?.1 1~680:! ==.;:;;= 
Module naRe: I PDu~~eerDM 

~Large halftone 
~Large halftone ~Dithered 
~Dithered 

<)Uertical 

Y resolution: 1126 
Module nullber: F.11====1 

Palette file: F.le=== 
DUIIP depth: j1 

X interlace:! F.e===9 
Y interlace: le 

Skip resolution: F.l8===9 
DUIIP height: l1 

Data length RUitiplier: F.11===j 
Data length added: le 



Printer definition files 

The lntegrex dumper is combined in PDumperDM with the generic dot-matrix 
dumper. Consequently the Module name and Module number remain as 
PDumperDM and I respectively. However, as noted above, the Output order must 
be Horizontal for lntegrex printers to enable the correct parts of PDumperDM. The 
dumper also relies on the Dump depth and Dump height both being set to I . 

lmageWriter printer 

The Dump information at 160 by 144 dpi for an lmageWriter printer is: 

Graphics 110de .. 

Dull!' infor~~ation -
______ _:ID::e::le::te::IIO=de:...l.!::l =O=K~I {)-

DUIIP quality: 
Monochro~~e: 1§1 S~~all halftone 
Grey scales: 1§1 S~~all halftone 

Colour: 0 S~~all halftone 

Output order: <)Horizontal 

X resolution: 11681 I 
Module na~~e: IPDu!!PeriW I 

Palette file: IB I 

1§1 Large halftone 
1§1 Large halftone 1§1 Dithered 
0Dithered 

~Uertical 

Y resolution: ~114::,4====! 
Module nullber: 13 

Skip resolution: ?.116;;::8====! 
DuiiP depth: 116 I 

X interlace: IB I 
Y interlace: 11 I 

Du1111 height: Is 
Data length mltiplier: ?.11===i 

Data length added: IB 

For an lmageWriter, the Module name and Module number are PDumperiW and 
3 respectively; although it uses the same back end as generic dot-matrix printers, it 
requires its own dumper. The reasons for this are outlined on page 3-720. 

lmageWriter printers need no extra data after the length and so have a Data length 
multiplier of I and a Data length added of 0. The Skip resolution is usually the 
same as the X resolution. 

3-709 



Graphics mode: Dump information 

3-710 

HP Laser Jet compatible printers 

The Dump information for the HP DeskJet+ at 300 by 300 dpi is: 

~1(:)1 Graphics 110de .. 
IDehte ~odel I OK I '!} 

Du• infor~~ation--------====-==~ 
Du• quality; 

MonochroMe: @]S~~all halftone 
Grmcales: @]S~~all halftone 

Colour; 0S"all halftone 

Supports: Otopies co11111and 

X resolution: 1388! 
Module na~~e; ~*1 PD~u6Np=ero;:;LJ;=il 

Palette file; IB I 

@]Large halftone 
@]Large halftone @]Dithered 
0Dithered 

@] Cofi!Pression 

Y resolution: F.l38=8====9 
Module nuMber; 12 

DufiiP depth: Is I 
X interlace: IB I 
Y interlace: IB I 

Skip resolution: F.le===9 
Du• height: Is 

Data length NU!tiplier: F.le===9 
Data length added: IB 

Most of these fields must have these values, otherwise PDumperLJ will not work. 
The current version of PDumperLJ has no support for colour printing, hence you 
must not select the colour options. 

The Printer class of lj (set in the main window) causes PrintEdit to show the 
Supports options, rather than the Output order shown by dp class printers: 

• Copies command should be set if your printer supports the multiple copies 
command (page printers such as the Laser)et II do, whereas Desk)ets usually 
don't) 

• Compression should be set if it supports compression mode 2 (older printers 
don't). 

These flags are passed to PDumperReason_SetDriver in R5; if bit 0 (LSB) is set, 
then Copies command was selected; if bit I is set, then Compression was 
selected. 

There is nothing else you can usefully do with this window when the printer 
definition file is used in conjunction with the RISC OS 3 (version 3. I 0) PDumperLJ. 



Printer definition files 

Graphics mode: Dump strings 

General points, and Epson and IBM compatible printers 

The second part of the Graphics mode window gives the Dump strings: 

~J(:JJ GraPhics 1110de .. 
DuiiP strings ~ 

Set lines: 127 "C" I 
Page start: I27."A" 18 I 

For11 feed: 12 
Page end: 27 "@" 

line return: 13 
line skip : 127 1"1" 124 113 I 

Line end 1: 127 1"1" 11113 I 
Line end 2: 127 1"1" 11,13 I 
Line end 3: 127 1"1" 122,13 I 
Zero skip: 127 1"$" I 

Line start 1: I27 1"Z" I 
Line start 2: 
line pass 1: 

Line pass 1b: 
line pass 2: 

Line pass 2b: 
line pass 3: 

Line pass 3b: 
line pass 4: 

Line pass 4b: ~ e:J 

These are the codes sent to the printer to tell it to perform certain actions. Only the 
dumper uses these strings, and hence a new dumper can use any of these strings 
to hold anything. The PrintEdit window reflects the usage that PDumperDM and 
PDumperiW make of these strings. 

Set lines (R4?( 12+21 )) is the string to define the number of lines per page. The 
number of lines (R4?( 12+22)) is sent as a single byte after the set lines string (eg. 
27, 'C' , 70 when using A4 paper, which is 70 lines long) . The length used is the 
height in lines from the Text margins section of the Printers application's Paper 
sizes window, and is put into the graphics data block by the !Printers.dp back end. 

This sequence is not sent if the number of lines is set to 0. since on Epson 
compatible printers 27, 'C'. 0 actually means that the next byte sent after the 0 is 
the length of the paper in inches. 

This sequence solves the problem with the RISC OS 2 and RISC OS 3 (version 3.00) 
printer drivers whereby the printer's DIP switches had to be set correctly for the 
paper size you were using. Normally the switches allow only 11" or 12". and since 
A4 paper is 11.64" long, form feeds between pages on A4 fanfold paper (or any 
other non standard paper size) fed the paper to the wrong place. 

3-711 



Graphics mode: Dump strings 

3-712 

Page start (R4 ?( 12+ 3)) is the string sent at the start of a page, after the set lines 
sequence. It is generally used to switch emulations, or to set the line feed pitch to 
zero. The reason for setting the line feed pitch to zero is to avoid problems with 
auto line feed on carriage return. With the line feed pitch set to zero, it really 
doesn't matter if an auto line feed happens since it will do nothing anyway. Thus 
graphics printing does not care which way the auto line feed DIP switch is set on 
the printer, due to the careful construction of the printer definition files. 

Setting the line feed pitch to zero (or to the head height of Bf72", or indeed to any 
other number) relies on such a change not affecting the page length previously set 
up by the Set lines sequence. (Similarly you must not reset the printer in the Page 
start sequence, or the page length setting will be reset to the default.) Epson and 
IBM compatible printers convert the page length to an absolute size internally, so 
they are not affected by a subsequent change in line pitch. 

If your printer is affected by a subsequent change in line pitch, then you must not 
change the pitch in the Page start string. You could change it at the start of the Set 
lines string and have a blank Page start string, but you would then need the 
number of lines in the Printers application's text margins to be correct for both text 
and graphics spacing, which are seldom the same. Possible work rounds are: 

• Setting up two definitions of the same printer, one of which uses a paper size 
set up for graphics spacing, and the other of which uses a paper size set up for 
text spacing. 

• Setting the conversion from the number of text lines per page to graphics lines 
per page in your PDumper code- assuming it is fixed. 

For example, text is usually 6 lines per inch, whereas 8 pin graphics is usually 
9lines per inch (72 dpi pitch /8 dots per line), so the number of graphics lines 
per page would be 3f2 times the number of text lines per page. 

Similarly, 24 pin graphics are usually 7112 lines per inch ( 180 dpi /24 pins), 
leading to a conversion factor of 5f4. 

Doubtless there are other solutions to this problem. 

Form feed (R4?( 12+36)) is the string sent to the printer to tell it to form feed the 
paper after each page has been printed. This string is not sent by PDumperDM 
when the Roll paper feed setting is selected in the Printers application. 

Page end (R4?( 12+4)) is the string sent at the end of each page, after the form feed 
string (if present). It is usual to reset the printer (eg 27, '@'for Epson printers) in 
this string, so that if this page is the last one, the printer is reset to a known state 
set by the user on the DIP switches. This string must also set the printer 'top of 
form' (TOF). or the Roll paper feed setting in the Printers application may not work 
correctly, because the printer may do a form feed of its own when it thinks it has 



Printer definition files 

printed a full page. On Epson compatible printers, 27, '@' resets TOF at the same 
time as resetting the printer to the default settings, but on other printers (eg. IBM 
compatibles) a separate string is needed to reset TOF. 

Line return (R4?( 12+5)) moves the print head to the beginning of the current line. 
Usually this will be a carriage return. This string is used when performing 
horizontal interlacing and multi pass colour ribbon printing. 

Line skip (R4?( 12+6)) moves the print head to the beginning of the next line, and 
is used for skipping entirely blank lines. For example on the EX-800 at 240 by 216 
dpi this string feeds the paper by 24f2I6" and performs a carriage return. 

Line end I ( R4 ?( 12+ 7)) to Line end 3 ( R4 ?( 12+9)) are the strings sent at the end of 
each vertical interlace pass. For example on the EX-800 at 240 by 216 dpi, after the 
first vertical interlace pass Line end I is sent to the printer, which feeds the paper 
by If2I6" and performs a carriage return. Line end 2 does the same after the second 
vertical interlace pass, and then after the final vertical interlace pass Line end 3 
feeds the paper by 22f2I6" (27, T. 22) and performs a carriage return. 

Zero skip (R4 ?( 12+ I 0)) is issued to skip leading zeros on graphics data lines, 
hence optimising out the white section at the left hand edge of the paper. The 
string is followed by a two byte number (low byte, high byte) of dots (columns) to 
skip at the skip resolution; for example 27, ·s·, I, 97. A small amount of leading 
zeros ( If6" worth) is left in the graphics data. This is necessary to allow the print 
head to accelerate up to speed before the pins print anything. 

Line start I (string offset R4?( 12+ II)) is the string sent at the beginning of a 
graphics line. This is followed by the length of the line, reduced to the minimum 
necessary to represent the data that is to be printed (to avoid sending unnecessary 
trailing zeros). and with the Data length multiplier and Data length added 
applied. The length is then followed by Line start 2 (R4?( 12+ 12)). 

Therefore, for an Epson Line start I is typically 27, '*',graphics mode, and Line 
start 2 is unused; whereas for an IBM Line start I is typically 27, T, 'g', and Line 
start 2 is graphics mode. For more details, see the description of the Data length 
multiplier and adder on page 3-707. 

If you want to use PrintEd it to look at some printer definition files with Line start 2 
sequences present, the IBM Pro-X24E and the Canon BubbleJet are good 
examples. 

3-713 



Graphics mode: Dump strings 

3-714 

Sequence of data output 

The sequence of data output for a black and white page to the EX-800 at 240 by 216 
dpi is shown below. This is for PDumperDM with the Output order set to Vertical. 

PDumperDM has a system variable associated with it named PDumperDMSExtra. 
This is currently unused, but is included in the sequence for the sake of 
completeness. 

The notation used is as follows: 

• < > is a string from a PrintEdit field 

• I I is a single byte output by PDumperDM 

• ( ) is a sequence of bytes output by PDumperDM 

• {length} is a length field output as [count low I[ count high 1 by PDumperDM 
and (four digit decimal number) by PDumperiW. 

The sequence for a page is: 

(PDumperDMSExtra) (currently unused) 
<Set lines>[ line countJ<Page start> 
<Line skip> repeated until last line at top of page that does not print output 
(dump depth) repeated until last line that prints output to page (ie is non-zero) 
<Form feed><Page end> 

Each '(dump depth)' is a complete set of horizontal and vertical interlace passes, 
and each one occupies the same amount of paper as a '<Line skip>'. The contents 
of a '(dump depth)' for our example (2 horizontal interlace passes for each of 3 
vertical interlace passes) are: 

<Zero skip>(length}<Line start I >{length}<Line start 2> 
(graphics data for Oth horizontal pass)<Line return> 
<Zero skip>{length}<Line start l>{length}<Line start 2> 
(graphics data for 1st horizontal pass)<Line end I> 

<Zero skip>{length}<Line start I >{length}<Line start 2> 
(graphics data for Oth horizontal pass)<Line return> 
<Zero skip>{length}<Line start I >{length}<Line start 2> 
(graphics data for 1st horizontal pass)<Line end 2> 

<Zero skip>{length}<Line start l>{length}<Line start 2> 
(graphics data for Oth horizontal pass)<Line return> 
<Zero skip>{length}<Line start I >{length}<Line start 2> 
(graphics data for I st horizontal pass)<Line end 3> 

To achieve horizontal interlacing the graphics data for each 'Oth horizontal pass' 
goes byte, 0, byte, 0, byte, 0 etc, whereas the graphics data for each' 1st horizontal 
pass' goes 0, byte, 0, byte, 0, byte etc. 



Printer definition files 

Any individual vertical interlace pass which is entirely blank (ie consists of zeros) 
will not be output at all. However, if any one of a set of horizontal interlace passes 
is not blank (ie a pair of passes in the above example), all those horizontal passes 
will still be output. Leading and trailing zero suppression (using Zero skip and data 
length reduction as mentioned above) are also performed at this level. 

Colour printing 

The Dump strings for colour printing are: 

~ 1:3 GraPhics 110de .. 
Dull!' strings ~ 

Set lines: 127, "C" I 
Page start: F.l2¥7,7.'i"Affi'",78==============ll 

Forti feed: 112 J 
Page end: F.l 2~7.;;;"@;;;="============il 

Line ret urn: 13 
Line skip: ~~ 2~7 ,:;;;"A;;;=" ,78=:=,1;;:::8,~27;::::;, ,;:;;:,A,;;=' ,;;:::8,:;=;13:=========9 

Line end 1: I27,"A",8,18,27,"A",8,13 

Line end 2: F=================l 
Line end 3: ffi=7ffi"==============l 

Zero skip: ~1 2¥7,~"$'::="==============!1 
Line start 1: 127 "l" I 
Line start 2: li==!================ll 

Line pass 1: l27,"r",4,27,"l" I 
line pass 1b: I I 
Line pass 2: F.l2'""7,""'"r7",=;:1=;;,2s=7,:;;;"L7"============ll 

Line pass 2b: I I 
Line pass 3: F.l2'""7,""'"r7",72=;;,2s=7,:;;;"L7"============ll 

Line pass 3b: I I 
Line pass 4: F.l2'""7,""'"r7",78=;;,2s=7,:;;;"L7"============ll 

line pass 4b: l J ~ 
EJ 

When printing at 120 by 72 dpi in monochrome or grey scale, the strings 
documented earlier are used. When printing in colour, Line start I and Line start 2 
are not used. The eight line pass strings are used instead. 

Line pass I (R4?(12+13)) and Line pass lb (R4?(12+14)) are the equivalents of 
Line start I and Line start 2 for the yellow ribbon pass. The two strings are usually 
the same as the Line start strings, with the addition that Line pass I will select 
yellow before starting the graphics data. 

Similarly, Line pass 2 (R4?( 12+15)) and Line pass 2b (R4?( 12+16)) are used for the 
magenta ribbon pass; Line pass 3 (R4?( 12+17)) and Line pass 3b (R4?( 12+18)) are 
used for the cyan ribbon pass ; and Line pass 4 (R4?( 12+ 19)) and Line pass 4b 
(R4?( 12+20)) are used for the black ('Key black' in CMYK parlance) ribbon pass. 

3-715 



Graphics mode: Dump strings 

3-716 

The four colour passes are performed one after the other- yellow, then magenta, 
then cyan, then black- with a Line return between each pass. If you were to 
attempt to use interlacing and colour (which is not recommended), you would find 
that horizontal interlacing occurs before the 4 colour process, and vertical 
interlacing occurs afterwards over the entire 4 colours. You should use horizontal 
interlacing in preference to vertical interlacing since horizontal will not 
contaminate the light ribbon colours, whereas vertical interlacing would by 
printing the lighter colours on top of the darker ones already present on the paper 
from the previous interlace pass. For an ink jet this is irrelevant, but interlacing is 
also usually irrelevant. 

