
RISC OS 3

Style Guide

Acornt

RISC OS 3

Style Guide

ii

Copyright© 1993 Acorn Computers Limited. All rights reserved.

Published by Acorn Computers Technical Publications Department

No part of this publication may be reproduced or transmitted. in any form or by
any means. electronic. mechanical. photocopying. recording or otherwise. or
stored in any retrieval system of any nature. without the written permission of the
copyright holder and the publisher. application for which shall be made to the
publisher.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product
and its use (including the information and particulars in this manual) are given by
Acorn Computers Limited in good faith. However. Acorn Computers Limited
cannot accept any liability for any loss or damage arising from the use of any
information or particulars in this manual.

If you have any comments on this manual. please complete the form at the back of
the manual and send it to the address given there.

Acorn supplies its products through an international distribution network. Your
supplier is available to help resolve any queries you might have.

Within this publication. the term 'BBC' is used as an abbreviation for 'British
Broadcasting Corporation·.

ARCHIMEDES is a trademark of Acorn Computers Limited.

IBM is a trademark of International Business Machines Corporation
Macintosh is a trademark of Apple Computer. Inc.

All other trademarks are acknowledged.

Published by Acorn Computers Limited
ISBN I 85250 148 0
Part number 0470,296
Issue I, July 1993

Contents

About this guide vii
About this Guide vii
Finding out more vii

1 Introduction 1
The scope of this Guide
Who should use this Guide? 2
Why have a standard? 2
Into the future 2

2 Starting a new application 5
Thinking about a new application 5
Ease of use 5
Multi-tasking 6
Data interchange 7
Consistency on the desktop 7
Quality 8
Terminology 8

Versions of RISC OS 8

3 The desktop 9
Using the desktop 9
The pinboard 10
Multi-tasking I 0
Terms for desktop items 10

4 The mouse 13
Introduction 13

Mouse buttons 13
Mouse operations 14
Mouse functions 14

iii

Contents

iv

5 Icons 17
Introduction 17
When to use icons 17

Appearance of icons 17
Large and small icons 18
Icons and screen resolution 18
Loading an application 18

6 Standard operations 19
Introduction 19
Starting an application 19

Providing information about your application 20
Closing windows 20
Quitting applications 20
Editors 21

7 Windows 27
Introduction 27
Parts of a window 27
Bringing a window to the front 28
Sending a window to the back 28
Closing a window 28
lconising a window 29
Resizing a window 29
Moving a window 30
Scrolling a window 30
Context-sensitive pointers 31

Dragging objects that are within a window 32
Taking over the screen 33

8 Menus 35
Introduction 35
Basic menu operation 35
Menu structure 37

Standard menu items 40
Appearance of menus 44
Pop-up menus 45
Size and position of menus 45

9 Dialogue boxes and toolboxes 47
Introduction 47
3D and dialogue boxes 47
Types of dialogue box 48

Dialogue boxes and keyboard shortcuts 49
Default actions 49
Standard components in dialogue boxes 50

Scrollable lists and pop-up menus 54
Standard dialogue boxes 55
Appearance of dialogue boxes 61
Wording of dialogue boxes 62
Toolboxes 64

10 Handling keyboard input 67
Introduction 67
Gaining the caret 67
Unknown keystrokes 68
Keyboard shortcuts 68
Special needs support 73

11 Handling selection 75
Introduction 75
Selecting text 75
Selecting objects 76

12 Colour and sound 79
Introduction 79
Colours and the palette 79
Guidelines for using colour 79
Sound 81

13 Configurations and user choices 83
Introduction 83
Hardware configuration 83
Software configuration 84
User choices 85
Network considerations 86

Contents

v

Contents

vi

14 Writing applications for CD-ROM 87

15 International support 89
Introduction 89
Language 89
Character sets 89
Information formats 90

16 Implementing the design 91
Introduction 91

Choice of programming language 91
Using legal operations 92
Responsiveness 92
Units of measurement 93
Sprites 93
Windows 95
Menus 95
Dialogue boxes 97

17 Application directories 1 03
Introduction I 03
Application resource files I 03
The !Boot file 104
The !Sprites file 104
The !Run file 106
The Messages file I 06
The !Help file 106
The Choices file 107
Shared resources 107
Large applications I 08

Appendix A: Significant changes 111

Glossary 113

Index 123

About this guide

About this Guide

This Guide describes the standards of 'look and feel' to which you should write a
RISC OS application. It covers aspects of designing a new application. and
implementing the design:

• The introduction explains why this Guide was written and how to use it. It
explains the scope of the Guide. and why a standard look and feel is desirable.
It also looks at the issues you need to consider when you begin designing a
new application

• Chapters 2-14 deal with design issues. concentrating on the user interface.
This includes the design of menus and dialogue boxes. how to load an
application and other issues that are part of the design of an application.

• Chapters 15-18 deal with the implementation of the issues covered in the
earlier chapters and of the application's functionality. They concentrate on
programming issues such as the structure of application directories and how
to construct the elements of dialogue boxes.

• Finally, there is a glossary of terms used in this Guide.

This is the second edition of the RISC OS Style Guide. The Guide has been reissued
to take account of the new features and benefits of RISC OS 3 and to reflect the
developments in application design both within Acorn and amongst the developer
community. The main aim of the Guide is to help all developers to give their
applications a common and consistent look and feel so that users will be able to
find their way around new programs easily and will be able to use applications
together when appropriate.

Finding out more

You will find a certain amount of relevant information in the Welcome Guide and
RISC OS 3 User and APplications Guide supplied as standard with all RISC OS
computers.

The RISC OS 3 Programmer's Reference Manual gives full documentation of RISC OS,
and the calls to the operating system that you may need to use in your code. The
chapter entitled The Window Manager is especially relevant, and tells you how to
implement many of the standards defined in this Guide.

vii

Finding out more

viii

Where this Guide refers you to Acorn for more information. Registered Developers
should contact Developer Support in the usual way; other developers should write
to Acorn Technical enquiries.

1 Introduction

The scope of this Guide

This Guide will help you to specify. plan. and write software to work within the
graphical user interface (or GUJ) used by RISC OS. It describes the 'look and feel' a
user expects from RISC OS applications. Because it is concerned with the design of
applications on all levels. you will have to bear in mind many of the points raised
here quite early on in development whether you are writing a new application or
porting one from another platform.

The Guide is concerned primarily with maintaining consistency and standards in
all areas of the style of applications. It describes the standards which we hope you
will adhere to so that all developers can move towards a high level of consistency
in look and feel. helping users to learn new applications quickly.

By 'style' we mean not only the look of an application on the desktop but also
features of its functionality, how well it integrates with other applications and the
extent to which it can use common conventions (such as consistency in keyboard
shortcuts). These are not issues that can be sorted out at the last moment. but
areas you need to consider from the very start of the development process. Some
of the points raised are simple rules that are easy to follow- setting the distance
between icons in a dialogue box. for example. Others require you to interpret
guidelines in the context of your applications.

The scope of this Guide is so large that in places it is necessarily imprecise.
Wherever possible and helpful. we have given examples to help make points
clearer. Sometimes. the Guide has to enter uncharted waters. and here we can only
make recommendations and indicate the direction we expect developments to
take. In some areas there may be few or no models to follow. but we hope the
guidelines will enable all developers- including Acorn- to move towards a
common goaL If you follow the guidelines given in this Guide. you should be able
to help users learn and make the most of your applications without limiting what
your applications can do.

The main difference between this and the last issue of this Guide is that we now
feel the time is right for RISC OS applications to move towards a 3D look and feel.
There is advice on how to implement this. and detailed descriptions of how to
produce the icons you will need to use in your dialogue boxes and windows. We
will be interested to receive feedback from developers who follow the guidelines.

1

Who should use this Guide?

Who should use this Guide?

You should read this Guide if you are involved in the design or writing of
applications to run from the RISC OS desktop. This includes designers and writers
of games or other applications that may take over the screen completely, there are
some guidelines on this in the section entitled Taking over the screen on page 33.

The structure of this Guide reflects the process of designing or specifying an
application and the implementation of the design in programming the application.
Chapters 2-14 will be most useful to the person designing an application. They
enable the designer to specify how the menu tree should be structured. what
should appear on each dialogue box. how error messages should be worded. and
so on. Chapters 15-18 will be most useful to the person or people responsible for
writing the program. They cover such details as precise placing of buttons on
dialogue boxes and where to put resources.

You should read all the way through the Guide once; we have kept it short so that
this is not too time-consuming. You can then use it as a reference work whenever
you design or write an application.

Why have a standard?

Into the future

2

One of the most important aspects of developing applications to run under
RISC OS is to make sure that applications within the desktop world present a
consistent and reliable interface to a user. This applies both to how an application
looks and to how it behaves. This is to the benefit of all users and developers. If the
RISC OS world is a consistent and coherent environment. users will feel confident
and at ease even with a new application because it will use a familiar interface and
structure. This is to your advantage as well as the user's advantage. A user who has
found your package easy to use. following the styles and procedures that are
already familiar from other applications and the operating system. will feel happy
using your applications and is likely to buy more of them in the future

The requirements set out in this Guide are demanding. and in places require
significant effort to implement. Some of the Applications Suite itself does not
conform in all respects; as the operating system and Applications Suite change
relatively infrequently, they cannot be the main means of introducing change As
new applications are developed or existing applications are updated. we should all
aspire to a close match to the current style guidelines

Introduction

The standard to which we all aspire will evolve continuously as RISC OS evolves
and improves. so 'style' is not static. No doubt future issues of this Guide will be
able to be more precise in some recommendations as Acorn and its developers
together discover the standards and conventions that work best.

As we have mentioned already, the most noticeable change from the previous
edition will be the implementation of a 3D desktop. As the operating system is not
updated very frequently, there will be many 3D applications before the desktop
itself becomes 3D as standard. It is vitally important that we all develop 3D along
common lines. Users will be confused and irritated by a proliferation of different
versions of 3D look and feel. so we must work together to ensure that all
applications continue to look good together on the desktop and share a consistent
implementation of 3D. The chapter entitled Implementing tfte design on page 91
explains in detail how to create the standard 3D icons.

3

4

2 Starting a new application

Thinking about a new application

Ease of use

When you begin to think about developing a new application. you will take many
considerations into account The most important of these will be the functionality
you want for your application. and the market you are targetting. At the same time.
though, you shou ld begin to think about the style you will give the application If
you begin considering this at the earliest stages of development, it will be fairly
easy to make sure your new application fits in with the RISC OS desktop and the
applications that use it

Try to bear the following considerations in mind early on. There is more
information on the first two in this chapter, and more on each of the others in later
sections of this Guide.

• Your applications should be easy to learn and easy to use.

• Your applications should fit in well with others that use the desktop aim for
consistency by following the design guidelines given in this Guide.

• Use the RISC OS Window Manager module (the programming interface to the
RISC OS desktop, commonly known as the Wimp) so that your applications will
look right and work properly with future releases of the Wimp.

• Use memory efficiently; remember that some users have only a I MB machine,
and users with larger machines will want to run several applications at once.

• Support all reasonable configurations of hardware and software that a user
might have.

It goes without saying that you will decide at an early stage in development what
you want your application to do and which language you will use to program it.
There are some comments on these issues later in this chapter (see the section
entitled Quality on page 8 and the section entitled Cfloice of programming language on
page 91).

The principal aim of this Guide is to help you produce applications that make the
computer easy and pleasant to use. for users with varying levels of experience and
different requirements . A user should find an application

• easy to learn

5

Multi-tasking

Multi-tasking

6

• easy to re-learn

• easy to use productively

You can help the whole developer community and Acorn to achieve these aims by
following the guidelines that work towards consistency and common standards. To
help the user to learn, relearn and use applications you should:

• Make it easy for users to see all the options and actions available within your
application.

• Make each user action perform a well-defined task.

A good guideline is whether you can describe the task using a single noun-verb
combination. such as 'File-delete' Typically the user will select something (the
noun) and then choose an action (the verb).

• Break down complex tasks so they can be performed as a series of simpler
tasks.

• Give your application a clear and logical structure so that users don't have to
remember complex sequences or too many details

• Provide clear feedback to each action , so the user feels in control

This includes things such as using the hourglass when your application is busy
in the foreground, putting status words under icons on the icon bar or
changing icons to show the state of a file. application or tool.

• Provide a way for users to undo the mistakes they'll inevitably make
Usually this will mean offering an Undo function that can reverse either a
single action or a sequence of actions. You might also consider providing a
Redo function to reverse an Undo.

• Warn and ask for confirmation when an action may be destructive.

It's especially important to do this if you don't provide an Undo function. Issue
a warning by default. although you may want to provide a facility for
experienced users to turn off such warnings.

A multi-tasking interface requires that applications work together for a user of the
machine. This means that

• they co-operate in sharing the machine

• they look harmonious

• their user interfaces are similar

• files are transferable between applications

• the whole is more important than a single application.

Starting a new application

A habitual user of the desktop environment and the Applications Suite programs
should find your program easy to use and natural to Jearn.

Data interchange

One of the most elegant features of the RISC OS desktop is that users can easily
move files between compatible applications. If your own applications integrate
well with others. including the Applications Suite. users will be keen to use them
A primary requirement is that data file formats are compatible or interchangeable.
Aim either to use common data file formats (such as CSV files. for example) or
make provision for importing from or exporting to different filetypes. There is a list
of filetypes in the RISC OS 3 Programmer's Reference Manual. and further information
on filetypes in the section entitled Standard icons provided on page I 05.

An advantage for developers of the RISC OS environment is that new applications
don't need to duplicate functionality already offered elsewhere. For example,
printing should use the standard RISC OS printer drivers. This saves you effort and
means that users already know how to set up printing.

Consistency on the desktop

Before users begin to use your application. or even load it, it will have a presence
on the desktop as its icon is visible in a directory display. How this icon looks. and
the appearance of the icon(s) it uses on the icon bar and to represent its files.
should be harmonious with other items on the desktop. Users must be able to load
your application by double-clicking on its icon and, if it uses files. to be able to
open a file by dragging it to the icon on the icon bar. All these are common desktop
activities which users will expect your application to support. The look of the
windows. menus, dialogue boxes and error boxes your application uses should
also be consistent with those used by other desktop applications so that the user
always feels secure and at ease using the familiar interface, even if it is for a new
purpose.

If you are writing a game. your application may not usually be run on the desktop,
but may take over the whole screen while running. Even so. its icon will be visible
in directory displays and on the icon bar and it must be consistent in these
respects with other applications. There is more about single-tasking applications
in the section entitled Taking over the screen on page 33.

The appearance and wording of menus. dialogue boxes. error boxes and the
appearance of sprites and windows are described in the following chapters

7

Quality

Quality

Terminology

It is much better that you write a small program that does something simple, and
does it well , than a sprawling mass that crashes occasionally. In general. a simple
program is often an elegant and efficient one. quality and simplicity frequently go
hand in hand. Design applications carefully and don't duplicate functionality that
is already provided by the Wimp, the operating system or the Applications Suite.

You must always bear in mind that your application will mainly be used by the
general public. not just by programmers. If you use consistent terminology, and
avoid jargon, it will make the application more friendly to them. There is an
established vocabulary for referring to parts of the desktop, the mouse buttons and
mouse operations. You should use this when communicating with the user. This
includes menu and dialogue box text, error messages. help text. manuals or guides
and any other user documentation. The names of action buttons. menu items and
other very specific items are covered in the appropriate chapters of this Guide.
There is more information on terminology and how to present documentation on
your application in the Acorn Technical Publications Style Guide (AKJ 17).

Versions of RISC OS

8

There have been two major versions of RISC OS which you need to support. and
one intermediate version:

• RISC OS 2 was the original version of RISC OS, released in May 1989 This has
been superseded by RISC OS version 3 and most users are expected to
upgrade. Your applications should continue to run under RISC OS 2 if
possible. If an application requires RISC OS 3, this should be stated clearly on
the packaging.

• RISC OS 3. v3.00 was supplied with early A5000 systems and has been replaced
by v3 .1 0. You don't need to offer support for v3.00 as users are encouraged to
upgrade to v3 .10.

• RISC OS 3, v3.10 is the general release of RISC OS 3 and has been provided as
standard on production machines and as an upgrade for users with RISC OS 2.
This Guide assumes that you will be using and supporting RISC OS 3, v3.1 0.

A later version. RISC OS 3. v3.11. is essentially the same as v3 .1 0.

There will be later versions of RISC OS released in the future; it would not be
prudent to write applications to match RISC OS v3. 10 too precisely.

3 The desktop

Using the desktop

All applications will need to use the desktop, even if only briefly in the case of
some games usually run in a single-task mode. It is important that while your
application uses the desktop, it looks and behaves in the same way as other
desktop applications. This will make your application easy for users to learn and
use and will help to maintain the consistency and harmony that we should all be
aiming for in developing applications for RISC OS.

If your application usually operates from the desktop, all the guidelines here on
designing the user interface will be relevant to you . They cover

• loading, starting and leaving applications

• using the mouse

• icons

• windows

• menus

• dialogue boxes and toolboxes

• handling input

• selection

• using colour and sound

• editors

• user preferences

• internationalisation .

From this chapter to chapter 14, the Guide deals with the design of these items,
not the implementation through programming. There is some guidance on
implementation issues in chapters 15- 18, but for detailed information on how to
create and manipulate desktop items you will need to look in the RISC OS 3
Programmers' Reference Manual.

If your application takes over the whole screen, or has an option which users can
choose to allow it to do so. it will still need to start up from the desktop and appear
on the icon bar as an icon in the same way as applications which operate wholly
within the desktop environment. The PC Emulator, which may be run as a single
task replacing the desktop. is an example of an application that does this. Much of

9

The pinboard

The pinboard

Multi-tasking

this Guide will be relevant to you. even if your application is not normally going to
use the desktop while it is running. Some of the advice in the section entitled
Taking over the screen on page 33 will help you to integrate your application into the
RISC OS world .

RISC OS 3 provides a 'pin board' facility. allowing the icons of open or closed files
or directories to be 'pinned' to the backdrop of the desktop. Users can quickly
access these files and directories and open a window onto any of them by
double-clicking on the icon. This saves time opening sequences of directories. and
saves space on the desktop by allowing users to 'iconise' an open file or leave
directories accessible without being open. You should provide a sprite that can be
used to represent iconised windows from your application. See the section entitled
Sprites for iconised windows on page 95.

Remember that users are likely to want to run your application alongside others.
Multi-tasking is one of the most important benefits that RISC OS offers users, so
make sure your application does not impair the computer's ability to multi-task
and do not reset any configuration options or other settings that will affect other
applications.

Terms for desktop Items

10

Consistent use of terminology is important for users. To avoid confusion and
difficulty, you must use these terms to refer to parts of the desktop:

• The bar at the foot of the screen is the icon bar.

• The background to the desktop is called the pinboard.

• A window may be a main window. a menu. a dialogue box. an error box. an info
box or a pane window.

• A main window may be a document window. a control window or a directory
display.

• A main window showing the contents of a directory is called a directory display
and not a directory viewer.

• A menu has menu items. some of which lead to submenus (no hyphen). You may
shorten menu items to items. providing the context is clear. The main menu from
which submenus may be accessed is called the root menu .
In manuals. menu items and the names of action buttons (see page 52) such
as Save should be in bold text.

The desktop

• A menu that appears when you press Menu over an icon on the bar is an icon
bar menu

• A menu that appears when you press Menu or Select over a button in a
dialogue box is ca lled a pop-up menu.

• A chosen menu item is shown highlighted (no need to say 'in inverse video')

• A window used for a dialogue between user and computer within an
application or on the desktop is a dialogue box if there is a delayed effect- that
is. the user must click on a button to initiate an action. A dialogue box allows
the user to g1ve some details of an action and initiate the action. or close the
dialogue box taking no action
A dialogue box that remains on screen if the user clicks outside it is a pmistent
dialogue box; a dialogue box that disappears if the user clicks outside it is a
transient dialogue box.

• An error box is a special type of dialogue box that gives information to the user.
and requires acknowledgement that it's been read

• An info box is a window that displays information for the user to read It may be
transient. tn wh1ch case it has no control1cons If it IS persistent. 1t may have a
control 1con allowing the user to d1splay more information. and will have a
Close 1con or act1on button to remove 1t

• A pane window may be a toolbox or a scrolling list of options

Other special terms are explained as they occur tn this Guide; there is also a
glossary.

11

12

4

Introduction

Mouse buttons

The mouse

Although the mice supplied with different systems vary in design, their function
and the function of each button is the same across Acorn systems. It is important
that you support the established standards of mouse activity, and use the
established vocabulary when describing the mouse and mouse activity.

The mouse has three buttons:

Adjust -----------\\-----.
Menu
Select

The buttons have these names because of the actions they perform:

• Select is used to make an initial selection

• Adjust is used to toggle elements in and out of this selection and to add extra
selections without cancelling the current ones

• Menu is used to call up a menu.