Thus a '(dump depth)' for a colour printout (with no interlacing) will be: 

<Zero skip>{length}<Line pass l>{length}<Line pass Ib> 
(graphics data for yellow pass)<Line return> 

<Zero skip>{length}<Line pass 2>{1ength}<Line pass 2b> 
(graphics data for magenta pass)<Line return> 

<Zero skip>{length}<Line pass 3>{1ength}<Line pass 3b> 
(graphics data for cyan pass)<Line return> 

<Zero skip>{length}<Line pass 4>{1ength}<Line pass 4b> 
(graphics data for black pass)<Line end I> 

At 240 by 144 dpi (2 horizontal interlace passes for each of 2 vertical interlace 
passes) a '(dump depth) ' would be: 

<Zero skip>{length}<Line pass I >{length}<Line pass I b> 
(graphics data for Oth horizontal yellow pass)<Line return> 
<Zero skip>{length}<Line pass I >{length}<Line pass I b> 
(graphics data for 1st horizontal yellow pass)<Line return> 

<Zero skip>{length}<Line pass 2>{1ength}<Line pass 2b> 
(graphics data for Oth horizontal magenta pass)<Line return> 
<Zero skip>{length}<Line pass 2>{1ength}<Line pass 2b> 
(graphics data for I st horizontal magenta pass)<Line return> 

<Zero skip>{length}<Line pass 3>{1ength}<Line pass 3b> 
(graphics data for Oth horizontal cyan pass)<Line return> 
<Zero skip>{length}<Line pass 3>{1ength}<Line pass 3b> 
(graphics data for I st horizontal cyan pass)<Line return> 

<Zero skip>{length}<Line pass 4>{1ength}<Line pass 4b> 
(graphics data for Oth horizontal black pass)<Line return> 
<Zero skip>(length}<Line pass 4>(1ength}<Line pass 4b> 
(graphics data for 1st horizontal black pass)<Line end I> 



Printer definition files 

<Zero skip>{length}<Line pass I >{length}<Line pass I b> 
(graphics data for Oth horizontal yellow pass)<Line return> 
<Zero skip>{length}<Line pass l>{length}<Line pass lb> 
(graphics data for I st horizontal yellow pass)<Line return> 

<Zero skip>{length}<Line pass 2>{length}<Line pass 2b> 
(graphics data for Oth horizontal magenta pass)<Line return> 
<Zero skip>{length}<Line pass 2>{1ength}<Line pass 2b> 
(graphics data for I st horizontal magenta pass)<Line return> 

<Zero skip>{length}<Line pass 3>{1ength}<Line pass 3b> 
(graphics data for Oth horizontal cyan pass)<Line return> 
<Zero skip>{length}<Line pass 3>{1ength}<Line pass 3b> 
(graphics data for I st horizontal cyan pass)<Line return> 

<Zero skip>{length}<Line pass 4>{1ength}<Line pass 4b> 
(graphics data for Oth horizontal black pass)<Line return> 
<Zero skip>{length}<Line pass 4>{1ength}<Line pass 4b> 
(graphics data for I st horizontal black pass)<Line end 2> 

where <Line end I> is 27. T. I . 13 and <Line end 2> is 27. T. 23. 13 for the Epson 
EX-800. 

To achieve horizontal interlacing the graphics data for each 'Oth horizontal pass· 
goes byte. 0. byte. 0. byte. 0 etc. whereas the graphics data for each ' I st horizontal 
pass· goes 0. byte. 0. byte, 0. byte etc. 

Any individual colour pass (Yellow. Cyan. Magenta or Key black) or vertical 
interlace pass which is entirely blank (ie consists of zeros) will not be output at aiL 
However. if any one of a set of horizontal interlace passes is not blank (ie a pair of 
passes in the above example). all those horizontal passes will still be output 
Leading and trailing zero suppression (using Zero skip and data length reduction 
as mentioned above) are also performed at this leveL 

3-717 



Graphics mode: Dump strings 

3-718 

The two most likely scenarios are some of the colour passes being absent 
(particularly yellow, magenta and cyan being absent with just black present), and 
an entire '(dump depth)' being absent. Below is an example dump depth at 240 by 
144 dpi where only yellow and cyan are in use: 

<Zero skip>{length}<Line pass I >{length}<Line pass I b> 
(graphics data for Oth horizontal yellow pass)<Line return> 
<Zero skip>{length}<Line pass I >{length}<Line pass I b> 
(graphics data for 1st horizontal yellow pass)<Line return> 

<Zero skip>{length}<Line pass 3>{length}<Line pass 3b> 
(graphics data for Oth horizontal cyan pass)<Line return> 
<Zero skip>{length}<Line pass 3>{length}<Line pass 3b> 
(graphics data for 1st horizontal cyan pass)<Line end I> 

<Zero skip>{length}<Line pass I >{length}<Line pass I b> 
(graphics data for Oth horizontal yellow pass)<Line return> 
<Zero skip>{length}<Line pass I >{length}<Line pass I b> 
(graphics data for I st horizontal yellow pass)<Line return> 

<Zero skip>{length}<Line pass 3>{length}<Line pass 3b> 
(graphics data for Oth horizontal cyan pass)<Line return> 
<Zero skip>{length}<Line pass 3>{length}<Line pass 3b> 
(graphics data for I st horizontal cyan pass)<Line end 2> 

You might like to think of printing in black only as a special case of coloured 
printing, the only difference being that it uses the Line start strings rather than the 
Line pass strings. 

Below is an example entirely blank '(dump depth)' at 240 by 144 dpi: 

<Line end I> 
<Line end 2> 

The Line end sequences are the minimum that it is reasonable to optimise the 
output down to, because they contain the paper movement commands. It would 
be possible to spot an entirely empty '(dump depth)' and replace the sequence of 
Line end strings with a single Line skip, but in practice it saves too little to be 
worth the extra code complexity. 



Printer definition files 

lntegrex printers 

The Dump strings for an Integrex printer at I 60 by I 26 dpi are: 

~(:! Graphics 110de .. 
DuiiP strings ~ Set lines : 127 t''O" I 

Page start : 127, "4", 2 I 
For11 feed: 12 
Page end : 27 11 r 11 

Line return: 
Line skip: I27,"Y",8 I 

Line end 1: 
line end 2: 
line end 3: 

Zero skip: 
Line start 1: I27,"Z" I 
Line start 2: 
Line pass 1: 

Line pass 1b: 
line pass 2: 

Line pass 2b: 
Line pass 3: 

Line pass 3b : 
Line pass 4: 

line pass 4b: ~ I!] 

Only the strings present above will be acted on by PDumperDM. which ignores any 
of the rest that you might fill in. The strings present have the same broad meaning 
as they did for Epson and IBM printers. and are even output in the same order. The 
subtle detail is slightly different though . 

Set lines. Form feed and Page end are exactly as for Epson and IBM compatible 
printers. as is the Page start string, save that it is used to specify the vertical 
resolution . 

Line skip is strictly speaking the same. but since it skips a '(dump depth)', and the 
Dump depth is always set to I for Integrex printers. the actual amount of paper 
skipped is a lot less: in fact a single printer pixel row. since the Integrex is 
effectively a one pin printer. 

Line start I is also the same in a strict sense. since it is output before the data. The 
main data sequence for Integrex printers is the same as for other printers: 

(PDumperDM$Extra) (currently unused) 
<Set lines>! line counti<Page start> 
<Line skip> repeated until last line at top of page that does not print output 
(dump depth) repeated until last line that prints output to page (ie is non-zero) 
<Form feed><Page end> 

3-719 



Graphics mode: Dump strings 

::l-720 

but each '(dump depth)' is substantially different, consisting of a single horizontal 
printer pixel row: 

<Line start 1>1111(11 bytes red data)(11 bytes green data)(11 bytes blue data) 

The printer merges the red , green and blue data to form a single raster line of 
CMYK dots, which it then prints. The MSB of a single byte of raster data is printed 
first (ie on the left). 

lmageWriter printer 

The Dump strings at 160 by 144 dpi for an 1mageWriter printer are: 

~1 !3 6ra1bics 110dt .. 
DuiiP strings f2 

Set lints: 127, "H' I 
Page start: 127, "c", 27, "D" 1814127, "o" 127 1 "Z", 128 18127, • )" 127, "I 
ForR feed: 12 
Page end: l27,"y" I 

Lint return: 13 
Lint skip : 113,27 1'1" 1"1" 1"6" 118 I 

Lint end 1: I13,27,'T','8" 1'1',18 I 
Lint end 2: 113 127,'1' 1"1" 1"5' 118 I 
lint end 3: 
Zero skip: I27,"F" I 

line start 1: 127,"6" I 
Line start 2: 
Lint pass 1: 

line pass 1b: 
Lint pass 2: 

lint pass 2b: 
Lint pass 3: 

Lint pass 3b : 
lint PiSS 4: 

lint pass 4b: ~ 
All of these are used in a similar way as for Epson and IBM printers, as is the 
PDumper1W$Extra system variable (again, currently unused). PDumperiW also 
follows the same sequence of data output as PDumperDM (see page 3-714) , 
However, there are differences in the format the data in each '( dump depth)' 
takes- which is why the ImageWriter requires its own dumper. In particular: 

• The ImageWriter requires the bits of graphics data to be output in the opposite 
order vertically to an Epson/IBM compatible printer; ie the LSB (bit 0) is at the 
top of the print head, and the MSB (bit 7) is at the bottom. 



Printer definition files 

• It requires all t he {length} parameters given on page 3-7I4, and some others , 
to be passed as four digit decimal numbers rather than as two byte binary 
numbers. 

For example: 

• The Dump depth is given as 27 , 'G', 'I', '5', '3 ' , '2 ' for I 532 columns. 

• The number of lines is given as the length ofthe page in lfi44ths of an inch 
eg 27, 'H' , '!' , '6', '8' , ·o· for 16801144 ". 

In obtaini g this number, PDumperiW assumes that there are 6lines per 
inch , so the conversion factor is I44/6 = 24. A4 paper is 70 lines long, so 
70 X 24 = I680. 

• The Zero skip is given as 27, 'F' , '0', '3', '5', '3' . 

HP LaserJet compatible printers 

For HP Laser)et compatible printers, the options for graphics printing 
configuration are very limited. The dump strings are unused, the control strings 
being set in the PDumperLJ module instead. With hindsight we recommend that­
if at all possible- you do not follow this approach when writing a dumper. Use the 
dump strings , even if the contents are used for something totally different to what 
the PrintEd it names imply they should be for. The flexibility gained by doing this is 
worth the potential confusion . 

Because PDumperLJ has so little flexibility and can only drive standard Laser)et 
and Desk)et compatible printers, there is no point in describing the data sequence. 
Either your printer will work with one of the four supplied printer definition files, or 
it will not work at 3ll and using PrintEdit will not help. See also the file 
Printers.HP.Read_Me. 

3-721 



Graphics mode: Dump strings 

~-722 

System variables 

The PDumperLJSExtra system variable is set by the !Printers.lj back end and is 
output by PDumperLJ. It contains the control sequence to select either manual 
feed or auto feed, and the control sequence to select the correct paper size. These 
strings are read from the !Printers.lj .Resources.Messages file by the !Printers.lj 
back end, with the following tokens : 

e AUTO_FEED 

• MANUAL_FEED 

• PT_A4 

• PT_Letter 

• PT_Legal . 

The strings after each token may safely be changed if your printer needs a different 
control sequence, and you may add extra PT_ tokens for ~ny additional paper sizes 
you may need. For example, if you define a paper size of A3 (Generic LJ) and the 
control sequence to select A3 paper is: 

1]&199A 

then you would need to add the line: 

PT_A3:1]&199A 

to the file. 

The string for PT _A4 is used if there is no token for the paper size selected in the 
Printers application's printer configuration window. 



Printer definition files 

Text modes 

General points, and Epson and IBM compatible printers 

Text printing is done by the Printers back end in use (dp, lj or ps) and as such has 
nothing to do with dumpers. However, there are some points worth mentioning 
since you will need some text printing definitions to go with a new dumper. No 
highlights, Draft highlights and NLO highlights are very similar, so only one will 
be described in detail. Below is the Text- NLO highlights window for a dp class 
printer: the Epson.EX-800 file : 

~1{:31 Text - HLQ hiahli•hts 'o 

I OK 1<0-

Set lines: I27."C"! I 
Do backspace: 8 

Do tab: 9 
Do forllfeed: 12 

Do start of line: 13 
Do new line: 113,18 I 

Start of text job: I18 127,"W" 18127 1"P",27 1"R" 18127 1"x" 11127,"t" 11127l 
End of text job: 112,27,"@" 

Select pica font: I18 127,"W" 18127 1"P" 127,"x" 11 
Select elite font: I18 127 1"W" 18127 1"M",27 1"x" 11 

Select condensed font: I1S,27,"W" 18127 1"P" 127 1"x" 11 
Select expanded font: I18,27 1"W" 11127 1"M",27 1"x" 11 

Turn bold on: I27,"E" 
Turn bold off: I27,"F" 

Turn italics on: 1271 "4" 
Turn italics off: 127 1 "S" 

Turn light on: 127 1 "x" 18 
Turn light off: l27,"x",1 

Turn superscript on: 127 1 "S" 18 I 
Turn superscript off: 127 "T" I 

Turn subscript on: 127 1 "S" ,1 I 
Turn subscript off: 27 "T" 
Turn underline on: 127,"-" 11 I 

Turn underline off: 127,"-" 18 I~ 

Set lines operates in the same way as for graphics printing; it is followed by a byte 
specifying the length, and is not sent if the length is zero. Unlike graphics printing, 
the Set lines sequence is sent after the Start of text Job sequence. 

Do backspace, Do tab and Do formfeed are obvious. 

Only one of Do start of line and Do new line is used. If Print linefeeds is selected 
in the Printers application's printer configuration window, then Do new line is sent 
at the end of each text line. If Print linefeeds is not selected, then Do start of line 
is sent instead. 

3-723 



Text modes 

'L7')Jt 

Start of text job is sent at the very beginning of the text job. You may assume that 
the printer has been reset at the end of the preceding text or graphics job, but you 
should not assume the DIP switch settings. The contents of the Select pica font 
string should always be included in the Start of text job string, because the 
!Printers.dp back end assumes that the printer is set up for pica at the start of the 
job. On a printer that can do NLO printing, you should enable or disable NLO 
mode appropriately for all three sets of highlights. The full string does not fit into 
the PrintEdit icon as shown above. It is : 

18, 27, 'W' , 0, 27, 'P', 27, 'R' , 0, 27, 'x ', I, 27, 't ', I , 27, '6' 

Splitting this up into components: 

• I 8, 27, 'W' , 0, 27, 'P' selects the pica font and is part of the 'Select pica font' 
string 

• 27, 'R', 0 selects the USA character set 

• 27, 'x', I turns NLO on, and is the remainder of the 'Select pica font' string 

• 27, 't' , I sets the top bit set printer characters to the Epson Character Graphics 
set (the same as IBM Code Page 437) rather than the italics character set 

• 27, '6' enables characters 128 to 159 and 255 as printable characters within the 
Epson Character Graphics set. 

Much of this is needed for the character mappings supplied . As you can see, the 
Start of text job sequence has to get lots of things set up correctly to simplify 
everything else. 

End of text job usually just does a form feed and resets the printer. It is standard 
Acorn practice to reset dp printers at the end of jobs (text and graphics) but not at 
the start . One of the reasons behind not doing it at the start of the job is that it lets 
the user use some of the printer's front panel controls to select various options if 
he wants, which with luck will remain in effect throughout the print job (although 
they will probably be turned off by the reset at the end). If the reset were at the start 
of print jobs, this would not be possible. 