The mouse moves a pointer on the screen.

13

Mouse operations

Mouse operations

These are the terms you should use for mouse operations:

Press
Release
Click

Double-click
Triple-click
Drag

Choose
Select

press a button down

release a button

press and release a button

click twice quickly, without moving the mouse

click three times quickly, without moving the mouse

press a button and move the mouse. then release the
button

click on a menu item

change an object's state by clicking on it.

Here are some examples of these terms in use:

Type Ctri-Z or choose Clear from the menu.

Triple-click Select to select the whole line of text

Press Select. drag the icon to a directory display and then release Select.

Select the object you want to delete.

Common faults include confusing press and click. and talking about selecting menu
items.

Remember that the mouse speed and double-click speed are configurable: you
can't rely on users configuring their mouse to particular settings.

Mouse functions

14

Do not replace the established functions of the mouse buttons with anything new.
Use:

• Select to choose items from a menu, select objects. click on window parts or
icons to choose or use them. indicate positions in the window. or drag objects.

• Menu to display a menu anywhere within the window or choose an item from a
menu. If you are using menu buttons in dialogue boxes. a user must be able to
use the Select or Menu button to call up the menu.

• Adjust to alter selections. reverse the direction of movement brought about by
clicking on an icon (such as an adjuster arrow) or scroll arrow. choose an item
from a menu leaving the menu displayed, open a directory while closing its
'parent'. or open a ·parent' directory while closing the 'child'.

Where possible. Select should be used for all the main functions in you
application: Adjust should not be needed by new users. but be used for shortcuts
and alternatives to other procedures.

The mouse

In addition. text editors should support the following mouse shortcuts;

• click to position the caret

• double-click to select a word.

If it is appropriate, triple-click should be supported to select a line or paragraph,
depending on the context.

15

16

5

Introduction

Icons

The first that users see of your application is its icon in a directory display. Make it
attractive and intelligible; if you can. give a hint of its function The Edit and Paint
icons are good examples of this. However, you need to bear the following
guidelines in mind when designing icons for your application It is difficult to
design good icons; consider enlisting the help of a graphic designer.

There is more precise information on the sizes for icons in the section ent itled Size
of sprites on page 93.

When to use icons
RISC OS uses icons to represent a variety of different objects:

• applications (including editors)

• files (including editors· documents)

• devices (such as discs and printers)

• iconised windows.

For an application, you will certainly need an application icon and may also need a
file icon. However. if your .application uses files of an existing filetype, use the
standard icon for its files.

Appearance of icons
Application icons will appear on the icon bar and should have an irregular shape
Square or rectangular icons look dull on the icon bar and are confusing in directory
displays where they tend to look like file icons (see below). You may use any
colours you like for application icons. Use a background mask (transparent) rather
than a grey background for sprites representing applications.

File icons should be square sprites. with a black border (Wimp colour 7). If the file
is a document that 'belongs' to a particular editor. try to make the editor's icon and
the document's icon look related to each other. even though the editor's icon has
an irregular shape.

17

Large and small icons

Device icons will often have an irregu lar outline. They should have a grey outline
(Wimp colour 5) with cream (Wimp colour 12) as the major foreground colour.
Device icons with an irregular outline must have a transparent mask.

Large and small icons

Icons that can appear in a directory display will need large and small versions. If
you don't define a small icon. RISC OS wi ll display the large icon at ha lf size. As the
appearance of a scaled-down icon is unlikely to be as pleasing as a specially
designed small version, it is best to design your own large and small icons. Large
icons are used on the icon bar and in directory displays that show Large Icons.
Small icons are used in directory displays that show Small icons or Full info. There
is detailed information on the size the icon should be in the section entitled Size of
sprites on page 93.

Icons and screen resolution
You will need to provide versions of the icons your application uses for standard
(low) resolution and high resolution screen modes. If you think it is likely that your
application will be used with the high resolution monochrome screen mode 23.
you should also supply an icon for this. There is more about icons for different
screen modes in the section entitled The !Sprites file on page I 04.

Loading an application

18

When a user double-clicks on an application icon in a directory display, the
application must load. installing its icon on the icon bar. The icon on the icon bar
may include some text as well as a sprite. This may give details about the state of a
device. for example. The section entitled Positioning icons on the icon bar on page 94
explains how to position the icon and any text attached to it.

6

Introduction

Standard operations

It is important that all applications behave in the same way when performing
standard operations such as starting up and closing down. In addition. there are
some common procedures used by many editors which must also be standard

Starting an application

You must start your application if a user:

• Double~clicks on its icon in a directory display using either Select or Adjust.
This should load a new copy of your application, putting its icon on the icon
bar.

• Drags your application's icon to the icon bar (under RISC OS 3 only. this is
handled by the Wimp).

• Double-clicks on a file icon in a directory display using either Select or Adjust.
where the file 'belongs· to the application. and the application has not already
been started. If the application isn't already loaded. it must start up and open
the chosen document. If it is already loaded. it must just load the document.

• Drags a file to a printer icon using either Select or Adjust. where the file
'belongs' to the application. and the application has not already been started.
If the application isn't already running. it must start up and print the file. If it is
already started. it must print the document

Applications should put an icon on the icon bar. only very small applications.
which may be better described as utilities. do not need to do this.

19

Providing information about your application

Providing information about your application

The 'About this program· dialogue box is accessed from the Info item which you
must provide at the top of the application's icon bar menu The dialogue box
provides useful information about your application For example:

~' ;" E·a.t tllis .,...... ~ ·• ~

• I Edit

l'wptsel Ttxt ttlitor

t.twl 0 lcern c..,.t.rs ltd, m3
licttiCfl Sintlt Ustr
Utrsinl 1.45 <.,-Jul-93>

You can make some modifications to this basic design as long as the dialogue box
does not become too large. It is a good idea to include a line showing the licence
type. This helps a user identify the limits of allowed use.

Closing windows

If a user clicks with Select on the Close icon of a window. the application must

• close the window immediately if no work will be lost for example. if it is
unmodified. or if a view of the file is still open

• display the dialogue box described and illustrated in the section entitled
Closing windows on page 60 if the information in the window is not safe.

For more information on closing windows. see the section entitled Closing a window
on page 28.

Quitting applications

20

The last item in an application's icon bar menu must be Quit. If a user chooses this
item. the application must first close all windows belonging to it If any windows
contain unsaved data. the application should display a dialogue box like this:

2 filts Mil if id

1t isurd I p c~~~eel l

The application may only quit once all thE' user's information is safe or has been
explicitly discarded by the user.

Editors

Standard operations

You must follow this procedure even if the user has used another method (such as
the Task Manager) to quit the editor. or has used Shutdown. Your application must
be able to handle Message_PreOuit messages from the operating system and warn
the user of any unsaved data which will be lost if Shutdown takes place
immediately.

An editor is an application which can create, load, display, edit and save documents of
a particular type. A document is usually stored as a file. with a particular filetype.
Most editors can load several documents at once; these are called multi-document
editors. Examples include Draw. Edit and Paint Editors must comply with all the
rules laid down in other chapters within this Guide; this section gives some extra
guidance for designers of editors.

It is important that you consider how data may be transferred between your own
application and other applications. Wherever possible, allow the user to save data
from the document in a standard file format (such as text. or a Draw file) to allow
transfer between editors.

Creating a new document

You must create a new document and open a window on it if a user

• clicks on the editor icon on the icon bar using Select

• chooses a new document option from the application's icon bar menu (this
may be available if you offer several document types, for example).

If your editor needs arguments to create a new document, such as a page size. you
may also use a dialogue box during this process. If a style sheet is required (for a
DTP program, for example) then you may instead use a persistent dialogue box,
and drag the style sheet from a directory display.

In a single-document editor. if a user clicks on the editor icon on the icon bar you
must create a new. blank document only if a document is not already loaded. If a
document is already loaded. you must instead move the editor window to the front
of the window stack. in case it has been obscured by other windows.

Loading a document

You must load a document and open a window on it if a user

• double-clicks on a document icon within a directory display using either Select
or Adjust. first starting the editor if necessary

• drags a document icon from a directory display to your editor's icon on the
icon bar using either Select or Adjust

21

Editors

22

• drags a document icon from a Save dialogue box to your editor's icon on the
icon bar using either Select or Adjust.

In the last two cases. the editor must already have been started for its icon to be on
the icon bar. This way of loading a document allows a user to specify exactly which
editor to use. For example. you can drag a PostScript file onto the Edit icon to look
at or edit it.

It is normal for a new document to gain the input focus without the need for the
user to click in the window. There is more about gaining the input focus in the
section entitled Gaining the caret on page 67.

If the user tries to load a document which is already open on the desktop. bring the
window containing the document to the front rather than opening a new copy of
the document. If your application supports multiple views of the same document.
this is best offered through a New view menu item.

Your editor should be able to load and edit multiple documents concurrently.

As soon as a user makes any changes to a new document or a document that has
been loaded. the title bar must show an asterisk to indicate that the document has
been modified. This is only removed when the whole document (not a selection) is
saved.

Matching documents to editors

Editors use RISC OS filetypes to decide which files 'belong' to them.

An editor may only claim filetypes for which it is likely to be the primary editor. This
means that it will open a window for a document if the user double-clicks on the
file icon in a directory display. Your application may only claim files 'belonging' to
other editors if it provides a superset of that editor's functionality; for example. you
may only claim Draw files if your editor does all that Draw can. and more besides.
If your application is not the primary editor for a filetype, it may still open and
process a file of a type it can handle if the user drags the file icon onto your
application's icon on the icon bar.

Your editor must not claim filetypes that are mainly used to exchange information
between different editors. such as CSV files.

Inserting one document into another

You must try to insert a document into the one you are editing if a user

• drags a document icon from a directory display to an open editor window
using either Select or Adjust

• drags a document icon from a Save dialogue box to an open editor window
using either Select or Adjust.

Standard operations

If the document is not of a type that your editor can import, it should display a
suitable error message.

Saving a document

The dialogue box you should use to save a document is described fully in the
section entitled Save on page 56.

The icon in a Save box should be treated in the same way as an icon in a directory
display. So as well as dragging the icon to a directory display to save the document
(or part of it), a user can also drag the icon from the save box

• to the same editor's icon, which creates a new (cloned) copy of the document

• to a different editor's icon. which loads a copy of the document into that other
editor

• to another document. which inserts your document into the other document

• to a printer driver, which then prints the document.

The writable field you use in a Save as dialogue box must be able to accommodate
pathnames up to 255 characters long, and have a validation string of ·a- ·. so that
spaces cannot be included in the pathname The field must not accept a path name
longer than 255 characters.

When you save the document, you must:

• Make sure the document's datestamp is unchanged if the document was
unmodified; otherwise you must update it with the current date. This ensures
that the timestamp reflects when the document was last meaningfully
updated.

• Check any return codes and errors from saving the document, and take any
appropriate action. such as displaying an error in an error box

• Mark the document as unmodified. unless the save was to a scrap file

• Update your stored name for the document and the window title (if necessary)

• Remove the Save dialogue box and the rest of the menu, unless Adjust was
used to do the save, in which case they must remain on the screen.

It is becoming increasingly common for applications to save current status
information with a document. This may include, for example. the view scale.
document-specific choices. and window position.

23

Editors

24

Holding unsaved documents in memory

Don't allow users to close document windows but retain documents and their
unsaved changes in memory; clicking on the close icon must always remove a
document from memory. It is very easy for users to lose information in documents
that aren't currently displayed if they turn off the computer without first quitting all
applications or using Shutdown.

The pinboard provides a way for users to keep open documents with unsaved work
on the desktop in an iconised form, and this should remove the need for any other
method of doing this {see section entitled lconising a window on page 29). If your
application needs to provide a way of hiding unsaved documents. supply it by
some other method. such as a menu option.

Printing a document

You must print a document if a user

• chooses Print from a menu in your application

• presses the Print key on the keyboard while your application has the input
focus and a suitable document is loaded

• drags a document icon from a directory display to a printer driver using either
Select or Adjust

• drags a document icon from a Save dialogue box to a printer driver using
either Select or Adjust.

Before printing, your application will need to display a dialogue box for users to set
printing options. Sample dialogue boxes and guidelines on designing print
dialogue boxes are described in the section entitled Print on page 55.

If your application supports printing, it must show print borders. or have an option
to show them. The print borders show the user what will be prillted on the page,
and where page breaks fall. Your application can retrieve information about the
margins set if there is a printer driver active. or use default values if no printer
driver is active.

If your application supports printing. the chapter entitled Printer Drivers in the
RISC OS 3 Programmeis Reference Manual gives full details of how the printer drivers
work and the protocols involved.

Standard operations

Providing information about documents

The 'About this file' dialogue box is accessed from the item Info in the File menu.
The dialogue box provides useful information about a document being edited. It
must include the full path name of the document. For example:

. ill ·• ~-WI tllf" ~Ill •

[fA) IIDdi fit!d! I MO
TYPt jTtxt (fff)

I RlfS::IDEDisc4.$.Ttxtfilt
Sin I 1124
Dah l 11:41:15 24-Jun-1993

Data transfer between editors

One of the aims of RISC OS is to encourage the free circulation of data between a
number of cooperating applications The following points are all relevant to this:

• You must thoroughly document any data formats that your editor uses, and
make such documentation avai lable to third parties.

• Your editor must be able to read in data formats that are in common use and
are relevant to its specific application area.

• Your editor must support the Scrap Transfer protocol and should implement
the RAM Transfer protocol for data transfer between applications For full
details of these protocols. see the RISC OS 3 Programmeis Reference Manual.

• Your editor should be able to export the same formats of data that it can
include or import. even if that format is normally processed by another editor
(such as plain Text. a Sprite or a Draw file)

• If you use Draw files you must render them accurately, as Draw itself does.

• Draw files should wherever possible be used as the standard form for
structured graphic data interchange. Remember that a Draw file can include
sprites, and so be used to transfer them.

Think about how users may want to use your own application with others. and try
out data transfer between them to make sure you provide the kind of support users
will actually need.

If you need code to render data formats. ask Acorn if it is available already to avoid
duplicating the efforts of other developers.

25

26

7

Introduction

Windows

This chapter describes how windows behave on the RISC OS desktop. Much of this
behaviour is enforced by the Wimp; the information is provided here for
completeness For more details see the chapter entitled The Window Manager in the
RISC OS 3 Programmer's Reference Manual.

The chapter entitled Dialogue boxes and toolboxes on page 47 of this Guide has some
extra information that is specific to dialogue boxes; the chapter entitled Standard
operations on page 19 has some specific recommendations for editors.

The section entitled Colours on page 95 describes the standard colours that you
must use for windows.

Parts of a window

The icons around a window have the following names:

Back icon Title bar Toggle size icon

0 II Slider

!A larA !Calc !Configure

:f\8 ~I 6 r·:
Scroll arrow !Dra111 !Edit !Help !Paint

Adjust size icon

In running text in manuals and help information, use these names with initial
capitals (with the exception of slider and scroll bar, which should be in lower case
throughout).

27

Bringing a window to the front

RISC OS now has a 30 desktop which can be set up with an application NewLook
which is freely available. The use of 3D is now common on other platforms. and
many RISC OS applications are already implementing 30. Although RISC OS 3
does not itself use 30 icons. we expect that an increasing number of applications.
and finally the operating system itself. will do so

Title bar
The title information of a window is handled by the Wimp. At present. the window
title is centred. but in later versions it will be right-justified so that the leafname is
always visible. Windows that represent directories use the full path name; windows
that represent files show just the leafname.

If the document in an editor window has not yet been saved or loaded. its Title bar
should show a suitable default document name. such as Text f ile. If the
document has been modified. you must append a space followed by a * to the
title. You may also show the view number (if there are multiple views) and the
window scale Avoid using the Title bar to show other information about
documents or files; try to use a pane or other method of showing additional
information (such as whether a grid is locked on)

You can set the window's minimum size field so that the title length does not
restrict the window's minimum size. If the title will fit in the title bar you shou ld
centre it; if it won't fit the window manager will right-justify it, so that at least the
end of the title is visible.

Bringing a window to the front
Clicking Select on a window's Title bar brings it to the 'front' of the desktop. This is
handled by the Wimp. which reorders the windows in the stack so that your window
is in front of any others occupying or overlapping the same area. Resizing a window
using Select (see below) also brings it to the front

Sending a window to the back
Clicking Select or Adjust on a window's Back icon sends that window to the 'back'
of the desktop. hiding it behind any windows it currently hides or overlaps. This is
handled by the Wimp.

Closing a window

28

The effect of clicking on the Close icon of a window depends on which mouse
button is used and whether the Shift key is pressed at the same time:

Windows

Mouse button Without Shift With Shift

Select Close the window
Reduce the window to an icon and pin it to

the pinboard

Close the window; open its
Open its parent window; don't close the

Adjust parent window at the front of
the desktop

original window

The functions associated with Select are handled by the Wimp. Your application
needs to supply the functions associated with Adjust

Whenever a window is closed and there is unsaved data. the application must offer
the user the chance to save the data before closing the window. For details of what
to do with editor windows containing unsaved data, see the section entitled Closing
windows on page 60.

There is more about the pinboard in the section entitled The pinboard on page !0.

lconising a window

If a user clicks on the Close icon with Select while pressing the Shift key, the
window is reduced to an icon stuck on the pin board. The file name is shown
beneath the icon, which looks like this

[iJ
TextFile

The small icon within the border is application-specific.

Double-clicking with Select on the icon on the pinboard must reopen the window,
preserving any unsaved edits and displaying the same area of the file as when the
window was iconised.

Icon ising a window is handled by the Wimp, but your application can respond to a
user iconising a window. and may supply an alternative, application-specific
iconised sprite. The small icon within the iconised window icon must be
application specific. See the section entitled Sprites for iconised windows on page 95.

Resizing a window

A window will always open with a standard size. This is some sensible default that
you set. Thereafter, window resizing is handled by the Wimp. If the user
subsequently resizes the window by dragging the Adjust size icon, this becomes
the new 'standard' size.

29

Moving a window

Dragging the Adjust size icon with either Select or Adjust resizes the window.
subject to the constraints of a 'maximum' size. If Select is used. the window is first
brought to the front. If possible. the maximum size shows everything over which
the window can be scrolled. If this will not fit on the screen. the maximum size fills
the screen instead.

Clicking Select or Adjust on a window's Toggle size icon toggles its size between a
maximum size and a standard size. If Select is used to toggle the size of the window
to its maximum it is also brought to the front. but its old depth is remembered. If
the window is subsequently toggled back to its standard size. it resumes this
depth.

Clicking on the Toggle size icon with the Shift key held down resizes the window so
that it occupies the whole of the screen except the icon bar (or as much of the
screen as it needs to show its full extent. if it isn't large enough to fill the screen).

If the window reaches the edge of the screen during resizing it grows in the
opposite direction if possible- so if the window reaches the right-hand edge of the
screen. but there is space on the left. the window grows to the left to increase its
width. If your application window has a toolbox attached. it will have to handle
repositioning the toolbox itself (see the section entitled Toolboxes on page 64).

Moving a window
In RISC OS 3. a window can be dragged not just to the edge of the screen but
almost off the edge of the desktop. The position of the pointer on the Title bar
determines how far off the desktop a window can be dragged. as the pointer can't
move outside the desktop. Moving a window is handled by the Wimp.

Moving a window has implications for any tool panes attached to the window.

Scrolling a window

30

Normally, the Wimp handles window scrolling. This is what happens

• Clicking Select on a window's scroll arrow scrolls the window (effectively
scrolling through the contents of the window) in the direction the arrow
points. and by an appropriate amount. For example, text files scroll by one line
of text. taking account of the font size in use. Clicking Adjust on a scroll arrow
scrolls the window in the opposite direction.

• Clicking Select on a window's scroll bar (not its slider) scrolls the window by
approximately the heighVwidth of the window, as appropriate. Again. clicking
with Adjust scrolls the window in the opposite direction. There is a small

Windows

overlap between successive window views, so that it is clear how the new view
relates to the previous view. For example, if you scroll a window down over
some text, the last line of the old view will be the first line of the new view.

• Dragging a window's slider with Select scrolls the window in the direction of
the drag, and by an appropriate amount. The amount reflects the proportion of
the whole document visible in the window and how far the slider is dragged.
Dragging the slider with Adjust scrolls the window in both dimensions at once
(sideways and up and down).

A window cannot scroll ~ast any natural limit, such as paper limits or the end of a
file.

The length of the slider represents the proportion of the whole file that is currently
visible in the window.

Context-sensitive pointers

You may want to change the shape of the pointer while it is in a window, or over
some type of item in a window. to indicate to the user the sort of activity that is
available. Examples of this include changing the pointer to a caret in a text
window, or to a menu shape when it is over a button that leads to a menu. Used in
moderation, context-sensitive pointers can help users to find their way around
your application. However, over-use can be confusing and looks messy. If you want
to use context-sensitive pointers. use the following established set of pointer
shapes:

I Caret for writable icons and text areas.

f Hand for moving objects such as frames and windows- but not for dragging
objects such as icons when the precise drop point is important, since icons
are obscured by the hand shape.

® Alter to show that the pointer is over a handle that can be used for resizing
an object (such as the handles on a Draw object).

There is an additional pointer shape associated with the 'drag and drop' method of
selection which will eventually complement the cut and paste method. Drag and
drop is described in the section entitled Drag and drop on page 78.

31

Dragging objects that are within a window

Dragging objects that are within a window

32

The Wimp's drag operations are specifically for drags that must occur outside all
windows. As well as using the cycling dashed box form . you can define your own
graphics to drag objects between windows

If you allow drag operations within your window, check that redraw works correctly
when windows move in the background.

• You can choose whether to allow the user to drag the object out of the window.
or to restrict the dragged object to within the window. Normally the context
will tell you which is the sensible choice.

• If you restrict the dragged object to within the window. you must automatically
scroll the window if the object gets close to the edge of the window's visible
area, and if more of the window lies in the direction of the drag (see below).

• If the drag works with the mouse button released then menu selection and
scrolling can happen during the drag, which you might find useful.

You may use the Shift key to modify the effect of the drag from a move to a copy, or
vice versa. A drag between windows without the Shift key should perform a copy. A
draw within a window without the Shift key should perform a move.

The user may regret beginning a drag; pressing Escape during a drag should cancel
the drag and restore the object to its original position

Automatic scrolling

Within an editor window, selection by dragging over text or other objects should
cause the document to scroll if the user holds down the Select button and moves
the pointer near the edge of the window. So dragging near the right-hand border of
the window should move through the document to show objects to the right
(unless the window is already at its limit in that direction) . and dragging over the
lower border should move forwards through the document to display objects lower
down (until it meets the end of the document). Dragging with Adjust to increase a
selection should also give automatic scrolling.

Once automatic scrolling has started, the user shou ld be able to increase the
speed of scrolling by moving the pointer. Scrolling stops when the user releases
the mouse button. stops moving the mouse, or meets the natural limits of the
document. The pointer is never artificially repositioned .

This mechanism allows users easily to select material that extends over more than
one windowful of information. It also allows users using the 'drag and drop'
method of moving and copying selections to move through a document easily to
the destination for the selection. Drag and drop is described in the section entitled
Drag and drop on page 78.

Windows

Taking over the screen

You may feel very strongly that your application should be able to take over the
entire screen, without any scroll bars or other window paraphernalia Usually, there
is no need for this to be the only method of operation, and you should make it
possible to run the application in a window, perhaps with an option to run it as a
single task. There is a model of how this can be handled in Acorn PC Soft: single
screen operation can be chosen from the application's icon bar menu.

All applications should install an icon on the icon bar, even if they may be run as a
single task taking over the screen. The application should start up when the user
clicks on the icon on the icon bar. You may allow the user to make any settings
specific to your application from an item in the icon bar menu. This may include
redefining keys and loading saved data. for example.

The application needs to provide an easy way of returning to the desktop. Pressing
either of Fl2 or Escape should return the user to the desktop, and your application
should support both of these unless you have given Escape an application-specific
function. If you offer a menu option to return the desktop, this should be called
Return to desktop and not Quit or Exit. The application should operate in a
window one~ it has returned to the desktop. The desktop should be in the state in
which the user left it. Your application must not alter any configuration settings
without first asking the user to confirm that it may, and must never change CMOS
settings.

If there is insufficient memory available to run your application, it must display a
suitable error box and riot try to free memory by altering the configuration of the
computer or doing anything which may cause the user to lose data. Always give the
user the opportunity to save any data which may otherwise be lost.

If you are writing a game, you may want to allow users to save the state of play. It is
best to offer this as an option from the icon bar menu, allowing the user to drag the
file icon to a directory display in the usual way.

There is an Application Note for games writers, ca lled Writing games for RISC OS. It is
available from Acorn.

33

34

8

Introduction

Menus

When different developers use very different menu structures. it is difficult for
users to find their way around new applications. To help overcome this, this Guide
suggests a basic, general-purpose structure for main menus which can be adapted
to suit many types of application. and offers some guidelines on menu design in
general. You should follow these to help users come to grips with your
applications. There is also a new standard way of choosing fonts from menus.

The Wimp enforces some aspects of menu behaviour, so some of the information
included here is provided for completeness. For more details. see the chapter
entitled The Window Manager in the RISC OS 3 Programmer's Reference Manual.

Basic menu operation
Your application must provide a single menu tree for each window type that needs
menus, and an icon bar menu. A menu must be displayed when a user presses
Menu within one of the application's windows that has a menu tree. This is better
than using a collection of short menus. associated with different places in the
window: a single menu is easier to learn about than lots of small ones. and users
can quickly discover what your program can and can't do without having to search
everywhere for hidden menus.

You can. however. make menu items context-sensitive. Context-sensitive menus
have one or more items that change according to the object beneath the pointer
when the menu is displayed or according to what object(s) are selected when the
menu is displayed.

The user must be able to move all menus. submenus and dialogue boxes by
dragging them. The Wimp handles the movement of menus.

Displaying menus
A menu must appear at the position of the pointer when the user presses the Menu
button. The main menu must appear when a user presses Menu with the pointer
inside a window belonging to your application The icon bar menu must appear
when the user presses Menu with the pointer over your application's icon on the

35

Basic menu operation

36

icon bar. Options that lead to submenus are indicated by an arrow to their right. A
user must be able to display a submenu by moving the pointer to the right over an
item that has an arrow beside it.

If a menu item is not available because of the context in which the user has
displayed the menu. it must be greyed out (not omitted) Also. grey out any item
that leads to an unavailable dialogue box.

Grey out any items that don't do anything in the cu rrent context. Don't grey out a
menu item that leads to a submenu but show it in black. even if all items on the
submenu are unavailable. This allows users to see quickly all the options your
application offers. even if they aren't currently available.

Choosing menu items

A user must be able to press with any mouse button on a menu item to choose that
item. unless it leads to a submenu. The application must perform any associated
activity, which may be a task. or it may be to open a dialogue box. If the user
presses Select or Menu to choose the item, the menu must then disappear. If the
user presses Adjust. the menu tree must remain displayed so that the user may
choose extra items.

If a user presses any mouse button on a menu item that leads to a submenu, the
application should either do nothing, or should do some sensible default available
on the item's submenu- for example. clicking on a Save item should save a
document using its existing pathname (if it has one) The application may display
a dialogue box if necessary: for example, if a user clicks on a Save item for a
document that has not yet been saved, the Save dialogue box may appear.

A menu entry should have an ellipsis rather than an arrow if it leads to a persistent
dialogue box (one that remains on screen until explicitly dismissed by the user).
This means that the user has to select the item to display the dialogue box. There
is more on dialogue boxes in the next chapter. A menu item should never have
both an ellipsis and a submenu arrow.

Removing menus

If a user clicks anywhere outside a menu. the menu is removed from the screen and
the click is obeyed. The user may also press Escape to remove the menu tree
without making a choice; this function is provided by the Wimp.

Menu structure

Menus

Very long main menus and submenus are cumbersome and complex for users to
deal with . As a general guide, you should strive for a balanced overall structure,
with items that are needed frequently not hidden deep within a system of
submenus.

The following example of a main menu structure might be suitable for some
applications; it is intended as a guide only. not a set of rules you must follow.

File .,.
Edit ~

Effl!ct ~>
Styli! ..,.
Utilities .,..

Many applications will need to offer the items File. Edit and Utllltles; many will
need one or both of Effect and Style. or suitable application-specific alternatives.
The main menu items will probably lead to submenus offering tasks of related
type. Some menu items that appear in many applications should be handled in
standard ways to increase consistency and ease of use. These are described in the
section entitled Standard menu items on page 40.

File menu
The File menu will typically look like this:

Info AFl ""
Save F3 ,..
Export ,..
Print ... Print

These are all standard i tems that are described in the section entitled Standard
menu items. You may want to include some other options that relate to the whole
document. Any options that relate to the appl ication (that is, to all documents)
should be included in the icon bar menu and not the File menu.

37

Menu structure

38

Edit menu

The Edit menu should contain all the main functions of your application. From it,
users should be able to see what the application can do. Obviously the entries will
be determined by the functionality of your application: the illustration below is
just a guide

l utt
Cut Ax
Copy ftc
Paste AU
De lete AK

Select all AR
Clear AZ

An Undo function is very useful to users and you should include this if possible
(and appropriate) . Undo and Redo should be the first two entries in the menu.

Effect menu

The Effect menu should offer simple functions to change the appearance of text (or
whatever). A typical example is shown below; if you use these items, you shou ld
use the same names and give them in the same order as far as possible

Dhlt . ·-~-

Text font ,..
Text size ~As ,...

Text colour ...
line spacing ~Altoo

Rlign~nt ,.

Bold AB
Ihlic AI
Underline ~Au

Superscript ~AJ

Subscript ~A(

Paragraph border ,..

If there is a selection current when the user picks an effect. the effect should be
applied to the selection. If there isn't a selection, it should be turned on to apply to
subsequent input.

Menus

Style menu

The Style menu should offer more complex settings such as combinations of
effects and additional features. Typically, it will offer some general operations and
some user-defined styles.

Utilities menu

Line width ,..
Line colour ,..
Fill colour ,..
Line pattern ,..
Join ,..
Start cap ,.
End cap ~

Minding rule ,..

The Utilities menu generally holds items that don't fit naturally elsewhere in the
menu structure. However. check carefully that each item you think of putting in
Utilities should really be there; don't use it as an alternative to devising a proper,
logical menu structure.

Scale uiew Fll •

Insert ,..
Go to page F5 ~
Find/Replace F4 ,.
Spell ing F6 ~
Start ..ail Mrge
Saue n default

Page rulers ~~p

Print borders

Toggling menu items

Sometimes you will want to offer in the menu structure a setting that can be
toggled on and off. There are three ways of doing this. In order of preference, they
are:

1 Have one menu item that is ticked when set on and not ticked when set off
(Use Palette, for example).

2 Have a context-sensitive menu item that changes to show the state that can be
selected (Show graphics when graphics are hidden, and Hide graphics when
graphics are shown, for example).

39

Standard menu items

3 Have two menu items with opposite functions (Show graphics and Hide
graphics, for example) and grey out the option that is currently in use.

It is worth considering whether the option would be better included in a dialogue
box. There are guidelines on presenting choices like these in dialogue boxes in the
section entitled Standard components in dialogue boxes on page 50.

Dialogue boxes and writable fields

Writable fields in menus are not particularly easy to use. especially for users who
have difficulty controlling the mouse. Use a small dialogue box in place of a
writable field coming from a menu item. Dialogue boxes are easier for the user
than writable fields as it is possible to click to place the ca ret. A small dialogue box
should typically have a field for text and an action button. such as Save or Modify;
OK is acceptable as long as the context makes its meaning absolutely clear. Where
sensible, try to maintain the text that has been previously entered in the text field.
There is more detail about the design of dialogue boxes in the next chapter.

Adapting the menu structure

Even if your application can't use exactly the structure we have outlined here for its
menu tree. try to keep close to it, particularly for the main menu and the common
features of the File menu. Users will come to expect this as the model for the main
menu in all new applications. and they will find your application easy to lea rn if it
follows the model.

Standard menu items

40

File menu

Info should lead to a dialogue box showing information about the current file; it
should not display application information. which is displayed from Info on the
application's icon bar menu.

I' -..t tMI fUI '' ~ - 11Dmit4?1 ..
hPtiTtxt (fff)

I llfS::II£J~~c4 .S.TtxtFilt

SiZt I -- 1124
htt l 11:41:15 24-JII-1993

Save should lead to a Save as dialogue box which offers saving a selection (if there
is one) as an option. and shows a file icon for the application's natural file type.
The Selection button is greyed out if there is no selection. and is always turned off

Menus

when the dialogue box appears; this prevents users accidentally overwriting the
whole file with a selection. Dialogue boxes are described fully in the next chapter.
The Save as dialogue box with a selection button available should look like this:

Slllt as

Textfil~
_jStlect ion

~B
Incorporating the selection option into this dialogue box saves space in the menu
tree and helps to rationalise the structure of menus. The new button replaces the
Save item in a Selection submenu and the Select item in a Save submenu. which
are a source of inconsistency in many existing applications.

If it is possible to save a file or selection using other filetypes. the menu shou ld
include an Export item. leading to an Export dialogue box or a submenu if there
are severa l alternative file formats available. A menu of filetypes will typically look
something like this:

_jSeltctilll

1.------i~~

Each filetype item should lead to an Export dialogue box with the appropriate file
icon shown. You should put the more commonly used filetypes at the top of the
menu. and any unusual ones at the bottom. separating the two groups with a
dotted line if appropriate. Only include a submenu Other for more unusual
filetypes if your application offers so many file formats that the Export submenu
becomes unwieldy Each filetype item should lead to an Export dialogue box with
the appropriate file icon shown.

There is more about the design of Save as dialogue boxes in the section entitled
Save on page 56.

If a user clicks on the Save item in the File menu, the file should be saved using the
default filetype. If it has been saved in that format previously, it should be saved
with the same name; if it has not. display the appropriate Save as dialogue box.
Some users like to be warned before overwriting an existing version of a file with a

41

Standard menu items

42

new version; others find such warnings irritating. If your application issues
warnings, make it an option that users can set on or off as one of the application's
choices.

Print should lead to a dialogue box allowing the user to make choices such as how
many copies to print. By default, the whole document will be printed. but you can
offer options to print the current selection (if there is one) or a page range.

Edit menu

If your application uses the Cut/Copy/Paste method of moving and copying
selections. you will need to include each of these items in the Edit menu

The cut and paste method requires an application to keep a clipboard on which cut
or copied items are stored until the user pastes them back in or closes down the
application. Instead of a single operation. two stages are needed to cut or copy and
then paste a selection.

Cut removes the selection from the document and stores it on the clipboard .

Copy makes a copy of the selection and stores it on the clipboard . The selection in
the document remains in place.

Paste pastes the current contents of the clipboard into a document at the position
of the caret. or replacing a selection current in the document.

The cut and paste method of copying and moving objects or text has now
established itsel f as the industry standard. You should use it in preference to the
Edit model of highlighting text and then positioning the caret at the input point
and using a Copy or Move menu item. This has been replaced because retaining a
current caret and a current selection confuses many users.

In the future. cut and paste is likely to evolve into a 'drag and drop' method which
will allow the user to make a selection and then drag it with the pointer to its
destination. This is outlined in the section entitled Drag and drop on page 78; there
is more about cut and paste in the section entitled Cut and paste on page 77.

Effect/Style menu

Font selection has been adapted to make it easier for users who want to make a
change to text in several fonts. perhaps changing it all to italic or all to bold.

Menus

The following menu structure gives users the option of changing just the weight or
style of the font, or of making a fully controlled font change.

Text ze
Text colour ...
line spacing
Rlign111ent

Bold
Ital ic
Underline
Superscript
Subscript

Paragraph border

The menu items Bold and Italic will work over a selection that includes several
fonts.

• The menu item Bold wi ll be ticked if any of the selected text is in bold. or if
there is no selection but bold is turned on at the position of the caret.

• The menu item Italic will be ticked if any of the selected text is in italic, or if
there is no selection but ital ic is turned on at the position of the caret.

The menu items have the following effects:

• If Bold is not ticked and the user clicks on it, all selected text in any font will be
changed to bold (retaining the same typeface(s) and angle(s)); if there is no
selected text, bold will be turned on at the position of the caret.

• If Bold is ticked and the user clicks on it. all selected text in any font that is
currently emboldened will be changed to medium (retaining the same
typeface(s) and angle(s)); if there is no selected text. bold will be turned off at
the position of the caret.

• If Italic is not ticked and the user clicks on it. all selected text in any font will
be changed to italic or oblique (retaining the same typeface(s) and weight(s));
if there is no selected text, italic will be turned on at the position of the caret.

• If Italic is ticked and the user clicks on it, all selected text in any font that is
currently italic or oblique will be changed to upright (retaining the same
typeface(s) and weight(s)); if there is no selected text. italic will be turned off at
the position of the caret.

An Application Note explains how to implement these menu items.

Colour selection may be of two types. Selection of 'true' colours which may be
precisely defined and stored and printed with a suitable printer. but not necessarily
accurately displayed on screen. should be from a dialogue box. The standard

43

Appearance of menus

dialogue box for picking colours is described in the section entitled Selecting colour
on page 58. Selection of desktop colours for display may be from a dialogue box or
a submenu of colours (as Edit's text and background colours are selected).

Icon bar menu

The icon bar menu for your application must have at least two items: Info and Quit.

Info displays a dia logue box showing information about your application. It should
be similar to this. but you can make slight modifications:

liatl E~it
Purpose! Text e~itor
Author! ~ Acorn CoRPuters Ltd, 1993

Liceacel Siagle User
Uersitnl 1.45 <19-Jul-93)

Whenever you release a new version of your application. make sure it has a new
version number shown in its Info box.

Quit removes your application from memory. It must first check that there are no
unsaved documents. and use the dialogue box illustrated in section entitled Closing
windows on page 60 if there are

The icon bar menu may include other items. including Choices. The handling of
choices is described in section entitled User choices on page 85.

Appearance of menus

44

Text in menus

The following rules govern the use of text in menus:

• Items must have an initial capital. wi th the rest in lower case (ie 'Set type·. not
'Set Type') .

• Items must be left-justified (except for keyboard shortcuts- see the section
entitled Keyboard shortcuts on page 68).

• Items must use the system font. rather than using the Font Manager. This will
change in the future as RISC OS will adopt a proportionally-spaced font for
menus and dialogue box text. However, this will be handled by the Wimp and
need not affect your appl ication designs at present.

Menus

• Items must (where relevant) use ticks to show they have been selected.
whether by the application as a default, or by the user as a conscious choice.

• Items may be split into groups within a menu by separating them with a dotted
line.

• A menu entry may be a sprite instead of text where this is appropriate.

Keyboard shortcuts

Pop-up menus

You may well want to offer keyboard shortcuts for some menu items. Details of the
keyboard shortcuts used for various functions are given in the section entitled
Keyboard shortcuts on page 68.

Sometimes you may wish to include a list of alternative choices within a dialogue
box. using a pop-up menu. The procedure for including a pop-up menu in a
dialogue box is described in the section entitled Pop-up menus on page 55. The icon
to show a pop-up menu looks like this:

A pop-up menu looks and acts in all respects like an ordinary menu. It has a Title
bar. by which it can be dragged around. and uses the same colours as an ordinary
menu and may have items greyed out.

Size and position of menus

For the details of the size a menu should be and how it should be positioned when
displayed. see the section entitled Menus on page 95.

45

46

9

Introduction

Dialogue boxes and toolboxes

Dialogue boxes are an important way in which users communicate with the
computer and give instructions to your application. It is vitally important that the
wording, function and layout of dialogue boxes is clear and easy to use. This
chapter gives guidance on aspects of dialogue box design and tells you how you
can make your dialogue boxes consistent and harmonious with other RISC OS
dialogue boxes. You will need to give careful consideration to how to present your
application's functions and options within the protocol described here.

The dialogue boxes for some standard functions- such as Save. and selecting
colours- are described and illustrated. Use these standard dialogue boxes
whenever appropriate.

Toolboxes are another method of interaction, but one which has been under-used
in the past. They can cover a wide range of functions; the tools in Paint and Draw
are examples. Generally, they can remain on screen while an application is being
used. and do not disappear until dismissed by the user clicking on a Close icon or
choosing a menu item.

The Wimp enforces some of the behaviour of dialogue boxes. For more details of
how to construct and use dialogue boxes in your application, see the chapter
entitled The Window Manager in the RISC OS 3 Programmer's Reference Manual.

30 and dialogue boxes
As RISC OS moves towards a 3D look and feel. dialogue boxes are necessarily
going to change in design. This chapter sets out the appearance of dialogue boxes
in 3D. Shifting an existing 2D application to 3D may involve considerable work in
redesigning templates, but you will find that this is worthwhile as 3D gives a much
enhanced and more sophisticated appearance to applications. It isn't generally
possible to make dialogue boxes support both 2D and 3D, changing according to
the user's choices. as 3D dialogue boxes often have to be slightly larger than their
2D equivalents to accommodate the larger icons and borders needed to render 3D.

RISC OS may at some point in the future display a proportionally spaced font in
dialogue boxes rather than the current fixed-pitch system font. This will have
further implications for dialogue box design. The new font will be handled by an

47

Types of dialogue box

extension to the window manager and need not affect your design of dialogue
boxes at the moment. except that you should avoid using spaces to align text
strings- this won't work with a proportionally spaced font.