Select pica font selects a 10 cpi (characters per inch) printer font. This is the 
default, and it is assumed that all printers can support it. All font selection strings 
should ensure they correctly disable anything that any of the other font selection 
strings enable. 

Select elite font selects a I 2 cpi printer font. If there is no 12 cpi font then you 
should select the closest, which will usually be I 0 cpi . 

Select condensed font selects a 17 cpi printer font , which nearly all printers 
support. Again you should select the closest size if 17 cpi is not available. 



Printer definition files 

Select expanded font selects a 6 cpi printer font. This is usually achieved by 
selecting 12 cpi, and turning double width printing on with 27, 'W', I (which is why 
all the other font selection strings turn double width off). If there is no 6 ( 12) cpi 
font then you should select the closest size. This usually means selecting 10 cpi 
and double width printing to give 5 cpi. 

Turn bold on/off, Turn italics on/off, Turn superscript on/off, Turn subscript 
on/off and Turn underline on/off are obvious. 

Turn light on and Turn light off are difficult to support as dot matrix printers 
generally have no concept of light printing. In NLO highlights, it is Acorn practice 
to turn NLO mode off for light printing, and turn it back on again when normal 
printing resumes. There could be a conflict if a font selection string is issued half 
way through the light printing, as the font selection strings usually enable NLO. 
This is a specific instance of a general problem with I st Word Plus file fancy text 
printing, which is that different styles and effects should be mixed sparingly. For 
example many printers cannot underline superscripts and subscripts, or print them 
in bold. 

lntegrex printers 

Text modes on Integrex printers work in the same way as for Epson/IBM compatible 
printers. 

lmageWriter printer 

Text modes on the ImageWriter printer works in the same way as for Epson/IBM 
compatible printers. save that the length is sent as a four digit decimal string using 
the same units and conversion factor as for graphics printing. This is done by the 
!Printers.dp back end if the name of the dumper to use is PDumperiW, and was 
done to avoid having a new printer class and back-end just to handle this one 
difference in text printing. 

HP LaserJet compatible printers 

The text highlights and character mappings in all the lj printer class files supplied 
with RISC OS 3 (version 3.1 0) are identical. This fortunate state of affairs is because 
when talking to LaserJet compatible printers. you can tell the printer to do 
something and if it can't it is up to the printer itself to decide what compromise to 
make. This means the output differs between different printers. even though the 
printer definition files are the same. See the Printers.HPRead_Me file for more 
details of this effect. 

3-725 



Text modes 

3-726 

As mentioned earlier, Portrait mode and Landscape mode highlights are available 
instead of No, Draft and NLO highlights for lj class printers. In fact, the strings for 
Portrait and Landscape mode are nearly all the same, the only difference being 
that in landscape mode smaller font sizes are specified, and landscape printing is 
selected . Both Portrait and Landscape mode must be defined in the printer 
definition file, and they must be used for their intended purpose. This is because 
the lj back-end assumes much, to the extent that some control sequences are 
burnt into the code rather than being in the printer definition file; again you should 
see the Printers.HP.Read_Me file. Some control sequences also come from the 
!Printers.lj .Resources.Messages file, as described on page 3-722. 

Landscape mode in the HP.Deskjet+ file is shown below: 

~[(:31 LandscaPe Node 'c 

I OK 1-fr 
Set lines: 

Do backspace: 8 
Do tab: 

Do forlllfeed: 12 
Do start of line: 13 

Do new line: 113,18 I 
Start of text job: l27 1"&'' 1"k 11

1"B" 1"G" 127 1"&" 1 ''1" 1"1" 1"D" 1"8 11
1"d'' 1"B"j 

End of text job: 27 "E" I 
Select pica font : l27,"(",''s","1","4","H" 

Select elite font : l27 1"(",''s","1","7","H" 
Select condensed font : l27,"<","s","2","4","H" 
Select expanded font: 127," (", "s", "8",",", "5", "H" 

Turn bold on: l27 1
11

(" 1''s" 1"+" 1"3 11
1"B" 

Turn bold off: l27,"<","s","8","B" 
Turn italics on: l27,"<", "s","1","S" 

Turn italics off: l27,"<","s","8","S" 
Turn light on: 127 1''('' /'s" 1"-'' 1''3'' /'B" 

Turn light off : l27,"(","s","8","B" 
Turn superscript on: 27 "&"''a" ~~-•• "8 11 

'','' "3" "R" 27 11
(" "s" "6'' "U 

Turn superscript off: 27 "&" ''a" "+" "8 11 
''.'' "3 11 ''R" 27 11

(" "s" "8" ''. 11 

Turn subscript on: l27,"<","s","6","U" I 
Turn subscript off: 127 1

11 
(

11
1''s" 1"8" 1'', '' 1"5" 1"U" I 

Turn underline on: l27,"&","d","8","D" I 
Turn underline off: l27,"&","d","@" I ~ 

Set lines and Do tab are unused, Do backspace and Do formfeed are obvious, 
and all of the other strings except Start of text job are as for dp class printers 
above. 

The Start of text job string has seriously overflowed the icon in the window; use 
PrintEdit on the DeskJet+ file to see all of it. There is much that is assumed about 
this string. 



Printer definition files 

At the start of a text job, the lj back-end resets the printer with Esc E, as per 
Hewlett- Packard guidelines. Next it sends the paper feed (auto or manual) 
selection sequence and paper size settings from the Messages file, in the same 
manner as the setting of PDumperLJ$Extra described earlier. Then the actual Start 
of text job string is output, and finally the number of lines per page is set with an 
Esc &lxxF sequence Thus the position of the Start of text job string is fixed , and 
there are HP guidelines which specify the order in which various things must be set 
to ensure that the printer chooses the closest match it can manage. The fixed 
position may impose some limitations on what you can put in the string. As well as 
getting the order of everything correct, the string must select landscape or portrait 
orientation as appropriate. It must also define the settings for both the primary 
and secondary printer fonts : the secondary font is used for page titles (if enabled). 
and the primary font is used for everything else. 

The superscript and subscript strings deserve mentioning. There are no such 
effects on LaserJet compatible printers. The Turn subscript on string merely 
reduces the height of the text. The Turn superscript on string moves the baseline 
of the text up, and reduces the height of the text. Quite a few printers do not 
perform these actions well . 

There is actually a control sequence for requesting light printing on LaserJets (used 
above) , but very few printers are capable of doing it. This feature is only really 
present because it is in the I st Word Plus file format. 

3-727 



Character mappings 

Character mappings 

3-728 

General points, and Epson and IBM compatible printers 

Editing Character mappings allows a character from the Acorn character set 
currently in use to be converted to the same character in the printer's character set. 
For example on UK systems the mappings provided are for Acorn Extended Latin I, 
whereas for a Turkish system a new set of printer definition files would have to be 
supplied containing Latin3 character mappings. 

Part of the character mappings for the Epson.EX-800 file are show below: 

1~11:1 Character un'1nas 'c 
129 ¢ "II" 
138 ¢ "w" ,8, ••• 
133 ¢ •y• 
134 .o "y",8,"'" 
148 ¢ ••• 

141¢ 27,"S",8,"T",8,27,"S",1,"11",27,"T" 
142¢ "%",8,"," 
143 ¢ 249 
144 ¢ ••• 
145 ¢ ••• 

146¢ 27,"5",1,"<",27,"T" 
147¢ 27,"S",1,">",27,"T" 
148 ¢ 34 
149 ¢ 34 
158 ¢ 34 
151 ¢ ·-· 
152 ¢ 196 
153 ¢ ·-· 
154¢ "0",8,27,"4","E",27,"5" 
155¢ "o",8,27,"4","e",27,"5" 
156¢ "1",8,"-" 
4> 

These mappings are used to convert from the Acorn character set in use to the 
printer character set. For example to print character 130 ('w'- w circumflex) a 'w' is 
printed, then the print head is backspaced, and then a ,A, (circumflex) is printed on 
top of the 'w'. 

The character mappings in a given printer definition file are specific to a certain 
RISC OS alphabet. For instance, the character mappings in the files supplied with 
RISC OS 3 (version 3.1 0) are all for Acorn Extended Latin I since that is the correct 
alphabet for the UK territory. A localised system would come with a new set of 
printer definition files containing mappings for the correct alphabet (eg. Latin3 for 
a Turkish system). All characters from 32 to 255 can have mappings, even though 
none of the supplied files have mappings for characters Jess than 128. If there is no 
mapping, the character is sent straight through to the printer unaltered. The USA 



Printer definition files 

character set is selected for Epson compatible printers in the Start of text Job 
string because the USA printer character set matches exactly characters 32 to 126 
in Acorn Extended Latin I. 

A mapping should take up only one character position on the paper. For example 
character 154 ('CE' - OE diphthong) might reasonably be mapped as an ·o· and an 
'E' next to each other ie. 'OE' . However. this takes up two character spacings on the 
paper. which is not allowed. This is because the Printers application's and the back 
end's idea of where the output had got to would not match what was on the paper. 
Also 1st Word Plus (and hence 1st Word Plus fancy text files) assumes that all 
characters only take one character spacing on the paper. Finally, with the example 
given above you can't tell from the paper copy whether the file has an 'CE' 
diphthong in it or an 'OE' pair. hence it is not an accurate representation of the file. 
An ·o· and an 'E' printed on top of each other doesn't look very good (although on 
the EX-800 the 'E' is italic which improves matters) but at least it is unique and 
distinguishable from all other characters. 

Earlier we mentioned that text highlights sometime clash with each other. They 
also clash with some of the character mappings. For example character 141 ('TM'­

the trademark symbol) is obtained by printing a superscript 'T' and a subscript 'M' 
on top of each other. This disables subscript (and superscript) at the end of the 
sequence. So if superscript or subscript is in effect when the 'TM' character is 
printed, they will be switched off on the printer afterwards even though they should 
still be turned on . The italic 'E' in the 'CE' example used earlier would cause the 
same problem with italics. If these clashes are a problem for you, then you can 
change the character mappings to try to avoid them. As a result some of your 
mappings will not be as good, and you need to decide what compromise to arrive 
at. 

You must map every character in the Acorn character set in use. regardless of how 
poor a mapping you can provide. The Printers.Generic.Text file maps each top bit 
set Acorn Extended Latin I character to a single top bit clear character. for use with 
line printers and other extremely primitive print mechanisms. Use the mappings in 
this file as the absolute minimum representations. 

The printer definition files supplied with RISC OS 3 (version 3.1 0) con~ in three 
main groups of character mappings for dp printers. These groups are based on 
what character sets in the printer are used. All files make use of styles and 
backspace over-printing where possible to supplement these printer character 
sets. 

The first and simplest is the 'FX-80' group (see the Epson.FX-80 file). This uses the 
basic top bit clear USA character set. and some switches to other countries· 
character sets for extra characters. The USA character set is selected in the Start of 
text Job sequence (ESC. 'R'. 0). 

3-729 



Character mappings 

3-730 

The second is the 'ESC t I· or 'Code Page 437' group (see the Epson .EX-800 file) . 
This uses the basic top bit clear USA character set, the Epson Character Graphics 
top bit set characters (the same as IBM Code Page 437), and some switches to 
other countries' character sets- though less so than in the 'FX-80' group. The USA 
character set (ESC, 'R', 0) and the Epson Character Graphics set (ESC, 't', I ESC, '6' ) 
are selected in the Start of text Job sequence. 

The third and best is the 'Code Page 850' group (see the IBM.Pro-X24E file). This 
uses the IBM Code Page 850 character set, which has a perfect single character 
mapping for all characters except the Acorn extensions to Latin I between 
characters 128 and 159. Code Page 850 (Esc, T , 'T' , 4, 0, 0, 0, 3, 'R' Esc, '6' ) is 
selected in the Start of text Job sequence. Also. if the printer is not already in IBM 
emulation mode this should be selected; for example this is done in the 
Citizen.Swift-24 file. 

Obviously there are deviations within each group, and there are in fact too many to 
go into here. However. it is useful to recognise what the major groupings are, pick 
one, and then tweak it to fit your printer. There are also some files that are not in 
any of the groupings; for example the Generic. Text and Star.DP-51 0 mappings. 

lntegrex printers 

The character mappings for the lntegrex differ from the classes given above. You 
can view them from PrintEdit; there are no unusual features worthy of mention 
here. 

lmageWriter printer 

The character mappings for the lmageWriter differ from the classes given above. 
You can view them from PrintEdit; there are no unusual features worthy of mention 
here. 



Printer definition files 

HP Laser Jet compatible printers 

The complete character mappings for the Desk)et+ file are: 

129 ~ "N" 
138 ~ "w" ,s,•·• 
133 ~ •y• 
134 ~ •y• ,8, ••• 

Char~chr lliPPints 

148 <> 27, ·ar, "a" I"+" , 11 811
, .. • ·I 11 58 ,"511

' "RH ,168,27,"&11
, •a•' n .. H I ..... '·.· ,"5" ,•5• I ·R· 

141 ~ •r• 
142 ~ "%",8,"." 
143 ~ 183 
144 ~ .... 
145 ~ 188 
146 ~ "(" 
147 ~ ")" 
148 ~ 34 
149 ~ 34 
158 ~ 27, "&11 /a", 11 +", 11 111

,".", "3" ,"R11 ,34,27, "&• , .. a• , ..... ,•e•, ... •,•a• ,teR• 
151 ~ ._ .. 
152 ~ ._ .. 
153 ~ ._ .. 
154 ~ "0" ,8, "E" 
155 ~ "o",8,"e" 
156 ~ "1",8,"-" 
157 ~ "1",8,"=" 
158 ~ "f",8,"i" 
159 ~ "f",8,"1" 
168 ~ 32 
~ 

Only the Acorn extensions to Latin I (characters 128 to 159) need to be mapped. 
because the 'Start of text job' string selects the ECMA-94 character set. which is the 
same as ISO Latin I . Character mappings 140 and 150 are of interest. Character 140 
(' .. .' -the ellipsis symbol) is obtained by moving the text baseline down and 
printing the ···· (diaeresis) character, and then, of course, moving the baseline back. 
This gives two dots at the right height, which is better than one, although there 
should be three. Similarly character 150 ·.: (bottom double quote) is obtained by 
moving the baseline down and printing a normal double quote. These two 
examples show that it pays to be imaginative when dealing with a flexible printer 
like a LaserJet compatible. Such tricks are impossible on a dot matrix printer. 

3-731 



3-732 



68 MakePSFont 

Introduction 
The MakePSFont module provides a a SWI used by PDriverPS to make PostScript 
fonts available to printers. It is a private interface between the Printers application 
and PDriverPS. You must not use j t from your own applications; it is only of 
relevance to anyone wishing to replace the current PostScript printer drivers. See 
the section entitled Extending the printing system on page 3-593 . 

3-733 



SWI calls 

SWI calls 

3-734 

MakePSFont MakeFont 
(SWI &43440) 

This call is for internal use only; you must not use it in your own code. 

It is not available in RISC OS 2, nor in RISC OS 3 (version 3.00) . 



Part 1 0 - lnternationalisation 

3-735 



3-736 



69 Message Trans 

Introduction and Overview 
The MessageTrans module provides facilities for you to separate text messages 
from the main body of an application. The messages are held in a text file , and the 
application refers to them using tokens . 

Using this module makes it much easier to prepare versions of your program to 
supply to different international markets. Changing your application's textual 
output becomes a simple matter of editing its messages file using your favourite 
text editor. 

MessageTrans is not available in RISC OS 2. 

Summary of MessageTrans facilities 

The module provides SW!s to 

• get information about a message file 

• open a message file 

• look up a text message in the file by its token 

• look up a text message in the file by its token , and then GSTrans it 

• look up a text message in the file by its token , and convert it to an error block 

• look up text messages in the file by their tokens, and convert them to a menu 
structure 

• close a message file. 

It also provides a service call to ease the handling of message files over (for 
example) a module reinitialisation. 

3-737 



Technical Details 

Technical Details 

Message file descriptors 
MessageTrans uses a file descriptor to refer to message files. A file descriptor consists 
of a 4-word data structure. A file descriptor is always passed to MessageTrans as a 
pointer to this data structure. 