The examples in this chapter show the 3D icons you will need to use in your
applications; the icons are available from Acorn All new applications must use
these new standard icons from the Wimp sprite pool. and the 3D look and feel; any
that use their own. non-standard icons will look odd.

Types of dialogue box

48

There are two types of dialogue box:

• Persistent dialogue boxes

• Transient dialogue boxes.

Persistent dialogue boxes

A persistent dialogue box appears when the user clicks on a menu item that is
followed by an ellipsis (...)or performs an equivalent action (such as using a
keyboard shortcut). It usually suspends its parent application until it is filled in:
this is not an essential feature of persistent dialogue boxes. but it is easier to
implement.

A persistent dialogue box has at least one action button (such as Save or Cancel).
It must not have a Close icon. but has a Cancel action button instead; it is not
clear to a user whether any settings chosen will be implemented if he or she clicks
on a Close icon. A persistent dialogue box appears after a user clicks on its parent
item in the menu tree. which must have an ellipsis after it- so Style . 0 0 is an
example.

A persistent dialogue box is not removed from the screen if a user clicks outside
the dialogue box.

Transient dialogue boxes

A transient dialogue box appears as a submenu. and functions in the same way­
the Save dialogue box is an example. It has at least one action button (such as
Save or Cancel) but no Close icon. It is typically sma ll. to make it easy to browse
through the functions an application offers. It is removed from the screen if the
user clicks a mouse button or moves the pointer back over the menu tree.

A click outside a transient dialogue box removes the dialogue box without taking
any action.

Dialogue boxes and toolboxes

Both types of dialogue box should be characterised by delayed action: the user has
to make choices and then click on OK (or some other appropriately named action
button) before the choices take effect. This contrasts with the instant effect of. for
instance. dragging a scroll bar. Toolboxes, such as that used by Paint. have an
instant effect. Toolboxes are described below in the section entitled Toolboxes on
page 64. Some of the dialogue boxes used by the Wimp (in Configure. for example)
don't conform to the delayed effect rule. combining instant-effect sliders and
delayed effect settings with the result that they are confusing for users.

Deciding which type of dialogue box to use

Whenever possible. use small transient dialogue boxes rather than persistent
dialogue boxes.

Sometimes you may need to use a persistent dialogue box because of technical
restrictions- for example, you can't use a transient dialogue box if you want the
dialogue box

• to have menus of its own

• to have panes

• to have icons dragged onto it, or to remain on screen when any other mouse
input is required

It is also better to use a persistent dialogue box if, displayed from the menu, the
dialogue box would be large enough to obscure the menu that called it up.

Dialogue boxes and keyboard shortcuts

Default actions

A dialogue box must work in exactly the same way whether it is opened from a
menu or using a keyboard shortcut.

For full details of using keyboard shortcuts. see the chapter entitled Handling
keyboard input on page 67.

If a dialogue box has a default action it should be clear what this is. The default
action should do what the user probably intended as long as this is safe. For
example. if a user has edited a file and tries to close it without saving it. the default
action should be to save the file before closing it. The file is closed - as intended­
but the user doesn't lose the new data.

49

Standard components in dialogue boxes

The default action should be performed if the user presses Return. Escape must
perform the same function as clicking on Cancel. A dialogue box must take the
input focus when opened and whenever the user clicks on its window so that
Return and Escape work.

The dialogue box must remain on screen if the user clicks on an action button
using Adjust.

Standard components in dialogue boxes

50

There are various standard components that you may need to use in dialogue
boxes:

• Writable fields

• Display fields

• Action buttons

• Option buttons

• Radio buttons

• Adjuster arrows

• Sliders

• Scrollable lists

• Pop-up menus

• Standard selectors (for colour, font and view scale).

The sections below explain how and when to use each of these; the chapter
entitled Implementing the design on page 91 explains how to implement each of them.

Writable fields

Writable fields are used when the user has to type text to give a value or name. Use
either validation strings or your own filtering code to make sure the field accepts
only legal strings A writable field looks like this:

hfiult scrnn Mel• I in

Dialogue boxes and toolboxes

The user may want to use any of the following keystrokes within a dialogue box
with writable fields, and your application should support all of them:

Key Function

~ Move the caret to the left one character position.

~ Move the caret to the right one character position .

.!. or Tab Set the value in the current field and move the caret to
the end of the next field (cycling from last to first if
necessary).

i or Shift-Tab Set the value in the current field and move the caret to
the end of the previous field (cycling from first to last if
necessary).

Return Implement the current settings and remove the dialogue
box from the screen. The action button that corresponds
to the Return key should have a thicker border than the
others.

Escape Cancel the operation and remove the dialogue box. Data
must not be lost. and the environment must revert to the
state it was in before the dialogue box was opened. Each
dialogue box must have a Cancel button that is
equivalent to pressing Escape.

When the user moves to a new writable field, your application should place the
caret at the end of any text already in the field.

Display fields

Display fields are used to show information the user can't change by typing in the
field, so the caret doesn't appear in the field. You can use it to show settings that
can be altered using other elements in the dialogue box, settings that can't be
changed from the dialogue box or settings that are updated automatically.

Ruther! 0 Rcorn COIIPUttrs Ltd, 1993

51

Standard components in dialogue boxes

52

Action buttons

An action button is a 'button' users click on to cause an action to occur- usually
the user will have made some settings in the dialogue box that relate to the action.
An example is the Save button in a Save dialogue box: the user will have chosen a
pathname for the file (which may be its existing name) and clicks on Save to save
the file.

Try to use simple active verbs to label action buttons- for example, Save or Print.
Don't use Yes and No. It must be clear from the label and the context within the
dialogue box what the result of clicking on the button wilt be. Make sure the label
is never ambiguous.

Most dialogue boxes wilt have at least two action buttons. one of which wilt be
Cancel. The other(s) will offer different actions.

lirilll

Sp~eiltt [!!I I ..l •
r.;; SliM _j Loci!

CIICtl llir • I
- ·--!•

I

S,tllhtl
r.;; Lol4 srtlli•t dictio••rv
_j Chclc as '" twe

J • J i• J pt
•• J i• J pt

hflult I Sltt Cuctl II Stt

Always put the default action button in the bottom right~hand corner of the
dialogue box. and use the thick border to make it prominent. It is usual to line up
the other action buttons along the bottom of the dialogue box, but in some cases
you may want to align them vertically down the right-hand side of the dialogue box
or use some other appropriate arrangement. The action buttons should be evenly
spaced along the edge they occupy.

Clicking on any action button with Select removes the dialogue box from the
screen and implements the chosen action. Clicking on an action button with
Adjust leaves the dialogue box on screen and implements the chosen action.

Dialogue boxes and toolboxes

Option buttons

An option button is a 'switch', and can either be on or off. Option buttons look like
this

17 .,.iz•hl scroll
_j ltrticil scroll

Any associated text must be to the right of an option button Pressing either Select
or Adjust over an option button or its text must toggle its state.

Only use an option button if changing the state of the button won't affect any other
settings. If the current settings make an option meaningless or unavailable, its
option button must be greyed out.

You should use option buttons when the user may pick more than one of the
options; if the options are mutually exclusive, so that only one can be used at a
time. use radio buttons.

Radio buttons

A radio button is one of a group of mutually exclusive buttons: only one may be
selected at once. and clicking on one turns off the currently set button. Radio
buttons look like this:

_. Quitt bttp · ...) L11411 Mtp

Any text associated with a button must be to the right of the radio button. Pressing
either Select or Adjust over a radio button or its text must select it, and deselect
any other radio button in the group that was previously selected. If there is an
option to turn off all the buttons. give this as a radio button labelled None. as one
button must always be on.

If there are only two settings available (such as Hide graphics/Show graphics) and
this is the only option set from the dialogue box. a ticked or unticked menu item is
simpler for the user than radio buttons in a dialogue box. Ticked menu items are
described in the section entit led Toggling menu items on page 39.

Adjuster arrows

An adjuster arrow is used to increase or decrease a numeric value; it is used for
setting a Zoom value in Draw or Paint. for example. It may be used in conjunction
with a slider (described below). The up and down adjuster arrows look like this:

53

Scrollable lists and pop-up menus

The user must be able to click with Select on an up arrow to increase a value and
on a down arrow to decrease a value. It must also be possible to reverse the action
of the buttons by clicking with Adjust. This means that clicking on an up arrow with
Adjust decreases the value and clicking on a down arrow with Adjust increases the
value. It is important to support this apparently superfluous option as some users
have physical difficulties using the mouse. or may be using an alternative input
device that assumes this action is possible.

Sliders

A slider is another method of altering a numeric value It is particularly useful
where a wide range of values is possible. or where the user is unlikely to know the
exact number required. The proportions of red. green and blue in a colour would be
a typical example.

A simple slider looks like this:

You may want to use a more complex type of slider: you can add a knob or handle
to a slider that may be dragged.

Pressing Select must move the slider in one direction and pressing Adjust must
move it the opposite way. So if pressing Select on a left button moves a slider to
the left. pressing Adjust would instead move the slider to the right.

Standard selectors

Some settings are so commonly made in applications that it is helpful to users to
have a standard method of selection. There is a standard selector for colour; this is
described in the section entitled Selecting colour on page 58.

Scrollable lists and pop-up menus

54

Sometimes you may wish to include a list of alternative choices within a dialogue
box. There are two ways you can do this: scrollable lists, and pop-up menus.

Scrollable lists

A scrollable list shows several of the available choices in a scrolling pane with one
or more of the mechanisms for scrolling: scroll arrows, scroll bar and slider These
work in exactly the same way as in an ordinary window (see the section entitled
Scrolling a window on page 30). The selected choice in the list is highlighted; the
current selection must be visible when the window is first displayed. Users can
drag the scroll bars to move through the list. find the choice they want, and then

Dialogue boxes and toolboxes

click Select to make a choice. If it is possible to choose more than one item at the
same time, the user must be able to click with Adjust to add extra items to the
selection. Clicking with Adjust on a selected item deselects it.

Pop-up menus

A pop-up menu takes up less space within the dialogue box than a scrollable list.

A pop-up menu is indicated by a button beside the field showing the current
selection:

Utict j lllvtSgath-Btep llJ

Clicking on the menu button with either Select or Menu brings up the pop-up
menu, which then works in the same way as an ordinary menu.

There is more about pop-up menus in the section entitled Pop-up menus on page 45:
the section entitled Pop-up menus on page 96 explains how to position a pop-up
menu.

Standard dialogue boxes

Print

Some options are offered by many applications and we can achieve a greater
degree of consistency on the desktop if all developers offering these options use
the same dialogue box to make settings.

Use the dialogue boxes or guidelines described below if you need to support these
functions:

• Print

• Save

• View scale

• Find/replace

• Colour selection

• Font selection

• Closing a window which may contain unsaved information.

Printing may be a simple or a complex operation depending on the type of
application. If you are offering a simple screen-dump type print, you will need to
show the printer driver loaded and allow the user to set the number of copies to

55

Standard dialogue boxes

Save

56

print. If at all possible. include a scale option as well; typically. this will let the user
set the print size by giving a percentage of full size. Use a dialogue box like this.
showing the name of the configured printer in the Title bar:

fPI IHlt Lltt

CIPiH []J /_.

Canctl II ,rint I

If printing is very important to your application. you will want to let the user set
many more options. Here is an example of a more complex dialogue box for Print:

1!::1 IIPPII Lltt
JRII (I' Fro•OIJh@]

C.,its IJJ I~
Scale 1111 1 /~ ~

(i' llpritllt J SidMIIS
_jtnft

CHCtl II Pri11t I

Make it easy for non-expert users to make settings. For example. use the terms
·upright' and 'sideways' instead of 'portrait' and 'landscape· for page orientation.
and consider illustrating the options with an icon. (For some products and some
markets. this type of simplification may be inappropriate)

A Save dialogue box looks like th is:
SiVt IS

TntFil~

Dialogue boxes and toolboxes

If there is a selection in effect when the user calls up this dialogue box. and it is
possible to save the selection. include a Selection button so that the user may save
just the selection.

5illt il

TextFilel

l7 Seltctitn

~~
When there is a selection, change the default pathname to Selection to prevent
users accidentally overwriting the whole file with a selection.

The button can be greyed out when there is nothing selected; the button is always
turned off when the dialogue box appears.

The file icon shown must be the right icon for the filetype being used. If you offer
saving as different filetypes. use the appropriate icon for the type the user has
chosen. The section entitled File menu on page 40 explains how to offer different
filetypes for saving.

If the file has already been saved using the filetype displayed in the icon. the full
pathname of the file must be displayed in the writable field. This enables the user
to click on Save or press Return to save the file with the same name. or edit the
name in the field to save it with a different name. If the file has not been saved
previously. the name in the field should be the same as the default name for the
file shown in the Title bar. Providing a default name allows the user to drag the file
icon to a directory display immediately without generating an error message. When
the file has been saved. the name in the Title bar is updated to the new filename
and the * removed until further changes are made to the document.

The writable field in a Save dialogue box must be able to accommodate path names
up to 255 characters long, and have a validation string of ·a- ·. so that spaces
cannot be included in the pathname. The field must not accept a pathname longer
than 255 characters.

Scale view

If the user can scale the view. use a dialogue box like this:

Scale~ (~ ~ ,3~J .'::J
.!!!1~

,--_ __,I j Scalt I

57

Standard dialogue boxes

58

You may offer different scales on the action buttons. and a different number of
standard scales. depending upon the requirements of your application. Clicking on
one of the buttons offering a value should enter this value in the writable field but
not add an automatic Return: the user must still click on an action button or press
Return to initiate rescaling.

It is useful to users to be able to define a box on screen by dragging with the
pointer to show the area of the screen they would like to look at in detail. This area
is then resca led to fit the window.

Find/Replace

The options you want to offer as part of a find/replace facility will depend on your
application and how you expect users to use it. The following illustration is a
guideline only.

!PI flld

FiiMI I I
~============~ • .,IMt IIU. I I
~------------------~
l.J Cast SftSitiH

Cllltl .. ,IICt ill I I FiM llfxt I

It is a good idea to allow a search to be case sensitive. and to allow users to restrict
it to a selection or some other sensible subset of the whole file. However. searches
should be case insensitive by default. with case sensitive as an option.

Selecting colour

There are four common ways of defining colours:

• RGB. or red-green-blue

• HSV. or hue-saturation-value

• CMYK. or cyan-magenta-yellow-key (black)

• Instant selection of desktop colours.

Computer monitors and other cathode ray tube (or CRT) displays make colour by
mixing light beams of red. green and blue (RGB). The colour we see is the result of
adding proportions of each of these colours. To define colours using this method.
we need to specify the proportions of red . green and blue displayed on the screen :
this is what the RISC OS palette does.

Dialogue boxes and toolboxes

Most users find the RGB colour selection method easy to use and this is the
system's own method of defining colours. Using it in your applications increases
the consistency of the desktop. If your application needs HSV or CMYK. you can of
course use it. If possible. though. offer RGB as an option for users who are not
familiar with other methods of colour definition and give full documentation of
how to use the others. Remember that the standard 16-colour screen modes give
poor approximations of cyan and magenta.

An RGB colour selector looks like this:

,..... R
r===-:-:,....,......,.,- ,..... &

;.-- I

••• • • •
Cinctl I Ol

It offers users three methods of adjusting the value of each colour component:

• Sliders

• Writable fields

• Adjuster arrows

The values for each colour are shown as percentages. not 256ths There is no
decimal point value. Although this limits the range of colours that can be defined.
it is much easier for users. It is ideal where simple colour definition is required . you
may prefer to offer HSV and/or CMYK if colour selection is particularly important
(as it may be in a graphics application. for example) or if it may be relevant for
output (if the user may be preparing colour separations. perhaps) .

Selecting fonts

Font selection is sometimes of great importance in an application; often it is just a
fairly basic setting that is not crucial to the function of the application. Font
selection can be intimidating for users. and it is best to provide emboldening and
italicisation separately from font selection. For example. a user may decide to set
some text in bold. Choosing Homerton.Bold from a long menu listing all the fonts
available in the Fonts directory is an unnecessarily technical procedure that may
discourage inexperienced users from using different effects. It also doesn't allow
the user to set the whole of a piece of text that uses more than one font to be
emboldened in a single action. While it is important to retain a mechanism for full

59

Standard dialogue boxes

60

control over fonts for experienced users. there is a need to provide a simple way of
applying bold and ita lic effects to help inexpert users make the most of
applications.

There is a suggested menu structure for font selection in the chapter entitled Menus
and you should use this for font selection through the menu tree. This is suitable
for minor changes the user may want to make while typing. Sometimes. though,
you may want to offer font selection from a dialogue box. This is more suitable
when the user is likely to be making several settings. as when defining styles In
this case, use this standard selector:

rei I TIIPf Shit
Font Sin

Fent I .!.l !!L!!l .!!I .!!I , Trinitw ~
I !!J.!!J~.!!J flj
l ~~titht 1 RHilfl Ill

Htitht [Jill~
' I St!llt I . <Plain) 1dl Rsput l lll l/~ k

~ ++- -
~I 1be quick brown fox jumped over the lazy dog. I

Cuctl I I RPPI!I I

This is quite easy for users to use as bold and italic effects are set after the font has
been chosen. A selection of standard sizes is offered and you may like to include a
writable field for users to give a different size. Don't offer height and width settings.
but use aspect ratio instead to adjust the proportions of text. This uses the fixed
height of the chosen point size, but alters the width to give the proportion
specified. For example. an aspect ratio of 50% will give characters that are half their
normal width.

The Try button allows users to check that they have chosen what they really want
before applying it to their text. It must show text in the chosen font. effects (if any)
and aspect ratio.

When it isn't obvious that the dialogue box is a better means of font selection. use
the menu structure suggested.

Closing windows

If your application is an editor of any type, it is possible that a user may click on the
Close icon of a window that contains unsaved information. If this happens. your
application must not close the window and discard the user's work without

Dialogue boxes and toolboxes

warning. but must display a dialogue box like this. giving the user the chance to
save the file. discard the work done in the window, or cancel the operation leaving
the window open.

Tbis file bis bltn .. difitd

Discil'd I Cincel I I~
There is more about the wording used in this dialogue box in the section entitled
Wording of dialogue boxes on page 62.

Appearance of dialogue boxes

The chapter entitled Implementing the design on page 91 explains how to create and
position the elements of a dialogue box.

Size of dialogue boxes

First and foremost. strive to make your dialogue boxes small. simple and
comprehensible for first time users. A whole screenful densely packed with
controls is likely to discourage and intimidate the user. Think through which
operations are easiest to understand and most common ly used and hide the
others away or remove them altogether. Don't provide options which, in practice.
no one will use.

If you find that a dialogue box has to be very large to include everything that you
need to include. you will need to consider dividing it up in some way. The options
are:

• Split up the task the dialogue box performs so that you can use more than one
dialogue box

• Use action buttons to lead to further dia logue boxes

• Use a set of radio buttons to switch between different parts of a dialogue box

• Use pop-up menus to replace scrolling panes or radio buttons where
appropriate.

If you can't avoid splitting up a dialogue box, action buttons are usually the best
method of providing extra options. Make sure that the most frequently needed
options or those most likely to be used or understood by a beginner. are at the top
level.

61

Wording of dialogue boxes

Grouping Items

In a large dialogue box. you may like to group together all the items that relate to a
particular setting or subject. You can do this using a group box This is a box that
encloses the related items. and has a label overlaying the top of the box:

Prilhl' Pll't

..) ... (I' P1r11ltl

..) Strill ..) Itt

Don't over-use group boxes. so that everything in your dialogue box is grouped.
and don't put just a single item in a group box. Don't nest groups. If an entire
group is rarely used. consider making it a separate dialogue box.

Wording of dialogue boxes

62

Remember that the point of a dialogue box is to enable users to make choices.
perform actions they want to perform and receive any feedback from the computer
about what they have done. Using clear. plain English will help users and will make
your application easy and pleasant to use.

• Don't use ambiguous phraseology or wording on buttons. and make sure the
wording on or by any buttons is a valid answer to the question as you have
phrased it.

.... ilt 1111' lllf' IDitSI PIIRir. Ifill 111M
_.tstrictN IDitSI te 1111' Ht•k t .
.. , ,.. lll't ,.. lriA te trill ,... puswd!

Cwtl I I' Er11t pmwd I

Dialogue boxes and toolboxes

• Use wording the user will understand; avoid jargon unless you know your users
will understand it.

llftiiiS

Lilt S'Mitt lt1II (~

CiHil II Stt II

• Label the action buttons with an accurate description of their function- don't
use Yes and No. Aim to use active verbs, such as Print or Save. If a dialogue
box has allowed a user to make many settings and a single active verb is not
appropriate. use OK rather than. for example, Yes or Go.

lllultllltlll ttlrt ..,. It •
hilt t•

...... lilt ~ Ntlllllltlll?

c... 1-··••t•l

See the section entitled Standard dialogue boxes on page 55 for details of the dialogue
box you should use when a user tries to close a document that has not been saved

There is more information on action buttons in the section entitled Action buttons on
page 52.

Error messages

One type of dialogue box in which wording is particularly important is error boxes
Your application will need to display an error message if the user attempts an
action that isn't allowed. or i f the application goes wrong or can't find some
resource it needs.

All error messages should use simple. plain English with no jargon. Don't include
diagnostic messages of help only to programmers. but tell the user simply what
has gone wrong and say what the user can do (i f anything) to correct the situation.
If your application is reporting a potentially serious problem. make that clear. and
don't obscure it with polite phrasing. Examples of suitable messages are:

Not enough memory to open a new window

63

Toolboxes

Toolboxes

64

No printer driver loaded : load a printer driver before
printing

Width must be less than 2 . 5cm

Please fill in the Value field

You can include a single number in brackets after an error message to help
programmers diagnose problems; don't use messages such as 'Address exception
at &0004A23' which are intimidating and meaningless to users. Avoid words such
as 'fatal'. 'abort', and 'corrupt', which can be very worrying for users. If your
application has crashed irretrievably, use a polite message that all users can
understand, such a's:

Sorry, Appl has suffered an internal error and must close
down immediately .

A short apology is acceptable (as in the last example); put it at the start of the
message, not the end. Don't over-use apologies.

A toolbox is a useful alternative to a dialogue box as a means of letting users make
choices within your application. A toolbox is appropriate if a user is likely to want
to make selections repeatedly, as they may from a toolset or palette. Toolboxes
have been under-used in the past, but offer a valuable, flexible and easy method
for users to make commonly-needed choices.

The Colours and Tools windows in Paint and the toolbox in Draw are typical
examples of toolboxes. A toolbox may be associated with a particular window- for
example Paint's colours- or be shared by several windows. as Paint's tools may be.
Toolboxes may be free-standing windows. as Paint's Colours and Tools windows
are. or attached to another window. as Draw's toolbox is. There are other
alternatives; a toolpane may be included as a row or panel of buttons within a
window, for example.

Toolboxes remain on screen until explicitly removed by the user or until the
application or window is closed down.

Dialogue boxes and toolboxes

A toolbox in a pane can be turned on or off from a menu item: the menu item is
ticked when the pane is displayed. The pane disappears when a user closes the
window it is attached to.

• •ill

A tool box in an independent window has a Close icon. Back icon and Title bar like
any other window and may have scroll arrows, a slider and scroll bar, and an Adjust
size icon. A toolbox in its own window must be implemented as a standard
RISC OS window. It is displayed when a user calls it up from a menu and closed
when the user clicks on its Close icon or when the object it is associated with is
closed .