We recommend that when your application stores a file descriptor, it uses a fifth 
word to keep a record of the file's status (ie whether or not it is open). 

Global messages 

If MessageTrans is passed a null pointer to a file descriptor, it uses a file of global 
messages, held in Resources:S.Resources.Global.Messages. Obviously, if any of 
these messages are suitable for your application, you should use them; this will 
save on RAM usage, and on any future effort in translating these messages. 

Message file format 

3-738 

Message files contain a series of one-line token /value pairs, terminated by 
character I 0 (an ASCII linefeed). 

<file> 
<line> .. 

<tokline> .. 
<token> .. 

<tokchar> .. 
<char> .. 
<wildcard> .. 

<comment> .. 
<anychar> .. 

<nl> .. 
<value> .. 

-

-

-

-

-

-

-

{<line>)* 
<tokline> I '#' <comment><nl> I <nl> 
<token> {'/'<token> I <nl><token> )* : <value><nl> 
<tokchar> { <tokchar> } * 
<char> I <wildcard> 
any character>· 'except·:.')',':','?' or'/' 
'?' (matches any character) 
{ <anychar> }* 
any character except <nl> 
character code I 0 
{ <anychar> I '%0' I '%I' I '%2' I '%3' I '%%' l * 

Note that the spaces in the above description are purely to improve readability- in 
fact spaces are significant inside tokens, so should only really appear in 
<comment> and <value>. 

Alternative tokens 

Alternative tokens are separated by'/' or <nl>. If any of the alternative tokens 
before the next':' in the file match the token supplied in a call, the value after the 
next ':' up to the following <nl> is returned. 



Message Trans 

Wildcards 

The '?' character in a token in the file matches any character in the token supplied 
to be matched. 

Case significance 

Case is significant. 

Parameter substitution 

Most MessageTrans SWis support parameter substitution . If R2 is not 0 on entry, 
'%0', '% 1' , '%2' and '%3' are substituted with the parameters supplied in R4 ... R7, 
except where the relevant register is 0, in which case the text is left alone. '%%' is 
converted to'%'; otherwise if no parameter substitution occurs the text is left 
alone. No other substitution is performed on the string. 

Example file 
# This is an example message file 
TOKl :This value is obtained only for "TOK1 ". 
TOK2 
TOK3/TOK4:This value is obtained for "TOK2 ", "TOK3 " or "TOK4 " 
TOK? :This value is obtained for "TOK<not 1 , 2 , 3 or 4> " 
ANOTHER : Parameter in R4 = %0 , parameter in R5 = %1. 
MENUTITLE:Title of menu 
MENUITEM1:First item in menu 
MENUITEM2 : Second item in menu 
MENUITEM3 : Third item in menu 

Unmatchable tokens 

There are a number of actions MessageTrans may take if it fails to find a match in 
the specified file. In order they are: 

Search for the token in the file of global messages. 

It only does so for certain calls, as stated in their documentation. 

2 Use a default string (see below). 

3 Generate an error (see below) . 

Supplying default strings 

Whenever you have to supply MessageTrans with a token to be matched, you can 
also supply a default string to be used if MessageTrans is unable to match the 
token . The syntax is: 

token:default 

3-739 



Service_Reset 

Errors 

Service _Reset 

That is, the token and its default value are separated by a ':' . The default value must 
be null terminated. 

MessageTrans generates the error 'Message token xxx not found' if it is totally 
unable to supply any string equivalent to a token. This error is also given if the 
string to be returned is on the last line of the file, and does not have a terminating 
ASCII linefeed. 

Since MessageTrans does not close message files on a soft reset, applications that 
do not wish their message files to be open once they leave the desktop should call 
MessageTrans_CloseFile for all their open files at this point. However, it is perfectly 
legal for message files to be left open over a soft reset. 

Service_MessageFileCiosed 

3-740 

If a messages file is held in ResourceFS, MessageTrans does not make a copy of the 
message file, but instead directly accesses the file . Service_MessageFileClosed is 
used to notify MessageTrans that the ResourceFS file has been removed for one 
reason or another. 

.. 



Message Trans 

Service Call 
Service_MessageFileCiosed 

(Service Call &5E) 

Message files have been closed 

On entry 

RO = 0, or- under RISC OS 3 (version 3.00) only- the 4-word data structure passed 
to MessageTrans_OpenFile 

Rl = &5E (reason code) 

On exit 

Use 

All registers are preserved 

This call is issued by MessageTrans as a broadcast to warn that all message files 
have been closed . You must not claim it. 

If your application has any direct pointers into message data, it should re-initialise 
itself by calling MessageTrans_OpenFile again to re-open the file , and recache its 
pointers . If it has used MessageTrans_MakeMenus, it should call 
Wimp_GetMenuState to see if its menu tree is open , and delete it using 
Wimp_CreateMenu (-1 ) if so. 

You only need to act on this service call if you are using direct pointers into the 
message file data. Otherwise, the MessageTrans module will make a note in the file 
descriptor that the file has been closed. and simply re-open it when you next call 
MessageTrans_Lookup or MessageTrans_MakeMenus on that file . 

We recommended that you don't use direct pointers into message file data (eg 
indirected icons with MessageTrans_MakeMenus) if your application cannot trap 
service calls. You can still use such indirected icons, if you provide a buffer pointer 
in R2 on entry to MessageTrans_OpenFile (so that the message file data is copied 
into the buffer). 

Under RISC OS 3 (version 3.00) this service call is instead issued for each open 
message file that is not held in the user's own buffer. It tells the application that its 
file data has been thrown away, for example if the file is held inside a module which 
is then reloaded. The file is identified by the 4-word data structure passed to 
MessageTrans_OpenFile. If you recognise this value, you should claim the service 
call and act accordingly. 

3-741 



SWI Calls 

SWI Calls 

3-742 

MessageTrans_Filelnfo 
(SWI &41500) 

Gives information about a message file 

On entry 

Rl =pointer to filename 

On exit 

RO = flag word : 
bit 0 set~ file is held in memory (can be accessed directly) 
bits 1-31 reserved (ignore them) 

R2 = size of buffer required to hold file 

Interrupts 

Interrupt status is unaltered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is re-entrant 

This call gives information about a message file . telling you if it is held in memory, 
and the size of buffer that is required to hold the file . If the file is held in memory, 
and you require read-only access. you need not use a buffer to access it. 

Related SWis 

MessageTrans_OpenFile (page 3-743) 

Related vectors 

None 



Opens a message file 

Message Trans 

MessageTrans_OpenFile 
(SWI &41501) 

On entry 

RO =pointer to file descriptor. held in the RMA if R2=0 on entry 
Rl =pointer to filename. held in the RMA if R2=0 on entry 
R2 = pointer to buffer to hold file data 

0 =>allocate some space in the RMA. or use the file directly if possible 

On exit 

Interrupts 

Interrupt status is unaltered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is re-entrant 

This call opens a message file for subsequent use by the MessageTrans module. 

The error 'Message file already open' is generated if RO points to a structure already 
known to MessageTrans (ie already open) . 

An application may decide that it would like to buffer the file in its own workspace 
(rather than the RMA) if it needs to be loaded. or use the file directly if it is already 
in memory. To do this: 

SYS ' MessageTrans_ Fileinfo•, ,filename$ TO flags%, ,size% 
IF flags% AND 1 THEN buffer%=0 ELSE buffer%=FNalloc(size%) 
SYS ' OS_Module' ,6 ,, ,17+LENfilename$ TO • , filedesc% 
$(filedesc%+16)=filename$ 
SYS ' MessageTrans_OpenFile ' , filedesc% , filedesc%+16 , buffer% 

3-743 



MessageTrans_OpenFile (SWI &41501) 

3-744 

where FNalloc() allocates a buffer of a given size, by using the Wimp_SlotSize or 
'END=' command. Note that in fact the filename and file descriptor only need to be 
in the RMA if R2=0 on entry to MessageTrans_OpenFile. 

Furthermore, if R2=0 on entry to this SWI , and the application uses direct 
pointers into the file (rather than copying the messages out) or uses 
MessageTrans_MakeMenus, it should also trap Service_MessageFileClosed, in 
case the file is unloaded. 

Related SWis 

MessageTrans_Filelnfo (page 3-742) , MessageTrans_CloseFile (page 3-750) 

Related vectors 

None 



MessageTrans 

MessageTrans_Lookup 
(SWI &41502) 

Translates a message token into a string 

On entry 

RO = pointer to file descriptor passed to MessageTrans_OpenFile, 
or 0 to use global messages file (see page 3-738) 

R I = pointer to token , terminated by character 0, I 0 or 13 
R2 = pointer to buffer to hold result (0 ~don't copy it) 
R3 =size of buffer (if R2 non-zero) 
R4 =pointer to parameter 0 (0 ~don ' t substitute for '%0') 
R5 =pointer to parameter I (0 ~don't substitute for '%1 ') 
R6 =pointer to parameter 2 (0 ~don ' t substitute for '%2') 
R7 =pointer to parameter 3 (0 ~don't substitute for '%3') 

On exit 

RO preserved 
Rl =pointer to terminator of token 
R2 = pointer to result string (read-only with no substitution if R2=0 on entry) 
R3 = size of result before terminator 

Interrupts 

Interrupt status is unaltered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is re-entrant 

This call translates a message token into a string, with optional parameter 
substitution . If the token is not found in the given message file, it is then looked up 
in the global messages file; see the section entitled Global messages on page 3-738. 

3-745 



MessageTrans_Lookup (SWI &41502) 

Your application must have previously called MessageTrans_OpenFile, although 
you can still call this SWI if the file has been automatically closed by the system, 
because the system will also automatically re-open the file . 

See the section entitled Message file format on page 3-738 for further details of the file 
format used to hold message tokens and their corresponding strings. 

Related SWis 

MessageTrans_ErrorLookup (page 3-753). MessageTrans_GSLookup (page 3-755) 

Related vectors 

None 



Message Trans 

MessageTrans_MakeMenus 
(SWI &41503) 

Sets up a menu structure from a definition containing references to tokens 

(!)n entry 

RO =pointer to file descriptor passed to MessageTrans_OpenFile, 
or 0 to use global messages file (see page 3-738) 

Rl =pointer to menu definition (see below) 
R2 =pointer to buffer to hold menu structure 
R3 =size of buffer 

(!)n exit 

RO, R I preserved 
R2 = pointer to end of constructed menu structure 
R3 =bytes remaining in buffer (0 if call was successful) 

Interrupts 
Interrupt status is unaltered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is re-entrant 

This call sets up a menu structure from a definition containing references to 
tokens, and also sets up appropriate widths for the menu and any submenus. 
Parameter substitution is not allowed. 

The menu structure created can then be passed directly to Wimp_CreateMenu (see 
page 3-156) 

Your application must have previously called MessageTrans_OpenFile, although 
you can still call this SWI if the file has been automatically closed by the system, 
because the system will also automatically re-open the file. 

3-747 



MessageTrans_MakeMenus (SWI &41503) 

3-748 

A 'Buffer overflow' error is generated if the buffer provided for the menu structure is 
too small. 

The menu definition consists of one or more submenu definitions, terminated by a 
null byte. Each submenu definition consists of a title definition followed by one or 
more menu item definitions. A title definition has the following structure: 

Bytes Meaning 

n token for menu title, terminated by character 0. I 0 or 13 
I menu title foreground and frame colour 
I menu title background colour 

menu work area foreground colour 
menu work area background colour 
height of following menu items 
vertical gap between items 

and a menu item definition has this structure: 

Bytes Meaning 

m token for menu item. terminated by character 0, 10 or 13 
word-align to here (addr := (addr+3) AND (NOT 3)) 

4 menu flags (bit 7 set~ last item) 
4 offset from RAM menu start to RAM submenu start (0 ~no submenu) 
4 icon flags 

If the icon flags have bit 8 clear (ie they are not indirected). the message text for the 
icon will be read into the I 2-byte block that forms the icon data; otherwise the icon 
data will be set up to point to the message text inside the file data. In the latter 
case they are read-only. 

If the menu item flags bit 2 is set (writable) and the icon is indirected, the 3 words 
of the icondata in the RAM buffer are assumed to have already been set up by the 
calling program. The result of looking up the message token is copied into the 
buffer indicated by the first word of the icon data (truncated if it gets bigger than 
the buffer size indicated in [icondata.#81). 

See the section entitled Message file format on page 3-738 for further details of the file 
format used to hold message tokens and their corresponding strings. 

For a more complete definition of the flags etc used in the menu definition, see the 
definition of Wimp_CreateMenu on page 3- I 56. 

Related SWis 

None 



Related vectors 

None 

Message Trans 

3-749 



MessageTrans_CioseFile (SWI &41504) 

3-750 

Closes a message file 

On entry 

Message Trans_ Close File 
(SWI &41504) 

RO = pointer to file descriptor passed to MessageTrans_OpenFile 

On exit 

Interrupts 

Interrupt status is unaltered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

SWI is re-entrant 

Use 

This call closes a message file. 

Related SWis 

MessageTrans_OpenFile (page 3-743) 

Related vectors 

None 



Message Trans 

MessageTrans_EnumerateTokens 
(SWI &41505) 

Enumerates tokens that match a wildcarded token 

On entry 

RO = pointer to file descriptor passed to MessageTrans_OpenFile 
R I =pointer to (wildcarded) token, terminated by character 0, 10, 13 or':' 
R2 = pointer to buffer to hold result 
R3 = size of buffer 
R4 =index (zero for first call) 

On exit 

RO, R I preserved 
R2 preserved, or zero if no further matching tokens found 
R3 =length of result excluding terminator (if R2 =F- 0) 
R4 =index for next call (non-zero) 

Interrupts 

Interrupt status is unaltered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is re-entrant 

This call successively enumerates tokens that match a wildcarded token. Each 
successive call places a token in the buffer pointed to by R2, with the same 
terminator as that used for the wildcarded token that it matches. To enumerate all 
matching tokens, you should set R4 to zero, and repeatedly call this SWI until R2 is 
zero on exit. 

3-751 



Message Trans_Enumerate Tokens (SWI &41505) 

3-752 

Valid wildcards in the supplied token are 

Wildcard 

? 
* 

Meaning 

match I character 
match 0 or more characters 

See the section entitled Message file format on page 3-738 for further details of the file 
format used to hold message tokens and their corresponding strings. 

You cannot pass RO = 0 to enumerate the global message tokens. 

Related SWis 

None 

Related vectors 

None 



Message Trans 

MessageTrans_Errorlookup 
(SWI &41506) 

Translates a message token within an error block 

On entry 

RO = pointer to error block (word aligned) 
Rl =pointer to file descriptor passed to MessageTrans_OpenFile. 

or 0 to use global messages file (see page 3-738) 
R2 = pointer to buffer to hold result (0 => use internal buffer) 
R3 =buffer size (if R2 non-zero) 
R4 =pointer to parameter 0 (0 =>don't substitute for '%0') 
R5 =pointer to parameter I (0 =>don't substitute for '%1') 
R6 =pointer to parameter 2 (0 =>don't substitute for '%2') 
R7 =pointer to parameter 3 (0 =>don't substitute for '%3' ) 

On exit 

RO = pointer to error buffer used 
V flag set 

Interrupts 

Interrupt status is unaltered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

SWI is re-entrant 

Use 

This call translates a message token within an error block. with optional parameter 
substitution. If the token is not found in the given message file. it is then looked up 
in the global messages file; see the section entitled Global messages on page 3-738. 

3-753 



MessageTrans_ErrorLookup (SWI &41506) 

3-754 

On entry the error block must contain: 

Offset 

0 
4 

Contents 

error number 
null terminated token 

On exit the token is translated to the corresponding string. To test for successful 
error lookup, you should check the error number returned in the error block. 

If R2 is 0 on entry, MessageTrans will use one of its internal buffers for the result. 
There are I 0 buffers for foreground processes and 2 for calls made from within IRQ 
processes. MessageTrans will cycle between these buffers. 

Your application must have previously called MessageTrans_OpenFile, although 
you can still call this SWI if the file has been automatically closed by the system, 
because the system will also automatically re-open the file. 

See the section entitled Message file format on page 3-738 for further details of the file 
format used to hold message tokens and their corresponding strings. 

Related SWis 

MessageTrans_Lookup (page 3-745). MessageTrans_GSLookup (page 3-755), 
MessageTrans_CopyError (page 3-757) 

Related vectors 

None 



Message Trans 

MessageTrans_GSLookup 
(SWI &41507) 

Translates a message token into a string, GSTrans'ing it 

On entry 

RO =pointer to file descriptor passed to MessageTrans_OpenFile, 
or 0 to use global messages file (see page 3-738) 

R I = pointer to token, terminated by character 0, I 0 or 13 
R2 = pointer to buffer to hold result (0 ==>don't copy it) 
R3 =size of buffer (if R2 non-zero) 
R4 =pointer to parameter 0 (0 ==>don't substitute for ''YeO') 
R5 =pointer to parameter I (0 ==>don't substitute for ''Yo!') 
R6 =pointer to parameter 2 (0 ==>don't substitute for '%2') 
R7 =pointer to parameter 3 (0 ==>don't substitute for '%3') 

On exit 

RO, Rl preserved 
R2 =pointer to result string (read-only with no substitution if R2=0 on entry) 
R3 = size of result before terminator 

Interrupts 

Interrupts are enabled 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is not re-entrant 

This call translates a message token into a string, with optional parameter 
substitution. If the token is not found in the given message file, it is then looked up 
in the global messages file: see the section entitled Global messages on page 3-738. 
The string is GSTrans'd after parameter substitution; this needs an intermediate 
buffer, and so will fail if one cannot be allocated from the RMA. 

3-755 



MessageTrans_GSLookup (SWI &41507) 

3-756 

Your application must have previously called MessageTrans_OpenFile, although 
you can still call this SWI if the file has been automatically closed by the system, 
because the system will also automatically re-open the file . 

See the section entitled Message file format on page 3-738 for further details of the file 
format used to hold message tokens and their corresponding strings. 

Calling this SWI with R2=0 is exactly equivalent to calling MessageTrans_Lookup 
with R2=0 

Related SWis 

OS_GSTrans (page 1-454), MessageTrans_Lookup (page 3-745), 
MessageTrans_ErrorLookup (page 3-753) 

Related vectors 

None 



Message Trans 

MessageTrans_CopyError 
(SWI &41508) 

Copies an error to one of the MessageTrans internal buffers 

On entry 

RO = pointer to error block (word aligned) 

On exit 

RO = pointer to error buffer used 

Interrupts 

Interrupt status is unaltered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

SWI is re-entrant 

Use 

This call copies an error to one of the MessageTrans internal buffers. There are I 0 
buffers for foreground processes and 2 for calls made from within IRQ processes. 
MessageTrans will cycle between these buffers. 

Related SWis 

MessageTrans_ErrorLookup (page 3-753) 

Related vectors 

None 

~-7~7 



3-758 



70 International module 

Introduction 
The International module allows the user to tailor the machine for use in different 
countries by setting: 

• the keyboard- the mapping of keys to character codes 

• the alphabet- the mapping from character codes to characters 

• the country- both of the above mappings. 

This module, in conjunction with the RISC OS kernel, controls the selection of 
these mappings, but it allows the actual mappings to be implemented in other 
modules, via the service mechanism. Thus. you could write your own international 
handlers. 

Each country is represented by a name and number. The keyboard shares this list, 
and is normally on the same setting. However, there are cases for the country and 
the keyboard to be different. For example, the Greek keyboard would not allow you 
to type • Commands, because only Greek characters could be entered. In this case, 
the country could remain Greek, while the keyboard setting is changed temporarily 
for • Commands. 

Each alphabet is also represented by a name and number. A country can only have 
one alphabet associated with it, but an alphabet can be used by many countries. 
For example, the Latin I alphabet contains a general enough set of characters to be 
used by most Western European countries. 

You will find tables of the various character sets, and details of keyboard shortcuts 
both for selecting keyboard layouts and for entering top-bit-set characters, in 
TableD : Character sets on page 4-561. 

3-759 



Overview and Technical Details 

Overview and Technical Details 

Names and numbers 

3-760 

Country numbers range from 0 to 99, and alphabet numbers are from I 00 to 126. 
Here are lists of the currently available countries and alphabets. 

Countries and keyboards 

Here is a list of the currently-defined country and keyboard codes (provided by the 
international module). and the alphabets they use: 

Code Country and Alphabet 
Keyboard 

0 Default Selects the configured country. If the 
configured country is 'Default'. the keyboard 
ID byte is read from the keyboard 

UK Latini 
2 Master BFont 
3 Compact BFont 
4 Italy Latini 
5 Spain Latini 
6 France Latin I 
7 Germany Latini 
8 Portugal Latini 
9 Esperanto Latin3 
10 Greece Greek 
II Sweden Latini 
12 Finland Latini 
13 (not used) 
14 Denmark Latini 
15 Norway Latini 
16 Iceland Latini 
17 Canada! Latini 
18 Canada2 Latini 
19 Canada Latini 
20 Turkey Latin3 
21 Arabic Special - ISO 8859/6 
22 Ireland Latin I 
23 Hong Kong Not defined 
24 Russia Cyrillic 
25 Russia2 Cyrillic2 

.. 



Alphabet 

International module 

26 Israel Hebrew 
27 Mexico Latini 
28 LatinAm Latini 

80 ISO I Latini 
81 IS02 Latin2 
82 IS03 Latin3 
83 IS04 Latin4 

Countries 20- 23 and 81 - 83 , although allocated. are not supported by this 
module's • Commands. 

The keyboard lD byte read by country 0 ('Default') has changed in meaning between 
RISC OS 2 and 3; it now represents the keyboards physical layout. Consequently 
you should no longer use this value. 

Alphabets 

Here is a list of the alphabet codes currently defined, provided by the international 
module: 

Code Alphabet 
100 BFont 
101 Latini 
102 Latin2 
103 Latin3 
104 Latin4 
105 Cyrillic 
L06 Arabic 
107 Greek 
108 Hebrew 
120 Cyrillic2 

Alphabets I 06, although allocated, is not supported by this module's 
• Commands. 

OS_Byte 71 (page 3-772) reads or sets the alphabet by number. • Alphabet can also 
set the alphabet by name. • Alphabets lists all the available alphabets on the 
system. Remember that you should normally only need to change the country 
setting as this will also change the alphabet. 

Use OS_ServiceCall &43 ,1 (page 3-765) to convert between alphabet name and 
number forms and OS_ServiceCall &43.3 to convert from alphabet number to name 
forms. 

3-761 



Keyboard 

Keyboard 

Country 

Service calls 

3-762 

OS_ServiceCall &43 ,5 causes a module which recognises the alphabet number to 
define the characters in an alphabet in the range specified, by issuing VDU 23 
commands itself. The call is issued by the OS when OS_Byte 71 is called to set the 
alphabet and also by OS_Byte 20 and 25. 

OS_Byte 71 can also be used to read or set the keyboard number. *Keyboard can 
set it as well. Remember that you should normally only need to change the country 
setting as this will also /change the keyboard. 

When the keyboard setting is changed , by either of the above ways , an 
OS_ServiceCall &43 ,6 will be generated automatically. This is a broadcast to all 
keyboard handler modules that the keyboard selection has changed . 

Setting the country will set values for the alphabet and the keyboard . You should 
not usually have to override these settings. The country number can be read or set 
with OS_Byte 70. OS_Byte 240 can also read it. •country can set the country by 
name. *Countries willl ~ st all the available country names. *Configure Country will 
set the default country by name and store it in CMOS RAM. 

Use OS_ServiceCall &43 ,0 to convert between country name and number forms 
and OS_ServiceCall &43.2 to convert from country number to name forms . 

To get the default alphabet for a country, OS_ServiceCall &43.4 can be called. 
Remember that the default keyboard number is the same as the country number. 

R1SC OS provides service calls for the use of any module that adds to the set of 
international character sets and countries. 



International module 

Service Calls 

International service 

Service International 
(Service Call &43) 

On entry 

RI = &43 (reason code) 
R2 = sub-reason code 
R3 - R5 depend on R2 

On exit 

Use 

Rl = 0 to claim , else preserved to pass on 
R4, R5 depend on R2 on entry 

This call should be supported by any modules which add to the set of international 
character sets and countries. It is used by the international system module 
* Command interface, and may be called by applications too. See the chapter 
entitled International module on page 3-759 for details. 

R2 contains a sub-reason code which indicates which service is required: 

R2 Service required 

0 Convert country name to country number 
Convert alphabet name to alphabet number 

2 Convert country number to country name 
3 Convert alphabet number to alphabet name 
4 Convert country number to alphabet number 
5 Define range of characters 
6 Informative: New keyboard selected for use by keyboard handlers 

Sub-reason codes 

The following pages give details of each of these sub-reason codes. Most users will 
not need to issue these service calls directly, but the OS_Byte calls and 
* Commands use these. The information is provided mainly for writers of modules 
which provide additional alphabets etc. 

3-763 



Service_lnternational 0 (Service Call &43) 

3-764 

Service International 0 
(Service Call &43) 

Convert country name to country number 

On entry 

Rl = &43 (reason code) 
R2 = 0 (sub-reason code) 
R3 = pointer to country name terminated by a null 

On exit 

Use 

Rl = 0 if claimed, otherwise preserved 
R2, R3 preserved 
R4 =country number if recognised, preserved if not recognised 

Any module providing additional countries should compare the given country 
name with each country name provided by the module, ignoring case differences 
between letters and allowing for abbreviations using·.·. If the given country name 
matches a known country name, then it should claim the service (by setting Rl to 
0), and set R4 to the corresponding country number. 

If the given country name is not recognised, all registers should be preserved. 



International module 

Service International 1 
(Service Call &43) 

Convert alphabet name to alphabet number 

On entry 

Rl = &43 (reason code) 
R2 = I (sub-reason code) 
R3 =pointer to alphabet name terminated by a null 

On exit 

Use 

R I = 0 if claimed, otherwise preserved 
R2, R3 preserved 
R4 =alphabet number if recognised , preserved if not recognised 

Any module providing additional alphabets should compare the given alphabet 
name with each alphabet name provided by the module, ignoring case differences 
between letters and allowing for abbreviations using ·.·. If the given alphabet name 
matches a known alphabet name, then it should claim the service (by setting R I to 
0). and set R4 to the corresponding alphabet number. 

If the given alphabet name is not recognised. all registers should be preserved. 

3-765 



Service_/nternationa/2 (Service Call &43) 

3-766 

Service International 2 
(Service Call &43) 

Convert country number to country name 

On entry 

Rl = &43 (reason code) 
R2 = 2 (sub-reason code) 
R3 =country number 
R4 =pointer to buffer for name 
R5 = length of buffer in bytes 

On exit 

Use 

Rl = 0 if claimed, otherwise preserved 
R2 - R4 preserved 
R5 =number of characters put into buffer if recognised, otherwise preserved 

Any module providing additional countries should compare the given country 
number with each country number provided by the module. If the given country 
number matches a known country number, then it should claim the service (by 
setting Rl to 0). put the country name in the buffer, and set R5 to the number of 
characters put in the buffer. 

If the given country number is not recognised, all registers should be preserved. 



International module 

Service International 3 
(Service Call &43) 

Convert alphabet number to alphabet name 

On entry 

Rl = &43 (reason code) 
R2 = 3 (sub-reason code) 
R3 =alphabet number 
R4 =pointer to buffer for name 
R5 = length of buffer in bytes 

On exit 

Use 

R I = 0 if claimed, otherwise preserved 
R2 - R4 preserved 
R5 =number of characters put into buffer if recognised, otherwise preserved 

Any module providing additional alphabets should compare the given alphabet 
number with each alphabet number provided by the module. If the given alphabet 
number matches a known alphabet number, then it should claim the service (by 
setting Rl to 0), put the alphabet name in the buffer, and set R5 to the number of 
characters put in the buffer. 

If the given alphabet number is not recognised, all registers should be preserved. 

3-767 



Service_lnternationa/4 (Service Call &43) 

3-768 

Service International 4 
(Service Call &43) 

Convert country number to alphabet number 

On entry 

Rl = &43 (reason code) 
R2 = 4 (sub-reason code) 
R3 = country number 

On exit 

Use 

Rl = 0 if claimed , otherwise preserved 
R2 , R3 preserved 
R4 = alphabet number if recognised, otherwise preserved 

Any module providing additional countries should compare the given country 
number with each country number provided by the module. If the given country 
number matches a known country number, then it should claim the service (by 
setting Rl to 0). and set R4 to the corresponding alphabet number. 

If the given country number is not recognised, all registers should be preserved. 



International module 

Service International 5 
(Service Call &43) 

Define a range of characters from a given alphabet number 

On entry 

Rl = &43 (reason code) 
R2 = 5 (sub-reason code) 
R3 =alphabet number 
R4 =ASCII code of first character in range 
R5 =ASCII code of last character in range 

On exit 

Use 

Rl = 0 if claimed , otherwise preserved 
R2 - R5 preserved 

Any module providing additional alphabets should compare the given alphabet 
number with each alphabet number provided by the module. If the given alphabet 
number matches a known alphabet number, then that service should be claimed 
(by setting R I to 0) and all the characters should be defined in the range R4 to R5 
inclusive, using calls to VDU 23. Any characters not defined in the specified 
alphabet are missed out: for example. most of the characters &80-&88 in Latin I. 

If the given alphabet number is not recognised, all registers should be preserved. 

3-769 



Service_lnternationa/6 (Service Call &43) 

3-770 

Service International 6 
(Service Call &43) 

Notification of a new keyboard selection 

On entry 
Rl = &43 (reason code) 
R2 = 6 (sub-reason code) 
R3 = new keyboard number 
R4 =alphabet number associated with this keyboard 

On exit 

Use 

Rl preserved (call must not be claimed) 
R2 - R4 preserved 

This service call is for internal use by keyboard handlers. It is sent automatically 
after the keyboard selection is changed. You must not claim it. 



SWI Calls 

Read/write country number 

On entry 

RO = 70 (&46) (reason code) 
R I = 127 to read or country number to write 

On exit 

RO is preserved 
Rl =country number read or before being overwritten . 

or 0 if invalid country number passed 
R2 is corrupted 

Interrupts 

Interrupt status is not altered 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

International module 

OS_Byte 70 
(SWI &06) 

This call returns or sets the country number used by the international module. 

Related SWis 

OS_Byte 240 (page 3-77 4) 

Related vectors 

ByteV 

3-771 



OS_Byte 71 (SWI &06) 

3-772 

Read/write alphabet or keyboard 

OS_Byte 71 
(SWI &06) 

On entry 

RO = 71 (&47) (reason code) 
Rl = 0- 126 for setting the alphabet number 

127 for reading the current alphabet number 
128-254 for setting the keyboard number (Rl-128) 
255 for reading the current keyboard number 

On exit 

RO is preserved 
Rl =alphabet or keyboard number read or before being overwritten, 

or 0 if invalid value passed 
R2 is corrupted 

Interrupts 

Interrupt status is not altered 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call returns or sets the alphabet or keyboard number used by the international 
module. Their settings can be read without altering them, or you can set a new 
value for either. This SWI will return a zero if the value passed to set the new value 
is not one of the known alphabets or keyboards. 

Note that the keyboard setting is offset by 128 when being set; eg to set 
keyboard 3, you must pass 131 in Rl . However, when being read its actual value is 
returned . 



International module 

Related SWis 

OS_Byte 70 (page 3-771 ) 

Related vectors 

ByteV 

3-773 



OS_Byte 240 (SWI &06) 

Read country number 

On entry 

RO = 240 (&FO) (reason code) 
Rl =0 
R2 = 255 

On exit 

RO is preserved 
Rl =country number 
R2 = user flag (see OS_Byte 241) 

Interrupts 

Interrupt status is not altered 
Fast interrupts are enabled 

Processor Mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

OS_Byte 240 
(SWI &06) 

This call returns the country number used by the international module. 