.iltt!J•a~~
LJg fZI QJ QJ.:~J .II
~~~~-•L~J~ 
I Replace colour 
(I' Stt.,) IR 0 . J EIR 

(I' Local J &lobtl 

The buttons in a toolbox must be 30, as in the new Paint and Draw toolboxes. 

65 



' 

66 



10 

Introduction 

Handling keyboard input 

/ 

Many applications will support text input in their windows; even those that don't 
will often need text input to dialogue boxes. This chapter explains how to handle 
inpul from the keyboard, including keyboard shortcuts. 

Gaining the caret 

The ca ret is a single, red, !-shaped bar which shows where input from the keyboard 
will appear. The window containing the caret is said to have the input focus. When it 
firsl gets lhe input focus. sometimes called gaining the caret. the caret moves from a 
different window to the new one. Your application may only gain the caret if: 

• a user clicks with Select or Adjust inside your window 

• a user calls up a menu or dialogue box 

• a user clicks on the application's icon on the icon bar to open a new document. 

If the user clicks in an application window. the window has the input focus and 
receives text input until the user clicks in a different window or calls up a dialogue 
box or menu. The Tit le bar of a window changes colour when the window gains the 
mput focus. This IS handled by the Wimp under the control of the window 
template 

If the user calls up a dialogue box. the first field in the dialogue box will have the 
mput focus. In dialogue boxes that do not take text input. input is usually from the 
mouse. However. it may still be from the keyboard, as users can use Return to 
choose the default action icon and possibly other keys to choose other action 
icons. Your application must surrender the caret when the menu or dialogue box is 
closed . Normally RISC OS automatically reassigns the input focus. It is often your 
application's main document window that will regain the caret in these 
circumstances. 

A window should not automatically come to the front of the desktop when it gains 
the caret. Similarly, if your application brings a window to the front of the desktop. 
it should not automatically gain the caret. A window should not gain the caret just 
because the pointer passes over it. but only when the user takes some definite 
action. such as clicking in the window. 

67 



Unknown keystrokes 

If your application loses the input focus, it doesn't need to remember the position 
of the caret or the selection. When the application regains the input focus. the 
action the user takes (such as clicking in the window) may also place the caret. If 
the user's action doesn't place the caret. the application should claim the input 
focus but not position the caret in the document. 

Unknown keystrokes 

If your application receives a keystroke that it doesn't recognise or can't use, it 
should pass it on to other applications using Wimp_ProcessKey rather than 
claiming it. This allows other windows to provide hot key operations that work 
anywhere; it also allows the Wimp to interpret function key presses if necessary. If 
your application doesn't pass on unknown keystrokes, Fl2 won't work while your 
application has the input focus. 

Keyboard shortcuts 

68 

Using a mouse and pointer to choose items from a menu is not always the quickest 
way to use an application. Many users. particularly experienced ones, like to have 
keyboard shortcuts to access operations they use frequently. To avoid confusion, 
common commands should have consistent shortcuts across different 
applications. 

• There is a small set of common function key shortcuts that you should use if 
your application supports the functions. These are listed in the section 
entitled Function keys on page 70. 

• There are some common shortcuts that are alternative methods of choosing 
menu items offered in many applications. 

• Some keys on the keyboard have specific functions (such as the Print key); your 
application should support their normal functions. 

• There are some standard keys and key combinations to help users move 
around files. 

The tables over the following pages show the keyboard shortcuts you should use. 
The left columns show the abbreviation for the shortcut- use this in your menus ­
and the right columns give a description of what each shortcut does. 

Whenever you offer a keyboard shortcut for a menu option, you need to show the 
shortcut to the right of the item in the menu. Function keys must be referred to as 
Fl, F2. etc. following the labels on the key-caps. Unless you are offering only single 
key-press shortcuts using the function keys, you will need to use these symbols for 
Control and Shift in your menus: 



Handling keyboard input 

• " means hold down the Control key while pressing the other key(s) indicated. eg 
"X is Control-X. 

• 1t means hold down the Shift key while pressing the other key(s) indicated. eg 
1l"F3 is Shift-F3. 

• "1t means hold down the Shift and Control keys whi le pressing the other key(s) 
indicated. eg "1l"F3 is Controi-Sflift.-F3. 

The character code for" is &5E and the code for 1t is &88 in the system font. 

Typical menu entries wou ld look like this: 

Cut Ax 
Copy Ac 
Paste AU 
Delete AK 

--- --------------------
Riter pages... ~AR 

Riter graphic ... AF11 

Select all AR 
Clear AZ 

Control and Shift 

A It 

The Sflift key is the natural modifier for any function key, so use this to provide 
similar functionality to the unshifted key, but with some subtle modification. Use 
the Ctrl key to provide different functionality. So for a function key Fn: 

Key presses 

Fn 

1l"Fn 

"Fn 

Action 

some function 

a modified form of Fn 

some other function (probably 
unrelated to Fn) 

a modified form of "Fn 

The Alt key is used by RISC OS as a shifting key to generate international characters 
and in the future is likely to be used to support a revised system of keyboard 
shortcuts more compatible with other non-Acorn systems. Because of this. you 
must not use the Alt key for keyboard shortcuts. 

69 



Keyboard shortcuts 

70 

Function keys 

The function keys are often used to call up editing and filing operations within 
applications. The table below shows the function keys you should use for some 
operations that are common to many applications Where a function corresponds 
to one your application provides. you must use the shortcut below rather than any 
other. If you don't provide one of the functions below, you can use its shortcut for 
some other function- but don't allocate a different function to Fl2, Snift-Fl2. 
Ctrl-FI2 or Snift-Ctrl-F12 as these are all used by the operating system. 

Abbreviation 

Fl 

F2 

1lF2 

"F2 
F3 
F4 

F5 
F6 

F8 

F9 

Fl2 

1lFI2 

"FI2 
A 1lF 12 

Menu shortcuts 

Action 

Help 

Load named document 

Insert named document 

Close window 

Save document 

Find/Search and replace 

Go to ... 

Sort 

Undo 

Redo 

Give access to • Commands using the command 
line interface- do not use this key for anything else 

Bring the icon bar to the front of the desktop 
Open a task window 

Shutdown 

There are several functions that many applications provide from their menus. To 
build up consistency between applications and so help users find their way around 
new programs quickly, all applications must use the same shortcuts for the same 
functions. Some of these wi ll be the function key shortcuts listed above. but others 
use the ordinary keys with the Control key. You must use the following shortcuts if 
you provide a shortcut for the functions listed in the table. 

Key combination 

"U 

"Z 
"C 
"X 
"V 

Action 
Delete line 

Clear selection 

Copy selection to clipboard 

Cut selection to clipboard 

Paste clipboard contents at cursor position 



Key combination 
1\D 
1\T 
/\A 

AB 

Action 

Insert date 

Insert time 

Select all 

Change selected text to bold 

Handling keyboard input 

1\ I Change selected text to italic 

The final two shortcuts must correspond to the font selection method described in 
the section entitled Effect menu on page 38. There is some advice on keyboard 
shortcuts and international support in the section entitled Language on page 89. 
Where you need to refer to an arrow key in a keyboard shortcut. you will need to 
give the name of the direction in full (for example 1\ Left for Ctri-Left arrow). This is 
because neither the system fonts nor the fonts used in later versions of the Wimp 
have characters for the arrow keys. 

Named keys 

Several keys have their functions shown on the key-caps. It is confusing to users if 
these keys do not do what they claim to do. Your applications must support the 
following key-presses: 

Key 

Esc 

Return 

Print 

Tab 

Shift-Tab 

Insert 

Backspace 

Delete 

Action 

Cancel operation 

Begin a new l ine of text in an editor window. In a 
dialogue box. perform the default action. 

Print document 
Move to the next tab position in a text editor 
window. In a dialogue box. set the value in the 
current field and move the caret to the end of the 
next field (cycling from last to first if necessary) 

In a dialogue box. set the value in the current field 
and move the caret to the end of the previous field 
(cycling from first to last if necessary) 

Paste in the current contents of the clipboard at the 
position of the caret 

Delete the character to the left if there is a caret; cut 
selection to the clipboard if there is no caret (as AX) 

Delete the character to the left if there is a caret (as 
Backspace); cut selection to the clipboard if there is 
no caret (as AX) 

71 



Keyboard shortcuts 

Copy 

Home 

PageUp 

Page Down 

Delete the character to the right if there is a caret. or 
copy selection to the clipboard if there is no caret 
(as "C) 

Move to start of document (as "'i) 
Scroll window up (as clicking top of the scroll bar) 

Scroll window down (as clicking bottom of scroll 
bar) 

The table above describes the current functions of the keys. In the future, 
non-proprietary PC keyboards may be supported, in which case the Copy key will be 
named End and the functions of this, Backspace and Delete will be as follows: 

Backspace 

Delete 

End 

Delete the character to the left if there is a caret; 
delete selection if there is no caret (as "'X) 

Delete the character to the right if there is a caret; 
delete selection if there is no caret (as "X) 

Move to the end of the document (as "'..i.) 

Moving around a document 

72 

Besides moving around a document using the scrolls bars. users must be able to 
move around using some standard keypresses Your application must support 
those shown in the table below 

Key 

~ 

i 

Action 

Move left/right by a character 

Move up a line. In a dialogue box. set the value in 
the current field and move the caret to the end of 
the previous field (cycling from first to last if 
necessary) 

Move down a line. In a dialogue box. set the value in 
the current field and move the caret to the end of 
the next field (cycling from last to first if necessary) 

Move left/right by a word 

Move up/down by a page (like clicking on the scroll 
bar background) 

Move to start/end of line 

Move to start/end of document 



Handling keyboard input 

Applications ported from other systems 

If you are porting an existing application from another operating system (or are 
writing an emulation of one) you may feel there is a strong case for not changing 
the keystrokes it uses. so that existing users of the package do not need to learn 
new keystrokes However. there will be more new users who are already familiar 
with RISC OS than there will be existing users moving to RISC OS. so use the 
shortcuts described above rather than the originals. If you wish to supply a 
compatibility mode. offer it as an option from the menu or allow the user to 
choose from the Choices dialogue box. 

Special needs support 

Remember that not all users have full mobility, vision and hearing and may need to 
use input devices which are not supplied as standard. Any RISC OS compliant 
application will benefit from supporting input from devices such as concept 
keyboard, switches. trackerball and touchscreen technology. If you would like 
advice on special needs support. contact Acorn . 

73 



74 



11 

Introduction 

Selecting text 

Handling selection 

Many applications allow the user to make selections of text or other objects and 
then do something with the selection. This chapter explains how to handle this. 

If your application supports text selection, use this method supporting the 
following options: 

• Clicking Select to set the caret position. 

• Dragging Select in any direction to select a range of text. 

• Clicking or dragging Adjust to adjust the extent of the selection, either 
forwards or backwards. 

Using the following conventions will make your application more powerful and 
consistent: 

• The caret cannot appear at the same time as a selection. 

• If the user types when there is a selection, the selected text is deleted and 
replaced with the new text. 

• A double-dick when setting/dragging a selection should select words. 

At the simplest level, a word should consist of a sequence of alphanumeric 
characters between spaces. It may also include any following 
non-alphanumeric characters such as punctuation that come before the next 
space. but not a newline character. 

You may use a more complex model if you wish to provide 'intelligent' delete, 
copy and move functions to preserve spaces between words. and to retain 
correct punctuation. 

75 



Selecting objects 

Selecting objects 

76 

There are several established rules governing the selection of objects. Your 
application should follow these rules: 

Simple selection 

• Clicking Select over an object deselects all other objects. and selects that one. 
If there are several objects beneath the pointer. the 'front' object is selected (if 
your application recognises this concept). 

• If the user clicks Adjust instead of Select. the state of the object clicked on is 
toggled between selected and deselected. 

Box selection 

• Clicking Select outside an object and then dragging in any direction creates a 
rectangular select box. One corner is given by the position in which Select was 
clicked, the other by the pointer's current position: 

Any object that is partly or wholly within the select box is selected. It is also 
useful to offer an option which allows only objects wholly within the box to be 
selected. Draw does th is if you hold down Shift while dragging. If the user 
presses Adjust instead of Select. the state of the object clicked on is toggled 
between selected and deselected. 

Selecting from stacked objects 

The method for selecting one object from a stack of objects varies between 
applications. The following describes how Draw handles selection from a stack. 
This method is appropriate if on ly graphic objects are involved. but if it is possible 
for text and graphics to be stacked in your application. double-clicking to select an 
object hidden behind text won't work. 



Handling selection 

• When a user double-clicks Select over a stack of objects. the topmost object 
that is already selected is deselected, and the next one down the stack is 
selected in its place. This wraps around from the bottom of the stack to the 
top, so if the lowest object is already selected. the top object becomes 
selected instead. 

Cut and paste 

The cut and paste method of copying and moving objects should be adopted for 
new applications as this is taking over from alternative methods. Eventually, cut 
and paste will be augmented by drag and drop. which is described briefly below. 

The cut and paste method requires an application to keep a clipboard on which cut 
or copied items are stored until the user pastes them back in or closes down the 
application. Instead of a single operation. two stages are needed to cut or copy and 
paste a selection. 

Copying a selection 

To copy a selection. the user has to copy the selection to the clipboard and then 
paste it back into the same document or another document. 

• To copy selected text or objects. the user must copy the selection to a 
clipboard. It will overwrite anything currently stored on the clipboard. The 
selection must also remain in its original place in the document. 

The existing contents of the clipboard are lost when another selection is cut or 
copied to it. 

• The user needs to position the caret and use Paste to insert the copy into the 
same document or a different document. 

• Text should be pasted in immediately after the position of the caret. Objects of 
other types should be pasted in so that the top left -hand corner of the object 
is at the position of the pointer. 

Moving a selection 

To move a selection. the user has to cut the selection from one part of the file and 
paste in to another part (or another fi le) 

• To move a selection. the user removes it from its original position and stores it 
temporarily on the clipboard. This operation is called Cut. 

• The user needs to position the caret or pointer and use Paste to insert the cut 
selection into the same document or a different document. 

• Text should be pasted in immediately after the position of the caret. Objects of 
other types should be pasted in so that the top left-hand corner of the object 
is at the position of the pointer. 

77 



Selecting objects 

A clipboard may be shared between applications, allowing a user to copy or cut 
text or objects from a document using one application and paste it into a 
document opened with another application. 

These guidelines only apply to moving a selection using the cut and paste method. 
You can also move a selection within a document by dragging; see the section 
entitled Dragging objects that are within a window on page 32 

Drag and drop 

78 

Although cut and paste is the current method for copying and moving selections. it 
is likely that this will eventually evolve into 'drag and drop'. This involves selecting 
the text or objects to be moved or copied and then dragging the selection to its 
destination. whether within the same document or in a different document. The 
likely procedure is as follows: 

• The user makes a selection in the usual way, and may adjust the selection 
using Adjust. 

• If the user clicks with Select over the selection. it is deselected 

• The user drags the selection using Select from its original position to its 
destination. The destination may be in the same document or a different 
document. 

• Dragging within a window moves the selection by default. or copies it if Shift is 
held down. Dragging between windows copies the selection by default. but 
moves it if Shift is held down. 

• During dragging, a ghost caret may appear in the destination window to allow 
the user to position the dragged selection precisely. For text selections. the 
ghost caret will typically resemble the normal caret. For non-text selections. it 
may take another shape, such as the bounding box of the dragged selection 
scaled to the destination window's view scale. 

• If the user holds the pointer near the edge of any window while dragging the 
selection, the window should scroll to show the previously hidden area of the 
document. 

• If the user drags the pointer across the boundary of a window, copying 
between windows becomes possible. 

• When the user releases the mouse button, the selection is dropped into its 
new position. 

An application note explains how to implement drag and drop; contact Acorn for a 
copy. 



12 

Introduction 

Colour and sound 

Colour and sound are valuable ways of adding meaning to the information used by 
an application. Used well, colour or sound can add significantly to the value of an 
application. 

Colours and the palette 

Users may choose to set their own palette for a number of reasons, ranging from 
personal preference to impaired vision. Applications can't therefore rely on the 
default palette being used, but must read and use the current palette and handle 
changes of palette on the fly. Rather than the old GCOL mechanism of setting 
colours, use one of the following methods to avoid problems for the application 
and the user: 

• Use the standard desktop palette if you are just using colour to give a contrast 
between different objects you are drawing. 

• Use 'true' (RGB triplet) colours if you need to display a particular colour, then 
use the ColourTrans module to give the closest possible approximation in the 
current palette. This method doesn't restrict the application to the limitations 
of today's hardware. 

Even if your program doesn't use many colours. you must check it works correctly 
in all modes. Take particular care to check that operations like EOR (exclusive OR) 
work correctly, because the results will differ depending on whether the mode in 
use has I, 2, 4, 8. 16 or 24 bits per pixel. Similarly. check two-colour modes 
carefully; these use ECF patterns (stippling) for different shades of grey, and again 
using EOR may give unexpected results. 

An application note on colour selection using the standard colour selector is 
available from Acorn. The standard colour selector is described in the section 
entitled Standard selectors on page 54. 

Guidelines for using colour 

Colour increases the amount of information your application can convey to the 
user. It can make things stand out, attract attention, and highlight differences and 
similarities between things. However. it can also cause confusion. obscuring 

79 



Guidelines for using colour 

80 

important elements of the screen display if it is used without thought. Remember. 
too. that some users have only monochrome or greyscale screens: the Acorn A4 
portable has a greyscale screen. 

The following guidelines will help you use colour successfully: 

Test your design In monochrome 

Use form and text as the main means of communicating with a user; use colour to 
add meaning, not to be of central importance. For example. you shouldn't use 
colour as the only difference between two icons. There are several good reasons for 
this: 

• Not all users have colour displays 

• Good desktop colour printing is not yet widely available 

• A significant proportion of users can't d istinguish between some colours. 

The best test is that your design should work on a monochrome or a greyscale 
display as well as it does on a colour display. The only time you can reasonably 
justify using colour alone to give meaning is where you are asking the user to select 
or define a colour. Remember that although it is becoming relatively rare to use a 
simple monochrome display. the use of high-quality greyscale monitors is 
increasing in some fields. Make sure your applications look good and work well in 
greyscale. 

Use colour with restraint 

A large number of gaudy colours on the screen looks a mess. distracts users. and 
so devalues your application. Although the system can display up to 256 colours 
on the screen at the same time. research has shown that when colours are being 
used to convey information. people can only work effectively with a maximum of 
half a dozen different colours. 

Limit the number of colours you use to take account of this. and make them 
significantly different from each other- though they don't have to be bright. Let 
users change the colours if they wish: this is particularly helpful for users with 
impaired colour vision. 

Make colours stand out 

Any colours you use will stand out best over white or grey backgrounds. rather than 
over other colours. Blues are easily overlooked by the eye. so you should not use 
them to convey important information. You can turn this into a benefit, however. if 
you use blue for gridlines or other guides. 

You must always make pointers stand out from their background. You can do this 
best by using contrasting colours for the background and pointer. 



Sound 

Colour and sound 

You must highlight text by reversing it out of its background. as you would on a 
monochrome screen. The text must adopt the colour of the background. and vice 
versa. 

Avoid coloured text 

A high contrast between text and its background is necessary to make text legible. 
You should use black for text. and a colour with a high brightness for the 
background - such as white, grey or yellow. Reversed-out text- white or grey text 
on a dark background- has good legibility, but is not a good match for the style of 
the RISC OS desktop. 

Where to use colour, and where not to 

Resist the temptation to over-use colour to make your application 'pretty'. You 
should only use colour within your application's work area(s), to show its data. 

Other parts of your application's displays (such as window borders. menus and 
dialogue boxes) must use the standard colours defined elsewhere in this Guide. to 
be consistent with other applications. The main exceptions to this are 

• where you need to present colours for the user to select one 

• where you need to display a file icon 

• in the application's icon bar icon. 

You may, if you wish. use non-standard colours in the Info dialogue box displayed 
by your application. 

Like colour. sound provides an additional channel of communication between the 
computer and the user. Like colour. too. it can add to the meaning of an 
application, but, if handled badly, can equally well detract from its value. 

Sound can be used in two main ways: 

• As a warning, to alert the user that something has happened (that mail has 
been received. for example) or that action needs to be taken- an error 
message acknowledged. or a choice made in a dialogue box. 

• As data within an application that processes sound. 

Much of what is said below applies to the first case. but not to the second. 

Guidelines for using sound 

Sound should be used in much the same way as colour - with restraint and to add 
meaning. 

81 



Sound 

82 

The design should work with sound turned off 

Use sound to add meaning to an event. not as the only way of marking an event . 
There are good reasons for this: 

• some users may be away from their machines. or distracted by a phone ringing 
when the event occurs 

• a significant proportion of users have impaired hearing. 

If you use sound as a warning, back it up with a visual indication. 

Use sound with restraint 

A jolly jingle in an application or game might be delightful to the ear the first time 
it is heard. but can soon become very irritating. Don't overdo the sound. and allow 
users to turn it off if they wish. 

Melodious but not too subtle 

You should avoid harsh and raucous sounds- they can be annoying and even 
frightening to users, and will set a tone for your application which you might not 
have intended. You may like to give users the option of replacing sounds with 
alternative modules. 

At the same time. if you are giving meaning to your sounds. you should use 
different voices rather than different notes in order to distinguish between sounds. 

• Very few users have perfect pitch and so can remember precisely how a 
particular note sounds. 

• Many users cannot distinguish between similar notes. unless they hear them 
back to back. but most users will be able to distinguish (say) a ·crash' from a 
'beep' . 

Controlling volume 

You should give users the option of turning off sound altogether. You must instruct 
your users to use the Configure application to set overall volume levels (and. of 
course. your application must respond to those settings). rather than providing 
your own mechanism. Don't include any instructions in your application that turn 
off sound globally (such as *Speaker Off); always allow users control over the 
sound in their system, and make settings only for your own application 



13 

Introduction 

Configurations and user choices 

It is important that your applications support all possible combinations of 
hardware and software that a user may wish to use, and that they respect as far as 
possible the user's choice about configuring the machine. This is becoming 
increasingly difficult as more types of peripheral become available, but it is 
essential if your applications are to be accessible to as large a market as possible. 
Your applications must support 

• the hardware a user has bought and must use 

• the software preferences a user has chosen to use (such as screen mode). 

If it is appropriate, your application should allow users to set up and save choices 
about how your application behaves and appears. 

Hardware configuration 

You will need to bear in mind that a user may have any combination of RISC OS 
computer, monitor and printer and may have only 1MB of RAM. 

Monitors 

Most importantly, the user may have a colour. greyscale or monochrome monitor 
which may be an ordinary RGB monitor, or multi-sync. VGA. SVGA, LCD display, or 
even a TV screen. Don't make assumptions about the type of monitor a user may 
have and therefore about screen size and the screen modes that may be in use or 
available. 

Users will have chosen a screen mode that is suitable for the type of monitor they 
need or can afford, and will have decided on the resolution they want. Don't try to 
override that choice by changing the screen mode; make sure your applications can 
start up in any mode. Make the application read the current screen mode when it is 
loaded (and any associated information such as resolution and aspect ratio). If it is 
impossible to support some screen modes, the application should display an error 
message if it can't operate in the current mode. Make sure your application 
supports modes I 2 and 27. Depending on the nature of your application, you may 
want to make sure Mode 23 works for users with big monochrome screens. but this 
is really only necessary for specialist applications likely to be used with these 
monitors. 

83 



Software configuration 

Screen modes 

As the range of monitor types and screen modes increases. it is getting more 
important to make sure that applications are independent of screen mode and can 
work in any screen mode that the window system can use In particular. make sure 
your applications work with the square pixel modes used on multi-sync monitors 
as well as the rectangular pixel modes; VGA-only monitors can't display modes 12 
and 15 correctly. 

Don't forget the requirements of LCD screens used with the Acorn A4 that display 
15 levels of greyscale. and the need to support the special needs mode 22 . Also. 
check that applications work in modes 13. 15. 16, 35 and 36. Mode 16 is highly 
non-square- the aspect ratio is wrong. Do not try to correct for this automatically; 
it is an inevitable consequence of trying to fit a great deal of text onto a standard 
monitor. Some monitors can in any case be adjusted to correct the aspect ratio. 

Remember that users may change screen mode while your application is running. 
so it must be able to handle changes of screen mode on the fly. It also means you 
can easily move your application to new and better screens and modes when they 
become available. New modes using 16 and 24 bits per pixel will be introduced in 
the future. 

Screen size 

Because users may have different size screens, you can't rely on screen size, so 
work in OS graphic units thinking of them as a constant unit of measurement. 
rather than a fraction of the width of the screen . The standard assumption is that 
there are 180 OS units to the inch, even though this may in fact vary between 
physical screens. If your application is to be device-independent. it must be the 
same size in OS units in any mode. rather than the same fraction of the screen. 

Printers 

If your application produces output for printing. it must produce output in a 
standard format that can be handled by the RISC OS printer drivers. Do not assume 
that users have a particular type of printer. and don't make assumptions that will 
prevent users adding new types of printer as they become available. 

Software configuration 

84 

Users will have made choices using Configure and the Palette about the way they 
want their computer to behave. This may include default screen modes. sound 
volume and voice. mouse speed. colours used in the palette. instant effect window 
drags and so on. They may have based their choices on their own priorities 
regarding processing speed and use of the computer's resources. on whimsical 