~-774 

Related SWis 

OS_Byte 70 (page 3-771) 

Related vectors 

ByteV 



International module 

*Commands 
*Alphabet 

Selects an alphabet 

Syntax 

*Alphabet [country_namelalphabet_ name] 

Parameters 

Use 

country_ name 

alphabet_ name 

Valid countries are currently Canada, Canada I , Canada2, 
Compact, Default, Denmark, Esperanto, Finland , France, 
Germany, Greece, Iceland, ISO I , Israel. Italy, LatinAm , 
Master, Mexico, Norway, Portugal. Russia , Russia2, 
Spain , Sweden, and UK. A list of parameters can be 
obtained with the *Countries command. 

Valid alphabets are currently BFont. Cyrillic, Cyrillic2 , 
Hebrew, Latin I , Latin2, Latin3 , Latin4 and Greek. A list of 
parameters can be obtained with the *Alphabets 
command. 

*Alphabet selects an alphabet. setting the character set according to the country 
name or alphabet name. 

If the given country is Default, then the keyboard lD byte (read from the keyboard) 
is used as the country number, providing it is in the range I - 31 . However, since 
under RISC OS 3 the keyboard ID is used to represent the physical layout of the 
keyboard rather than the country for which it is layed out. we recommend you don't 
use this option . (Standard Archimedes keyboards all have a keyboard lD of I, which 
would select the UK alphabet; the A4 internal keyboard and PC external keyboard 
each have a keyboard ID of 2, which would select the French alphabet.) 

With no parameter, this command displays the currently selected alphabet. 

Example 

*Alphabet La tin3 

Related commands 

*Alphabets 

3-775 



*Alphabet 

Related SWis 

OS_Byte 71 (page 3-772) 

Related vectors 

None 

::l-77n 



International module 

*Alphabets 

Lists all the alphabets currently supported 

Syntax 

*Alphabets 

Parameters 

None 

Use 

• Alphabets lists all the alphabets currently supported by your Acorn computer. 

Use the • Alphabet command to change the alphabetical set of characters you are 
using. 

Example 

*Alphabets 
Alphabets : 
BFont 
Greek 

Latinl Latin2 Latin3 Latin4 Cyrillic 
Hebrew Cyrillic2 

Related commands 

*Alphabet 

Related SWis 

OS_Byte 71 (page 3-772) 

Related vectors 

None 

3-777 



•configure Country 

3-778 

*Configure Country 

Sets the configured alphabet and keyboard layout 

Syntax 

*Configure Country country_name 

Parameters 

Use 

country_name Valid countries are currently Canada, Canada I, Canada2, 
Compact. Default, Denmark, Esperanto, Finland, France, 
Germany, Greece, Iceland, ISO I , Israel. Italy, LatinAm, 
Master, Mexico, Norway, Portugal, Russia, Russia2, 
Spain, Sweden, and UK. A list of parameters can be 
obtained with the *Countries command . 

*Configure Country sets the configured alphabet and keyboard layout to the 
appropriate ones for the given country. For countries other than the UK you will 
also need to load a relocatable module that defines the keyboard layout. (The 
lntKey application on the RISC OS 3 Support Disc provides several drivers.) 

If the given country is Default. then the keyboard lD byte (read from the keyboard) 
is used as the country number, providing it is in the range I - 31. However. since 
under RISC OS 3 the keyboard lD is used to represent the physical layout of the 
keyboard rather than the country for which it is layed out. we recommend you don't 
use this option . (Standard Archimedes keyboards all have a keyboard lD of I, which 
would select the UK alphabet and layout; the A4 internal keyboard and PC external 
keyboard each have a keyboard ID of 2, which would select the French alphabet and 
layout.) 

Example 

*Configure Country Italy 

Related commands 

*Country, *Countries 

Related SWis 

OS_Byte 70 (page 3-771). OS_Byte 240 (page 3-77 4) 



Related vectors 

None 

International module 

3-779 



*Countries 

3-780 

*Countries 

Lists all the countries currently supported 

Syntax 

*Countries 

Parameters 

None 

Use 

*Countries lists all the countries currently supported by modules in the system. 

Example 

*Countries 
Countries: 
Default UK Master Compact Italy Spain 
Germany Portugal Esperanto Greece 
Norway Iceland Canadal Canada2 Canada Russia 
Israel Mexico LatinAm ISOl 

Related commands 

*Configure Country, *Country, *Alphabet, *Alphabets. *Keyboard 

Related SWis 

OS_Byte 70 (page 3-771). OS_Byte 240 (page 3-77 4) 

Related vectors 

None 

France 
Sweden 
Russia2 



International module 

*Country 

Selects the appropriate alphabet and keyboard layout for a given country 

Syntax 

*Country [country_name] 

Parameters 

Use 

country_ name Valid countries are currently Canada, Canada I, Canada2, 
Compact, Default, Denmark, Esperanto, Finland, France, 
Germany, Greece, Iceland, ISO I, Israel, Italy, LatinAm, 
Master, Mexico, Norway, Portugal, Russia, Russia2 , 
Spain , Sweden, and UK. A list of parameters can be 
obtained with the *Countries command. 

*Country selects the appropriate alphabet and keyboard layout for a given country. 
For countries other than the UK you will also need to load a relocatable module 
that defines the keyboard layout. (The IntKey application on the RISC OS 3 Support 
Disc provides several drivers.) If you prefer, you can use *Alphabet and *Keyboard 
to set independently the alphabet and keyboard layout, leaving the country setting 
unchanged. 

If the given country is Default, then the keyboard ID byte (read from the keyboard) 
is used as the country number, providing it is in the range I - 31. However, since 
under RISC OS 3 the keyboard ID is used to represent the physical layout of the 
keyboard rather than the country for which it is layed out, we recommend you don't 
use this option. (Standard Archimedes keyboards all have a keyboard ID of I, which 
would select the UK alphabet and layout; the A4 internal keyboard and PC external 
keyboard each have a keyboard ID of 2, which would select the French alphabet and 
layout.) 

With no parameter, this command displays the currently selected country. 

Example 

*Country Italy 

Related commands 

*Configure Country, *Countries , *Alphabet, *Alphabets, *Keyboard 

3-781 



*Country 

Related SWis 

OS_Byte 70 (page 3-771) , OS_Byte 240 (page 3-774) 

Related vectors 

None 

3-782 



International module 

*Keyboard 

Selects the appropriate keyboard layout for a given country 

Syntax 

*Keyboard [country_ name] 

Parameters 

Use 

country_name Valid countries are currently Canada. Canada I, Canada2, 
Compact. Default. Denmark. Esperanto. Finland. France. 
Germany, Greece. Iceland. ISO I. Israel, Italy, LatinAm. 
Master, Mexico, Norway, Portugal, Russia, Russia2, 
Spain, Sweden, and UK. A list of parameters can be 
obtained with the •countries command. 

• Keyboard selects the appropriate keyboard layout for a given country. For 
countries other than the UK you will also need to load a relocatable module that 
defines the keyboard layout. (The lntKey application on the RISC OS 3 Support 
Disc provides several drivers.) 

If the given country is Default. then the keyboard ID byte (read from the keyboard) 
is used as the country number, providing it is in the range I - 31. However. since 
under RISC OS 3 the keyboard ID is used to represent the physical layout of the 
keyboard rather than the country for which it is layed out, we recommend you don't 
use this option. (Standard Archimedes keyboards all have a keyboard ID of I, which 
would select the UK layout; the A4 internal keyboard and PC external keyboard 
each have a keyboard ID of 2. which would select the French layout.) 

With no parameter, this command displays the currently selected keyboard layout. 

Example 

*Keyboard Denmark 

Related commands 

*Country 

Related SWis 

OS_Byte 71 (page 3-772) 

3-783 



*Keyboard 

3-784 

Related vectors 

None 



71 The Territory Manager 

Introduction 
The territory manager provides SWis and • Commands for applications to access 
territory modules . Each territory module provides the services and information 
necessary for both RISC OS 3 and its applications to be easily adapted for use in 
different territories (ie regions of the world) . 

Purpose of the territory manager 
There are three main purposes in providing the territory manager: 

To enable Acorn to produce a version of RISC OS 3 targeted at a foreign 
market. This requires not only the ability to translate all system text to a 
foreign language, but also the ability to support diffe•ent time zones, different 
alphabets and different keyboard layouts. 

2 To help you write application software so you can easily adapt it for a foreign 
market. 

3 To enable you to write application software that can cope with using more than 
one language at the same time. 

RISC OS 3 addresses all of these aspects . 

Use of the territory manager 
The territory manager provides a wide range of services and information to help 
you . 

Use the territory manager wherever possible. Don't make assumptions about 
any of the features It supports and can provide Information on. 

If you do use the territory manager, you will find it much easier to modify your 
programs for supply to international markets, and have a much wider potential 
user base. 

3-785 



Overview 

Overview 

The territory manager 

The territory manager is a new RISC OS 3 module providing control over the 
localised aspects of the computer. RISC OS itself only uses one territory for all its 
functions. but the territory manager can have more than one territory module 
loaded at any one time, and applications can use these additional territories. 

Territory modules 

3-786 

A territory module (such as the UK Territory module present in the RISC OS 3 
ROM) is a module providing the territory manager with services and information 
for a specific territory (such as the UK). amongst which are: 

• a keyboard handler for the territory's keyboard layout 

• the correct alphabet for the territory 

• information on the use of that alphabet. including the direction of writing to 
use. the properties of each character. and variant forms of each character (such 
as upper/lower case. control characters. and accented characters) 

• a sort order for strings using the territory's alphabet 

• the characters that are used for numbers. and how those numbers are 
formatted, both as numeric and monetary quantities 

• the time zones and the formats of time and date used in the territory; together 
with facilities for reading and setting the local time using these formats 

• information on the calendar used in the territory. 

Obviously this is only a summary of what is provided; for full information you 
should see the section entitled Territory manager SW!s on page 3-792 and the section 
entitled Territory module SW!s on page 3-805. especially the latter. 



The Territory Manager 

Technical details 

Loading and setting the current territory 
Each computer running RISC OS has a configured value for the current territory, set 
using *Configure Territory (see page 3-846) , and stored in its CMOS RAM. On a 
reset or a power-on , RISC OS will try to load th is territory as follows: 

It will load any territory modules in ROM. (Typically there is only one, for the 
territory into which the computer has been sold.) If one of these is the 
configured territory, no further action is taken. 

2 Otherwise. it will look on the configured device (ie the configured filesystem and 
drive) for the fileS. !Territory. Territory. 

If the configured filesystem is Econet, it will instead look for the file 
& . !Territory.Territory 

3 If it finds that file, it will load it , and also any files in the directory 
... !Territory.Territory.Messages. 

4 If it doesn't find that file , it will use a pictorial request to ask the user to insert 
a floppy disc containing the territory. It will keep doing so until it finds the file 
adfs::O.S.!Territory.Territory, which it loads along with any files in the directory 
adfs: :O.S. !Territory.Territory.Modules. 

At the end of this process: 

• If the configured territory is in ROM, only those territory modules in ROM will 
be loaded 

• If the configured territory is not in ROM, both those territory modules in ROM 
and another territory module (hopefully the configured one) will be loaded. 

RISC OS then selects as the current territory either the configured territory, or- if it 
is not present- a default territory from ROM. 

The current territory 

The current territory is used by RISC OS for all operating system functions that may 
change from territory to territory. This includes such things as the language used to 
display menus. and the default time offset from UTC. As we saw above, the current 
territory will normally be the configured territory; but if that can't be found, a 
default ROM territory is used instead. 

3-787 



Initialising territory modules 

There can only be one current territory for any one computer. This is because the 
current territory controls such things as the language used for menus. It would be 
very confusing to have, for example, some of the menus appear in one language 
and some in another language. In the UK, even if you are editing a German 
document, you would normally still want the menus to appear in English. 

Once the current territory has been set, you can't change it in mid-session. To 
change the current territory, you should change the configured territory, and 
ensure that the new current territory you wish to use is available (either in ROM, or 
in $.!Territory on the default device). You then need to reboot your computer. 

Multiple territories 

Whilst RISC OS itself only makes use of the computer's one current territory, the 
territory manager can have more than one territory module loaded. Applications 
can then make use of these extra territory modules. For example, you may wish to 
provide an application that can include text in two different languages in the same 
document. It is useful for such an application to be able to read the information 
relating to both languages at the same time. 

Initialising territory modules 

3-788 

When the territory manager starts, it issues a service call 
(Service_TerritoryManagerLoaded) to announce its presence to territory modules. 
Whenever a territory module receives this service call, it must issue the SWI 
Territory_Register to add itself to the territory manager's list of active territories. A 
territory module must also issue this SWI whenever its initialisation entry point is 
called, thus ensuring that if it is initialised after the territory manager, it still 
registers itself. 

Territory _Register 

This SWI also registers with the territory manager the entry points to the routines 
that the territory module uses to provide its information and services. These entry 
points are called by issuing SWis to the territory manager, which specify the 
territory module that is to be used to service the SWI. The territory manager then 
calls the appropriate entry point in the specified territory module. 



The Territory Manager 

Setting up for the current territory 
Once the territory manager has started, and any loaded territory modules have 
registered themselves. it then sets up the current territory. To do so, it: 

• calls Territory_SelectKeyboardHandler to select the keyboard handler 

• calls Territory_Alphabet to find the alphabet number that should be used in 
the territory 

• issues Service_International 5 to define that alphabet. 

Scope of a territory 
A territory need not correspond to a country. Rather, a territory is a region for which 
a single territory module correctly provides all the services and information. As 
soon as one or more of the services or information differ, you should provide a 
different territory (but see below). Sometimes you may need to provide more than 
one territory for a single country. For example, to properly support the whole of 
Switzerland you would need a separate territory for each of the languages used. 

Supporting minor differences 

Sometimes it might appear that a region needs to be split into several territories 
because of a single minor difference. In such cases you may consider supplying a 
single generic territory with an extra configuration option . 

For example, to support the whole of the USA you might think you would need five 
territories identical in every respect , except for their use of time zones. Instead, you 
can provide a single USA territory that uses a command to configure the correct 
time zone. Because supporting different time zones is so common a requirement , 
the Territory module supplies the *Configure TimeZone command to do so. 

For other such minor differences, you can provide your own configuration 
commands with your territory. For example, an Irish territory might have a 
configuration command to choose the currency symbol used ('£' for Northern 
Ireland, or 'Ir£' for Eire) . 

Remember that if you wish to store this configuration option in CMOS RAM, you 
must apply for an allocation from Acorn . See the section entitled CMOS RAM bytes 
on page 4-547. 

Territory numbers and names 

Territory numbers and names must be allocated by Acorn; see the section entitled 
Territory , country and alphabet numbers and names on page 4-54 7. 

3-789 



Service Calls 

Service Calls 

3-790 

Service_ TerritoryManagerloaded 
(Service Call &64) 

Tell territory modules to register themselves. 

On entry 

Rl = &64 (reason code) 

On exit 

Use 

All registers preserved 

This call is issued by the territory manager when it has started , announcing its 
presence to territory modules. Whenever a territory module receives this service 
call, it must issue the SWI Territory_Register to add itself to the territory manager's 
list of active territories. 



New territory starting 

The Territory Manager 

Service_ TerritoryStarted 
{Service Call &75) 

On entry 

Rl = &75 (reason code) 

On exit 

Use 

This service call should not be claimed. 

All registers preserved 

This is issued by the territory manager when a new territory has been selected as 
the machine territory. 

This is used by the ROM modules to re-open their messages files . RAM resident 
modules do not need to take notice of this service call. 

3-791 



Territory manager SW/s 

Territory manager SWis 

3-792 

Territory _Number 
(SWI &43040) 

Returns the territory number of the current territory 

On entry 

On exit 

RO =current territory's number 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call returns the territory number of the current territory (see the section 
entitled Loading and setting the current territory on page 3-787, and *Configure Territory 
on page 3-846) . 

Related SWis 

Territory_NumberToName (page 3-796). Territory_NameToNumber (page 3-841) 

Related vectors 

None 



Territory_Register (SWI &43041) 

3-794 

On entry 

RO- R9 
Rll 
Rl2 
Rl3 

On exit 

RO- R9 

preserved from original entry to the SWI 
SWI handler number (0- 42: ie offset within table) 
value of R2 passed to Territory_Register 
pointer to supervisor stack 

return values for the SWI 

For a full description of the SW!s themselves, see the section entitled Territory 
module SW!s on page 3-805. 

Some of these SWI numbers (currently from &43062 upwards) are reserved for 
future expansion, and so you obviously cannot implement them. The code for such 
SW!s must return an error, not just return directly. The error number must be 
&43040 (for all territories). and the text should be 'Unknown Territory SWI' (or a 
translation to your territory's language and alphabet). 

Related SWis 

Territory_Deregister (page 3-795) 

Related vectors 

None 



The Territory Manager 

Territory _Register 
(SWI &43041) 

Adds the given territory to the list of active territories 

On entry 

RO =territory number 
Rl =pointer to table containing list of entry points for SWis 
R2 =value of RI 2 on entry to territory 

On exit 

RO - R2 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call adds the given territory to the list of active territories, making it available 
for application programs. A territory module must issue this call from its 
initialisation entry point when it is initialised, and whenever it receives the service 
call Service_ TerritoryManagerLoaded. 

The table pointed to by Rl should contain 43 entries, each of which is a pointer to 
code to handle one of the SWis that- although in the territory manager SWI 
chunk- are actually handled by a territory module. The first entry corresponds to 
the SWI &4304A, the second to SWI &43048, and so on through to the last entry 
which is for SWI &43074. The entry and exit conditions for the SWI handler are as 
follows: 

3-793 



Territory_NumberToName (SWI &43043) 

3-796 

Territory _NumberToName 
(SWI &43043) 

Returns the name of the given territory 

On entry 

RO =territory number 
Rl =pointer to buffer to contain name of territory in current territory 
R2 = length of buffer 

On exit 

R I preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call returns the name of the given territory in the current territory's language 
and alphabet. 

Related SWis 

Territory_NameToNumber (page 3-841) 

Related vectors 

None 



The Territory Manager 

Territory _Deregister 
{SWI &43042) 

Removes the given territory from the list of active territories 

On entry 

RO =territory number 

On exit 

RO preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call removes the given territory from the list of active territories. A territory 
module must issue this call from its finalisation entry point when it is killed. 

Related SWis 

Territory_Register (page 3-793) 

Related vectors 

None 

3-795 



Territory_AiphabetNumberToName (SWI &43045) 

3-798 

Territory _AiphabetN u mberToName 
(SWI &43045) 

Returns the name of the given alphabet 

On entry 

RO =alphabet number 
Rl =pointer to buffer to hold name of alphabet in current territory 
R2 = length of buffer 

On exit 

RO - R2 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call returns the name of the given alphabet in the current territory's language 
and alphabet. 

Related SWis 

None 

Related vectors 

None 



The Territory Manager 

Territory _Exists 
(SWI &43044) 

Checks if the given territory is currently present in the machine 

On entry 

RO =territory number 

On eliCit 

RO preserved 
Z flag set if territory is currently loaded 

lntenupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Proc,essor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call checks if the given territory is currently present in the machine. and can be 
used by applications. 

Related SWis 

None 

Related vectors 

None 

3-797 



Territory_SetTime (SWI &43047) 

Sets the clock to a given 5 byte UTC time 

On entry 

RO = pointer to 5 byte UTC time 

On exit 

RO preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

Territory_SetTime 
(SWI &43047) 

This call sets the clock to a given 5 byte UTC time. 

Related SWis 

None 

Related vectors 

None 

3-800 



The Territory Manager 

Territory_ SelectAiphabet 
(SWI &43046) 

Selects the correct alphabet for the given territory 

On entry 

RO =territory number, or -1 to use current territory 

On exit 

RO preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call selects the correct alphabet for the given territory, and defines the system 
font appropriately. 

Related SWis 

Territory_Alphabet (page 3-821) 

Related vectors 

None 

3-799 



Territory_ Convert Time ToUTCOrdinals (SWI &43049) 

3-802 

Territory_ConvertTimeToUTCOrdinals 
{SWI &43049) 

Converts a 5 byte UTC time to UTC time ordinals 

On entry 

Rl =pointer to 5 byte UTC time 
R2 = pointer to word aligned buffer to hold ordinals 

On exit 

Rl , R2 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call converts a 5 byte UTC time to UTC time ordinals. The word-aligned buffer 
pointed to by R2 holds the following: 

Offset Value 

0 centiseconds 
4 seconds 
8 minutes 
12 hours (out of 24) 
16 day number in month 
20 month number in year 
24 year number 
28 day of week 
32 day of year 



The Territory Manager 

Territory _ReadCurrentTi meZone 
(SWI &43048) 

Returns information on the current time zone 

On entry 

On exit 

RO =pointer to name of current time zone (null terminated) 
Rl =offset from UTC to current time zone. in centiseconds (signed 32-bit) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call returns information on the current time zone. giving its name in the 
current territory's language and alphabet. and its offset in centiseconds from UTC 
time. 

Related SWis 

Territory_ReadTimeZones (page 3-806) 

Related vectors 

None 

3-801 



Territory_ ConvertTextToString (SWI & 73075) 

3-804 

Not yet implemented 

On entry 

On exit 

All registers preserved 

Interrupts 

Territory_ ConvertTextToString 
(SWI &73075) 

Interrupt status is unaltered 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

SWI is re-entrant 

This call is not yet implemented. and returns immediately to the caller. with all 
registers preserved. 

Related SWis 

None 

Related vectors 

None 



Related SWis 
Territory_ConvertTimeToOrdinals (page 3-815) 

Related vectors 
None 

The Territory Manager 

3-803 



Territory_ReadTimeZones (SWI &4304A) 

3-806 

Territory _ReadTimeZones 
(SWI &4304A) 

Returns information on the time zones for the given territory 

On entry 

RO =territory number, or -I to use current territory 

On exit 

RO = pointer to name of standard time zone for given territory 
Rl =pointer to name of daylight saving (or summer) time for given territory 
R2 =offset from UTC to standard time, in centiseconds (signed 32-bit) 
R3 =offset from UTC to daylight saving time, in centiseconds (signed 32-bit) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call returns information on the time zones for the given territory, giving the 
names of the territory's standard time zone and daylight saving time, and their 
offsets from UTC time. 

Related SWis 

Territory_ReadCurrentTimeZone (page 3-80 I) 

Related vectors 

None 



The Territory Manager 

Territory module SWis 
The following SW!s are provided by individual territory modules. The territory 
manager calls these SWis using the entry points that a territory module passes by 
calling Territory_Register when it starts , or when the territory manager restarts. If 
you are writing your own territory module. you should see the documentation of 
Territory_Register on page 3-793. 

For all of the following SWis. on entry RO is used to specify to the territory manager 
the number of the territory module which will handle the call . A value of -I means 
that the current territory (see the section entitled Loading and setting the current 
territory on page 3-787, and •configure Territory on page 3-846) will handle the call. 

3-805 



Territory_ConvertDateAndTime (SWI &43048) 

3-808 

This call is equivalent to the SWI OS_ConvertDateAndTime. You should use it in 
preference to that calL. which just calls this SWI. The resulting string for both calls 
is in local time for the given territory, and in the local language and alphabet. 

Related SWis 

Territory_ConvertStandardDateAndTime (page 3-809). 
Territory_ConvertStandardDate (page 3-8 I I). 
Territory_ConvertStandardTime (page 3-8 I 3) 

Related vectors 

None 



The Territory Manager 

Territory_ ConvertDateAndTime 
(SWI &43048) 

Converts a 5 byte UTC time into a string, giving the date and time 

On entry 

RO =territory number, or -I to use current territory 
Rl =pointer to 5 byte UTC time 
R2 = pointer to buffer for resulting string 
R3 = size of buffer 
R4 =pointer to null terminated format string 

On exit 

RO =pointer to buffer (R2 on entry) 
Rl =pointer to terminating 0 in buffer 
R2 =number of bytes free in buffer 
R3 =pointer to format string (R4 on entry) 
R4 = preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call converts a 5 byte UTC time into a string, giving the date and time in a 
territory specific format given by the supplied format string. 

The format string is copied directly into the result buffer, except when a '%' 

character appears . In this case the next two characters are treated as a special field 
name which is replaced by a component of the current time. 

For details of the format field names see the section entitled Format field names on 
page 1-402. 

3-807 



Territory_ ConvertStandardDateAndTime (SWI &4304C) 

3-810 

Related SWis 

Territory_ConvertDateAndTime (page 3-807), 
Territory_ConvertStandardDate (page 3-811 ), 
Territory_ConvertStandardTime (page 3-813) 

Related vectors 

None 



The Territory Manager 

Territory_ ConvertStandard DateAndTi me 
(SWI &4304C) 

Converts a 5 byte UTC time into a string, giving the time and date 

On entry 

RO =territory number. or-1 to use current territory 
Rl =pointer to 5 byte UTC time 
R2 = pointer to buffer for resulting string 
R3 = size of buffer 

On exit 

RO =pointer to buffer (R2 on entry) 
Rl =pointer to terminating 0 in buffer 
R2 =number of bytes free in buffer 
R3 preserved. 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call converts a 5 byte UTC time into a string, giving the date and time in a 
standard territory specific format. 

This call is equivalent to the SWI OS_ConvertStandardDateAndTime. You should 
use it in preference to that call. which just calls this SWI. The resulting string for 
both calls is in local time for the given territory, and in the local language and 
alphabet. 

3-809 



Territory_ConvertStandardDate (SWI &43040) 

3-812 

Related vectors 

None 



The Territory Manager 

Territory_ ConvertStandardTi me 
(SWI &4304E) 

Converts a 5 byte UTC time into a string, giving the time only 

On entry 

RO =territory number, or -I to use current territory 
Rl =pointer to 5 byte UTC time 
R2 = pointer to buffer for resulting string 
R3 = size of buffer 

On exit 

RO = pointer to buffer (R2 on entry) 
Rl =pointer to terminating 0 in buffer 
R2 = number of bytes free in buffer 
R3 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call converts a 5 byte UTC time into a string, giving the time only in a standard 
territory specific format. The resulting string is in local time for the given territory, 
and in the local language and alphabet. 

Related SWis 

Territory_ConvertDateAndTime (page 3-807). 
Territory_ConvertStandardDateAndTime (page 3-809). 
Territory_ConvertStandardDate (page 3-811) 

3-813 



Territory_ ConvertStandardTime (SWI &4304E) 

3-814 

Related vectors 
None 



The Territory Manager 

Territory_ Convert Time ToOrdi nals 
(SWI &4304F) 

Converts a 5 byte UTC time to local time ordinals for the given territory 

On entry 

RO =territory number, or -I to use current territory 
Rl =pointer to 5 byte UTC time 
R2 = pointer to word aligned buffer to hold ordinals 

On exit 

R I , R2 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call converts a 5 byte UTC time to local time ordinals for the given territory. 
The word-aligned buffer pointed to by R2 holds the following: 

Offset Value 

0 centiseconds 
4 seconds 
8 minutes 
12 hours (out of 24) 
16 day number in month 
20 month number in year 
24 year number 
28 day of week 
32 day of year 

3-815 



Territory_ Convert Time ToOrdinals (SWI &4304F) 

3-816 

Related SWis 

Territory_ConvertTimeToOrdinals (page 3-815) 

Related vectors 

None 



The Territory Manager 

Territory_ ConvertTimeStringToOrdi nals 
(SWI &43050) 

Converts a time string to time ordinals 

On entry 

RO =territory number, or -I to use current territory 
Rl =reason code: 

I => format string is %24:%Ml:%SE 
2 =>format string is %W3, %DY-%M3-%CE%YR 
3 =>format string is %W3 , %DY-%M3-%CE%YR.%24:%MI:%SE 

R2 = pointer to time string 
R3 = pointer to word aligned buffer to contain ordinals 

On exit 

Rl - R3 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call converts a time string to time ordinals. The time string is expected to be in 
the local language and alphabet for the given territory- as obtained from 
Territory_ConvertDateAndTime- with the appropriate format string. The 
word-aligned buffer pointed to by R3 holds the following: 

3-817 



Territory_ConvertTimeStringToOrdinals (SWI &43050) 

Offset Value 

0 centiseconds 
4 seconds 
8 minutes 
12 hours (out of 24) 
16 day number in month 
20 month number in year 
24 year number 

Values that are not present in the string are set to -1. 

Related SWis 

Territory_ConvertDateAndTime (page 3-807) 

Related vectors 

None 

3-818 



The Territory Manager 

Territory_ ConvertOrdi nals To Time 
(SWI &43051) 

Converts local time ordinals for the given territory to a 5 byte UTC time 

On entry 

RO =territory number. or -I to use current territory 
Rl =pointer to block to hold 5 byte UTC time 
R2 =pointer to block containing ordinals 

On exit 

R I . R2 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call converts local time ordinals for the given territory to a 5 byte UTC time. 
The word-aligned buffer pointed to by R2 holds the following: 

Offset Value 

0 centiseconds 
4 seconds 
8 minutes 
12 hours (out of 24) 
16 day number in month 
20 month number in year 
24 year number 

3-819 



Territory_ConvertOrdinalsToTime (SWI &43051) 

3-820 

Related SWis 

Territory_ConvertTimeToUTCOrdinals (page 3-802), 
Territory_ConvertTimeToOrdinals (page 3-815) 

Related vectors 

None 



The Territory Manager 

Territory _Alphabet 
(SWI &43052) 

Returns the alphabet number that should be selected for the given territory 

On entry 

RO =territory number, or -I to use current territory 

On exit 

RO =alphabet number used by the given territory ( eg I 0 I = Latin I) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call returns the alphabet number that will be selected if 
Territory_SelectAiphabet is issued for the given territory. 

Related SWis 

Territory_SelectAiphabet (page 3-799) 

Related vectors 

None 

3-821 



Territory_Aiphabetldentifier (SWI &43053) 

3-822 

Territory _Aiphabetldentifier 
(SWI &43053) 

Returns an identifier string for the alphabet that should be used for the given 
territory 

On entry 

RO =territory number, or-! to use current territory 

On exit 

RO =pointer to identifier string for the alphabet used by the given territory 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call returns an identifier string for the alphabet that will be selected if 
Territory_SelectAlphabet is issued for the given territory (eg 'Latin I' for the Latin I 
alphabet) . 

The identifier of each alphabet is guaranteed to be the same no matter which 
territory returns it, and to consist of ASCII characters only (ie 7 bit characters) . 

Related SWis 

Territory_AlphabetNumberToName (page 3-798). 
Territory_SelectAlphabet (page 3-799), Territory_Alphabet (page 3-821) 

Related vectors 

None 



The Territory Manager 

Territory_ SelectKeyboardHandler 
(SWI &43054) 

Selects the keyboard handler for the given territory 

On entry 

RO =territory number, or -I to use current territory 

On exit 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call selects the keyboard handler for the given territory. 

Related SWis 

None 

Related vectors 

None 

3-823 



Territory_WriteDirection (SWI &43055) 

3-824 

Territory_ Write Direction 
(SWI &43055) 

Returns the direction of writing used in the given territory 

On entry 
RO =territory number. or -I to use current territory 

On exit 
RO =bit field giving write direction 

lnterruptts 
I terrupt status is undefined 
Fast interrupts are enabled 

Processor mode 
Processor is in SVC mode 

Re-entratncy 

Use 

Not defined 

This call returns the direction of writing used in the given territory, as a bit field in 
RO: 

Bit Value Meaning 
0 0 Writing goes from left to right 

Writing goes from right to left 

2 

0 Writing goes from top to bottom 
Writing goes from bottom to top 

0 Lines of text are horizontal 
Lines of text are vertical 

Bits 3 - 31 are reserved. and are returned as 0. 