preference or on some more pressing consideration such as impaired vision or 



Configurations and user choices 

restricted hand movement. You should not make changes to the configuration. but 
should instead issue a dialogue box asking the user to make changes if the current 
settings are not suitable for your application. 

Other applications 

User choices 

Remember that users will want to use the multi-tasking facility of their computer 
and may run your application alongside others. Make sure that your application 
works with as many others as possible. and particularly with very popular 
applications. and check that there are no conflicts in resource names and so on. 
Always register the names of your applications with Acorn. apply for filetypes and 
any other resources you need. Make sure your environment strings are prefixed 
with the registered application name (eg ApplicationSString). These precautions 
avoid conflicts with names used in applications produced by other developers. 

If it is possible for a user to set choices that will be used each time your application 
is run. you should offer this as an item ca lled Choices in the icon bar menu. This 
should display a dialogue box allowing the user to implement and save choices . 

I lOt ... "-.. ..... ;,1" I;Ml - l"~·iO· .... ~ 

~S.olllot ·-
r.;; load spellint •ictitnarv 
_j Chtck as veu twe 

Gloits 
Pitt • c• -..) • J in J pt 

Rulli' -..) c• _. • Jin Jpt 

Default I SaM I CIRCtl II Set I 

Any choices which are not currently available should be greyed out. The four action 
buttons are: 

• Default resets the default values set within the application 

• Save saves the choices in the Choices file to be reused in subsequent sessions 
and implements the choices immediately. 

• Cancel resets the choices in use before the dialogue box was displayed 

• Set implements the choices for the current session. 

85 



Network considerations 

In some applications. a single dialogue box for setting all choices may not be 
appropriate. If there are several mechanisms for setting different groups of choices. 
your application may instead have a menu item Save choices in the icon bar menu 
that saves all the choices set within the appl ication If the user doesn't use Save 
choices. any choices set are used for the current session only. The RISC OS 3 
Printers application uses this method for setting and saving choices 

The choices a user sets should apply to all documents used within your application 
for which they are relevant. They will typically include default modes of operation 
and features of the appearance of documents. There is information on storing the 
choices a user has made in the section entitled The Choices file on page I 07. 

Network considerations 

86 

If you write your applications to be independent of the fi ling system in use. they 
should run on a network without difficulty. However, there are a few points you 
need to bear in mind to make your applications easy to use over a network. 

• Avoid using a large number of resource files as this makes applications slow to 
sta rt up over a network. 

• If your application must write to its own files. make these separate from the 
application itself so that they can be stored locally. 

• Remember that your application may read data (including choices) from a 
write-protected location or medium. 

You will also need to consider how choices are to be saved if the application is to 
be installed on a network. You can't save them into a Choices file within the 
application as it is likely to be stored in a read-only location and is in any case 
shared between users who may want individual settings 

A general-purpose solution to these problems is under discussion and you should 
contact Acorn for a copy of the relevant application note. 



14 Writing applications for CD-ROM 

If your application is to be distributed and run from CD-ROM, remember that the 
access time for CD-ROM is slower than for disc and that performance will be 
affected by the CPU speed. The following guidelines will help you to write software 
that works well from CD-ROM: 

• Don't use System. Font or Scrap directories on the CD-ROM as this may cause 
problems after the CD-ROM has been dismounted. If you need to include any 
modules or other shared resources. put them in a SetUp directory. 

• Don't include any applications other than your main application in the root 
directory of the CD-ROM; other directories beginning with the character! in 
the root directory increase the application start up time and use up memory. 

• Include no more than 40 files in a directory to achieve optimum performance 
and directory search times. 

• Make sure disc names are not longer than twelve characters. and filenames not 
longer than ten characters (or eight characters if you want PC-compatibility). 
Only use upper case alphabetic and numeric characters. underscore U and ! 
to comply with ISO 9660 restrictions on names. Always use system variables to 
refer to the disc or directories on it. 

• Don't assume there is a hard disc connected to the system. 

• If your CD-ROM includes Replay movies. group them together in a directory 
Replay in the root. at the beginning of the disc. Follow the instructions in the 
Progif file in the ARMovie directory. (You need a licence from Acorn to ship 
ARMovie.) 

• Keep application-specific resources together in a directory called Data in the 
root directory. 

• Don't allow your application to generate large data files when it starts up. 

• Read data in large chunks as reading data involves considerable delays before 
data start to flow. 

• Try to support computers with only 2MB of RAM; you can optimise your 
application for high resolution monitors. though, as most systems with a 
CD-ROM drive have a VGA or multisync monitor attached. 

• Check all data and applications for viruses before pressing the CD-ROM. 

• Press a gold disc to trial the software before pressing the CD-ROM in large 
numbers. 

87 



88 

• Instruct users to set CDFS buffers to a non-zero value. 16K is usually 
acceptable, but 32K or 64K may be more appropriate if a lot of disc accessing 
will be needed. 

• You can assume users with CD-ROM drives are using RISC OS 3.1 or a later 
version. 

• As CD-ROM is a read-only medium, don't include anything that would appear 
to let users write to the CD-ROM: open files on the CD-ROM for read only. 

• It is best to include all data and applications needed by the CD-ROM on the 
CD-ROM itself. You may also like to include extra material. such as curriculum 
materials, on the disc. 



15 

Introduction 

Language 

Character sets 

International support 

It is very important to support users whose first language is not English. RISC OS 
computers are sold in many non-English-speaking countries and RISC OS 
documentation is provided in some other languages; more languages are likely to 
be added in the future. Every step you make towards helping users understand 
programs in their native language helps your sales in the international market. 

RISC OS already provides multiple alphabets/keyboards to support international 
use. It is also possible to translate ROM messages to another language; if you need 
translations for a particular language. ask Acorn as we may already have or know of 
an implementation. Other international support facilities are planned for the 
future 

The following guidelines will help you to accommodate non-English use of your 
applications. 

Remember that English is not the first language of all users. 

• Consider translating any mnemonic shortcuts (such as AD for 'down') which 
require the user to know the word for the required action, using the first letter 
of the translated word. 

• Avoid using culture-specific icons. or icons that are 'puns· on a name. 

• Use pictorial icons rather than text/picture combinations. 

International users may have their computers set to a different territory setting and 
may want to use accented and other characters that are not part of the standard 
British character set. The following guidelines will help you to write applications 
that support non-British character sets. 

• Don't trap or use the Alt key in your applications. 

Different forms of international keyboards have standardised the use of Alt for 
entering accented characters: allow RISC OS to interpret its use. If you don't. 
users may be unable to type some of the accented characters they need. 

89 



Information formats 

• Don't forbid the use of top-bit-set characters in your program. 

Again, this may prevent users using accented characters. 

• Don't assume that Latin I is the current character set. 

• Don't assume the user has a standard British/American keyboard layout 

• Use the operating system facilities for alphabetic sorting, lower/upper case 
testing and conversion as they handle accented as well as unaccented 
characters. 

Information formats 

90 

Some information. such as dates and decimal numbers. is represented differently 
in countries other than Britain . 

• Use system facilities for date and time string conversions. This allows the user 
to choose the format required (month-day-year. for example). If you use your 
own mechanism for setting information like this. non-British users may not be 
able to set the format they are familiar with. 

• Include an option to recognise comma(.) as a decimal point in values used for 
calculations and in determining the positioning of text with a decimal tab. 

The part on lnternationalisation in the RISC OS 3 Programmer's Reference Manual 
deals with internationalisation issues. 



16 

Introduction 

Implementing the design 

Once you have desi€ned a new application. you will begin to write code for it. This 
Guide does not offer any advice on structuring or writin€ your program; you will 
find all the detailed advice you need about writin€ the pro€ram in the Programmer's 
Reference Manual. 

This chapter and the next €ive advice on 

• precisely how to position and create the elements of the user interface 
described in earlier chapters of the Guide 

• buildin€ the application directory for your application. 

It is assumed that this chapter and the next will be used by pro€rammers and so 
more technicallan€Ua€e has been used in some places than in the other chapters 
of the Guide. Technical terms are inc! uded in the €1ossary. 

Choice of programming language 

We stron€1Y ur€e you to pro€ram usin€ C. We believe that you'll find lar€e 
applications easier to maintain if they're written in C rather than (say) BASIC or 
Assembler. 

You may feel that applications developed usin€ C will be lar€er and slower than 
those developed usin€ the ARM assembler. However. there need not be a 
Si€nificant difference if you're careful to write efficient code. You can incorporate 
chunks of assembly lan€Ua€e in C pro€rams for parts where speed is critical. Even 
so, BASIC or assembly lan€Ua€e may be more suitable for a few tasks, particularly 
if speed or code size is very important. It is up to you to balance the benefits of 
speed and code size on the one hand a€ainst development time. ease of 
maintenance and ease of portin€ your code between environments. 

If you wish to write your applications in C. you will find the manual supplied with 
Acorn's Desktop C compiler useful. The chapter entitled How to use the template editor 
is especially relevant; you can use the template editor to desi€n windows for the 
desktop interactively. The chapter entitled How to write desktop applications inC is also 
useful. as you may wish to use the RISC OS library that it describes. 

91 



Using legal operations 

If you have ANSI C Release 3 or earlier we strongly recommended you upgrade to 
the current version. as this contains far more extensive support for writing RISC OS 
applications. 

If you wish to write BASIC programs on your RISC OS computer you need the BBC 
BASIC Reference Manual . 

If you wish to write your applications using the desktop assembler, you will find the 
manual supplied with Acorn's Desktop Assembler useful. 

Using legal operations 
To make sure your applications will work well on computers released in the future. 
only use legal methods in your programs 

• do not bypass operating system interfaces or access hardware devices directly 

• do not read and write page zero locations (the hardware vectors. etc) or kernel 
workspace 

• do not use illegal interface operations. 

Such tricks may well not work on future machine and operating system upgrades. 
Acorn will pursue a policy of continuous improvement and expansion for its 
product lines. so it is sensible to build your software to last. 

Responsiveness 

92 

RISC OS runs on extremely fast machines. and you can use this speed to make your 
application easier to use and more productive. The system software has been 
written very carefully so that all of this performance is delivered to be used by 
applications, rather than being swallowed up within the operating system. Fast. 
smooth scrolling and redrawing are worth striving for as they make it easier for a 
user to make effective and productive use of your application. 

Redrawing speed 
All applications must concentrate on making redraw fast. One technique you can 
use for a window that is difficult to redraw quickly is to store its image as a sprite­
of course you can only do this if it won't change. Another important technique for 
speeding up redraw is the use of source-level clipping. During redraw and update, 
the Wimp will always inform your application of the current clipping rectangle. 
Don't waste processor time redrawing bits of your window if you don't need to. (For 
an example of how to use this technique. see the Patience application from the 
Applications Suite.) 



Implementing the design 

If you make extensive use of icons within dialogue boxes. this means that RISC OS 
does most of their redrawing for you . You should only need to process redraw 
events for dialogue boxes when they contain complex user graphics. 

Units of measurement 

Sprites 

Sizes and positions are given in this chapter in OS units where possible; you 
should work in OS units rather than pixels whenever you can so that you don't 
restrict your applications to particular monitor types and screen modes. Where 
dimensions are given in pixels. they are assumed to be 4 OS units high by 2 OS 
units wide. 

Design sprites to use as little valuable system resources as possible. Sprites for 
icons are normally defined in mode 12- but if you can use a mode with fewer 
colours or lower resolution (such as mode 9) then do so. Don't forget to include 
sprites for high resolution screen modes in !Sprites22. Rectangular sprites do not 
need a transparency mask; those with irregular outlines do. 

Check the appearance of your sprites in one. two. four. eight. 16 and 24 bit screen 
modes; the Wimp will do its best to translate from mode 12 colours to those 
available. 

You will need to provide versions of the sprites your application uses. including file 
sprites and corresponding ic_icons. for standard resolution. high resolution and 
high resolution monochrome screen modes (if appropriate). 

Size of sprites 

Sprites that can appear in a directory display will need large and small versions in 
each of high and standard (low) resolutions. If you don't define a small sprite. 
R1SC OS will display the large sprite at half size. but this is unlikely to look as good 
as a specially designed small sprite. 

Large Icons 

A large icon must be 68 OS units high. Try to use a square sprite for file icons. or a 
square bounding box for application icons (which have an irregular outline). The 
square will obviously be 68 OS units wide. For mode 12 this is 34 pixels wide by 17 
pixels high. If you have to make your large sprite wider. you can make it: 

• up to 160 OS units wide if it will be used in directory displays - although I 00 
OS units is a more practical limitation if you want the small icon to have the 
same proportions 

93 



Sprites 

94 

• as wide as necessary if it will only be used on the icon bar 

The border of a large file (or document) icon must be four OS units wide. In mode 
I 2. that makes vertical borders two pixels wide and horizontal borders one pixel 
high 

Small Icons 

A small icon must be half the size of a large icon- that is. 34 OS units high. Again. 
it should preferably be square if it is a file icon (ie 34 OS units wide). or have a 
square bounding box if it has an irregular outline. In mode 12 this corresponds to 
17 pixels wide by 9 pixels high (rounding up halves). If you have to. you can make a 
small icon up to 50 OS units wide but avoid using non-standard sizes as it make 
the directory display untidy. 

The border of a small file (or document) icon must be two OS units wide. In mode 
12, that makes all borders one pixel wide. 

There is information on how icons are 'made known· to RISC OS in the section 
entitled Application resource files on page I 03. 

Positioning icons on the icon bar 

When you place an icon on the icon bar. put icons relating to physical devices and 
resources such as filing systems on the left. and others on the right. RISC OS uses 
the icon's width to position it horizontally, but it is your responsibility to position 
the icon vertically. 

There are two main types of icon which you can put onto the icon bar: those 
consisting simply of a sprite. and those consisting of a sprite with text written 
underneath. The diagram below shows you how to position icons vertically on the 
icon bar: 

-- - -------------- +92 

+68 --
+84 
(max) 

Sprite 

Sprite 
only 

+20 

L ~ 
+16 

0 
- 16 

-24 



Windows 

Menus 

Implementing the design 

In the diagram. y coordinates are given in terms of the icon bar work area origin; 
lower coordinates are inclusive. and upper co-ordinates are exclusive. 

Your application must position icons with text underneath them 16 OS units below 
the icon bar's work area origin, and those without text level with it 

Sprites for iconised windows 

The sprites used for iconised windows should be the same size as large icons. You 
can look at the iconised window icons in the ROM if you want to see an example. 

The first window your application opens must be horizontally and vertically 
centred on the screen, whatever the current screen mode. It should occupy no 
more than a quarter of the screen. to emphasise that your application does not 
replace the existing desktop world, but is merely added to it Open any subsequent 
new windows at an offset of 48 OS units moving down the screen. unless there is a 
good reason not to do so. The initial size and position of windows may be 
user-configurable and saved as a preference. 

Colours 

Standard colours you must use for the application window are 

• black (Wimp colour 7) on a grey background (Wimp colour 2) for the title when 
it is not highlighted (that is. when the application doesn't have the input 
focus) 

• black (7) on a cream ( 12) background for the title when it is highlighted (when 
the application does have the input focus) 

• dark grey (3) for the outer colour of the scroll bar 

• light grey (I) for the inner colour of the scroll bar. 

Each menu item must be 44 OS units high. Try to keep the width of submenus as 
small as possible; this reduces the amount of mouse movement users need to 
reach an item. so making it faster and easier for them to use the menu. 

You must open a menu 64 OS units to the left of the pointer's position when Menu 
was pressed. This reduces further the amount of mouse movement users need to 
make. 

95 



Menus 

96 

The bottom of the menu title must normally align with the pointer: 

Icon bar menus 
For icon bar menus. the base of the menu must be 96 OS units from the bottom of 
the screen. This stops the menu obscuring the icon bar sprites. 

Pop-up menus 
When a pop~up menu appears. it must appear immediately to the right of the 
button the user clicked on to display it. 

Paptt I A (&fntric tP) 

Menu colours 

The standard colours you must use for a menu are 

• black (Wimp colour 7) on a grey background (Wimp colour 2) for the title 

• black (7) on a white (0) background for unshaded menu items 

• light grey (2) on a white (0) background for shaded menu items. 



Dialogue boxes 

Implementing the design 

You can use FormEd to prepare dialogue boxes. It is important to edit templates in 
a TV-resolution screen mode (such as mode 12) and check them in high resolution 
modes afterwards to make sure they work in both. 

Size of dialogue boxes 

The size of a dialogue box will depend on what it has to include; there is some 
advice on considering size when designing a dialogue box in the section entitled 
Size of dialogue boxes on page 61. However. it should not be larger than 800 by 600 OS 
units. The proportions of an A4 page (I: 1.414) can be used to give a shape that is 
pleasing to the eye. When working out how large to make your dialogue box, you 
will need to bear in mind the sizes of the standard components set out in the table 
below. 

Component Vertical size Horizontal size 

Action button 52 OS units text +5 pixels 
each side 

Default action 68 OS units text +9 pixels 
button each side 
Radio button 44 OS units as needed 

Option button 44 OS units as needed 

Writable field 68 OS units as needed 

Display field 52 OS units as needed 

Slider 40 OS units as needed 

Adjuster arrow 32 OS units 32 OS units 

Text label 400S units max as needed 
per line 

Leave 8OS units clear space between components. 

Creating elements of dialogue boxes 

To create the controls and fields you may need to include in a dialogue box, use the 
following instructions. 

Default action button 

This is a text icon of click button type, with black foreground (Wimp colour 7) and 
grey background (Wimp colour I). It is vertically and horizontally centred and has a 
verify string 'R6,3'. 

97 



Dialogue boxes 

98 

A default action button is 17 pixels tall; its width is large enough to hold the text. 
plus three pixels clear each side within the button. plus a further six pixels each 
side for the remainder of the icon. 

Where possible. use a single word for the text label, preferably an imperative verb 
such as Print or Save. You can use OK if there is no sensible alternative; don't use 
Yes or Go 

There must be only one default action button on each dialogue box. 

Action button 

This is a text icon of click button type, with black foreground (7) and grey 
background (I). It is vertically and horizontally centred and has a verify string 
'R5,3'. 

An action button is 13 pixels tall, with three pixels below the baseline of the text 
and I 0 above. Its width is large enough to hold the text. plus three pixels clear each 
side within the button. plus a further two pixels each side for the remainder of the 
icon. All action buttons in a set in a dialogue box shou ld be the same width . 

Where possible, use a single word for the text label. preferably an imperative verb 
such as Cancel. If the action button leads to a further dialogue box, the label must 
end with an ellipsis( ... ). 

Display field 

This is a text icon. with black foreground (7) and grey background (I). It has a 
validation string 'R2'. 

A display field is 13 pixels tall. with three pixels below the baseline of the text and 
I 0 above. Its width is large enough to hold the longest likely text. plus three pixels 
each side. 

A display field can't be directly edited by the user, but the value it shows may 
change as a result of making other settings. 

Writable field 

This is a text icon of writable button type, with black foreground (7) and white 
background (0). It has a validation string 'Ktar;Pptr_write'. 

A writable field is 13 pixels tall. with three pixels below the baseline of the text and 
I 0 above. Its width is large enough to hold the likely text, plus three pixels clear 
each side within the button. plus a further six pixels each side for the remainder of 
the icon. 

Pressing Return after giving input to a writable field should activate the default 
action button. not move the caret to the next field The section entitled Writable 
fields on page 50 describes the keystrokes that can be used in a dialogue box. 



Implementing the design 

Option button 

This icon has text and a sprite; it is button type Radio. It has a black foreground (7); 
the background is not filled; the border is turned off. It has a validation string 
·soptoff. opton·. 

You will need to create the icon and fill in the text. The option button must be 
vertically centred. but not horizontally centred. 

Radio button 

This icon has text and a sprite; it is button type Action. It has a black foreground 
(7); the background is not filled; the border is turned off. It has a validation string 
'sradiooff. radioon'. 

You will need to create the icon and fill in the text. The radio button must be 
vertically centred. but not horizontally centred. 

Set the ESG (Exclusive Selection Group) value to a non-zero figure. 

Adjuster arrows 

These are always presented in pairs. Each icon consists of text and a sprite and has 
button type auto-repeat. The background is not filled and the border is not set The 
down arrow has a validation string 'R5;sdown,pdown'; the up arrow has a 
validation string 'R5;sup,pup'. 

Each sprite is 32 OS units square; each icon is just large enough to hold the sprite. 

The two arrows are usually positioned side by side. When they are. there is no 
space between them. and the down arrow is always to the left of the up arrow. The 
adjuster arrows should be to the right of the item they control. with eight OS units 
space between it and the down arrow. 

If the adjuster arrows increment a value in a display or writable field. they must be 
aligned horizontally with the field . with their lower edge one pixel below the 
baseline of the text in the field. If the field has an associated text label showing the 
units or a% symbol. the adjuster arrows shou ld be right next to the field. with the 
label eight OS units to the right of the arrows. 

If the adjuster arrows are separated by a line or graphic (as they may be if you are 
using them to adjust the dimensions of a square. for example). leave 8OS units 
between the line and each arrow. 

You may occasionally want to use a left/right pair of adjust arrows; they are created 
in much the same way as up/down arrows. 

99 



Dialogue boxes 

100 

SUder 

A slider comprises three icons: the well. the background and the value. These must 
be numbered in the order given so that they stack correctly. The instructions below 
are for a simple horizontal slider. 

The well is an icon with no text. It has a validation string 'R2'. The background is 
unfilled. It is nine pixels tall and as long as the slider. 

The background is an icon with no text. It has a white background (0); the border is 
not set. It is three pixels tall and ten pixels shorter than the well. It is centred inside 
the well. 

The value is an icon with no text. It has a grey background (5); the border is not set. 
It is three pixels tall; its width is sufficient to display the value of the slider. It is 
vertically al igned with the background, and the left end is coincident with the left 
end of the background 

For a vertical slider. the well is 18 pixels wide, the background and value are eight 
pixels wide and the background is six pixels shorter than the well. 

You may design more complex sliders if appropriate. 

Pop~up menu leon 

This is an icon made up from text and sprite. with button type click and with a 
validation string 'R5;sgright,pgright'. The border is not set and the background not 
filled. 

The icon is 44 OS units square. the size of the sprite. 

The pop-up menu icon is centred vertically and set to the right of the value it 
relates to. 

If an item has both adjuster arrows and a pop-up menu. the pop-up menu icon is 
set to the right of the adjuster arrows. However. this combination can look 
cluttered and is best avoided if possible. 

Text label 

This is a text icon. with black foreground (7) and the background unfilled. It is 
vertically centred; if it abuts an item on the right. it is right-justified. 

A text label is 9 pixels tall. with two pixels below the baseline of the text and seven 
above; leave one pixel between lines of text. If the line contains any other items. 
such as a writable field. the height of the l ine will be dictated by the tallest element 
in it. The width of a text label is sufficient to hold the text. 

Don't terminate a label with a colon (:).The text associated with a radio or option 
button is created as part of that button and not as a separate text label. 



Implementing the design 

Group box 

This comprises two icons: the box itself. and a label. The box must have a lower 
icon number than the label and any items inside the box. 

The box is a large icon surrounding all the contents of the box. It has an indirection 
string 'R4'. It has no text; the background is not filled. 

The label is the same as a text label described above. It is positioned to overlay the 
top face of the box at the left. leaving 16 pixels of the top face visible at the left. It 
has a black foreground {7) and grey background (I). 

Leave eight pixels horizontally, or four vertically, for clearance inside and outside 
the box. For very large boxes. increase the clearance slightly. 

Scrolling pane 

Use a real pane window for a scrolling pane. Don't include a Title bar. but label it 
with an ordinary text label. Don't put a group box around the pane. 

Set the size appropriately, but remember that a very short scroll bar makes the 
pane look cluttered. Allow some variation in the size of the scroll bar. 

Dialogue box colours 

Use these standard colours for a dialogue box: 

• Black (Wimp colour 7) on a grey background (Wimp colour 2) for the title. 

• Black (7) on a grey (I) background for the body. 

• The title bar changes to cream {I 2) when the window has the input focus. 

Dialogue boxes match the colouring of menus. to show that they are part of the 
menu tree. If the dialogue box is large and has writable fields then use colour I 
rather than 0 as the window background Large expanses of white background can 
make writable fields harder to see. 

Positions of dialogue boxes 

Open a dialogue box called from a menu so that it is centred on the mouse pointer 
(subject to screen boundary constraints) . 

All error boxes must be centrally positioned on the screen. 

101 



102 



17 

Introduction 

Application directories 

You must place your RISC OS applications in a directory whose name begins with 
'!', such as !Draw. When you refer to the application in documentation or help text. 
however. you should leave the '!' off the name. The Filer modules provide various 
mechanisms to help such applications. For example, the Filer will run its boot file, 
load its sprites and make its help information available. 

There is also provision for handling shared resources- ones that may be of use to 
other applications. This is explained in the section entitled Shared resources on 
page 107. 

Application resource files 

You can hold any form of resource within an application directory. There are several 
standard ones; for those your application uses. it must use the filename(s) given 
below. An application may not need all of these resources. 

!Boot *Run by the Filer when it first displays the 
application directory 

!Spritestnnl Passed to *lconSprites by the !Boot file. or the Filer. 
the files !Sprites, !Sprites22 and !Sprites 23 (if 
provided) contain the application's sprites for 
different screen resolutions 

!Run *Run by the Filer when a user double-clicks on the 
application directory 

!Runlmage The application's executable code 

Templates 

Sprites 

Messages 

!Help 

Choices 

The application's window template file 

The application's private sprite file 

The application's text messages 

Information about the application; it is run by the 
Filer when the user chooses Help from the Filer 
menu 
User choices 

In addition. many applications will have an accompanying ReadMe file to give 
release notes. This should not be held within the application directory. 

103 



The !Boot file 

The !Boot file 

Most of these resources are discussed in more detail below 

A file called !Boot inside your application directory will be executed when the 
application directory is first 'seen· by the Filer. It is usually an Obey file- a list of 
commands to be passed to the command line interpreter (The •obey command is 
documented in the RISC OS User Guide and the RISC OS 3 Programmer's Reference 
Manual.) 

You will probably use a !Boot file to set up the icons. filetypes and corresponding 
system variables that RISC OS needs so that it can show your application in a 
directory display and run it when you double-click on its icon. If your application is 
called Appl, this might involve: 

• setting AliasS@RunType_ttt. AliasS@PrintType_ltt and FileSType_ttt variables 

• loading !appl. sm!appl, fi le_ttt and small_ut sprites from the !Appi.!Sprites file 
(see below). 

However, an application should only grab filetypes on start-up if filetypes are not 
currently set. This means that instructions such as SETFileSType, AliasS@RunType 
and AliasS@PrintType should only be executed if FileSType, RunType or PrintType 
are not set at all (null) when the user starts that application. 

The Filer only runs the !Boot file if an application with this full pathname has not 
been 'seen· before. This prevents repeated delays from re-executing ! Boot files. or 
even re-examining application directories. However. it relies on the various 
applications seen by the Filer having unique names- so. for example. if you have 
more than one System directory. only the first one ·seen· will be used 

The !Sprites file 

104 

Your application directory must contain sprite files called !Sprites (eg 
!Appl.!Sprites). !Sprites22 and !Sprites23 (if provided). These must provide sprites 
for the Filer to use to represent your application's directory: sprites for standard 
(low resolution) screen modes are held in !Sprites. sprites for high resolution 
screen modes are held in !Sprites22. Each sprites file needs to have both large and 
small versions of the application's sprite and the sprite ic_sprite which will be used 
to represent iconised windows from the application on the pinboard. For an 
application !Appl the large and small sprites must be named !appl and sm!appl 
respectively. (The names of the sprites must be in lower case.) The !appl sprite is 
also used when the application is installed on the icon bar. There is more about the 
design and size of these sprites in the section entitled Sprites on page 93. 



Application directories 

'Sprites (and the other sprite files) can also provide sprites for data files that your 
application ·owns'. Again. you will need sprites in both large and small form. These 
sprites must be named file_ttt and small_ttt, with ttt being the hex identity of the 
file type. For example. the sprites used for a Maestro file are called file_afl and 
small_afl . 

All the sprites in !Sprites are merged into the Wimp's shared sprite pool using 
*lconSprites. If your application uses any private sprites. you must load them in 
the Sprites resource file inside your application. and your application must load 
them into a private sprite area. If there is a standard sprite available from the 
Wimp's sprite pool. use this as users will already be familiar with it. For example. 
icons for standard filetypes are available from the sprite pool (see below). Your 
application must not redefine sprites in the pool automatically. 

Standard icons provided 

If your application creates or uses one of the following standard filetypes. you must 
not provide a file_ttt icon for it but use the standard icons. Many of these are 
provided in the Wimp sprite ROM area. for example: 

Sprite Type 

file_ae9 Alarm 

file_aff Draw File 

file_fc6 PrntDefn 

file_fc8 DOS Disc 

file_fcc Device 

file_fca Squash 

file_fd6 TaskExec 

file_fd7 Task Obey 

file_fe4 DOS 

file_fea Desktop 

file_feb Obey 
file_fec Template 
file_fed Palette 

file_ff2 Con fig 

file_ff4 Printout 

file_ff5 PoScript 
file_ff6 Font 
file_ff7 BBC font 
file_ff8 Absolute 
file_ff9 Sprite 
file_ffa Module 

105 



The !Run file 

The !Run file 

file_ffb BASIC 
file_ffc Utility 
file_ffd Data 
file_ffe Command 
file_fff Text 

There are also two sprites named application and small_app. which are used for 
applications which don't have a sprite called lapp/. 

There is more detail in the RISC OS 3 Programmer's Reference Manual. The list changes 
frequently; you can obtain a copy of the current list from Acorn . 

The !Run file is • Run when a user double-clicks on the application directory. It is 
usually an Obey file. It is common to duplicate much of the !Run file within the 
! Boot file to make sure Boot actions are taken even if the application is run using a 
command (perhaps as part of a desktop boot file. for example). Don' t execute 
!Boot from within !Run. 

Although the presence of more than one application with the same name should 
be thought of as an unusual case. it should not cause anything to crash. Your 
application should issue an explanatory error message and should not crash if it 
can no longer find its resources after program startup. 

The Messages file 

The !Help file 

106 

A text file called Messages must be used to store all an application's textual 
messages. including menus, help text. etc. It is easy to replace your application's 
messages with a set in a different language if you decide to supply your application 
on the international market. simply by switching the Messages file. 

Try to make your application read in every textual message when it starts up It 
must not read them only as they are needed. as this forces a user of a floppy 
disc-based system to have your application disc permanently in the drive. Make 
sure all error messages are read in when the application starts up, so that an error 
message can be displayed immediately when required without the need first to 
display a request for the disc holding the messages. 

The !Help file is used to store plain text that provides brief help about your 
application and its function. If this file is present. the Filer adds a Help entry to its 
menu so a user can display the help text. 



Application directories 

The Choices file 

A file called Choices is used to store user-settable choices so they are preserved 
from one use of the application to the next. These choices will of course apply to all 
users of a particular copy of your application. Consequently this scheme will not 
always be the most appropriate to use; for example, a copy of your application on 
a network may well have many users. each of whom wishes to save a different set of 
options. You may prefer to use an alternative scheme. such as reading an 
environment string. There is more about supporting choices in the section entitled 
User choices on page 85. 

Environment strings 

An environment string is a string of characters representing the setting of user 
choices. It should be stored in a system variable called Appl$0ptions where Appl is 
the name of your application. In general, this method makes it more difficult for 
users to set such choices as they need to understand •commands in order to do 
so. You should use it only for rare or unlikely settings. 

If you do choose to use environment strings, use only the application name to 
preface the environment string. Remember to register the application name with 
Acorn to prevent clashes with other applications. 

Shared resources 

Some resources are of general interest to more than one program. Typical 
examples include fonts. patches to RISC OS, and modules that provide general 
facilities. 

Your application will be slightly harder to install if you use shared resources. Make 
sure that your application checks that the resources are available and gives helpful 
error messages if it can't find them. 

The System and Merge applications 

The System application is used to hold shared resources provided by Acorn and 
other system-wide resources which may be shared between applications. (Its ! Boot 
file sets a system variable named SystemSPath giving its full pathname.) An 
application called Merge (or SysMerge) is used to manage the updating of System 
to a newer version; contact Acorn for further details. 

The resources in the System application can be shared amongst many users. and 
are typically only needed when a program is loading. Consequently: 

• On a network. only a single copy of the System application is needed 

107 



Large applications 

• On a single~floppy based computer, only a single master copy of the System 
application is needed. The user may have to insert this when starting an 
application, but should not subsequently have to. 

If your application requires a more recent version of a shared Acorn resource than 
most users are likely to have. you must distribute it within the current version of 
System. together with the Merge application and instructions on their use. You can 
distribute RISC OS 2 resources without a licence. If your application uses some 
system-wide resources, these. too. may now be placed within System and be 
distributed, with Merge. Before you can add any system-wide resources to those 
distributed for RISC OS 3. you must contact Acorn for approval. 

The Scrap application 

The Scrap application is used as a location to store temporary files. You may freely 
distribute this if your application needs to store temporary files. (Its !Boot file sets 
a system variable named WimpSScrapDir.) You should encourage users of 
single-floppy based computers to have a copy of the Scrap application on every 
floppy disc. and to double-click on it when first viewing a new disc. 

An application may create its own directory-to hold temporary files. The directory 
must be called <WimpSScrapDir>.Appl. Your application must create this only 
when it is needed, and not on start up 

Providing your own shared resources 

You must not place your own shared resources in the System or Scrap application 
but instead provide your own shared resource application directory You must also 
register its name with Acorn. to avoid unnecessary duplication If you plan to 
distribute a system-wide resource. this may be eligible for inclusion in System; 
contact Acorn for advice if you are in any doubt. 

Large applications 

108 

The rules above may break down for large applications. Some applications occupy 
more than one floppy disc, with swapping required during operation. It is difficult 
to give precise guidelines for such programs. because their requirements vary so 
widely. The rules above. however. will be used for many smaller programs and so 
will be reasonably familiar to users. Larger programs should be designed and 
organised to fit within the same general philosophy, so that users find them easy 
to install. understand and operate. 

On the whole. though, it is better to aim to make an application compact and 
precise in its functionality. Always bear in mind that some users only have a I MB 
machine and may want to run your application alongside others. Indeed, they may 



Application directories 

have to run it alongside some (such as a printer driver). If your application can't be 
used with a I MB machine, state this clearly, preferably on the packaging so that 
users don't buy it if they can't use it. You will be able to sell to more users if you 
can keep within the requirements of a I MB machine, of course. Even users with 
more than I MB will prefer to use the extra memory for multi-tasking than running 
a single memory-hungry application 

109 



110 



Appendix A: Significant changes 

The major changes since the last issue of this Guide are as follows. 

• The desktop has changed to offer a 3D option. with new versions of the 
standard icons and window components. 

• Cut and paste has become the standard method of cutting, copying and 
moving selections. 

• Drag and drop is introduced as a new method for cutting, copying and moving 
selections. and will eventually exist alongside cut and paste. 

• Outline menu structures are suggested to help you structure the menu tree 
within an application. 

• A new font selection mechanism has been introduced to make it easier for 
users to make changes such as applying bold or italic to text in more than one 
font. 

• The save dialogue box now has a selection button so that users may save a 
selection if there is one. 

• RGB colour selection has changed from fractional 255ths to using percentages 
as a means of colour definition. 

• The introduction of the pinboard in RISC OS 3 means that windows can be 
iconised: a sprite ic_sprite must be supplied for applications to use to 
represent iconised windows. 

• !Sprites must be accompanied by !Sprites22 to support high resolution colour 
screen modes. !Sprites23 can be included to support high resolution 
monochrome screen modes. 

• There are changes in the way some keys work within dialogue boxes: more 
changes will be necessary if PC keyboards are used in the future with some 
systems. 

111 



112 



18 Glossary 

action button 

A 'button' in a dialogue box on which the user can click in order to cause some event 
to occur. 

ADFS 

Advanced Disc Filing System - the standard RISC OS disc-based filing system 

Adjust 

The righthand button of the mouse. 

Adjust size icon 

An icon at the bottom right corner of a window. which the user can drag to adjust the 
size of the window. 

Adjuster arrow 

An icon used in a dialogue box to increase or decrease an associated value, often 
shown in an adjacent writable field 

application 

A set of programs and accompanying resources having a specific purpose. and 
represented by a single icon. 

application directory 

A directory holding the programs and resources that form an application. 

Applications Suite 

A set of applications supplied with every RISC OS-based computer. 

ARM 
The name of the processor used to run RISC OS. It is now developed by Advanced 
RISC Machines Limited. 

113 



114 

Back icon 

caret 

Cll 

An icon at the top left corner of a window. which the user can click to send the 
window to the back of the desktop 

A smgle red !-shaped bar which shows where input from the keyboard will appear. 

The 'Command Line Interpreter' . which gives users control of the computer using a 
traditional command line 

Close Icon 

An icon at the top left of a window. which the user can click to close the w1ndow. 

default action 

The act1on taken if a user presses the Return key when a dtalogue box is displayed. 
Thts should do what the user originally intended. in as ·safe' a way as possible 

desktop 

The GUI supplied as a part of RISC OS 

dialogue box 

A wmdow used for a dtalogue with an applicatron or the desktop 

directory display 

A window showing the contents of a directory 

document 

editor 

A data file that an editor can load. edit, save and print. 

An application that presents files of a particular format as abstract objects which a 
user can load. edit, save and print. 

editor window 

A window used to display a document that is being edited 



Glossary 

environment string 

A string used to store environment settings: these might typically be start-up 
options for an application. 

error box 

Filer 

A special type of dialogue box that gives information to the user, and requires 
acknowledgement that it's been read . 

The part of RISC OS that provides facilities for the user to control filing systems 
from within the desktop. 

filetype 

A value associated with every file, that specifies the type of data that it contains. 

gaining the caret 

The time when a window first has the input focus. and hence contains the caret 

GUI 

A 'Graphical User Interface' such as the RISC OS desktop. 

hourglass 

icon 

A sprite displayed to show that an application running under the desktop has 
temporarily taken over the computer to the exclusion of other applications. 

A small graphic object (usua lly a sprite) used symbolically by the desktop. Amongst 
the things an icon might typically represent are: an option or action within a 
dialogue box. a file. an application. or a physical device. 

Icon bar 

The bar at the bottom of the screen used by the desktop to hold icons. These usually 
represent applications or physical devices. 

icon bar menu 

A menu produced as a result of the user clicking Menu over an icon on the icon bar. 

115 



116 

input focus 

kernel 

What the window containing the caret is said to have, shown by changing the border 
colour of the window 

The main part of RISC OS. 

leafname 

The last part of a pathname. 

Menu 

The middle button of the mouse. 

menu 

A set of options from which the user can choose. typically having a tree structure. 

menu item 

One available option or choice on a menu. 

modified flag 

A flag used by an editor to record. for each document currently being edited. whether 
it has been modified. 

multi-document editor 

An editor that can edit several documents of the same type concurrently. The opposite 
is a single-document editor. 

multi-tasking 

NetFS 

The ability to run multiple tasks or applications at the same time. RISC OS is a 
multi-tasking operating system. 

Network Filing System - a RISC OS filing system that uses Acorn's proprietary 
Econet network. 

Obey file 

A file of commands for execution by RISC OS. 



Glossary 

option button 

A 'button· representing a switch. that can either be on or off. 

OS graphic unit 

paletle 

pane 

parent 

A unit used for defining graphics under RISC OS. so that they are independent of 
the current screen mode. There are nominally 180 OS graphic units (or just 'OS units') 
to the inch. 

A file or data that maps between the colours that are to be displayed on the screen 
and the much larger number of potential colours. 

A dialogue box that is attached to a particular window. 

The precursor of an object: so for a file its parent is the directory that holds it. and 
for a window its parent is the window from which it was opened. 

path name 

A complete specification of where a file is stored. including the filing system. all 
parent directories. and the file's own name (or leafname). 

persistent dialogue box 

A dialogue box that appears when the user chooses a menu item followed by an 
ellipsis. It remains on screen when the parent menu has been closed. and may 
suspend its parent application until it is filled in. 

pointer 

An icon on the desktop the movement of which is linked to the mouse. 

pop-up menu 

A menu within a dialogue box that normally just shows the currently selected option. 
but that the user can make 'pop up' to choose an alternative option. 

printer driver 

A RISC OS application used to print documents: several are supplied as part of the 
Applications Suite. 

117 



118 

radio button 

RISC 

One of a group of 'buttons·. only one of which may be selected at once. 

Reduced Instruction Set Computer: a design philosophy used in the ARM which 
implements on ly the most frequently used processor instructions. and 
concentrates on making them execute at great speed. 

RISCOS 

Acorn's operating system and CUI. supplied in ROM on all its current range of 
computers (except for the Master series) It is pronounced as 'RISC-OH-ESS'. 

RISC_OSLib 

A library supplied with Acorn's ANSI C compiler, designed to help program 
applications to run under the desktop. 

screen mode 

A number that defines the appearance of the display: its resolution. and the 
number of available colours. 

scroll arrow 

An icon on the right-hand side of a window and/or the bottom, used to scroll the 
contents of the window by a small amount 

scroll bar 

An area on the right-hand side of a window and/or the bottom, used to scroll the 
contents of the window. by approximately the height/width of the window. 

scrollable list 

A window within a dialogue box that shows a set of available options, and has icons 
with which the user can scroll through the options before choosing one. 

SCSIFS 

Select 

SCSI Filing System- a RISC OS filing system that uses a SCSI (Small Computer 
Systems Interface) expansion card to communicate with external peripherals. 

The lefthand button of the mouse. 



Glossary 

select box 

A rectangular box used to outline an area within which any objects will be selected. 

selection 

A portion of a document selected by a user, and on which operations may be 
performed. 

single-document editor 

slider 

sprite 

An editor that can edit only one document at a time. The opposite is a multi-document 
editor. 

A bar on the right-hand side of a window and/or the bottom, used to scroll the 
contents of the window. 

A graphic object that is pixel-based (ie one that is defined as a bit-map). 

sprite pool 

style 

An area of memory used and maintained by RISC OS for storing sprites. 

Indicates a stylistic variation in the letters of a font (for example Italic, Oblique or 
Shadow) See also typeface and weight. 

submenu 

A menu reached from another menu (its parent) . 

Task Manager 

An application that is a standard part of the RISC OS desktop, with which the user can 
control and monitor applications and the use of the computer's memory. 

template editor 

An Acorn application used to interactively design and create windows and dialogue boxes 
for use within an application. 

119 



120 

Title bar 

A bar across the top of a window. used to display its title and (sometimes) status 
words 

Toggle size icon 

An icon at the top right corner of a window. which the user can click to toggle the size 
of the window between a 'standard' size and a ·maximum· size 

toolbox 

Window or pane of tool icons from which a user may select a tool to use in an 
application. A toolbox may be free-standing or attached to another window. 

transient dialogue box 

A dialogue box that appears as a submenu. and functions in the same way. 
disappearing when the parent menu is closed. 

transparency mask 

An optional part of a sprite that defines which pixels of that sprite are transparent. 

typeface 

A name used for all similar looking fonts (eg Homerton) This may also include a 
component specifying a variation on the standard font (eg HomNarrow) See also 
style and weight. 

validation string 

weight 

Wimp 

A string associated with a writable field that specifies what characters may be legally 
typed. 

Indicates the density of the letters of a font (for example Medium or Bold). See also 
style and typeface. 

The part of RISC OS that manages windows within the desktop. incidentally providing 
much of its functionality. 



Glossary 

window 

A rectangular area ofthe desktop devoted to a particular function. such as a dialogue 
box. directory display, editor window or error box. 

Window Manager 

The formal name for the Wimp. 

writable field 

A field in a dialogue box or displayed from a menu item within which the user can 
type text. 

121 



122 



Index 

A 
About this file see Info (File menu) 25 
About this program see Info (icon bar menu) 20 
action button 52. 97, I 13 

creating 98 
default see default action button 
wording 63 

ADFS 113 
Adjust 13. 113 

use 32. 50. 75 
Adjust size icon 113 

definition 27 
use 29 

adjuster arrow 53. 97. 113 
creating 99-100 

Alias$@Print1'ype variables 104 
Alias$@Run1'ype variables I 04 
Alt key 69. 89 
Alter pointer 31 
application 113 

large 108 
loading 18. 19 
quitting 20-21, 44 
resource files 103-107 
single-tasking 33 
starting see loading 19 

application directory I 03-109, 113 
application note 

colour 79 
font selection 43 
Writing games 33 

Applications Suite 113 
conformity to standards 2 

ARM 113 
arrow keys 

in dialogue boxes 51 

assembler 91-92 
automatic scrolling see window (automatic 

scrolling) 

8 
Back icon I 14 

definition 27 
use 28 

BASIC 91-92 
bold text 43 
!Bootfile 103.104 

c 
C language 91-92 
caret 31.51 , 67-68.98.114, 115 
CD-ROM 87-88 
character sets 89, 90 
Choices 85 

networks 86 
Choices file I 03. I 07 
choosing menu items see menu items (choosing) 
CLI 114 
clicking with mouse button 

definition 14 
clipboard 77-78 
Close icon I 14 

definition 27 
dialogue box 48 
use 28-29 

closing windows see window (closing) 
colour 79-81 

printing 80 
selection 43-44. 58-59 

123 



Index 

coloured text 81 
ColourTrans 79 
configuration 83-85 
Configure applicatiOn 82. 84 
context-sensitive pointer see pointer shapes 
Copy 42 
copying 

intelligent 75 
objects 32 

Ctrl key 
keyboard shortcuts 69 

Cut 42, 77 
cut and paste 42 . 77 

D 
data transfer 7. 25 
date format 90 
default action button 52. 97 

creating 97-98 
wording 98 

deleting 
intelligent 75 

desktop 9-1 1. I 14 
dialogue box 35.47-64. 114 

appearance 61 
closing window see window (closing) 
colours 101 
default action 49-50, 114 
definition II 
delayed action 49 
Find/Replace 58 
grouping items 62 
pane 117 
persistent II . 48. 49, 117 
position I 0 I 
Print 55-56 
redrawing 93 
Save 56-57 
Scale view 57 
Select colour see colour (selection) 
size 61, 97 

124 

size of components 97 
standard components 50-54,97-101 
standard designs 55-61 
Text style see font selection 
transient I 1 . 48. 120 
types 48-49 
wording 62-63 

directory display 93. 114 
definition I 0 

display field 51. 97 
creating 98 

displaying menus see menus (displaying) 
document 114 

exporting 41 
inserting into another 22-23 
loading 21-22 
new 21.22 
printing 24. 42 
printing see also dialogue box (Print) 
saving 23. 40-42 
saving a selection see also dialogue box 

(Save) 
saving see also dialogue box (Save) 
saving selection 40-4 1 

documents 
information about 25 

double-clicking 
definition 14 
use 103 

drag and drop 32. 78 
dragging 

E 

definition 14 
objects 32 

ECF patterns 79 
Edit menu 42 
editor 114 

definition 21 
multi-document 116 
single-document 119 



Effect menu 42-44 
environmentstring 107.115 
error box I 15 

definition II 
error messages 63-64. I 06, I 07 
Escape key 71 

in dialogue boxes 50, 51 
exporting document see document (exporting) 

F 
File menu 40-42 
FileSType .. . variables I 04 
Filer 115 
filetype 22.104, 115 

export 57 
exporting document 41 
standard types I 05 

finding text see dialogue box (Find/Replace) 
font selection 42-43. 59-60 
function keys 

keyboard shortcuts 70 

G 
gaining the caret 115 
graphical user interface see GUI 
gridlines 80 
group box 62 

creating 101 
GUI I. 115 

H 
hand pointer 31 
hardware 

accessing directly 92 
!Help file 103. 106 
help text I 06 

highlighted 54, 81 
definition II 

hourglass 115 

icon 17-18,104,115 
position on icon bar 94-95 

icon bar 115 
definition I 0 

icon bar menu 44, 96, 115 
definition II 

iconised window 29. 95 
icons 93 

appearance 17-18 
Info 

File menu 25. 40 
icon bar menu 20. 44 

info box 
definition II 

input focus 67-68. 115. 116 
Insert key 71 
international support 89-90, I 06 
inverse video see highlighted 
italic text 43 

K 
kernel see RISC OS (kernel) 
keyboard layout 90 
keyboard shortcuts 49. 68-69. 89 

L 
language 89 
large icons 18, 93-94 
leafname 116 
loading applications see application 

Index 

125 



Index 

M 
main window 

definition 10 
Menu 13 
menu items 116 

appearance 44-45 
choosing 14. 36 
definition I 0 
size 95 

menus 35-45. 95-96, 116 
colours 96 
context-sensitivity 35 
definition 10 
displaying 35-36 
keyboard shortcuts see keyboard shortcuts 
pop-up see pop-up menu 
position 95-96 
removing 36 
structure 37 

Merge application I 07 -I 08 
Messages file 103. 106 
modified flag 28. I I 6 
monitors 83-84 
mouse 13-15 

buttons 14 
definitions of buttons 13 
use 14 

Move 42 
moving 

intelligent 75 
objects 32 
selections 77-78 

multi-tasking 6-7.10.1 16 

N 
NetFS I 16 
networks 86 
new document see document (new) 2 I 

126 

0 
Obey file 104, 106. I 16 
option button 53. 97, I I 7 

creating 99 
OS units 84. 93. I I 7 

p 
palette 79. I I 7 
pane window 

definition II 
paper limi ts 31 
parent I I 7 
Paste 42. 77-78 
pathname 23. 57. I 17 
persistent dialogue box see dialogue box 

(persistent) 
pinboard 10 

definition I 0 
pointer 13. 101 . 117 

alter 3 I 
caret 31 
hand 31 
shapes 31 

pop-up menu 45. 55. 96, 117 
definition II 

pop-up menu icon 
creating 100 

pressing mouse button 
definition 14 

Print key 71 
printer driver I I 7 
printers 84 
printing 

colour 80 
printing see document (printing) 
programming language 91-92 

see also languages by name 



a 
Quit see application (quitting) 

R 
radio button 53, 97, 118 

creating 99 
RAM Transfer 25 
ReadMe file 103 
Redo function 6 
redraw speed 92-93 
releasing mouse button 

definition 14 
Return key 71 

in dialogue boxes 50. 51 
RGB 58.79 

colour selection see colour (selection) 
RISC 118 
RISC OS 

responsiveness 92 
RISCOS 2 8 
RISC OS 3.00 8 
RISC OS 3.10 8 
RISC OS 3.11 8 
RISC OS 118 

kernel 92. 116 
library see RlSC_OSLib 
patches 107 
programming interfaces 92 

RISC OS 3 
Programmer's Reference Manual vii. 27, 35, 

47, 104 
RISC_OSLib 91, 118 
root menu 

definition I 0 
!Run file 103. 106 
!Runlmage file 103 

s 
saving a document see document (saving) 
Scrap application I 08 
Scrap Transfer 25 
screen 

taking over 33 
screen mode 84. I 18 
screen size 84 
scroll arrow 118 

definition 27 
use 30 

scroll bar I 18 
definition 27 
use 30. 54 

scrollable list 54, 118 
scrolling pane I 0 I 
scrolling windows see window (scrolling) 
SCSIPS 118 
Select 13. 11 8 

use 75 
select box 76, I 19 
selection I 19 

copying 77 
definition 14 
from stacked objects 76-77 
moving 77 
objects 76-77 
saving see also dialogue box (Save) 

Index 

saving see also document (saving selection) 
text 75 
using select box 76 

shared resources I 07 -I 08 
Shift key 32 

keyboard shortcuts 69 
Shutdown 21 
single-tasking applications 33 
slider 97, 119 

creating I 00 
definition 27 
use 31,54 

small icons 18. 94 
sound 81-82 

127 



Index 

special needs support 73 
sprite 119 

borders 94 
designing 93 
name 104 
size 93-94 
transparency mask 93, 120 

sprite pool I 19 
!Sprites file 103. 104-106 
Sprites file I 03 
standard icons 97-106 
starting application seeapplication (loading) 19 
status word I 19 
style 119 
Style menu 42-44 
submenu 35. 119 

definition I 0 
SysMerge application 107 
System application 104, 107-108 
system variables I 04. I 07 
System SPath I 07 

T 
Tab key 71 

in dialogue boxes 51 
taking over the screen 33 
Task Manager 119 
template editor 91, 119 
Templates file I 03 
terminology 8. I 0-1 I 
text 

colour 81 
finding and replacing see dialogue box 

(Find/Replace) 
text label 97 

creating I 00-1 0 I 
text selection see selection (text) 
Title bar 28, 120 

clicking on 28 
definition 27 

Toggle size icon 120 

128 

definition 27 
use 30 

tool 120 
toolbox 64 

instant effect 49 
transient dialogue box see dialogue box 

(transient) 
transparency mask see sprites (transparency 

mask) 
triple-clicking 

definition 14 
true colours see RGB 
typeface 120 

u 
Undo function 6 
user choices see Choices 

v 
validation string 120 
versions of RISC OS 8 
view scale 57 
volume 82 

w 
weight 120 
Wimp 5, 27-32.35.47,68, 92. 93. 105-106, 120 
WimpSScrapDir 108 
window 27-32. 95, 121 

automatic scrolling 32 
bringing to the front 28 
closing 28-29, 60-61 
colours 95 
definition 10 
dragging within 32 
icon names 27 
iconising 29. 95 
moving 30 



parts 27-28 
positioning 95 
redrawing 32, 92 
resizing 29-30 
scrolling 30-31. 32.92 
sending to the back 28 

Window Manager see Wimp 
word 

definition 75 
writable field 97. 121 

creating 98 
dialogue box 50-51 

z 
zoom 58 

129 



130 



Reader's Comment Form 
RISC OS 3 Style Guide 

We would greatly appreciate your comments about this Manual. which will be taken into account for the 
next issue: 

Did you find the Information you wanted? 

Do you like the way the Information Is presented? 

General comments: 

If there is not enough room for your comments, please continue overleaf 

How would you classify your experience with computers? 

D LJ 
Used computers before Experienced User Programmer 

Cut out (or photocopy) and post to: 
Your name and address: 

Dept RC. Technical Publications 
Acorn Computers Limited 
Acorn House 

D 
Experienced Programmer 

Vision Park 
This information will only be used to get in touch with you in case we wish to explore your 
comments further 

Histon 
Cambridge CB4 4AE 





Acornt 