Related SWis 
None 



Related vectors 

None 

The Territory Manager 

3-825 



Territory_CharacterPropertyTable (SWI &43056) 

3-826 

Territory_ CharacterPropertyTable 
(SWI &43056) 

Returns a pointer to a character property table 

On entry 

RO =territory number, or-1 to use current territory 
Rl =code for required character property table pointer 

On exit 

RO = pointer to character property table 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call returns a pointer to a character property table, which is a 256 bit table 
indicating whether or not each character in the given territory's alphabet has a 
particular property. If a bit is set, the corresponding character has that property. 
Current property tables are: 



The Territory Manager 

Code Meaning when bit set 

0 character is a control code 
character is uppercase 

2 character is lowercase 
3 character is alphabetic character 
4 character is a punctuation character 
5 character is a white space character 
6 character is a digit 
7 character is a hex digit 
8 character has an accent 
9 character flows in the same direction as the territory's write direction 
I 0 character flows in the reverse direction from the territory's write 

direction 

A character which doesn't have properties 9 or I 0 is a natural character which flows 
in the same direction as the surrounding text. A character can't have both property 
9 and property I 0. 

The C library uses this SWI to build tables for the isalnum , isalpha, iscntrl , isgraph, 
is lower. isprint , ispunct , isspace and is upper functions/macros . If you're programming inC 
you can instead use these functions/macros to test a character's properties. 
provided you have previously called the setlocale function. 

Related SWis 

None 

Related vectors 

None 

3-827 



Territory_LowerCaseTable (SWI &43057) 

3-828 

Territory _LowerCase Table 
(SWI &43057) 

Returns a pointer to a lower case table 

On entry 

RO =territory number, or -I to use current territory 

On exit 

RO = pointer to lower case table 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call returns a pointer to a lower case table, which is a 256 byte table giving the 
lower case version of each character in the given territory's alphabet. Characters 
that do not have a lower case version (eg numbers, punctuation) appear 
unchanged in the table. 

The C library uses this SWI to build tables for the tolower function/macro. If you 're 
programming in C you can instead use tolower to perform lower case conversion, 
provided you have previously called the setlocale function. 

Related SWis 

None 

Related vectors 

None 



The Territory Manager 

Territory_UpperCaseTable 
(SWI &43058) 

Returns a pointer to an upper case table 

On entry 

RO =territory number, or -I to use current territory 

On exit 

RO = pointer to upper case table 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call returns a pointer to an upper case table, which is a 256 byte table giving 
the upper case version of each character in the given territory's alphabet. 
Characters that do not have a lower case version (eg numbers, punctuation) appear 
unchanged in the table. 

The C library uses this SWI to build tables for the toupper function/macro. If you're 
programming inC you can instead use toupper to perform upper case conversion, 
provided you have previously called the setlocale function. 

Related SWis 

None 

Related vectors 

None 

3-829 



Territory_Contro/Table (SWI &43059) 

3-830 

Territory_ ControiTable 
(SWI &43059) 

Returns a pointer to a control character table 

On entry 

RO =territory number, or -I to use current territory 

On exit 

RO = pointer to control character table 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call returns a pointer to a control character table, which is a 256 byte table 
giving the value of each character in the given territory's alphabet if it is typed while 
the Ctrl key is depressed. Characters that do not have a corresponding control 
character appear unchanged in the table. 

Related SWis 

None 

Related vectors 

None 



The Territory Manager 

Territory_PiainTable 
(SWI &4305A) 

Returns a pointer to an unaccented character table 

On entry 

RO =territory number. or -I to use current territory 

On exit 

RO = pointer to unaccented character table 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call returns a pointer to an unaccented character table. which is a 256 byte 
table giving the unaccented version of each character in the given territory's 
alphabet. Characters that are normally unaccented appear unchanged in the table. 

Related SWis 

None 

Related vectors 

None 

3-831 



Territory_ Value Table (SWI &43058) 

3-832 

Returns a pointer to a numeric value table 

On entry 

Territory_ Value Table 
(SWI &43058) 

RO =territory number, or -I to use current territory 

On exit 

RO = pointer to numeric value table 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call returns a pointer to a numeric value table, which is a 256 byte table giving 
the numeric value of each character in the given territory's alphabet when used as 
a digit. This includes non-decimal numbers: for example, in English '9' has the 
numeric value 9, and both '!\and 'a' have the numeric value 10 (as in the 
hexadecimal number &9A) . Characters that do not have a numeric value have the 
value 0 in the table. 

Related SWis 

None 

Related vectors 

None 



The Territory Manager 

Territory _Representation Table 
(SWI &4305C) 

Returns a pointer to a numeric representation table 

On entry 

RO =territory number, or -I to use current territory 

On exit 

RO = pointer to numeric representation table 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call returns a pointer to a numeric representation table, which is a 16 byte 
table giving the 16 characters in the given territory's alphabet which should be 
used to represent the values 0- 15. This includes non-decimal numbers: for 
example, in English the value 9 is represented by '9', and the value 10 by 'Pl. (as in 
the hexadecimal number &9A). 

Related SWis 

None 

Related vectors 

None 

3-833 



Territory_ Collate (SWI &43050) 

3-834 

Territory_ Collate 
(SWI &43050) 

Compares two strings in the given territory's alphabet 

On entry 
RO =territory number, or -I to use current territory 
Rl =pointer to string! (null terminated) 
R2 = pointer to string2 (null terminated) 
R3 =flags: 

bit 0: ignore case if set 
bit I : ignore accents if set 
bits 2-31 are reserved (must be zero) 

On exit 
RO < 0 if string! < string2 

= 0 if string I = string2 
> 0 if string I > string2 

R I - R3 preserved 

N set and V clear if string I < string2 ( LT) 
Z set if string! = string2 (EO). 
C set and Z clear if string! > string2 (HI) 

Interrupts 
Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 
Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call compares two strings in the given territory's alphabet. It sets the same 
flags in the Processor Status Register (part of Rl5, the program counter) as the 
ARM's numeric comparison instructions do. You should always use this call to 
compare strings. 



The Territory Manager 

The C library function srtrcoll calls this SWI. If you're programming in C you can 
instead use srtrcoll to compare two strings, provided you have previously called the 
setlocale function . 

Related SWis 
None 

Related vectors 
None 

3-835 



Territory_ReadSymbols (SWI &4305E) 

3-836 

Territory _ReadSymbols 
(SWI &4305E) 

Returns various information telling you how to format numbers 

On entry 

RO =territory number, or -I to use current territory 
Rl =reason code (see below) 

On exit 

RO =requested value 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call returns various information telling you how to format numbers, in 
particular monetary quantities. Current reason codes are: 

Code Meaning 
0 Return pointer to null terminated decimal point string. 

Return pointer to null terminated thousands separator. 

2 Return pointer to byte list containing the size of each group of digits 
in formatted non-monetary quantities (least significant first): 

255 no further grouping 

0 repeat last grouping for rest of number 

other size of current group; the next byte contains the size 
of the next most significant group of digits 

3 Return pointer to null terminated international currency symbol. 

4 Return pointer to null terminated currency symbol in local alphabet. 



The Territory Manager 

5 Return pointer to null terminated decimal point used for monetary 
quantities. 

6 Return pointer to null terminated thousands separator for monetary 
quantities. 

7 Return pointer to byte list containing the size of each group of digits 
in formatted monetary quantities (least significant first) : 

255 no further grouping 

0 repeat last grouping for rest of number 

other size of current group; the next byte contains the size 
of the next most significant group of digits 

8 Return pointer to null terminated positive sign used for monetary 
quantities. 

9 Return pointer to null terminated negative sign used for monetary 
quantities. 

I 0 Return number of fractional digits to be displayed in a formatted 
international monetary quantity (ie one using the international 
currency symbol) . 

II Return number of fractional digits to be displayed in a formatted 
monetary quantity 

12 Return for a non-negative formatted monetary quantity: 

I If the currency symbol precedes the value. 

0 If the currency symbol succeeds the value. 

I 3 Return for a non-negative formatted monetary quantity: 

I If the currency symbol is separated by a space from 
the value. 

0 If the currency symbol is not separated by a space 
from the value. 

I4 Return for a negative formatted monetary quantity: 

I If the currency symbol precedes the value. 

0 If the currency symbol succeeds the value. 

15 Return for a negative formatted monetary quantity: 

I If the currency symbol is separated by a space from 
the value. 

0 If the currency symbol is not separated by a space 
from the value. 

3-837 



Territory_ReadSymbo/s (SWI &4305E) 

3-838 

16 Return for a non-negative formatted monetary quantity: 

0 If there are parentheses around the quantity and 
currency symbol. 

If the sign string precedes the quantity and currency 
symbol. 

2 If the sign string succeeds the quantity and currency 
symbol. 

3 If the sign string immediately precedes the currency 
symbol. 

4 If the sign string immediately succeeds the currency 
symbol. 

17 Return for a negative formatted monetary quantity: 

0 If there are parentheses around the quantity and 
currency symbol. 

If the sign string precedes the quantity and currency 
symbol. 

2 If the sign string succeeds the quantity and currency 
symbol. 

3 If the sign string immediately precedes the currency 
symbol. 

4 If the sign string immediately succeeds the currency 
symbol. 

18 Return pointer to null terminated list separator. 

The C library function localeconv calls this SWI. If you're programming in C you can 
instead use localeconv to return formatting information, provided you have 
previously called the setlocale function . 

Related SWis 

None 

Related vectors 

None 



The Territory Manager 

Territory _ReadCalendarl nformation 
(SWI &4305F) 

Returns various information about the given territory's calendar 

On entry 

RO =territory number, or -I to use current territory 
Rl =pointer to 5 byte UTC time 
R2 = pointer to 12 word buffer 

On exit 

RO - R2 preserved 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call takes the 5 byte UTC time passed to it, and returns various information 
about the given territory's calendar in the buffer pointed to by R2: 

Offset 

0 
4 
8 

12 
16 
20 
24 
28 
32 

Value 

number of first working day in the week 
number of last working day in the week 
number of months in the current year 

(current= one in which given time falls) 
number of days in the current month 
maximum length of Alv1JPM string 
maximum length of WE string 
maximum length of W3 string 
maximum length of DY string 
maximum length of ST string (may be zero) 

3-839 



Territory_ReadCalendarlnformation (SWI &4305F) 

3-840 

36 
40 
44 

Related SWis 
None 

Related vectors 
None 

maximum length of MO string 
maximum length of M3 string 
maximum length of TZ string 



The Territory Manager 

Territory_NameToNumber 
(SWI &43060) 

Returns the number of the given territory 

On entry 

RO =territory number, or -1 to use current territory 
Rl =pointer to territory name in the alphabet of the territory pointed to by RO 

(null terminated) 

On exit 

RO =territory number for given territory (0 if territory unknown) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Not defined 

Use 

This call accepts the name of one territory in the language of another territory 
(probably- but not necessarily- different). It returns the number of the named 
territory. 

Related SWis 

None 

Related vectors 

None 

3-841 



Territory_ TransformString (SWI &43061) 

3-842 

Territory_ Transform String 
(SWI &43061) 

Transforms a string to allow direct territory independent string comparison 

On entry 

RO =territory number, or -I to use current territory 
Rl =pointer to buffer to hold transformed string 
R2 =pointer to source string (null terminated) 
R3 = length of buffer to hold transformed string 

On exit 

RO =length of transformed string (excluding terminating null) 

Interrupts 

Interrupt status is undefined 
Fast interrupts are enabled 

Processor mode 

Processor is in SVC mode 

Re-entrancy 

Use 

Not defined 

This call transforms the string pointed to by R2 and places the resulting string into 
the buffer pointed to by R I. The transformation is such that if a byte by byte 
comparison is applied to two transformed strings, then the strings will compare 
less than, equal to or greater than (as though Territory_Collate had been applied to 
the original strings). 

If you call this SWI with R3 set to 0 on entry, R I may be a null pointer. On exit RO 
will contain the length of the transformed string, without altering the buffer. You 
may then set up a buffer of the required size (remembering to allow for the 
terminating null) before again calling this SWI to place the string in the buffer. 

If RO on exit is;;::: R3 on entry (ie the string was too long to fit in the buffer) the 
contents of the buffer are undefined, but writing will not have occurred beyond the 
bounds of the buffer, since this call never writes more than R3 bytes. 



The Territory Manager 

If copying takes place between strings that overlap the behaviour is undefined. 

The C library function strxfrm calls this SWI. If you 're programming in C you can 
instead use strxfrm to transform strings . provided you have previously called the 
setlocale function . 

This call is not available in RISC OS 3 (version 3.00). and leaves the string 
unaltered in RISC OS 3 (version 3.1 0) . 

Related SWis 

None 

Related vectors 

None 

3-843 



*Commands 

*Commands 

3-844 

*Configure DST 

Sets the configured value for daylight saving time to ON 

Syntax 

*Configure DST 

Parameters 

Use 

None 

*Configure DST sets the configured value for daylight saving time to ON. 

The time zone is set when you configure the computer's territory, rather than by 
this command. 

For each territory module that is registered. the territory manager uses the name of 
that territory's daylight saving time to supply an alternative name for this 
command. For example. if the UK territory module is registered. the command 
*Configure BST (short for British Summer Time) has the same effect as *Configure 
DST. This alternative name is also used by the *Status command (see page 1-398). 

Example 

*Configure DST 

Related commands 

*Configure NoDST. *Configure TimeZone 

Related SWis 

None 

Related vectors 

None 



The Territory Manager 

*Configure NoDST 

Sets the configured value for daylight saving time to OFF 

Syntax 

*Configure NoDST 

Parameters 

Use 

None 

*Configure NoDST sets the configured value for daylight saving time to OFF 

The time zone is set when you configure the computer's territory, rather than by 
this command. 

For each territory module that is registered, the territory manager uses the name of 
that territory's standard time to supply an alternative name for this command. For 
example, if the UK territory module is registered, the command *Configure GMT 
(short for Greenwich Mean Time) has the same effect as *Configure NoDST. This 
alternative name is also used by the *Status command (see page 1-398). 

Example 

*Configure NoDST 

Related commands 

*Configure DST, *Configure TimeZone 

Related SWis 

None 

Related vectors 

None 

3-845 



*Configure Territory 

3-846 

*Configure Territory 

Sets the configured default territory for the machine 

Syntax 

*Configure Territory territory 

Parameters 

territory 

Use 

The name or number of the territory to use. A list of 
parameters can be obtained with the *Territories 
command. 

*Configure Territory sets the configured default territory for the machine. Use this 
command with caution; if you set a territory that is unavailable your computer will 
not start , and so you will have to reset your CMOS RAM. 

Example 

*Configure Territory UK 

Related commands 

*Territories 

Related SWis 

None 

Related vectors 

None 



The Territory Manager 

*Configure TimeZone 

Sets the configured local time offset from UTC 

Syntax 

*Configure TimeZone [+1-]hours[:minutes] 

Parameters 

Use 

hours 

minutes 

offset from UTC in hours 

offset from UTC in minutes 

*Configure TimeZone sets the configured local time offset from UTC. You should 
use this command to configure the local time on your machine rather than 
changing the system clock as was necessary for RISC OS 2. Using the *Configure 
TimeZone command will ensure that (since the system clock on all machines will 
represent UTC) timestamps on files will be valid across machines, networks will 
work correctly across time zones and electronic mail will be correctly timestamped. 

The time offset must be in the range -13:45 to+ 13:45, and must be an exact 
multiple of 15 minutes. 

Example 

*Configure TimeZone 9:30 

*Configure TimeZone -5 

Related commands 

*Configure DST, *Configure NoDST 

Related SWis 

Territory_ReadTimeZones (page 3-806) 

Related vectors 

None 

Northern Territory, Australia 

Eastern USA 

3-847 



*Territories 

3-848 

Lists the currently loaded territory modules 

Syntax 

*Territories 

Parameters 

None 

Use 

*Territories lists the currently loaded territory modules. 

Example 

*Territories 
1 UK 

Related commands 

*Configure Territory 

Related SWis 

None 

Related vectors 

None 

*Territories 



Acornl AKJ03 


